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Abstract 

A new method termed population analysis 1s presented 
for approxlmatmg the dlstrlbutlon of node occupancies m 
hierarchical data structures which store a variable number of 
geometric data items per node The basic idea 1s to describe a 
dynamic data structure as a set of populations which are per- 
mitted to transform mto one another according to certain 
rules The transformation rules are used to obtam a set of 
equations describing a population dlstrlbutlon which 1s stable 
under msertion of addttional mformation mto the structure 
These equations can then be solved, &her analytically or 
numerlcally, to obtain the population distribution Hierarclu- 
cal data structures are modeled by letting each population 
represent the nodes of a given occupancy A detailed analysis 
of quadtree data structures for storing point data IS 
presented, and the results are compared to experimental data 
Two phenomena referred to as agang and phasmg are defined 
and shown to account for the differences between the expert- 
mental results and those predicted by the model The popu- 
lation techmque IS compared with statistical methods of 
analyzing smular data structures 
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I Introduction 

Hierarchical data structures are a class of data structures 
employing a representational scheme which can be applied at 
different spatial resolutions to allow the structure to be 
adapted to the data Examples include quadtree and octree 
varieties [Same84a], bmtrees [Same84c], grid files [I%ev84], 
and also techniques which are less explicitly based on spatial 
decomposition such as extendible hashing [Fag1791 All, how- 
ever, are variable resolution representations which have 
locally similar structure at different resolutions 

Because the local resolution of hierarchical data struc- 
tures depends on the data being represented, performance 
analysis tends to be difficult Traditional worst-case analysis 
1s often mappropriate because the worst case tends to be both 
very bad, and highly improbable More useful would be a 
“typical case” descrlptlon of properties of Interest such as 
required storage per data item or access time Most 
approaches to the analysis of hierarchical structures have thus 
been statlstlcal m nature, most notably, Fagm et al m their 
analysis of extendible hashing [Fag1791 which turns out also to 
apply to certain types of quadtrees Regmer [Regn85] and 
Tammmen [Tamm83] have also pubhshed statistical analyses 
of grid files and a structure called EXCELL respectively 

A maJor drawback of statistical analysis for hierarchical 
systems IS that it can be quite complicated to perform, even 
for relatively simple cases (e g , for uniformly dlstrlbuted 
point data [Fagi 791) The prospect of attempting such an 
analysis for more complicated data prnmtives (e g , hne seg- 
ments or polygons) interacting m higher dlmenslonal spaces 1s 
somewhat dauntmg Furthermore, Since such analyses depend 
on some model of data dlstributlon, they will yield at best, 
approximations to the expected values when real data IS used 
For many apphcations, a good approximate model may be of 
as much practical value as an exact statistuzal computation 

This study arose out of our attempt $0 analyze the 
storage behavior of certain quadtree data structures which we 
used m the implementation of a geographic mformatlon sys- 
tern [Same85c] A straightforward statistical analysis of these 
structures promised to be an exceedingly laborious task 
Since we were interested m the dlstrlbutlon of the nodes as a 
function of then occupancy, we decided to model a quadtree 
BS a collection of populations where each population 
represented the nodes m the quadtree having a particular 
occupancy Thus the set of all empty nodes constitutes one 
such population, the set of all nodes contammg a smgle data 
element another, and so forth A certain approxlmatlon 1~ 
mvolved mnce the set of all nodes of a given occupancy con- 
tams nodes at many different levels m the quadtree Smce the 
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nodes at different levels represent physical blocks of different 
areas, the population 19 not, strictly speakmg, homogeneous 
However, because the structure of hierarchical data structures 
IS slmllar at different resolutions, it wss expected that the 
effect of this approxlmatlon would be relatively mmor 

