
A Probabilistic Analysis of Trie-Based Sorting of Large Collections of Line Segments in
Spatial Databases

�

Michael Lindenbaum
Computer Science Department

Technion
32000 Haifa, ISRAEL

Hanan Samet
Gisli R. Hjaltason

Computer Science Department
University of Maryland

College Park, Maryland 10742 USA

February 17, 2000

Abstract

The size of five trie-based methods of sorting large collections of line segments in a spatial database is investi-
gated analytically using a random lines image model and geometric probability techniques. The methods are based
on sorting the line segments with respect to the space that they occupy. Since the space is two-dimensional, the trie
is formed by interleaving the bits corresponding to the binary representation of the x and y coordinates of the under-
lying space and then testing two bits at each iteration. The result of this formulation yields a class of representations
that are referred to as quadtrie variants, although they have been traditionally referred to as quadtree variants. The
analysis differs from prior work in that it uses a detailed explicit model of the image instead of relying on modeling
the branching process represented by the tree and leaving the underlying image unspecified. The analysis provides
analytic expressions and bounds on the expected size of these quadtree variants. This enables the prediction of stor-
age required by the representations and of the associated performance of algorithms that rely on them. The results are
useful in two ways:

1. They reveal the properties of the various representations and permit their comparison using analytic, non-experi-
mental, criteria. Some of the results confirm previous analyses (e.g., that the storage requirement of the MX
quadtree is proportional to the total lengths of the line segments). An important new result is that for a PMR and
Bucket PMR quadtree with sufficiently high values of the splitting threshold (i.e.,

�
4) the number of nodes is

proportional to the number of line segments and is independent of the maximum depth of the tree. This provides
a theoretical justification for the good behavior and use of the PMR quadtree which so far has only been of an
empirical nature.

2. The random lines model was found to be general enough to approximate real data in the sense that the properties
of the trie representations, when used to store real data (e.g. maps), are similar to their properties when storing
random lines data. Therefore, by specifying an equivalent random lines model for a real map, the proposed ana-
lytical expressions can be applied to predict the storage required for real data. Specifying the equivalent random
lines model requires only an estimate of the effective number of random lines in it. Several such estimates are
derived for real images and the accuracy of the implied predictions is demonstrated on a real collection of maps.
The agreement between the predictions and real data suggests that they could serve as the basis of a cost model
that can be used by a query optimizer to generate an appropriate query evaluation plan.

Keywords and phrases: large spatial databases, tries, sorting line segments, geometric probability, analysis of algo-

rithms, spatial data structures, quadtrees, quadtries, cost model, query evaluation

�
This work was supported in part by the National Science Foundation under Grant IRI-9712715.

1 Introduction

1.1 Background

The efficient management of data in large database systems depends on grouping the data in such a way so that similar

data is aggregated or stored in proximityand hence can be operated upon together (e.g., [14]). This grouping is achieved

by either sorting or hashing the data. The rationale for sorting the data is to facilitate the presentation of the data to

the user (e.g., in reports) and also to speed up query processing using sort-based algorithms such as merge-join. The

rationale for hashing is the fact that set processing algorithms based on it have an expected complexity of O
�
N � instead

of O
�
N logN � as in sorting.

Althoughsorting has traditionallybeen applied to one-dimensional data, it is also applicable to data of higher dimen-

sions. This data can consist of points in a higher dimensional space, or spatial objects that span the higher dimensional

space (e.g., lines, regions, surfaces, volumes, etc.). In the case of spatial data in more than one dimension, which is the

focus of this paper, the result of applying conventional sorting techniques does not always lead to simpler algorithms.

For example, suppose that the the data is sorted with respect to a particular reference point (e.g., all cities, represented

as points, are sorted with respect to their distance from Chicago). In this case, if we wish to obtain the points in the

order of their distance from another point (e.g., with respect to their distance from Omaha), then the sorting process

will, in general, have to be reapplied to the entire data. The problem is that the data was sorted in an explicit man-

ner. Instead, we need methods which provide an implicit ordering. Examples of such techniques are called bucketing

methods (e.g., [38]). In this case, the data are sorted on the basis of the space that they occupy and are grouped into

cells (i.e., buckets) of a finite capacity. This method is analogous to hashing where the hashing function is said to be

order-preserving (e.g., [35]). Thus we see that for spatial data there is really no distinction between using sorting or

hashing to achieve grouping.

There are two principal methods for sorting spatial data. The first makes use of an object hierarchy. It is based on

propagating the space occupied by groups of the data objects up the hierarchy (e.g., members of the R-tree family [3,

15]). We do not deal with this method in this paper. The second is based on a decomposition of the space occupied by

the data into disjoint cells which are aggregated into larger cells (e.g., members of the quadtree family [39, 38]). The

decomposition can be either tree-based or trie-based. The distinction is that the former is applied to the values of the

data, while the latter makes use of the digits (termed a trie [13, 25]) that comprise the domain of the values of the data.

Data structures that make use of the latter in one dimension are also known as digital trees [25].

Our data consists mainly of line segments in two-dimensional space. Our focus is on using tries to sort the line

segments with respect to the space that they occupy. We use tries because they result in partitioning different data sets

at the same positions thereby making it very easy and efficient to use merge-join query processing algorithms. Since

the space is two-dimensional, the trie is formed by interleaving the bits corresponding to the binary representation of

the x and y coordinates of the underlying space. Two similar but different trie-based data structures may be created

depending on whether we test one bit at each iteration (a k-d trie [12]) or two bits at each iteration (a quadtrie [18, 38]).

In this paper, we focus on quadtries for collections of line segments. Unfortunately, the representations that make use

of quadtries have been traditionally referred to as quadtree variants (e.g., [23, 39, 38]). In our discussion, all quadtrees

are based on tries and we precede the term quadtree with an appropriate qualifier whenever there is a potential for

confusion. Thus the quadtrees that we discuss are distinct from those based on multidimensional binary search trees

that are used for points (e.g., [10, 11]).

Variants of quadtree structures have been used for many different spatial objects including points, regions, lines,

1

rectangles, surfaces, volumes, etc. Algorithmsusing them generally have good average execution times while maintain-

ing a relatively compact representation [39, 38]. In order to be able to use these data structures in a database application,

we must be able to predict their size. The most obvious advantage of such a capability is that it enables us to determine

how much space will be required to store different datasets and to choose between different data structures from an ef-

ficiency standpoint. It may also be of use at query evaluation time to aid the estimation of the cost of a particular query

execution plan (i.e., processing strategy) to be used by a query optimizer. For example, suppose that we are using a

filter-and-refine strategy [5] for processing a window query. In particular, suppose further that we have a method of

estimating the number of data structure blocks that intersect the window based on the window’s size (e.g., [36]). Our

results could be used in a reverse sense to estimate the number of objects (i.e., line segments in our case) that intersect

these blocks. This could serve as a measure of the cost of the refinement step which must subsequently determine which

of the lines actually intersect the query window.

Continuingthe filter-and-refine query processing strategy, suppose that we are using the histogram method (e.g., [26,

28, 30]) for estimating the number of objects that intersect the query window. We can now plug this information into

our results to estimate the number of data structure blocks that intersect the window. This is a good measure of the cost

of the filter step, i.e., the I/O cost for the spatial data structure.

1.2 Related Work

Traditional worst-case analysis is often inappropriate because the worst case tends to be both very bad and highly im-

probable. Thus most approaches to the analysis of hierarchical data structures have been statistical in nature.

A number of statistical approaches have been tried. The most common makes use of a uniform distribution in the

underlying space (e.g., [2, 8]). An alternative is to make use of a non-uniform distribution. Some techniques that have

been used include the Gaussian distribution [32] as well as clustering methods uniformly distributedpoints [34] or even

pre-determined shapes [3]. Another approach makes use of a fractal distribution [7] that has the advantage of exhibiting

self-similarity which means that portions of a part of the data set are statistically similar to the entire data set. The key

to this approach is to compute a fractal dimension for a particular point data set and then use it in a query optimizer.

The methods described above are for point data sets1. In this paper, we are interested in data which has extent

such as collections of line segments. Tamminen [46] considers the performance of quadtrees and bintrees under the

assumption that the image consists of a single random line treated as a region, and analyzes the number of nodes in

them using geometric probability. Shaffer et al. [44] follow Tamminen’s approach and use a local straight line model

to perform an analysis that yields the relative (rather than absolute) storage requirements of the region quadtree and

bintree data structures. Mathieu et al. [27] and Puech and Yahia [37] investigate the size of quadtree representations

of region data and some other related questions using some assumptions on the branching probabilities of nodes in

the tree. Nelson and Samet [31, 32, 33] consider the distributions of node occupancies in hierarchical geometric data

structures that store a variable number of geometric data items per node which included points and lines but have a

wider applicability. This approach is similar to hashing [25] where each node acts like a bucket.

Although these approaches sometimes lead to remarkable agreement between theory and simulation (e.g., [1, 32]),

they have a common drawback. The explicit model of the image on which the statistical analysis is done is either

exceedingly simple or is not given at all in which case it must be implied from other assumptions. In particular, an

assumption is made on the splitting probability in the data structure (e.g., [1, 27, 32, 37]) which implies the existence

1The fractal model has been applied to points derived from a collection of line segments in the sense that the points corresponded to intersections

of line segments [7]. This was used to predict the effective occupancy of nodes in an R-tree that stores point data.

2

of some implicit model on the data. However, when we want to know what kind of data (real or contrived) fits this

model, the only possible answer is a circular one that says that the data is such that gives rise to these probabilities.

Unfortunately, there is no explicit indication of whether there exists some image model associated with these splitting

probabilities. Thus the connection between the analysis and the performance with real image data is not clear. In con-

trast, our approach, as described below, is to use an explicit non-trivial random image model, and then to show that data

can be generated corresponding to this model which also fits the analysis. Note that we are not claiming that the data

we generate corresponds exactly to typical images, although we deal with this issue as well. In this sense our approach

is complementary to the work of Flajolet and Puech [12] who analyzed the partial match query time for hierarchical

data structures, while we analyze their storage requirements. Unlike their data, which consists of random points in a

high dimensional space whose coordinate values are drawn from a uniform distribution, our data consists of randomly

drawn lines. It is important to note that lines are a qualitatively different data type than points, as the action of every

line on the structure is not local.

An alternative non-statistical approach was applied by Hunter and Steiglitz [19, 20] to show that for a polygon

of perimeter l, the size (i.e., the number of nodes) of the corresponding region quadtree is O
�
l � . This classic result,

although derived for simple polygons, has been observed to be sufficiently general to be useful for predicting the per-

formance of a number of algorithms for different images represented by a region quadtree [41].

As we pointed above, in this paper we investigate the use of a random image model consisting of M randomly

drawn lines. Unlike Tamminen’s approach [46], which considers a single random line, here we treat the much more

general and complicated situation of an arbitrary number of lines. We use geometric probability to analyze five variants

of the quadtree that can be built for data that obey this model by determining the expected number of nodes in each

of them. These variants are the region quadtree [23, 20], the MX quadtree [20, 38], the PM quadtree [42], the PMR

quadtree [31, 32, 33], and a new variant of the PMR quadtree representation suggested here which we call a Bucket

PMR quadtree (see also [16, 17]).

1.3 Contributions

The analysis that we provide is important for two reasons: First, it allows for a meaningful, quantitative, and analytic

comparison of a number of different options for representing linear spatial data and provides tools for choosing between

these options in a way which is neither experimental nor domain-dependent. The second reason is even more practi-

cal: we found that we could actually predict the storage requirements of these representation options by specifying an

equivalent random lines data set, with some equivalent number of lines, and use the proposed analytic expressions for

predicting its size.

In particular, our analysis shows that for images of the same complexity, the PMR quadtree and the Bucket PMR

quadtree for sufficiently high values of the splitting threshold (i.e.,
�

4) are the most efficient in the sense that they

require the least storage. The PM quadtree follows, and the MX quadtree requires the largest amount of storage. This

qualitative ordering verifies experimental results obtained in the past [19, 20, 31, 42] and agrees with the extensive

experimentation that we have carried out. This verification and the accompanying theoretical justification is one of the

contributions of our research.

The agreement between the results of our analysis and the data was not a surprise in the case of the MX quadtree

in that it confirmed previous results (i.e., [19, 20]). However, in the case of the PMR and Bucket PMR quadtree for

sufficiently high values of the splitting threshold (i.e.,
�

4) our analysis breaks new ground in that we are able to derive

theoretically and verify experimentally for both random data and real map data that the number of nodes is asymptot-

3

ically proportional to the number of line segments. This is quite significant as it enables us to predict the number of

nodes required by this representation, and, most importantly, to show that it is independent of the maximum depth of

the tree.

It is important to note that we do not claim that our proposed random image model yields data instances which are

visually similar to what appears in realistic geometric applications such as road networks. Nevertheless, we do show

that the analysis can be interpreted in terms of the geometric properties of the image, such as line length and the number

of intersections between lines. With this interpretation, the predictions, derived for random images, may be applied to

real data, by measuring the relevant geometric property, and using it to specify equivalent random images. Testing the

predictions on a real set of maps, yielded relatively accurate predictions of the storage required for the maps.

Although our analysis is for a particular data type (i.e., collections of line segments) and data structures, we believe

that it has wider applicability. In particular, the geometric probability approach could be extended for data types other

than line segments (e.g., points, polygons, surfaces, solids, etc.). Furthermore, the random image model can be used

in a statistical analysis of other trie-based spatial data structures.

The rest of this paper is organized as follows. Section 2 gives a brief overview of the quadtree representations of

collections of line segments, including the definitionsof the five variants that we analyze. Section 3 presents the random

image model and reviews some necessary results from geometric probability. Section 4 contains a statistical analysis

using the model and the results of its application to each of the afore-mentioned quadtree variants. It also contains

the results of some experiments with instances of the random lines model. Section 5 describes the application of the

analysis to predict the storage requirements for real data as well as the results of extensive experiments that support its

validity. Section 6 draws some concluding remarks as well as gives some directions for future research.

2 Overview of Quadtree Representations of Collections of Line Segments

A quadtree is a hierarchical variable resolution data structure based on the recursive partitioning of the plane into quad-

rants. It can be viewed as a 4-ary tree where each node represents a region in the plane called a block, and the sons

of each node represent a partition of that region into four parts. This scheme is useful for representing geometric data

at a variable resolution. Quadtree variants exist for representing planar regions [23], collections of points [9, 40], and

collections of line segments [31, 32, 33, 42], as well as more complicated objects (e.g., rectangles [22]). Generaliza-

tion of the quadtree to three and higher dimensions (e.g., octrees [19, 21, 29] and bintrees [24, 41, 47]) have also been

investigated. They have many of the same basic properties.

The different variants of the quadtree data structure can be subdivided into two categories: those based on a regu-

lar decomposition of space using pre-defined boundaries (i.e., trie-based), and those where the partition is determined

explicitly by the data as it is entered into the data structure (i.e. tree-based or data-based). In most cases, use of regu-

lar decomposition means that the shape of the resulting data structure is independent of the order in which the data is

inserted into the structure when building it. This is not the case for data-based decompositions. In fact, for most applica-

tions, regular decomposition works at least as well as the data-based decomposition. Moreover, regular decomposition

is easier to implement and analyze. In this paper, we consider only structures based on a regular decomposition. An-

other distinction is between quadtree variants whose maximum depth (say N) is bounded and those for whom it is not.

For the structures that we consider here, only the PMR quadtree has an unbounded maximum depth.

The condition used to determine when a quadtree block should be partitioned is called a splitting rule. This rule is

usually a function of the data that is associated with the block — that is, the condition is evaluated using local informa-

tion. The exact formulation of the rule depends on the type of the data being stored. Here we consider the use of the

4

following quadtree variants in the representation of a collection of line segments.

� A region quadtree is usually used to represent planar regions and its splitting rule is such that a block is split

if both the depth of its corresponding node is smaller than N and if the region represented by the block is not

homogeneous (see Figure 1a which describes the subdivision implied by this quadtree).

� An MX quadtree, although usually defined for points (e.g., [38]), can be used to represent a collection of line

segments on the plane. Its splitting rule is such that a block is split if both the depth of its corresponding node is

less than N and if the block contains at least one line segment (see Figure 1b).

� A PM quadtree represents collections of line segments in the plane. It is a vertex-based representation whose

splitting rule is that a block is split unless the depth of the corresponding node is N, or only one line segment

passes through the block, or all the line segments that pass through the block meet at a point within the block,

or the block contains more than one endpoint of a line segment. This is a variant of the PM1 quadtree [42]. It

differs from the PM1 quadtree by virtue of having a bound on its depth (see Figure 1c).

� We also define a new hierarchical structure called a Bucket PMR quadtree which is similar to a PM quadtree with

the difference that it is edge-based rather than vertex-based as was the PM quadtree. The Bucket PMR quadtree

represents collections of line segments on the plane using a splitting rule such that a block is split if both the

depth of its corresponding node is less than N and more than q line segments pass through the block. In this case,

q is called a bucket capacity as this is its role since a block is split as long as it has more that q line segments in

it and is not at the maximum depth of the tree. This structure has a prespecified maximum depth (i.e., N). The

resulting decomposition does not depend on the order in which the line segments are inserted, and the number

of line segments stored in a leaf node whose depth is less than N is guaranteed to be less than or equal to q (see

Figure 1d where q � 4). At times, we want to express the dependence on q explicitly and use the term Bucket

PMRq quadtree to describe this structure.

� The disadvantage of the Bucket PMR quadtree is that if there are many line segments in one small region, then

there would be much decomposition in that region. An alternative representation, termed a PMR quadtree, also

represents a collection of line segments but is defined in a slightly different way. The data structure is created as a

dynamic result of a sequence of insertions of line segments using a splittingrule such that a block is split once, and

only once, if the block is both intersected by the new line segment and already contains q or more line segments.

In this case, the parameter q is termed a splitting threshold to distinguish its use from that in the Bucket PMR

quadtree. Note that this structure does not have a prespecified maximum depth. The resulting decomposition

depends on the order in which the line segments are inserted. Moreover, the number of line segments represented

by any leaf node is not guaranteed to be less than or equal to q. A value of four for q is usually sufficient to store

collections of line segments efficiently as it implies that junctions of two, three, and four line segments (which

are common in road maps, rivers, etc.) do not cause a split. Figure 1e illustrates this representation assuming

that q � 4 and that the lines are inserted in the order marked in the figure. It is important to note that in this

example no split takes place until the fifth line segment is inserted, and since only one split has occurred, the
���

quadrant contains 5 � q line segments. Again, as in the Bucket PMR quadtree, at times, we want to express the

dependence on q explicitly and use the term PMRq quadtree.

A subtle point in the definition of the splitting rules is whether two line segments that intersect in a square should

be counted as four line segments or not. The algorithms that create the data structures take a list of line segments as

5

(d)(c)

(a) (b)

(e)

2

3 4

1

5

��� �����	��
����� ���������������������! �"����	�#���$�&%' �(��)�*��� ��+����! �"����)�,��-.%*/!(10324���! �"����	�#��-5%76#(98:0;���! �"����	�#��-
%7"�(=<>�!6$?#���@8A0=B5C4���! �"����)�#��DE%7�,(F �+!"G8A0=B5C4���! �"����)�#�IH1J��$+K��J!�KL �M+����N ��)�@�M+$�O�$�P�7�#"Q�M+=��J!�
���	"��$�1
�-�RS-�T�- C -� �+�"=USD

their input and are not provided with the explicit information on their geometrical intersection. Therefore, every line

segment is specified by its two original endpoints and two line segments remain two even if they intersect. Therefore,

the data represented in Figure 1b–e consists of exactly five line segments. In fact, this is why in the case of the PM

quadtree, we had to get to the maximum depth by decomposing the SW and SE sons of the NE son of the SW quadrant

in Figure 1c and likewise for the NE son of the NW son of the SE quadrant in Figure 1c.

3 Random Image Models

In the first part of this paper we assume that the quadtree variants that are discussed represent geometric structures

which are instances of a random process described as follows. Observe that the line L
�
ρ V θ � consists of the points

�
x V y �

satisfying the relation

L
�
ρ V θ � �XW �

x V y �$Y xcosθ Z y sinθ � ρ [�\
The line L

�
ρ V θ � is perpendicular to the vector

�
cosθ V sinθ � (see Figure 2a). Althoughthe positionof every particular line,

L
�
ρ V θ � , naturally depends on the origin and orientation of the coordinate system, we shall see soon that the probability

of every random line, drawn according to our model, does not. Therefore, the origin and orientation of the coordinate

system relative to the image does not make a difference. The arbitrarily chosen location of the coordinate system in

Figure 2a illustrates this invariance property. For the rectangular region R

R �]W �
x V y �$Y�Y x YMV#Y y Y,^ 2N _ 1 [�V

6

let T be the parameter set

T �XW �
ρ V θ �$Y L �

ρ V θ � � R �� /0 [�\
which includes all the parameter pairs (ρ V θ) that represent lines intersecting with R.

Let

p
�
ρ V θ � �

�
1�
T
� �

ρ V θ ��� T

0 otherwise
(1)

be a probability density function, where

Y T Y ���
T

dρdθ \
This distribution, called the uniform density distribution, is the only one which ensures that the probabilityof choos-

ing a particular random line is independent of the coordinate system in which ρ and θ are defined (i.e., it is independent

of the translation or rotation of the coordinate system [43]). Therefore, it is the natural density function to specify

when modeling collections of random lines. As an illustration, see Figure 2b where an instance of the random image

containing five lines is described.

(a) (b)

x

y

ρθ

��� �����	� R��	�1J!�IB �+!"���
��
F $���30F��"��!L � %' �(��1J��I��� ��6#���'���������$+��$�	 $�7�M+ �E I�	 �+!"���
 L �M+!�F%*+ ���7�
��J! $�1��J��N6*�����	"��M+� $�7�F�'� �'�7��
 � � ���/�� ���) ��P�@H&� ��J=�	���#���#6*� � �@��J��N��
F $���,(#D1%�/�(��]�����!� 6, �L �M+ �'�7 �+!6#�
���A��J!� �	 �+!"���
 ��
F $��� 6���+$�7��� �!6��7�,"@� ���>0���U=�M+!"��$���$+!"��$+���L � "��) ,H1+=L �M+���� D

Every instance of our random image model is a 2N � 2N image with M random lines that intersect it and which are

chosen independently according to the density function (1). The continuous uniform density distribution implies that

three lines intersect at the same point with probability zero. This follows from the observation that two intersecting

lines define a point, say
�
x0 V y0 � , which can be regarded as prespecified for the third line. The parameters of every line

which intersects this point must be in the set W �
ρ V θ � Y x0cosθ Z y0sinθ � ρ [, the measure of which is zero (i.e., a one-

dimensional quantity) with respect to the measure of T (i.e., a two-dimensional quantity). Therefore, after drawing a

finite number of random lines, the probability that any three of them will intersect
�
x0 V y0 � is zero. This property is also

obeyed by real spatial data such as road maps as a junction of more than four roads is rare. Each of the line segments

clipped from a random infinite line by the boundary of the image is subdivided further into smaller line segments by

its intersection with other infinite lines, so that, eventually, no line segment crosses another line segment except at the

endpoints of the line segments.

Thus the data represented by the various quadtrees (in the first, analytical, part of the paper) is a collection of random

line segments, specified as a set of M random infinite lines. Note that the infinite lines are not of interest by themselves

but are just useful for creating the distribution of line segments which we analyze.

7

We do not claim that our proposed random image model will enable us to generate data that correlates with what

appears in realistic geometric applications such as road networks. Finding such a correlation is unlikely as realistic

geometric data does not consist of lines whose endpoints lie on the image boundary. Nevertheless, the analysis can be

interpreted, as we shall see later, in terms of the geometric properties of the image, such as line length, and the number

of intersections between lines. This allows us to apply its results to real data with similar geometric properties. Most

importantly, the analysis provides us a means to justify claims about the relative qualitative behavior of the different

data structures.

The above model is useful for predicting the sizes of all but the region quadtree. The region quadtree represents

regions rather than lines segments. This leads us to the following variation of the above model, which we term a mod-

ified random image model. In this case, each image consists of black and white regions separated by M random lines

chosen independently using the uniform density distribution given by (1). The actual colors of the individual regions

do not affect the total number of nodes. The resulting image can be interpreted as follows. Choose one of the regions at

random and let it be black. Let all of its neighbors be white. Let all of the white node’s uncolored neighbors be black.

Repeat this process until all regions are colored.