As mformatlon 19 added to a quadtree with variable 
capacity nodes, each population grows m a manner which 
depends on the other populations For Instance, consider a 
structure where nodes can hold up to m pomts and are spbt 
when the capacity 18 exceeded In thus case, the probablhty of 
an Insertion producing a new node with occupancy I depends 
both on the fraction of the nodes with occupancy 1-1 and on 
the population of full nodes (occupancy m) smce nodes of any 
occupancy less than or equal to m can be produced when a 
full node sphts The bsslc idea 18 to determme a steady state, 
where the proportions of the various populations are constant 
under sddltlon of new mformatlon according to some data 
model If such a steady state exists, then It can be taken as a 
representative dlstrlbutlon of populations from which 
expected values for structure parameters such 88 average node 
occupancy can be calculated 

We used this approach to analyze quadtree structures for 
stormg both point and lme mformatlon We present here, an 
application of the technique to a quadtree structure for stor- 
mg pomt data Our analysis of structures for storing lme 
data IS somewhat analogous, and IS described m detail m 
[Nels86b] 

The remamder of the paper IS organized as follows Sec- 
tion II gives a brief overview of quadtrees Section III 
describes the use of the population model m detail, and 111~5 

trates Its use by analyzing the PR quadtree for storing pomts 
Section IV accounts for the discrepancy m the model m terms 
of two phenomena termed agang and phasrng which are 
characteristic of hIerarchIca data structures m general Sec- 
tion V contains conclusions and a summary of other work 

II Quadtreee 

The quadtree [Same84a] 1s a hlerarchlcal, variable resolu- 
tion data structure based on the recursive partttlonmg of the 
plane into quadrants This scheme 1s useful for representmg 
data havmg geometric dlstrlbutlon at variable resolution 
Varlatlons exist for representmg planar regions [Klm71], col- 
lections of points [Fmk74, Same84b], and collections of line 
segments[Same85b, Nels86a] as well as more comphcated 
objects (e g rectangles) The basic principle generalizes to 3 
and higher dlmenslons (e g , octrees (Hunt78, Jack80, Meag82] 
and bmtrees [Know80, Tamm84, Same85a]) 

Quadtrees can be dlvlded mto two types those based on 
regular decomposltlon of space usmg pre-defined boundaries, 
and those where the part:tlon 1s determined expbcltly by the 
data as It 1s entered into the structure Figure 1 shows a 
quadtree representation for a set of points based on regular 
decomposition The region of mterest has been recursively 
partitioned mto quadrants until no quadrant contains more 
than a single point This structure 18 known as the PR quad- 
tree (Oren82, Same84b] A second decomposltlon method has 
been investigated m apphcatlons where It IS desired to adapt 
the structure closely to the data (e g , the classIca pomt 
quadtree [Fmk74]) The partltlons are typically irregular and 
of odd sizes, and the shape of the final structure depends crlt- 
lcally on the order In which the mformatlon was inserted into 
the tree 
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0 

Figure 1 PR quadtree for four points Blocks are recursively 
quartered until no block contams more than one point 

The condition used to determine when a quadtree block 
should be partitioned IS called the splrttrng rule The form of 
the rule depends on the type of data being stored For 
instance, If a quadtree IS being used to store a collection of of 
points, one possible rule IS “spht untd no block contams more 
than one distinct point” This IS the bssls of the simple PR 
quadtree The generalized PR quadtree IS obtained by permlt- 
tmg the nodes to contain more than one point The rule for 
the generalized PR q&tree then becomes “split until no 
block contains more than m points” This prmclple IS slmdar 
to that used by Tammmen m his EXCELL system [TammSl] 
and by Nlevergelt m the grid file [Nlev84] 

III Computation of the expected dlstrlbutlon 

Consider a quadtree data structure whose leaf nodes 
each contam between 0 and m data items which are members 
of some set A (e g , the PR quadtree for points) The number 
of data Items stored m a node IS the occupancy of the node 
We can describe the dlstrlbutlon of node occupancies m a par- 
ticular quadtree Q by a state vector 2 = (po,pl, ?Pnl) 
where p, IS the proportion of the nodes having occupancy : 
As a consequence of this definition po+pl+ +pm = 1 
We would like to define an average or typical state vector, say 
Z, for the data structure which could be used to predict 
storage properties with some degree of accuracy We will call 
this vector the expected dlstrlbutlon The followmg discus 
slon makes specific reference to quadtrees, but the same prm- 
clples apply m the case of octrees and higher dlmenslonal data 
structures 