Before starting the analysis, we first present three results from geometric probability which form the basis of our

results [43].

Geometric Probability Theorem 1 (GPT1): Let C1 be a convex planar set included in the convex planar set C
�

R.

Let L1 and L be the perimeters of C1 and C, respectively. Let l be a random line chosen using the uniform density

distribution given by (1). Therefore, the probability that a line l passing through C also passes through C1 is

p W l � C1 �� /0 Y l � C �� /0 [� L1

L
\

Geometric Probability Theorem 2 (GPT2): Let C � R be a convex planar set with area A and perimeter L. Let l be

a random line chosen using the uniform density distribution given by (1). Suppose that l intersects with C and creates

a chord H with length YH Y . Then the expected length of H is

E �#YH Y�� � πA
L
\

Geometric Probability Theorem 3 (GPT3): Let C
�

R be a convex planar set with area A and perimeter L. Let l1 and

l2 be two random lines, independently chosen using the uniform density distribution (1). If both lines l1 and l2 intersect

with C, then the probability that l1 intersects with l2 inside C is

p W �
l1
�

l2 � � C �� /0 Y l1 � C �� /0 V l2 � C �� /0 [� 2πA
L2 \

4 Statistical Analysis of Quadtree Representations of Collections of Line Segments

An image as defined in Section 3 is an instance of a random event. It follows that its hierarchical representation, using

one of the quadtree variants, is also a random event. Moreover, the existence of a node in the tree, or its being a leaf,

are random events. We make the following simplifying assumptions: given nodes u and v which exist in the tree, the

events that node u is a leaf and that node v is a leaf are statistically independent. Assume further that the conditional

probability

Pd � p W v is a non-leaf node Y v is a node of the tree [

8

depends only on d, the depth of v in the tree. Although the statistical independence assumption does not necessarily

hold for all pairs of nodes (e.g., two nodes which are brothers), this is usually the case for most pairs of nodes which

correspond to small distant regions intersected by different lines. As we shall see later, the independence assumption,

as well as the expressions for the storage requirements which depend on it, hold only when the number of lines is not

too small. If this number is too small, then more pairs are intersected by the same line, and the nodes that split no longer

correspond to independent events.

Let P
�
d denote the probability that the splittingcondition is satisfied for a particular square region which corresponds

to a node at depth d. Considering the MX quadtree, for example, P
�
d is the probability that at least one line pass through

this region. The existence of a node v at depth d in the tree implies that the splitting condition holds for the region

corresponding to its father node. Thus, v exists in the tree with probability P
�
d _ 1 and, for d

�
1,

Pd � p W v is a non-leaf node Y v exists [� p W v has 4 sons [
p W v exists [�

P
�
d

P
�
d _ 1

\ (2)

Both P0 and P
�
0 are one for every tree which describes at least one line segment. Let Sd be the number of nodes at

depth d, and let S be the total number of nodes in the tree. The expected number of nodes at each depth, as implied by

the statistical independence assumption, is given by

E � S0 � � S0 � 1 (3)

E � S1 � � P0 � E � S0 � � 4 � P0 � 4
E � S2 � � P1 � E � S1 � � 4 � P0P1 � 42

E � S3 � � P2 � E � S2 � � 4 � P0P1P2 � 43

\P\P\
E � Sd � � Pd _ 1 � E � Sd _ 1 � � 4 �

�
d _ 1

∏
i � 0

Pi ��� 4d

and

E � S� �
N

∑
d � 0

E � Sd � � 1 Z N

∑
d � 1

4d � d _ 1

∏
i � 0

Pi (4)

� 1 Z P0

N

∑
d � 1

4d � P
�
1

P
�
0
� P �2P
�
1
� P �3P
�
2
����� P �d _ 1

P
�
d _ 2

� 1 Z N

∑
d � 1

4d � P �d _ 1 \
Equation (4), which gives the expected number of nodes in the tree, serves as the basis for our analysis. In the

following subsections we focus on splitting rules for each of the quadtree variants discussed in Section 2. For each

rule, we derive the corresponding splitting probabilities P
�
d , and then use Equation (4) to calculate the expected size of

the data structure.

4.1 MX Quadtree

An MX quadtree represents a collection of line segments on the plane by partitioning the plane into square blocks

using the splitting rule that a block is split if both the depth of its corresponding node is less than N and if the block

contains at least one line segment. If the block does not contain a line segment, then it is not subdivided further and its

corresponding node is a leaf. Otherwise, it is subdivided and its corresponding node has 4 sons (see Figure 1b).

9

4.1.1 Analysis

In order to compute the probabilitiesPd , we use the followingargument. A node at depth d corresponds to a 2N _ d � 2N _ d

square. The Geometric ProbabilityTheorem GPT1 implies that a particular random line passes through this region with

probability

pd �
4 � 2N _ d

4 � 2N �

�
1
2 � d

\
The probability that exactly k out of M lines pass through this region is

pd � k � � Mk � � 1
2 � dk

�
1 � � 1

2 � d � M _ k

\ (5)

The probability that one or more lines pass through this region, thereby implying that it is split, is

P
�
d � 1 � pd � 0 � 1 � �

1 � � 1
2 � d � M

\ (6)

Inserting (6) into (4) we get

E � S� � 1 Z N

∑
d � 1

4d � P �d _ 1 �
N

∑
d � 1

4d �� 1 � �
1 � � 1

2 � d _ 1 � M ��
\ (7)

It is difficult to derive closed forms of sums of this nature. To our knowledge, no relevant solutions exist in the

literature. Furthermore, we tried, without success, to evaluate it using various symbolic equation solvers, as well as

consulting their developers. Therefore, as we are primarily interested in comparing the asymptotic behavior of the

storage requirements of the various data structures, we resort to closed form upper and lower bounds for E � S� — that

is, the expected number of nodes in the tree. However, for practical use of this estimate, we suggest to insert the known

parameters (i.e., M and N) into the sum (7) and to evaluate it numerically. These comments are also applicable in the

analyses of the rest of the data structures (see Sections 4.3.1 and 4.4).

Note that although the form of the sum (7) intuitivelycalls for the use of the commonly-known 1 Z x � ex inequality,

it does not help here. The problem is that in the case at hand we want to bound (7) from above which means that the

term 	 1 ��
 12 � d _ 1 M
should be bound from below and this is not possible with this inequality.

Our technique is based on decomposing (7) into two sums ∑1 and ∑2 corresponding to the number of nodes at depth

less than or equal to d0 , and all the nodes at a depth greater than d0, respectively. In essence, our analysis focuses on

evaluating the second sum, while the first sum is bounded by the number of nodes in the complete tree (when calculating

the upper bound), or by zero (when calculating the lower bound). We find it convenient to formulate our analysis of

E � S � in terms of an additional parameter β (as well as M and N) which is defined as

β � M

�
1
2 � d0 \ (8)

The depth d0 is chosen so that β is less than 1. This enables us to make some assumptions leading to crucial simplifica-

tions (i.e., that certain sums converge as the index of summation gets infinitely large). The result (i.e., E � S�) is in terms

of M, N, and β. Once the result has been obtained, the value of d0 is adjusted so that the bounds on E � S � are as tight as

possible under the constraint that d0 is an integer bounded by N and that β ^ 1.

10

Decomposing E � S� into two sums ∑1 and ∑2 yields

E � S � � 1 Z d0

∑
d � 1

4d �� 1 � �
1 � � 1

2 � d _ 1 � M ��
Z N

∑
d � d0

�
1
4d �� 1 � �

1 � � 1
2 � d _ 1 � M ��

(9)

� ∑1 Z ∑2 �
∑1 � 1 Z d0

∑
d � 1

4d �� 1 � �
1 � � 1

2 � d _ 1 � M �� � d0

∑
d � 0

4d � 1 � 4d0

1 � 1
4

� 4
3

M2

β2 \ (10)

∑1 reflects the fact that we assume that the tree is complete at depth less than or equal to d0. Taking the binomial

expansion of ∑2 we get

∑2 �
N

∑
d � d0

�
1

4d

�
1 � M

∑
k � 0

�
1
2 � kd _ k � M

k � � � 1 � k � (11)

�
N

∑
d � d0

�
1

M

∑
k � 1

22d

�
1
2 � kd _ k � M

k � � � 1 � k _ 1 \
Changing the order of summation and separating the k � 1 (∑3), k � 2 (∑4), and k � 2 (∑5) cases, we get

∑2 � ∑3 Z ∑4 Z ∑5 (12)

∑3 �
N

∑
d � d0

�
1
22d
 12 � d _ 1
 M1 � � N

∑
d � d0

�
1
2d � 2 � M � 4M

�
2N � 2d0 � � 4M � 2N � 4M2

β (13)

∑4 � � N

∑
d � d0

�
1
22d

�
1
2 � 2d _ 2 � M

2 � � � N

∑
d � d0

�
1
4

�
M
2 � � � 2M

�
M � 1 � �

N � d0 � (14)

∑5 �
N

∑
d � d0

�
1

M

∑
k � 3

2k

�
M
k � � 1

2 � �
k _ 2 � d � � 1 � k _ 1 (15)

� M

∑
k � 3

N

∑
d � d0

�
1
2k

�
M
k � � 1

2 � �
k _ 2 � d

� M

∑
k � 3

2k

�
M
k � � 1

2 � d0
�
k _ 2 � � 1

2 � k _ 2

1 � � 1
2 � k _ 2

�
M

∑
k � 3

4

�
M
k � �

β
M � k _ 2 1

1 � � 1
2 � k _ 2

�
M

∑
k � 3

4 � M � �
M � 1 � � �

M � 2 � ��� � �
M � k Z 1 �

k!
βk _ 2

Mk _ 2

1

1 � � 1
2 � k _ 2

� 4
3

M2 β
1 � β

\
Note that all approximations performed while calculating ∑1, and ∑5 are also upper bounds. We continue by summing

all contributions which are partly expected values and partly upper bounds for expected values, to get

E � S� � ∑1 Z ∑3 Z ∑4 Z ∑5 (16)� 4 � M � 2N � 2 � M �
M � 1 � � N Z M2

� � 4
β
Z 4

3
1
β2 Z 4

3
β

1 � β
Z 2 log2

M
β � \

Figure 3a shows the value of the upper bound given by (16) as a function of M at a maximal depth of N � 10. Recall

that the upper bounds in the figure are minimal in the sense that for each value of M, upper bounds were calculated for

every possible value of d0 (subject to the constraint β ^ 1) and the minimal (tightest) upper bound was taken.

11

10
20
30
40
50
60
70
80

20 40 60 80 100 120

(b)

100

200

300

400

20 40 60 80 100 120

(a)

20

40

60

80

100

20 40 60 80 100 120

(c)

��� �����	�FTS� �9J!� �������$�1 �+!" L ��H��$��/!�S��+�"��F�S+N��J!� +��
 /��$����� + ��"���� +��#6#���'�O �� �@� �I�7� ���	�F �+ %' �(
0F2 ���! �"����	�#�Q �+!"G E%*/!(8A0 ���! �"����	�#��D;%'6#(�1J��Q�������$�@/�����+�"G��+ ��J!�4+��
 /��$�����N+$��"����
+!�,6#���7�� ��P�@� � �7� ���	� I8A0=B5C ���! �"����)�#��D��1J!� � �+�"@�N � ��� 6���� �	���#����+�"I� �@��J!�3+��
N/��$�A���1L �M+!�*� �+!" + ��"��*� - �)�*�#���#6��7� ���$L � -S�����A F���	�#�����>"��!� ��J�� �
���D �1J�� +��
N/��$�A���1+ ��"���� �,J ��H1+@� � "�� �!� "��#"
/#�K
�� T D�� ���7� ��J!���'� �S��+!"��#"K�'�7 ��M�)6# $���
	�L �M?*��� /��$J! $��� ���1�)�*�#��L �7�M+$�@�7�P��
;�S���	
 ����J$��"@���& �+� �L � ��� �
H1J�� 6$J46# �L 6!��L $�7���K�O�*�!�$�	 �L�/!�S��+�"�� %7�# �6!J ����� "�� �$�	�$+ �K�M+ �7�����$� �� �L �!���I������J!� " � �� ��	
F���7�$�	(
�	���7 ��M+!�M+$�=��J!� �7� ��J �7�*�7����+!��D

4.1.2 Interpretation

The value of E � S� given by (16) is an upper bound on the number of nodes in a MX quadtree. Now the value of β (and the

corresponding value of d0) may be chosen to minimize it. Recall that our motivation for decomposing the calculation

of E � S � into two parts was based on the observation that when the number of lines M is large and the depth d is small

(i.e., d ^ d0), then the part of the tree at depth less than d0 is almost complete, and thus all of its nodes contribute to

E � S � .
Asymptotically, the dominant contribution to the number of nodes comes from the first term in (16) which may be

transformed into a more familiar form using Theorem GPT2 from geometric probability. Letting L i be the length of

the ith line in our geometric structure, the expected total length L of all lines is

E � L� �
M

∑
i � 1

E � Li � � M � π �
2N � 2

4 � 2N �
π
4 � M � 2N \ (17)

12

Substituting (17) into the first term of (16) we get

E � S� � 16
π

E � L�7\ (18)

In other words, the expected number of nodes in an MX quadtree is proportional to the total expected length of the lines

which agrees with results derived previously under different (nonprobabilistic) models [19, 20].

4.1.3 A Lower Bound

The derivation of E � S � given by (10)–(16) may be used to set a lower bound on the expected number of nodes. E � S �
consists of the contributions of ∑1 , ∑3, ∑4 , and ∑5. ∑3 and ∑4 are exact values, ∑1 is positive thereby having a lower

bound of 0, while ∑5 can be easily bounded from below by � 4
3 M2 β

1 _ β . Thus,

E � S� �
∑3 Z ∑4 � 4

3 M2 β
1 _ β \ (19)

Furthermore, for large N, satisfying 2N �
M � N, we have that ∑1, ∑4 , and ∑5 are small with respect to ∑3 . Thus the

difference between the upper bound and the lower bound is small, and each of them is a good approximation of E � S �
(see Figure 3a).

4.2 Region Quadtree

A region quadtree represents regions in the plane. It partitions the plane into square blocks using the splitting rule that

stipulates that a block is split if both the depth of its corresponding node is smaller than N and if the region represented by

the block is not homogeneous. Thus if the block is homogeneous, then it is not subdivided further and its corresponding

node is a leaf. Otherwise, it is subdivided and its corresponding node has 4 sons (see Figure 1a).

Assuming the modified image model described in Section 3, the expected number of nodes in a region quadtree

follows directly from the derivation in Section 4.1. Consider an MX quadtree corresponding to an image which is an

instance of the basic random image model (and thus contains M lines). Consider also a region quadtree representing

a second image which consists of regions separated by the lines of the first image. Both trees have the same structure

with the only difference being the contents of each of the nodes. It follows that the statistical properties of a region

quadtree corresponding to an instance of the modified random image model are exactly the same as the properties of

an MX quadtree corresponding to an instance of the basic random image model. Hence, the expected number of nodes

in a region quadtree is bounded by (16) and (19).

4.3 PM Quadtree

Our variant of a PM quadtree represents a collection of line segments in the plane. It partitions the plane into square

blocks using the splitting rule that a block is split unless the depth of the corresponding node is N, or only one line

passes through the block, or there is just one point in the block and all the lines that pass through the block meet at that

point. Thus if the block contains a single line or all the lines pass through a common point in the block and there is no

other endpoint in the block, then the block is not subdivided further and its corresponding node is a leaf. Otherwise, it

is subdivided and its corresponding node has 4 sons (see Figure 1c).

13

4.3.1 Analysis

Let α be the probability that two lines intersect inside a square region Q given that each of these lines passes through

Q. For a square 2N _ d � 2N _ d region
�
0 � d � N � , the probability that the splitting conditions of a PM quadtree are

satisfied may be written as

P
�
d � 1 � pd � 0 � pd � 1 � α � pd � 2 (20)

where pd � k is the probability that exactly k of M lines pass through a square region of side 2N _ d . The random image

model implies that three lines intersect with zero probability at a common point. Therefore, this event may be ignored

leading to the conclusion that a region is always split if three or more lines pass through it. If only two lines pass through

the region, then the region is split only if the two lines do not intersect within the region. The intersection probability

α may be inferred from the Geometric Probability Theorem GPT3, which implies that

α �
2πA
L2 �

2π
�
2N _ d � 2

�
4 � 2N _ d � 2 �

π
8
\

Hence,

P
�
d � 1 � �

M
0 � �

1 � � 1
2 � d � M

(21)

� �
M
1 � � 1

2 � d
�
1 � � 1

2 � d � M _ 1

� π
8

�
M
2 � � 1

2 � 2d
�
1 � � 1

2 � d � M _ 2

\

Inserting (21) in (4) we get an expression for the expected number of nodes in the PM quadtree.

To bound this expression, let us once again, as in the MX quadtree, formulate our analysis of E � S � in terms of an

additional parameter β (as well as M and N) which is defined as

β � M

�
1
2 � d0 \ (22)

As before, our analysis is in the form of a calculation of upper and lower bounds on E � S � based on the fact that we have

used an integer value of d0 that ensures that β is less than 1.

The result of inserting (21) in (4) (i.e., E � S�) is decomposed into two sums ∑1 and ∑2 corresponding to the number

of nodes at depth less than or equal to d0, and all the nodes at a depth greater than d0, respectively. In essence, what we

do is assume that the part of the tree at depth less than or equal to d0 is complete. The value of d0 is adjusted later so

that the bounds on E � S � are as tight as possible under the constraint that d0 is an integer bounded by N and that β ^ 1.

Thus, we have ∑1 and ∑2

E � S � � 1 Z d0

∑
d � 1

4dP
�
d _ 1 Z

N

∑
d � d0

�
1

4dP
�
d _ 1 � ∑

1
Z ∑

2
\ (23)

A bound on ∑1 is obtained as in the case of the MX quadtree.

∑1 � 1 Z d0

∑
d � 1

P
�
d _ 14d � d0

∑
d � 0

4d � 4
3

4d0 �
4
3

M2

β2 \ (24)

14

∑2 is evaluated by taking its binomial expansion to get a sum of the powers of
 12 � d (i.e.,
 12 � 0 ,
 12 � d ,
 12 � 2d
, \P\P\). After

some algebraic manipulation, the
 12 � 0 and
 12 � d terms cancel out, and we get

∑2 �
N

∑
d � d0

�
1

M

∑
k � 2

Ck

�
1
2 � kd _ k � 4d V (25)

where

Ck �
� � 1 � k _ 1

� �
M
k � � � M1 � � � M � 1

k � 1 � Z � M2 � � � M � 2
k � 2 � π

8 � \
Changing the order of summation and separating the k � 2 (∑3) and k � 2 (∑4) cases yields:

∑2 � ∑3 Z ∑4 (26)

∑3 �
N

∑
d � d0

�
1

C2

�
1
2 � 2d _ 2

4d � 2
�
1 � π

8
� M

�
M � 1 � �

N � d0 � � 1 \ 215M
�
M � 1 � �

N � d0 � (27)

∑4 �
M

∑
k � 3

Ck2k
N

∑
d � d0

�
1

�
1
2 � d

�
k _ 2 � � M

∑
k � 3

Ck2k

� 1
2 �

�
k _ 2 � �

d0
�

1 �
1 � � 1

2 � k _ 2
(28)

� 4
M

∑
k � 3

Ck

1 � � 1
2 � k _ 2

�
β
M � k _ 2 \

Now, let us examine the coefficients Ck.

Ck �
� � 1 � k _ 1

� �
M
k � � � M1 � � � M � 1

k � 1 � Z � M2 � � � M � 2
k � 2 � π

8 � (29)

�
� � 1 � k _ 1

� �
M
k � � M � k

M � � Mk � Z � M2 � k
�
k � 1 �

M
�
M � 1 � � � Mk � π

8 �
�

� � 1 � k _ 1

�
M
k � �

1 � k Z k
�
k � 1 �

2
π
8 � \

By checking a few values of k, it can be shown that, for k
�

3� 0 \ 137Mk � Ck � 0 \ 027Mk \ (30)

Inserting (30) into (29) and accounting for the worst cases leads to� 1 \ 1M2 β
1 � β

� ∑4 � 0 \ 22M2 β
1 � β

\ (31)

Therefore, the contribution of ∑4 to E � S� is O
�
M2 � . Collecting the contributions of ∑1 , ∑3, and ∑4 , we have

E � S � � ∑1 Z ∑3 Z ∑4� 1 \ 215M
�
M � 1 � N Z M2

�
4
3

1
β2 Z 0 \ 22

β
1 � β

� 1 \ 215 log2
M
β � \ (32)

Once again, d0 is chosen to minimize (32), subject to the conditions that d0 is an integer less than N and that β (as

defined in (22)) is less than 1. Note that the first term in (32) is exact (it corresponds to ∑3) while the second term (i.e.,

M2 and its multiplier) is only a bound which is not very tight. Even this nontight bound (i.e., the second term in (32))

makes a negative contribution to the total number of nodes when the number of lines exceeds some modest threshold

(e.g., for M � 16 V 32 V�\P\ \ and β � 0 \ 5), in which case the simpler expression of 1 \ 215M
�
M � 1 � N is also an upper bound.

Figure 3b shows the value of the upper bound given by (32) as a function of M at a maximal depth of N � 10. Recall

that the upper bounds in the figure are minimal in the sense that for each value of M, upper bounds were calculated for

every possible value of d0 (subject to the constraint β ^ 1) and the minimal (tightest) upper bound was taken.

15

4.3.2 Interpretation

The number of possible line pairs in the image is
 M2 � . Multiplying it by α yields the expected number of intersections.

Approximating
 M2 � by M2 �
2, we have that the expected number of vertices (line intersections) in the whole image is

approximately π
16 M2. Considering only the dominant first term in (32), which is roughly proportional to N � M2, the

results of the analysis may be interpreted as confirming that both the number of vertices and the maximum depth of the

tree impact the number of nodes necessary. The dependence of E � S � on the number of vertices (i.e., the factor M2), is

intuitively clear as each vertex will be stored in a separate node in the tree. The dependence of E � S� on the maximum

depth of the tree (i.e., N) is less obvious. It can be explained by the observation that the maximal depth of a PM quadtree

depends, in part, on factors such as the minimum separation between two non-intersecting lines, the minimum distance

between a vertex and a line, and the minimum distance between two vertices [42].

The linear dependence of the upper bound for the expected storage requirements (i.e. E � S �) on the maximum depth

N is in agreement with the fact that in the worst case, all the vertices created by a random configuration of lines could

appear in nodes at the maximum level. Furthermore, this linear dependence shows that the probabilityof the occurrence

of such “bad” line sets is not zero. This behavior was confirmed by our simulations, which found that in most cases the

randomly generated PM quadtree is small, but in some rare cases it can be very large. For images generated using the

random image model, it is not surprising to find many of the vertices at the maximum level of the tree, as unlike real

data (e.g., road networks), the factors that lead to the maximum depth (e.g., two vertices or non-intersecting lines being

very close to each other, or a vertex and a line being very close) are more likely to arise. However, as M increases for a

fixed value of N, the first term of the bound in (32) becomes very loose as the storage requirements are bounded by the

number of nodes in a complete tree (i.e., 4
�
3 � 22N), thereby implying that for our analysis to be meaningful, M should

be considerably smaller than 2N .

4.3.3 A Lower Bound

The expected value of E � S� consists of three terms ∑1, ∑3 and ∑4. ∑3 is an exact value, ∑1 is positive (i.e. bounded from

below by 0), and ∑4 is bounded from below by � 1 \ 1 β
1 _ βM2. Hence, ∑3 � 1 \ 1 β

1 _ βM2 is a lower bound for E � S� . Note

that attempting to improve the bound by choosing a small value of β would fail as this requires that d0 have a higher

value which means that ∑3 has a lower value. For very large values of N, ∑1 and ∑4 are negligible in comparison with

∑3 in which case the difference between the upper bound and the lower bound is small implying that each of these two

bounds is itself a good approximation of E � S � .

4.4 Bucket PMRq Quadtree

A Bucket PMRq quadtree represents a collection of line segments in the plane. It partitions the plane into square blocks

using the splitting rule that stipulates that a block is split if both the depth of its corresponding node is less than N and

more than q line segments pass through the block. Thus if the block contains q or less line segments, then it is not

subdivided further and its corresponding node is a leaf. Otherwise, it is subdivided and its corresponding node has 4

sons (see Figure 1d).