A typical statlstlcal approach to defining t would be the 
followmg Let x be the average value of the state vector 2 
over all quadtrees which represent a subset of A contaming I 
elements Generally, z IS defined relative to some model of 
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data dlstrlbutlon Define the expected dlstrlbutlon t as the 
hrnlt of the sequence a, , a,, If Z exists and can be cal- 
culated, then It could serve as a representative distribution 
for quadtrees of a given type Fagm et al have used a sta- 
tlstical approach to calculate average node occupancies as a 
function of the number of data pomts m the context of exten- 
dible hashing [Fag1791 The application of their results, with 
shght modlficatlons, to the PR quadtree, mdlcates that the 
hrnlt t does not exist Specifically, the vector sequence a, , 
J2, undergoes cecdlatory behavior of increasing period 
and non-decreasing amplitude We wdl show m Section IV 
that this sort of oscillatory behavior, which we refer to as 
phastng, 19 typical of hierarchIca data structures m general 
when a umform data distribution 1s present 

The above statlstlcal calculation represents a consider- 
able mathematical effort Furthermore, It cannot be easily 
generalized to hierarchical representations for other data 
prlrnitlves (e g , hne segments) Calculatmg the vectors 2 
directly seems to be d&ult m general, especially d the data 
prirnitlves are non-trivial For these reasons, we decided to 
pursue an alternative means of modeling the performance of a 
quatree 

We model a quadtree ss a set of populations of nodes 
where each population comusts of all nodes havmg a given 
occupancy Thus empty nodes form one populatron, nodes 
contammg one pomt a second, and so forth Insertion of a 
point mto a node of occupancy I either transforms It mto a 
node with occupancy r+l or else causes the node to split, 
mcreasmg several populations The expected distribution t 15 
defined by the condition that the proportion of each popular 
t,ion making up the structure remains unchanged d data IS 
added to the tree rn accordance with statistical expectations, 
1 e , B 19 a fixed point under the operation of msertion This 
condition can be used to determine t if the data dlstrlbution 
and the statlstlcal results of adding a datum to a node can be 
calculated The key difference between our method and the 
statmtical approach of Fagm et al 1s that our method consid- 
ers only the local probablhties for the distrlbutlon of data 
items m a single node mto Its quadrants rather than a dlstri- 
bution for the whole population It 1s more tractable than the 
direct statistical approach, and yields results which are m re% 
sonable agreement with experimental data for several qusd- 
tree data structures We Illustrate the use of this techmque 
by means of an example, and then summarize the result of Its 
application to the generahzed PR quadtree 

Consider the simple PR quadtree described above 
Every node contams either zero or one data points There are 
thus two &stmct populations Let us refer to these &9 types 
no and nl respectively If a pomt 1s added to a node of type 
no, that node 1s transformed mto a smgle node of type nl 
On the other hand, If a pomt 1s added to a node of type n,, 
then the block must be spht, perhaps several times, untd the 
two points he m separate blocks In this case, several nodes, 
of both types, are generated 

For any node type, the average result of adding a pomt 
to the node can be described by a transform vector T=(to,tJ 
where to 1s the average number of nodes of type no produced 
by the msertion of a point, and t, IS the average number of 
nl nodes Let < be the transform vector describing the 
results of addmg a pomt to a node of type n, The vectors x 
form the row of a matrix T called the transform matrix 
From the preceding discussion To = (0,l) To determine T;, 
we use the geometry of the situation to write a recurrence 
relation If the distribution of data points IS uniform, then m 
3/4 of the cases, a smgle spht will sui%ce, divlclmg the block 

into four quadrants, two of which ate empty, and two of 
which contam a smgle point In one quarter of the cases, 
both points will end up m the same quadrant which must be 
spht agsm under the same conditions as the original spht 
This allows us to write the recurrence relation 

T; = $ (2,2) + + (3,O) + p1 

Solving this vector equation for ~~ gives ~~ = (3,2) 