Consider a Bucket PMR2 quadtree. The probability that the splitting conditions are satisfied may be written as

P
�
d � 1 � pd � 0 � pd � 1 � �

1 � α � � pd � 2 \ (33)

This splitting probability is clearly identical to that of the PM quadtree, apart from changing a multiplicative constant

from α to 1 � α. Notice that we don’t split if the two lines do not intersect. However, if they do intersect, then the result

16

is that there are 4 line segments in the block and thus it is split. Therefore, the expected number of nodes is given by

an expression similar to (32) and increases linearly with the maximal depth N.

For the case that q � 3 the splitting probability here is the same as in (33) with the subtraction of a term correspond-

ing to the small probability that 3 line segments intersect the region, but not each other. Thus, the splitting probabilities

for q � 2 and for q � 3 are expected to be similar.

The situation, however, changes dramatically when considering Bucket PMRq quadtrees with values of q equal to

4 and higher. For q � 4, the splitting probability satisfies

P
�
d ^ 1 � pd � 0 � pd � 1 � pd � 2 \ (34)

The probability P
�
d is smaller than the right side of the above inequality because the probabilities of some additional

events that imply the absence of splitting are not included. For example, if 3 or 4 lines intersect the region, but not each

other, then the region is not split. The inclusion of these contributions is complicated and is not needed for computing

an upper bound. From the expression (4), it is clear that if the probabilities Pi are lower, then the expected number of

nodes is also lower. Therefore, for deriving the upper bound, we may substitute the upper bound (34) for the probability

P
�
d . Using the same techniques as in Section 4.3, we define β and d0 as in (22) and decompose the sum corresponding

to E � S � into two sums ∑1 (24) and ∑2 (25). Here, however,

Ck �
� � 1 � k _ 1

� �
M
k � � � M1 � � � M � 1

k � 1 � Z � M2 � � � M � 2
k � 2 � � (35)

�
� � 1 � k _ 1

� �
M
k � � � M1 � � k

M � � Mk � Z � M2 � � k
�
k � 1 �

M
�
M � 1 � � � Mk � �

�
� � 1 � k _ 1

�
M
k � � �

k � 1 � �
k � 2 �

2 � V
implying that C2 � 0 and that � 1

8
Mk � Ck � 1

6
Mk \ (36)

The bounds (36) are derived by evaluating Ck for several values of k and by observing that YCk Y decreases with k. The

fact that C2 � 0 is important as it means that ∑3 is 0 and thus once we bound the finite geometric series in 1
2 by the

infinite geometric series, the expected number of nodes will no longer depend on N. Now,

∑4 �
M

∑
k � 3

Ck2k
N

∑
d � d0

�
1

�
1
2 � d

�
k _ 2 � � M

∑
k � 3

Ck2k

� 1
2 �

�
k _ 2 � �

d0
�

1 �
1 � � 1

2 � k _ 2
(37)

� 4
M

∑
k � 3

Ck

1 � � 1
2 � k _ 2

�
β
M � k _ 2 � 4

3
M2 β

1 � β
\ (38)

This derivation is based on bounding the finite geometric progression with the corresponding infinite progression, ex-

pressing d0 in terms of β and M, and performing some additional arithmetic manipulations. Therefore,

E � S � � 4
3

M2

�
1
β2 Z β

1 � β � \ (39)

Figure 3c shows the value of the upper bound given by (39) as a function of M at a maximal depth of N � 10.

Again, we recall that the upper bounds in the figure are minimal in the sense that for each value of M, upper bounds

were calculated for every possible value of d0 (subject to the constraint β ^ 1) and the minimal (tightest) upper bound

was chosen. To get a clearer interpretation of the bound, select a specific value for β, say 0 \ 75 (which corresponds to

sets of 6 V 12 V 24 V7\'\7\ lines and to d0 values of 3 V 4 V 5 V'\7\�\ , respectively). Then, we get

E � S� � 6 \ 37M2 �
q � 4 �,\ (40)

17

The bound (40) means that for a Bucket PMRq quadtree (with q � 4) the expected number of nodes is proportional

to the expected number of intersection points (approximately πM2

16 as derived in Section 4.3.2), henceforth referred to

as vertices, and does not depend on the maximal depth N. Therefore, if the maximal depth is large enough, the subdi-

vision stops before reaching the maximal depth almost everywhere. Alternatively, the O
�
M2 � intersection points result

in O
�
M2 � line segments. Thus an equally powerful characterization of this result is that the number of nodes is pro-

portional to the number of line segments, and does not depend on the maximal depth of the tree. Higher values of q

require a more complicated analysis as the number of line segments created by the intersection of more than two lines

is a random variable of more complicated statistics. In particular, we have more possibilities to consider than just the

two events corresponding to the intersection or non-intersection of two lines. It is clear, however, that the splitting

probability decreases as q increases, and therefore for q
�

4, the bound (39) still holds. Note that it is not possible to

reduce this bound by much (even for higher values of q) since the bound on the first term, ∑1, remains 4
3

M2

β2 ^ 4
3 M2.

Regions that contain a vertex (resulting from the intersection of lines) are split if the number of line segments that

are incident at this vertex is higher than q. This explains the significant change in the quadtree size when q
�

4. For our

model, all vertices have 4 line segments incident at them and therefore the regions in a Bucket PMR2 quadtree must

split until the maximal depth is achieved. On the other hand, in the Bucket PMR4 quadtree (and for values of q
�

4),

regions that contain a single vertex are not split, which leads to a tree whose size is independent of the maximal depth

N.

4.5 PMRq Quadtree

A PMRq quadtree represents a collection of line segments in the plane. It depends on a parameter q and is created as a

dynamic result of a sequence of insertion of line segments using the splitting rule that a block b is split once, and only

once, if b is both intersected by the new line segment and if b already contains q or more line segments. Thus the block

is subdivided at most once when a new line segment which intersects it is entered into the structure. Clearly, this may

not be enough to ensure that the number of line segments stored in each leaf node is q or less. Since the maximal depth

of a PMRq quadtree is not known in advance, a rule that repeatedly splits each block until no more than q line segments

intersect with it may lead to a PMRq quadtree of infinite depth. This situation arises when more than q line segments

intersect at a given point. It is interesting to observe that for our model of a random line image, the previous situation

cannot arise for q
�

4 as the probability that three or more of the random lines intersect at a point is zero. Regardless of

the configuration of the random lines (i.e., whether or not the intersection of three or more random lines is permitted),

the creation of an infinitely deep Bucket PMRq quadtree is precluded from occurring by our definition of the Bucket

PMRq quadtree to have a limit on its depth (i.e., N).

For the case that q
�

4, we may use the upper bound (39) that we obtained on the number of nodes in a Bucket

PMRq quadtree to also bound the number of nodes in a PMRq quadtree. To see this, we observe that since we cannot

have the situation that 3 or more random lines meet at a point, when q
�

4 we cannot have a PMRq quadtree of infinite

depth. This means that given a set of M random lines, the PMRq quadtree for them is of a finite depth with a limit D

that can be calculated based on the minimum horizontal and vertical separations between the intersection points of the

lines. Therefore, we can construct a Bucket PMRq quadtree v with a parameter N � D so that regardless of the order

in which the M lines are inserted into the PMRq quadtree t, the nodes in the PMRq quadtree t will always be a subset

of the nodes in the Bucket PMRq quadtree v for the M lines. Recall that the bound on the number of nodes in a Bucket

PMRq quadtree that we obtained was independent of the depth N of the Bucket PMRq quadtree as we let N go to inf

when we computed ∑4 in (38). Thus the bound that we obtained in (39) is also good for Bucket PMRq quadtrees of

18

depth D. Therefore, it is also applicable to PMRq quadtrees subject to q
�

4.

For q � 2, we recall that the number of nodes in the Bucket PMR2 quadtree is similar to this number in the PM

quadtree which is given by (32). Unfortunately, this does not provide a bound on the storage required by a PMR2

quadtree because the upper bound on the number of nodes in the PM quadtree is linear in the maximum depth while

the depth of the PMR2 quadtree may be as high as the number of random lines M, thus giving an unrealistically high

upper bound. Such a situation can occur when two random lines intersect at point p as they result in four line segments.

In the worst case, the block b that currently contains p would be split each time a new random line i is inserted provided

i passes through b. In contrast, the decomposition for the Bucket PMR2 quadtree ceases once the block containing p

is at depth N. Thus, the node set associated with the Bucket PMR2 quadtree is guaranteed to be a superset of the node

set associated with the PMR2 quadtree (as well as for all values of q) only if its depth is trivially M or higher. Unlike

the case when q
�

4, when q � 2, the upper bound on the number of nodes in the Bucket PMR2 quadtree does not

converge when the depth N increases, and thus the bound obtained is very loose. Therefore, obtaining an upper bound

on the number of nodes in a PMR2 quadtree is an issue left for future research, although, as mentioned before, the case

of q
�

4 is more interesting from a practical standpoint as we do not want the common situation of a road junction (i.e.,

when 4 line segments meet at a point) to cause an arbitrarily large amount of splitting.

4.6 A General Discussion of the Bounds

The bounds developed here lead to the following asymptotic results on the expected number of nodes as a function of

the number of random lines M and the level of permitted subdivision N.

Region quadtree E � S� � O
�
M � 2N � (41)

MX quadtree E � S� � O
�
M � 2N �

PM quadtree E � S� � O
�
M2 � N �

PMRq quadtree E � S � � O
�
M2 � �

q
�

4 �
Bucket PMRq quadtree E � S � � O

�
M2 � N � �

q � 2 �
Bucket PMRq quadtree E � S � � O

�
M2 � �

q
�

4 �

These results were obtained by summing the expected number of nodes at each level of the hierarchical structures. The

differences are due to the different rates at which the splittingprobabilitiesdecrease as the depth increases. For example,

for the MX quadtree, the probability that a node splits decreases with the depth, but does not decrease fast enough,

resulting in a tree of exponential size. On the other hand, for the PM quadtree, the splitting probability decreases at

a fast enough rate to offset the exponential growth of the tree thereby resulting in a tree whose size is proportional to

its depth. The same holds for the the Bucket PMR2 quadtree. For q
�

4, for both the PMRq quadtree and the Bucket

PMRq quadtree, the splitting probability decreases at an even faster rate thereby implying that the expected number of

nodes at each level decreases exponentially with the depth and that the sum converges (i.e., is independent of the depth

of the tree).

The main conclusions that can be drawn from these results are as follows. For the MX (and region) quadtree, the

number of nodes is proportional to the total length of the line segments (or the region boundaries). This conclusion

confirms a similar result obtained by Hunter and Steiglitz [19, 20]. For both the PM quadtree and the Bucket PMR2

quadtrees, the number of nodes can be interpreted as being proportional to the product of the number of intersections

among the lines (i.e., the original lines in the random image model or alternatively the vertices of the resulting line

19

segments) and the maximal depth of the tree. The lower bounds on the size of the MX quadtree and the PM quadtree

include the dominant components of order O
�
M � 2N � and O

�
M2 � N � , respectively, thereby demonstrating that the upper

bounds reflect the real growth rate of the structures. For both the PMRq quadtree and the Bucket PMRq quadtree with

node capacities q
�

4, the number of nodes is proportional to the number of line segments (recall that there are O
�
M2 �

intersection points for the M lines resulting in O
�
M2 � line segments). It also appears that for the PMRq

�
q

�
4 � quadtree,

almost everywhere, the subdivision stops before the maximal depth, provided, of course, that the density of the lines

(i.e., the M random lines) does not make the tree almost full.

To get the actual values of the bounds (in contrast to the orders of magnitude summarized above) we use the exact

upper bounds as given in (16), (32) and (39), which depend on a parameter β. It is worth re-emphasizing that the values

d0 and β are not a part of the random image model. They are just parameters used to simplify the expression of the

bounds. In order to apply these bounds, it is required to choose a value of β which minimizes them while satisfying

relation (8) (with d0 being an integer bounded by N). Fixing the value of β at some constant (e.g., 0 \ 75) gives a bound,

which may not be the tightest, but is still useful for understanding the behavior of the size of the data structure. From

a strict theoretical standpoint such an arbitrary choice of a value for β is not justified because it usually implies a non-

integer value for d0. Note also that the upper bounds contain negative terms which reduce the bounds and make them

tighter. These negative terms compensate for nodes which are counted twice in other (positive) terms. For example,

nodes in the PM quadtree at a depth less than d0 are accounted for both by the ∑1 � 4
3

M2

β2 term and also by the M2 � N
term. The negative term � M2 log2

M
β � � M2d0 compensates for this situation.

These bounds hold for all values of M and N. However, they become trivial when M
�

2N . In this case, the pa-

rameter d0 approaches the value of the maximal depth N, and the value of the bounds approach the number of nodes

in the complete quadtree of depth N which is a trivial bound on any quadtree of depth N as there cannot be any more

nodes. For the datasets that we considered (with 25, 50, 75, and 100 random lines), this was the case for N � 6 and

thus bounds for such a depth are omitted from the results described in Section 4.7 and the appropriate tables.

The bounds in this paper were computed under the assumption of a particular image model. We conjecture that the

results apply also to more general images. In section 5 we examine several methods for inferring the size of quadtrees

that represent real maps, and test them experimentally. In essence, we characterize the map by some property, which

may be the total length of its constituent line segments, the number of vertices, etc. and use this property to specify a

class of random images which share the same property (in an expected value sense). Next, we conjecture that the num-

ber of quadtree nodes required to represent the real map is equal to the expected number of nodes required to represent

a random map from that class.

4.7 Some Experimental Results for Instances of the Random Model

We conducted several experiments with synthetic and real data. In this section we describe the tests that were made

with synthetic data. They were aimed at determining how close the upper and lower bounds on the expected storage

costs come to the actual storage costs when using random data. Section 5 describes the results of tests with real data.

In these experiments, we built the MX, PM, and Bucket PMR4 quadtrees of several depths N, using random syn-

thetic data created by the random image model described in Section 3. For each case, several instances of each random

image were created and the average quadtree size was calculated. The results are summarized in Table 1. They usu-

ally agree with the analytical predictions, and, in particular, the upper bounds for all of the quadtree variants always

hold. The exceptions occur when the number of lines is too low relative to the size of the complete quadtree (i.e., at the

higher depths as we see for the PM quadtrees of depth 14). In such a case, we observe that we can no longer assume

20

M N
MX PM Bucket PMR4

MODEL UB LB ER MODEL UB LB ER MODEL UB ER

25 10 94.9K 97.2K 90.7K 94.9K 3.88K 5.5K 2.48K 2.55K 0.846K 4.33K 0.669K

50 10 179K 188K 162K 181K 12.8K 19.3K 7.17K 9.25K 3.38K 17.3K 2.77K

75 10 255K 268K 225K 256K 25.1K 43.8K 11.5K 19.1K 7.50K 32.4K 6.01K

100 10 325K 364K 259K 325K 39.9K 65.8K 17K 31.3K 13.1K 69.3K 10.4K

25 14 1.63M 1.63M 1.62M 1.62M 6.78K 8.42K (5.39K) 2.92K 0.863K 4.33K 0.676K

50 14 3.23M 3.24M 3.21M 3.24M 24.5K 31.2K (19.1K) 11.3K 3.52K 17.3K 2.83K

75 14 4.82M 4.83M 4.79M 4.80M 51.6K 70.8K (38.4K) 25.0K 7.97K 32.4K 6.30K

100 14 6.40M 6.43M 6.32M 6.37M 87.0K 114K (65.1K) 44.0K 14.2K 69.3K 11.2K

� �/�L �
�� � ��
 �! ��)� �'��+����A��J!� �	���#��L �1����� � ���	���'�O� ��+=% C (1%#0���������(#-��������!�1/!�S��+�"��F%
	�< (#-5L ��H��$�/�����+!"�� %���< (#-� �+!"3��J!�1 �6����� �L�%7� � ���$�	��
 �!+ �7 �L (+��
N/��$� ���:+$��"����1%
� B (�����A0 �) �+�"��
 L �M+!�*�& �+!"

F � ��
F �L."��!� ��J �;�M+ �+ 0F2 -�8A0=-A �+!"G<A�!6$?#���K8A0=B C ���� �"����	�#��D 85 ��	�$+ ��J����O� �$�#" �$+ ���	� ���
�M+!"�� 6# $�7�3�)�*�#��L � ����J! $�� ��	� �M+�6���+$�O� �7�7�!+ ��H&� ��J ��J������	�#"�� 6*�7� ��+ �$D �1J����O���M+�6���+$�O� �7�7�!+!6#� ��� ��+�L � ��6#6!���
����� �7�
 �9������J!�3L ��H��$��/�����+�"�� H1J ���O���� �L �!��� ��	�F�M+N� � 6#���7� ���A��J!�F �6����� �L +��
N/��$�A����+ ��"����$D

that most pairs of regions (i.e., nodes corresponding to blocks) are intersected by different lines, which counters the

independence assumption. In this case, the lower bounds may not be valid (i.e., they are too high in the sense that they

exceed the observed values). This is especially true for nodes at the higher depths.

To verify this observation we also evaluated the expression (4) for several values of the number of lines M and the

maximum depth N of the quadtrees. Recall that the sum (4) depends only on the independence assumption. We found

that while this sum closely approximates the actual expected number of nodes for the MX quadtree and by about 25%

for the Bucket PMR4 quadtree, this is not the case for the PM quadtree for which the independence assumption causes

the value of (4) to be much higher than the actual value, provided that the depth is high enough. These observations

are examples of the limitations on the validity of the independence assumption.

The upper bounds obtained for the MX quadtree were consistently very close to the observed node counts. In con-

trast, the upper bounds for the PM and Bucket PMR4 quadtrees consistently exceed the observed node counts by factors

as high as 4 and 5, respectively. This difference can be attributed to both the possible inappropriateness of the inde-

pendence assumption and to the simplifications made in the bound derivation process. As mentioned above, we did

not attach much significance to obtaining tighter bounds, as they are not used for predictions but, instead, only for per-

forming a qualitative comparison between the different quadtree representations.

5 Predicting Storage Requirements for Real Data

In this section we show that the expected storage predictions, derived for the random lines model, are also useful when

real data is considered.

We conducted our tests using real data corresponding to road maps in the US that are part of the TIGER files used by

the Bureau of the Census (see Figure 4). We used maps ranging from a small map having only 585 road segments (Falls

Church county) to the largest map including 39,719 segments (Montgomery county). The actual data for the maps such

as the depth (N), number of vertices, segments, non-shape vertices (NSV and described below), the normalized length

(NormL and equal to the total length of the line segments divided by 2N), and the number of nodes in the MX, PM, and

Bucket PMR4 quadtrees are given in Table 2.

Our approach to applying the expected node count predictions to a real map r depends on finding, for each map r, a

class c of a random line images which shares some property with r. The expected number of nodes required to represent

21

a)

c)

e)

g)

b)

d)

f)

h)

��� �����	� C � ��� ��J �	
F �� �� �O�,"F� ���7���'�:��J��1���7�7��
F $�7���A��+ ��J!� +��
N/��$�5���A+ ��"��*� �M+1��J!� �)�!���)�����$+ �7�M+$�
���� �"����	�#���$D

22

Map Name Depth Vertices NSV NormL Segments
Number of nodes

MX PM PMR4
Falls Church 10 448 317 16.77 638 76869 4105 1317
Falls Church 12 448 317 16.77 638 336873 4477 1349
Falls Church 14 448 317 16.77 638 1387557 4633 1381
Falls Church 16 448 317 16.77 638 5600821 4681 1413
Alexandria 10 4074 2123 49.89 5380 191469 25249 9709
Alexandria 12 4074 2123 49.89 5380 915025 28929 10105
Alexandria 14 4074 2123 49.89 5380 3873949 30413 10429
Alexandria 16 4074 2123 49.89 5380 15774517 31061 10753
Arlington 10 6657 3978 67.91 9205 242373 43913 17637
Arlington 12 6657 3978 67.91 9205 1234449 54753 18677
Arlington 14 6657 3978 67.91 9205 5339437 58949 19481
Arlington 16 6657 3978 67.91 9205 21891973 61277 20281
Howard 10 15009 5283 57.58 17419 191861 63361 29321
Howard 12 15009 5283 57.58 17419 1031317 95945 32921
Howard 14 15009 5283 57.58 17419 4563069 111169 33937
Howard 16 15009 5283 57.58 17419 18866341 118305 34713
DC 10 12818 8805 107.99 19183 332589 73477 35377
DC 12 12818 8805 107.99 19183 1805965 92153 37813
DC 14 12818 8805 107.99 19183 7971497 99093 39685
DC 16 12818 8805 107.99 19183 32905753 103297 41533
Calvert 10 29174 4690 60.39 31143 213965 88769 44057
Calvert 12 29174 4690 60.39 31143 1094453 125053 48129
Calvert 14 29174 4690 60.39 31143 4734589 133141 48493
Calvert 16 29174 4690 60.39 31143 19402105 135241 48665
Prince Georges 10 50161 18055 117.55 59551 315289 157977 88485
Prince Georges 12 50161 18055 117.55 59551 1937553 277209 104993
Prince Georges 14 50161 18055 117.55 59551 8993017 318889 107889
Prince Georges 16 50161 18055 117.55 59551 37751493 334265 109825
Montgomery 10 79822 19793 118.74 90022 299601 186265 115693
Montgomery 12 79822 19793 118.74 90022 1927197 365701 145389
Montgomery 14 79822 19793 118.74 90022 9068057 424869 149613
Montgomery 16 79822 19793 118.74 90022 38212101 449905 151913

� �/�L � R���������6$�)�M�$�7� ��+=���&��J!��� � � � B�� L ����
 ��$� % �O�#�K��� �����)� C (,-A� ���#" �M+@��J!� � � ���!�)��
F�$+ � � $�H��$L L� $����J!��6���� �)�*�#����+�"��M+ �K �6����! �L��7� ���	 $��� �	�#���!�M�	��
 �!+ � �1� ��� ��J��F032 - 8A0=-� �+!"K<A��6$?*�*� 8A0=B C���� �"����	�#���$D

a random image from class c is taken to be the estimate for the number of nodes required to represent the map r.

In most cases, the equivalent random image to a given map r is specified, as in Section 3, by the effective number of

lines M̂, which is inferred, in a number of alternative ways (described below), from r. Another degree of freedom in the

specification of the equivalent random image is gained if we account for sparse or empty image parts. Therefore, the

equivalent random image is specified in two stages. First, a random image is specified by M̂. Second, only a fraction of

this image is retained while the rest is considered to be empty. A normalization factor is infered from the image r and

specfied the fraction retained. Thus, we are assuming that the number of nodes is directly proportional to the ratio of

the nonempty area, and use this normalization factor to obtain the number of nodes in the equivalent class. For most of

the estimators, no normalization is done and the images of the equivalent class are just random images resulting from

the random image model defined in Section 3. The parameters specifying the random images class are estimated from

other parameter values of the real map r such as the total length Lmap , the total number of vertices Vmap , and the total

number of segments Smap .

The first estimator that we consider is termed an L-based estimator. This estimator is based on measuring the total

length Lmap of the line segments. Recall that for the random images created by the line model, the expected line length

E � L � is π
�
4 � M � 2N. This is the result of (17) which follows directly from Theorem GPT2. Therefore, the number of

lines in every one of the random images which share the “expected line length” property with the given map is estimated

by M̂ �
�
Lmap

�
2N � � �

4
�
π � . For this estimator, there is no area normalization (that is, the equivalent random image is

assumed not to contain empty regions). For example, the total length of the line segments in the smallest map (i.e.,

23

Falls Church shown in Figure 4a) that we used is 16 \ 49 � 2N which yields M̂ � 21 (the length is normalized relative to

the side of the map). Note that this has the effect of converting the line segments of the test image to a different number

of infinite lines the intersection of which with the space in which they are embedded has the same total length.

The second estimator that we consider is termed a V-based estimator. It uses the number of vertices Vmap in the map

to estimate the effective number of lines M̂ by treating all vertices as intersection points between random lines. Recall-

ing that the expected number of intersection points between the lines of the random image model is E � V � � πM2 �
16,

we have M̂ �
�

16Vmap
�
π. Here, again as in the case of the L-based estimator, no area normalization is performed.

Note, however, that most vertices (termed shape points [6]) in a typical map image are the results of a piecewise polyg-

onal approximation of a curve thereby implying that only two line segments meet at them. This is in contrast to the

intersection points in a random image which are true intersections (i.e., they correspond to the intersections of pairs of

random lines). A simple heuristic. which we use here, deletes these degree-2 vertices from the total vertex count and

yields the non-shape-vertex (NSV) estimator. Clearly, there are many cases for which this heuristic is inapplicable. For

example, we could not apply it to a non-self-intersecting curve (e.g., a spiral) as vertex deletion would predict that the

representation requires just a single node (which is clearly erroneous).