If we now assume, that the probabdlty of a data pomt 
bemg inserted mto a node of a given occupancy 1 propor- 
tional to the numerical fraction of nodes of that type m the 
tree, then we csn use the above results to write equations 
which -2 must satisfy Note that thle assumption 18 
equivalent to the sasumption that the distribution of node 
occupancncles 19 independent of the geometric Size of the 
correspondmg block 1 e , that nodes at depth n m the tree do 
not have different occupancy dlstrlbutlons than those at 
depth n+l It turns out that this ~3 not strictly true m real 
quadtrees - larger nodes tend to have slightly higher average 
occupancies We refer to this phenomenon as agmg, and will 
examme It m more detul later However, for PR quadtrees, 
the approximation ~9 cl-e enough to be useful 

Under the above assumption, insertion of new data 
points mto a PR quadtree transforms nodes of types no and 
n, with relative frequency e. and el respectively (recall that 
t ~8 the expected d&nbution) Because nodes are 
transformed m direct proportion to then abundance, the dls- 
tribution of untransformed nodes 18 always B Thus m order 
for B to be a fixed point, the dLstribution of node types pro- 
duced from the transformed nodes must also be t This 
allows us to formulate equations which can be solved for B 84 
follows Suppose that the number of data points 1s increased 
by An In this case, the expected number of new nodes of 
each type can be calculated from the distribution of node 
types m the tree (assumed to be t) and the transform vectors 
(represented by the matrix T) Specifically, the expected 
number of new no nodes 1s TooeoAn + T,elAn, and the 
expected number of new nl nodes IS ToleoAn + TllelAn 
The expected total number of new nodes 1 the sum of these 
two quantities Requlrmg the proportIon of new no nodea to 
be co gives 

Teo+Tloel 

Tooeo+Tloe1+Toleo+Tllel 
= eo 

Snndarly, requiring the proportion of new n, nodes to be el 
gives 

%leo+Tllel 
T~eo+Tloe1+Toleo+Tlle1 

= e1 

These equations can be concisely expressed m matrix notation 
by the formula 

tT=at (1) 

where a 1s the scalar T,eo+TloeI+ToleofTllel Note that 
Since a IS a fun&on of t, (1) does not represent a set of 
linear equations, but rather a set of quadratic equations 
mvolvmg the components of t This particular example can 
be solved analytIcally to yield t=(1/2,1/2), the only positive 
solution Thus a PR quadtree with a maximum of one point 
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per node, should have approximately equal numbers of full 
and empty nodes Ttus agrees fairly well with experiments m 
stormg random points m PR quadtrees where we found 
approximately 53% empty and 47% full nodes The causes of 
the slight discrepancy are examined later 

The above technique can be apphed to the generalized 
PR quadtree where a node may contam up to m points The 
integer m 1s known ss the node caps&y The expected dls- 
trlbutlon t has m+l components, there are m+l node types 
no through n,, 
through Ti, 

and there are m+l transform vectors To 
which form the rows of the m+lX m+l 

transform matrix T” The transform vectors To through 7,-I 
are simple because the new data point 19 lust added to the 
node without causing a split, so that a node of type n, 
becomes a node of type n,+l The vectors To through feI 
thus have the form 

where there are m+l components and 1 19 m the :+l” posl- 
t1on 

The vector 7, which represents the sphttmg of a node 
mto four quarters when Its capacity 18 exceeded B found by 
determmmg the expected dlstrlbutlon of the points mto the 
quadrants, and usmg thvJ mformatlon to write a recurrence 
relation for ?m as dlustrated above m the csse of the PR 
quadtree for m =I 

In general, the expected dlstrlbutlon of m+l pomts mto 
quadrants 18 Just the bmomlal dlstrlbutlon for m+l objects 
placed independently mto four buckets The expected 
number of buckets contammg I Items, P, , 1s thus given by 

p, = (“l”) F 

The term P,,,+l 18 equal to 4~“, and represents the case where 
all m+l points end up m the same quadrant so that recursive 
sphttmg occurs A recursive relation for t can thus be writ- 
ten 

t = (PO,Pl, , Pm) + pln+1cl 

This can be solved to obtain the followmg expression for the 
components T,, of 2, 

T,, = cm;‘) s 

Note that for m larger than three or four, the probablhty of 
splitting more than once IS neghglble, and T, w closely 
approximated by P, 

As m the m=l case, a set of equations for the com- 
ponents of Z can be expressed m terms of the transform 
matrix T 

tT=&? 

The scalar (I 1.3 the normahzmg factor m computmg the pro- 
portlons and IS given by 

a=5 cT,,e, 
r=O]=O 

that 1, the sum of the coefficients of d multlphed by the sum 
of the components of the transform matrix m the correspond- 
ing row The row sums represent the number of nodes prc- 
duced by a node of type n, upon absorbmg an addltlonal 
pomt, and thus all equal unity with the exceptlon of row m 
whose sum 1s (4”+‘-1 )/(4’“-1) which 14 shghtly greater than 

four Thus a can be written 

a = eo + e1+ 
p+l-1 

+ -em 
4m-l 

The matrix equation represents a set of m+l quadratlc 
equations for the components of B In general, such a set of 
equations can have up to 2m+1 solution vectors, however, 
since the components of t represent proportions, we are 
interested only m solutions for which all the components are 
positive It can be shown, that for sets of equations of the 
above form, at most one positive solution 1s possible (see 
[Nels86b]) We are thus free to solve the equations numen- 
tally, with the assurance that any posltlve solution we find 
~111 be appropriate 

The equations were set up and solved for PR quadtrees 
with node capacities m ranging between one and eight points 
For each node capacity lsrn 58, the transform matrix T was 
used to obtain a system of equations descrlbmg the expected 
dlstrlbutlon t The systems were solved numerically using an 
iterative technique which converged on the posltlve solution 
Experimental data was collected by constructmg ten quad- 
trees of 1000 random points for each case and averaging the 
results Correspondmg data points from different trees were 
typically wlthm about 10% of each other The theoretical 
and experimental values obtained are compared m Table 1 

Experiment and theory agree fairly well as to the general 
form of the expected dlstrlbutlon 1 Both show, for all node 
capacities m, a dx+trlbutlon which has a small value for low 
occupancies, rises to a peak, and decreases again for high 
occupancies 

A quantity, which conveniently summarizes the mformai 
tlon contamed m t for many practical apphcatlons, IS the 
average node occupancy This value 1s calculated from 2 by 
addmg eI to twice e, and so forth, 1 e , the dot product of t 
with the vector (0,1,2, ,m) A good general idea of the accu- 
racy of the theoretical model IS obtained by comparing, for 
each m, the average node occupancy predicted by the model 
with that observed m the experiments These values are 
tabulated m Table 2 The agreement 18 clearly not exact, but 
it 1s close enough to be useful, and to estabbsh the utlhty of 
the underlying model 

Two basic trends m Table 2 are noteworthy First, the 
theoretlcal occupancy predlctlons are slightly, but uniformly 
higher than the experlmental values Second, the size of the 
discrepancy seems to have a cychcal structure This behavior 
1s prlmarlly due to two phenomena, exhibited by hierarchical 
data structures under certam circumstances, which are not 
taken mto account m the rather simple model derived above 
The explanation of these phenomena 1s the subject of the next 
section 

IV. Sources of discrepancy aging and phasing 

We will first examine a phenomenon referred to as agrng 
which accounts for the consistent over-estlmatlon of the aver- 
age node occupancy by the theoretlcal model Recall that m 
the derlvatlon of the model, an assumption was made that the 
probablhty of a pomt, randomly selected from a uniform dls- 
trlbutlon, falling mto a node of type n, (occupancy I) was 
proportional to the fraction of total nodes which were of type 
n, Smce the probablhty of a pomt falling mto a node of type 
n, 1s actually proportional to the fraction of the total area 
occupied by nodes of type n,, this was equivalent to the 
sssumptlon that the dlstrlbutlon of types m the population of 
nodes having area (l/2*‘) was independent of t The fact 
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Table 1 
Expected dlstrlbutlon m PR quadtrees 
theoretlcal (thy) and experimental (exp) 