The third estimator that we consider is termed as S-based estimator. Like the L-based and V-based estimators, it

is based on replacing the given map by a random line image of the same size, and no area normalization is performed.

Again, we calculate an effective number of random lines M̂ but this time it is based on the number of line segments.

We assume that each vertex corresponds to the intersection of two random lines and hence results in four line segments

(also termed edges or segments). Therefore, each vertex has degree four. Each line segment is incident at two vertices.

This is approximately true as only a small fraction of the line segments, (i.e., 2M), are incident at just one vertex as the

other endpoint of the line is on the boundary of the image. Therefore, set the number of incidences (i.e., the sum of the

degrees of the vertices) which is four times the expected number of vertices (i.e., 4 � πM2 �
16) to two times the number

of edges (i.e., 2 � Smap) and solve for M̂ which is equal to � 8Smap
π .

The fourth estimator that we consider is termed a d-based estimator. This estimator is based on replacing the given

map by a (usually smaller) random line image having the same number of vertices and density (i.e., average line seg-

ment length). The expected segment length in the random line image is crudely approximated as the ratio between the

expected length of the part of a random line included in the image and by the expected number of vertices on the line.

We have already seen that the expected length of the part of a random line included in the image is π � 2N �
4, while the

expected number of vertices in the map is πM2 �
16. Since each vertex corresponds to the intersection of two lines and

hence lies on two lines, the expected number of vertices per line is πM
�
8. Therefore, the expected segment length is

2 � 2N �
M. Equating this expected segment length to the average segment length of the given map, calculated simply as

the ratio between the total length Lmap and the number of segments Smap , yields an estimate M̂ on the effective number

of lines which is equal to 2 � Smap � 2N �
Lmap .

Unlike instances of the random line model, real maps tend to be highly nonuniform, and, in particular, to have a

large proportion of short segments and large empty “white” regions. This implies that the value of the effective number

of lines M̂ calculated for the d-based estimator above leads to node number estimates which are much higher than the

actual ones. Therefore, we have chosen to compensate for this deviation by imposing the additional natural constraint

that the total number of non-shape vertices in the actual map is equal to the expected number of vertices in the random

line images. This constraint, which was also used to obtain the effective number of lines for the V-based estimator, is

now used as an area normalization factor to specify the non-uniform class of random images. In particular, every one of

these images is equal to the random lines image in one region and is empty in the rest of it. The area of the “busy” part

24

is specified to be NSVmap�
π � M̂2

�
16 � , and is usually smaller than one. Note that the expected density remains the same. Since the

random image model defined in Section 3 is uniform, we can assume that the expected number of nodes representing

every region is proportional to its area and thus the node count is reduced by the aforementioned factor.

In order to estimate the number of nodes in the quadtrees representing the actual maps, we round the different values

of the estimate M̂ and insert it in the basic sum (4) for the expected number of nodes together with the appropriate node

splitting probability (which depends only on the quadtree type). These results are tabulated in Table 3. Notice that

we do not tabulate the S-based estimator as it is very similar to the V-based estimator, and the data bears this out. In

particular, the S-based estimator relies on the number of line segments. This number is related to the number of vertices,

which is the basis of the V-based estimator. Upper bounds, which have a more compact form and do not require the

evaluation of a sum, may be obtained by inserting the rounded estimate M̂ directly into the upper bounds (16), (32),

and (39), although we do not tabulate them here.

Map Name Depth
L-estimator V-estimator d-estimator

MX PM PMR4 MX PM PMR4 MX PM PMR4
Falls Church 10 1.05 0.50 0.45 1.90 1.57 1.65 0.94 1.31 1.63
Falls Church 12 1.00 0.61 0.45 1.88 1.98 1.65 0.97 1.75 1.67
Falls Church 14 0.99 0.73 0.44 1.87 2.44 1.63 0.98 2.23 1.65
Falls Church 16 0.98 0.86 0.43 1.87 2.94 1.59 0.99 2.74 1.62
Alexandria 10 1.16 0.57 0.57 1.75 1.28 1.45 0.71 0.95 1.32
Alexandria 12 1.09 0.72 0.57 1.72 1.70 1.49 0.78 1.40 1.47
Alexandria 14 1.06 0.89 0.56 1.71 2.17 1.47 0.81 1.89 1.48
Alexandria 16 1.06 1.07 0.54 1.71 2.66 1.44 0.82 2.39 1.44
Arlington 10 1.18 0.54 0.55 1.77 1.22 1.44 0.78 0.91 1.30
Arlington 12 1.07 0.64 0.55 1.70 1.55 1.50 0.83 1.29 1.47
Arlington 14 1.03 0.79 0.54 1.69 1.97 1.47 0.87 1.73 1.47
Arlington 16 1.02 0.95 0.52 1.68 2.40 1.42 0.88 2.18 1.43
Howard 10 1.30 0.28 0.24 2.50 1.06 1.14 0.40 0.50 0.78
Howard 12 1.09 0.27 0.23 2.32 1.13 1.13 0.51 0.73 1.03
Howard 14 1.03 0.31 0.22 2.27 1.35 1.13 0.57 1.00 1.10
Howard 16 1.01 0.36 0.22 2.25 1.63 1.11 0.60 1.30 1.11
DC 10 1.26 0.69 0.67 1.74 1.37 1.51 0.86 1.03 1.33
DC 12 1.12 0.86 0.69 1.67 1.83 1.63 0.93 1.55 1.57
DC 14 1.09 1.10 0.67 1.66 2.41 1.61 0.97 2.14 1.59
DC 16 1.08 1.33 0.65 1.66 2.99 1.55 0.98 2.73 1.54
Calvert 10 1.22 0.22 0.18 2.15 0.70 0.68 0.13 0.19 0.32
Calvert 12 1.08 0.23 0.17 2.08 0.79 0.69 0.22 0.39 0.57
Calvert 14 1.04 0.29 0.17 2.07 1.02 0.70 0.27 0.64 0.67
Calvert 16 1.03 0.35 0.17 2.07 1.28 0.71 0.30 0.90 0.70
Prince Georges 10 1.42 0.37 0.32 2.32 1.08 1.14 0.35 0.42 0.63
Prince Georges 12 1.14 0.34 0.30 2.12 1.11 1.18 0.48 0.68 1.01
Prince Georges 14 1.06 0.40 0.30 2.07 1.41 1.20 0.56 1.03 1.16
Prince Georges 16 1.03 0.49 0.29 2.06 1.78 1.20 0.60 1.41 1.19
Montgomery 10 1.50 0.32 0.25 2.51 0.98 0.94 0.20 0.24 0.35
Montgomery 12 1.15 0.26 0.22 2.22 0.91 0.93 0.30 0.45 0.71
Montgomery 14 1.05 0.30 0.22 2.15 1.15 0.95 0.38 0.74 0.89
Montgomery 16 1.02 0.37 0.21 2.13 1.43 0.95 0.42 1.05 0.94

� �/�L �IT��I8 �	�#"�� 6��7�#" �7� ���	 $���I�	�#�����M�)��
F�$+$� � ��������J!� 0F2 -�8A0I-: �+�" <A�!6!?*���K8A0=B C ���! �"����)�,���
� ���M+ � ��J��=��J��)�,� �*�7�7��
F $� ��� �$D �9J!� +��
N/��$�P�@��� ���$+E�M+ ��J!�I�7 �/�L �= ��)�I��J!� �	 $�7� ���I/�����H��#�!+E��J!�
���	�#"�� 6��7�,"Q�)�,���!�M�	��
F�$+ ���$�O�M+$�=��J!�����'�7��
 $� ��� �+�"@��J!�3 �6����! �L���+���� ��� �!�$+N�M+ � �/�L �FR�D

The particular estimators that we have described have a number of inherent limitations. For example, suppose that

the scale of the line segments (roads) of the map is lowered by a factor of 2 so that all the roads are totally embedded in

the NW quadrant of the original map image while the rest of the scaled map image is empty. In this case, if the depth is

high enough, it is likely that the number of leaf nodes in PM and Bucket PMR4 quadtrees will stay the same, while that

in the MX quadtree will decrease significantly. However, the total length of the lines in the quadtree of the scaled-down

map will be off by a factor of two thereby implying that the L-based estimator is likely to be inaccurate for the PM and

Bucket PMR4 quadtrees. This is most relevant for maps containing many line segments in a small area and appears

to dampen the suitability of the L-based estimator for arbitrary images, although it does seem to work for images that

25

span most of the space in which they are embedded.

From our experiments, the L-based estimator seems to perform the best for the MX quadtrees, while the V-based

estimator seems to work the best for the PM and PMR4 quadtrees. We constructed the d-based (as well as the related

S-based) estimator to try to improve further on the estimates for the PM and PMR4 quadtrees but found that it does not

improve on the V-based estimator, and sometimes even does worse. The good performance of the L-based estimator

for the MX quadtree was not surprising as it confirms the original result of the analysis of Hunter and Steiglitz [19,

20] which found a proportionality to the perimeter of the image. The correlation between the estimated and actual

values that we observed is noteworthy considering that the number of nodes in the maps ranged between 77,000 and

38 million (i.e., a factor of 500). Nevertheless, we believe that a more detailed examination of the differences between

the the actual and predicted storage requirements, as well as other properties, of hierarchical spatial data structures is

an extremely interesting open problem.

We were also interested in testing the validity of the asymptotic results given in (42) on the expected number of

nodes as a function of the number of line segments in real images and the level of permitted subdivision. The experi-

ments were the same as those described above. In all of the experiments we assume that the number of line segments in

the map is proportional to M2, where M is a parameter related to the effective number of lines in the equivalent random

images (recall that there are O
�
M2 � intersection points for the M infinite lines).

0

100

200

300

400

500

600

10 12 14 16

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

��� �����)� U�� B $�7� � ��� 032 ���! �"����)�,�G+ ��"����K� �
��� "��3L �$+$����J�D

100

1000

10000

100000

1e+06

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
at

io

Segment Count

Depth = 10
Depth = 12
Depth = 14
Depth = 16

��� �S���	� � �GB $�7� � ���=0F2 ���� �"����	�#�G+ ��"����K� �
�O���! ��)� �P�����������O���
 �$+$�&6��S��+ �#D

We first examine the MX quadtree. Figure 5 shows the ratios of the node count to the length of a side of the image

(i.e., 2N) as a function of the depth (i.e., N) for the different maps which are close to being constant (i.e., horizontal

lines) as expected. Figure 6 shows the ratios of the node count to the square root of the number of line segments (i.e.,

M) as a function of the number of line segments (i.e., M2) for the different depths which, as expected, are close to

being constant (i.e., horizontal lines) when the number of line segments relative to the depth is large enough. We used

a logarithmic scale in Figure 6 to illustrate a similar relative deviation in the ratios for the different depths as the size

of the data increases.

Next, we examine the PM quadtree. Figures 7 and 8 show the ratio of the node count to the number of non-shape

vertices (i.e., NSV) and to the number of line segments (i.e., M2), respectively, as a function of the depth for the dif-

ferent maps which are close to being constant (i.e., horizontal lines). This means that the node count is independent of

the depth. This is contrary to the prediction of the asymptotic analysis and was also observed to be the case with the

26

5

10

15

20

25

30

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

��� �����)� � � B $�7� � ��� 8A0 ���! �"����)�,�G+ ��"����K� �
����� D

2

3

4

5

6

7

8

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

��� �S���	���S��B $�7� �����:8A0;���� �"����	�#��+$��"������ ����J!�
�O���
 �!+ �&6��S��+$�#D

4

5

6

7

8

9

10

11

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

��� �����)�����@B $�7� �K���F8A0=B ���! �"����)�#� +$��"����F� �
����� -�� � C D

1

1.5

2

2.5

3

3.5

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

��� �S���	�
�����B $�7� �N��� 8:0IB ���� �"����	�#�@+$��"���� � �
�O���
 �!+ �&6��S��+$�#- � � C D

randomly generated data. As we recall, this is probably because of the invalidity of the independence assumption.

Finally, we examine the PMR4 quadtree. Figures 9 and 10 show the ratio of the node count to the number of non-

shape vertices (i.e., NSV) and to the number of line segments (i.e., M2), respectively, as a function of the depth for the

different maps which we would expect to be constant (i.e., horizontal lines) especially for the larger maps. At lower

depths, the ratios increase with depth for a particular map since the segment counts are constant and the number of

nodes does increase with depth until converging once the decomposition rule can no longer be applied. It is interesting

to observe that the lines in Figures 9 and 10 are not quite horizontal (i.e., representing a constant function) in the sense

that they have a small positive slope. This is because the line segments in the maps are not really formed by random

infinite lines. Thus it is not true that the probability that more than two infinite lines intersect at a point is zero. In

particular, we find that in our maps there are instances where more than four line segments meet at a point and hence

the number of nodes really grows linearly with depth (since the decomposition rule is still applicable, and, in fact, will

always be applicable in this case), although this growth is not substantial in our graphs at higher depths. Experiments

with larger values of q verified that the number of nodes does in fact converge as the depth increases. This can be seen

27

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

R
at

io

Depth

Falls Church
Alexandria

Arlington
Howard

DC
Calvert

Prince Georges
Montgomery

��� �����)�
�
���B $�7� � ��� 8A0=B ���! �"����)�#� + ��"���� � �
������
F�$+$�&6�����+ �#- � �
$R�D

0.1

1

10

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
at

io

Segment Count

q = 4
q = 12

��� �S���	�
 R���B $�7� �N��� 8:0IB ���� �"����	�#�@+$��"���� � �
�O���
 �!+ �:6*����+$�A� �$D ������
F�$+ �A6�����+ �� $�: "��$�$��J
���1
 � D

in Figure 11 for q � 12. Figure 12 shows the ratio of the node count to the segment count (i.e., M2) versus the segment

count at depth 16 for q � 4 and q � 12. Notice that the ratios are all within 6% of their average value. Figure 12 also

reveals a general trend that the ratios decrease as the maps get larger. We used a logarithmic scale to illustrate a similar

relative deviation in the ratios for the different values of q as the size of the maps increases.

6 Concluding Remarks

The analysis of the space requirements of a number of trie-based hierarchical geometric data structures for storing large

collections of line segments was investigated using random image models. An appropriate model was developed for

each of these structures and estimates of E � S � , the expected number of nodes, were found for them. Future work in-

clude the investigation of the use of these estimates in a cost model by a query optimizer to generate an appropriate

query evaluation plan in a spatial database application. The analysis presented here is also of interest because it uses a

detailed explicit model of the image, instead of relying on modeling the branching process represented by the tree, and

leaving the underlying image unspecified. The behavior of these expected values is intuitivelyand concisely expressed

by analytic upper and lower bounds. Other directions for future research include the application of the geometric prob-

ability approach to additional data types besides line segments (e.g., points, polygons, surfaces, solids, etc.), as well as

alternative trie-based spatial data structures.

We have demonstrated that these estimates, derived for a particular random model, are applicable to real data.

Specifically, in the case of line map images, we provided estimators which are based on simple characterizations of

the map data, and which enabled us to successfully apply the results of the analytic model to real data and to obtain

reasonably accurate and useful results. This was verified, however, only for map data, and characterizing collections

of other types of line segments, or even more general types of spatial information, is still an open problem, and thus a

subject for further research.

Our results can be used to justify claims on the qualitative differences between the different alternative spatial data

structures. For example, we showed that the Bucket (and conventional) PMRq quadtree for q
�

4 is superior to the

PM quadtree in terms of the number of nodes that are required. The problem with the PM quadtree is that although its

28

behavior is usually acceptable, there are cases in which it requires much space due to certain point and line configura-

tions. This follows from our analysis and simulations as well as confirming earlier observations on the possible worst

case behavior of the PM quadtree [42].

Perhaps our most important result is showing that the space requirements of the Bucket PMRq and PMRq (q
�

4)

quadtree are asymptotically proportional to the number of line segments. This was shown theoretically for a random

line image model and was also found to hold for random data and real map data. This is quite significant as it enables us

to predict the number of nodes required by this representation, and, most importantly, to show that it is independent of

the maximum depth of the tree. It is thus not surprising that the PMRq quadtree has found use in experimental systems

(e.g., QUILT [45]) as well as commercial systems (e.g., United Parcel Service (UPS) [4]).

7 Acknowledgements

We appreciate the comments of S. K. Bhaskar and Gary D. Knott who made suggestions about the evaluation of the

sums.

References

[1] C. H. Ang, Applications and analysis of hierarchical data structures, Computer Science TR-2255, University of
Maryland, College Park, MD, June 1989.

[2] W. G. Aref and H. Samet, Optimization strategies for spatial query processing, Proceedings of the Seventeenth
International Conference on Very Large Data Bases, G. Lohman, ed., Barcelona, September 1991, 81–90.

[3] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, The R
�

-tree: an efficient and robust access method for
points and rectangles, Proceedings of the SIGMOD Conference, Atlantic City, NJ, June 1990, 322–331,

[4] R. Bonefas, personal communication, 1991.

[5] T. Brinkhoff, H. P. Kriegel, R. Schneider, and B. Seeger. Multi-step processing of spatial joins. In Proceedings of
the 1994 ACM SIGMOD International Conference on Management of Data, pages 197–208, Minneapolis, MN,
June 1994.

[6] Bureau of the Census, TIGER/Line Census Files, 1990 Technical Documentation, Washington, 1991.

[7] C. Faloutsos and I. Kamel, Beyond uniformity and independence: Analysis of R-trees using the concept of
fractal dimension, Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Minneapolis, MN, May 1994, 4–13.

[8] C. Faloutsos, T. Sellis, and N. Roussopoulos, Analysis of object oriented spatial access methods, Proceedings of
the SIGMOD Conference, San Francisco, May 1987, 426–439.

[9] R. A. Finkel and J. L. Bentley, Quad trees: a data structure for retrieval on composite keys, Acta Informatica 4,
1(1974), 1–9.

[10] P. Flajolet, G. Gonnet, C. Puech, and J. M. Robson, Analytic variations on quadtrees, Algorithmica 10, 6(Decem-
ber 1993), 473–500.

[11] P. Flajolet and T. Lafforge, Search costs in quadtrees and singularity perturbation asymptotics, Discrete & Com-
putational Geometry 12, 2(September 1994), 151–175.

[12] P. Flajolet and C. Puech, Partial match retrieval of multidimensional data, Journal of the ACM 33, 2(April 1986),
371–407.

[13] E. Fredkin, Trie memory, Communications of the ACM 3, 9(September 1960), 490–499.

29

[14] G. Graefe, Query evaluation techniques for large databases, ACM Computing Surveys 25, 2(June 1993), 73–170.

[15] A. Guttman, R–trees: a dynamic index structure for spatial searching, Proceedings of the SIGMOD Conference,
Boston, MA, June 1984, 47–57.

[16] E. G. Hoel and H. Samet, Data-parallel spatial join algorithms, Proceedings of the 23rd International Conference
on Parallel Processing, St. Charles, IL, August 1994, vol. 3, 227–234.

[17] E. G. Hoel and H. Samet, Performance of data-parallel spatial operations, Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB), Santiago, Chile, September 1994, 156–167.

[18] M. Hoshi and P. Flajolet, Page usage in a quadtree index, BIT 32, 3(1992), 384–402.

[19] G. M. Hunter, Efficient computation and data structures for graphics, Ph.D. dissertation, Department of Electrical
Engineering and Computer Science, Princeton University, Princeton, NJ, 1978.

[20] G. M. Hunter and K. Steiglitz, Operations on images using quad trees, IEEE Transactions on Pattern Analysis
and Machine Intelligence 1, 2(April 1979), 145–153.

[21] C. L. Jackins and S. L. Tanimoto, Oct-trees and their use in representing three dimensional objects, Computer
Graphics and Image Processing 14, 3(November 1980), 249–270.

[22] G. Kedem, The Quad-CIF tree: a data structure for hierarchical in-line algorithms, Proceedings of the 19th Design
Automation Conference, Las Vegas, June 1982, 352–257.

[23] A. Klinger, Patterns and search statistics, in Optimizing Methods in Statistics, J. S. Rustagi, ed., Academic Press,
New York, 1971, 303–337.

[24] K. Knowlton, Progressive transmission of grey-scale and binary pictures by simple, efficient, and lossless encod-
ing schemes, Proceedings of the IEEE 68, 7(July 1980), 885–896.

[25] D. E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching, Second Edition, Addison-Wesley,
Reading, MA, 1973.

[26] J. H. Lee, D. H. Kim, and C. W. Chung. Multi-dimensional selectivity estimation using compressed histogram
information. In Proceedings of the 1999 ACM SIGMOD InternationalConference on Management of Data, pages
205–214, Philadelphia, June 1999.

[27] C. Mathieu, C. Puech, and H. Yahia, Average efficiency of data structures for binary image processing, Informa-
tion Processing Letters 26, 2(October 1987), 89–93.

[28] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selectivity estimation. In Proceedings of the
1998 ACM SIGMOD International Conference on Management of Data, pages 448–459, Seattle, June 1998.

[29] D. Meagher, Geometric modeling using octree encoding, Computer Graphics and Image Processing 19, 2(June
1982), 129–147.

[30] M. Muralikrishnaand D. J. DeWitt. Equi-depth histograms for estimating selectivity factors for multi-dimensional
queries. In Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, pages 28–
36, Chicago, June 1988.

[31] R. C. Nelson and H. Samet, A consistent hierarchical representation for vector data, Computer Graphics 20, 4(Au-
gust 1986), 197–206 (also Proceedings of the SIGGRAPH ’86 Conference, Dallas, August 1986).

[32] R. C. Nelson and H. Samet, A population analysis of quadtrees with variable node size, Computer Science TR-
1740, University of Maryland, College Park, MD, December 1986.

[33] R. C. Nelson and H. Samet, A population analysis for hierarchical data structures, Proceedings of the SIGMOD
Conference, San Francisco, May 1987, 270–277.

[34] J. A. Orenstein, Spatial query processing in an object–oriented database system, Proceedings of the SIGMOD
Conference, Washington, DC, May 1986, 326–336.

30

[35] M. Ouksel and P. Scheuermann, Storage mappings for multidimensional linear dynamic hashing, Proceedings of
the Second ACM SIGACT–SIGMOD Symposium on Principles of Database Systems, Atlanta, March, 1983, 90–
105.

[36] B. U. Pagel, H. W. Six, H. Toben, and P. Widmayer. Towards an analysis of range query performance in spatial data
structures. In Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 214–221, Washington, DC, May 1993.

[37] C. Puech and H. Yahia, Quadtrees, octrees, hyperoctrees: a unified analytical approach to three data structures
used in graphics, geometric modeling and image processing, Proceedings of the Symposium on Computational
Geometry, Baltimore, June 1985, 272–280.

[38] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990.

[39] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS, Addison-
Wesley, Reading, MA, 1990.

[40] H. Samet, A. Rosenfeld, C. A. Shaffer, R. C. Nelson, and Y. G. Huang, Application of hierarchical data structures
to geographical information systems: phase III, Computer Science TR-1457, University of Maryland, College
Park, MD, November 1984.

[41] H. Samet and M. Tamminen, Efficient component labeling of images of arbitrary dimension represented by linear
bintrees, IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 4(July 1988), 579–586.

[42] H. Samet and R. E. Webber, Storing a collection of polygons using quadtrees, ACM Transactions on Graphics 4,
3(July 1985), 182–222.

[43] L. A. Santalo, Integral geometry and geometric probability, in Encyclopedia of Mathematics and its Applications,
G. C. Rota, ed., Addison-Wesley, Reading, MA, 1976.

[44] C.A. Shaffer, R. Juvvadi, and L.S. Heath, Generalized comparison of quadtree and bintree storage requirements,
Image and Vision Computing 11, 7(September 1993), 402–412.

[45] C.A. Shaffer, H. Samet, and R. C. Nelson, QUILT: a geographic information system based on quadtrees, Interna-
tionalJournal of Geographical InformationSystems 4, 2(April-June 1990), 103–131(also Universityof Maryland
Computer Science TR –1885.1).,

[46] M. Tamminen, Encoding pixel trees, Computer Vision, Graphics, and Image Processing 28, 1(October 1984),
44–57.

[47] M. Tamminen, Comment on quad- and octtrees, Communications of the ACM 27, 3(March 1984), 248–249.

31