Bucket Expected dlstrlbutlon vector 
size 

1 

2 

thy ( 500, 500) 
exp ( 536 , 464) 
thy ( 278 , 418 , 304) 

r 

- \ 
exp (084 ; 217 ; 241; 204 [ 151; 104j 

6 1 thy (043, 132 , 200, 207 , 176 , 137 , 105) 
exp (050, 150, 201, 215, 176, 127, 08lj 

7 thy (028, 098, 165, 189, 173, 143, 114, 090) 
exp (034, 110, 177, 214, 187, 143, 091, 044) 

8 thy (019, 073, 135, 168, 166, 145, 119, 097, 078) 
exp (024, 086, 151, 206, 194, 156, 100, 049, 034) 

that this assumption does not hold exactly IS the reason that 
the theoretical values tend to be umformly higher than the 
experlmental ones In particular, nodes having greater area 
~111, on the average, tend to have a higher occupancy 

The higher occupancy of large nodes can be understood 
m two ways If the quadtree 19 vlewed as a static structure 
where a set of pomts 1s given and sphttmg of quadrants takes 
place until no block contams more than m pomts, then for a 
random, uniform dlstrlbutlon, the bigger nodes will tend to be 
better filled simply because their area 1s larger and the pomt 
density IS (more or less) uniform This occurs m spite of the 
fact that the sphttmg IS adaptive 

Another way of lookmg at the same phenomenon 1s to 
consider the quadtree as a dynamic structure which has 
reached Its present state through a history of pomt msertlons 
A particular leaf node can be consldered to have a hfetlme 
extending from the time It IS created by the sphttmg of Its 
parent, until it absorbs enough pomts to fill It to capacity and 
1s itself split This “fillmg up” process ~111 be referred to as 
agmg Clearly, as a population of nodes of a given size ages, 
the average occupancy increases Consider a time scale 
defined by the rate of msertlon of pomts, where each pomt 
msertlon represents a tick of the clock On such a scale, If 
the pomts are drawn from a uniform dlstrlbutlon, large nodes 
will, on the average, age faster than small ones smce their 
area 1s greater and more points ~111 be Inserted mto them m a 
given Interval of time Now, consider a quadtree which has 
populations of nodes of two or more sizes Smce nodes at any 
level are created by the sphttmg of full nodes m the previous 
generation, the average occupancy of a hypothetlcal age-zero 
population of nodes 1s the same for every generation Smce 
large nodes are formed before small ones, the average number 
of clock ticks which have passed since the creation of the 
node 1s greater for large nodes than for small ones Combmed 
with the fact that large nodes fill up faster than small ones, 
this lmphes that the effects of aging (I e , increased occupancy) 
are always more pronounced m the large node population 

node 
:apacity 

1 
2 
3 
4 
5 
6 
7 
8 

Table 2 
Average Node Occupancy 

experimental 1 theoretical 1 percent 
occupancy occupancy difference 

0 46 I 050 I 72 

I Table 3 
Occupant 

Depth no nodes 

4 66 

s by node 
n1 nodes 

20 1 
354 3 
411 6 
144 9 
49 6 
19 5 

occupancy 

75 

7 54 
44 
39 
41 
55 

Thus the average occupancy of large nodes would be expected 
to be higher 

Table 3 demonstrates that the relative, average occu- 
pancy of nodes does indeed decrease with block size The 
data represent averages over 10 PR quadtrees of 1000 pomts 
with m=l Block area IS proportional to 4-dcpfA, hence the 
large nodes appear first m the table The general tendency IS 
for occupancy to decrease with node size towards the expected 
value for a population created by sphttmg a set of full nodes 
This value 1s given by the dot product z, (OJ, ,m-l,m) 
which LCI 40 for m=l The experimental data shows the 
predicted decrease towards this value which 1s reached at 
depths 7 and 8 The anomalously high value for the average 
occupancy at the deepest level (depth = 9) 1s an artifact of 
the lmplementatlon which truncates the tree at that depth 
However, since there are only a few nodes at the maximum 
depth, the net effect of this perturbation on the experimental 
data IS negligible 

We can now describe, at least quahtatlvely, the correc- 
tlon which must be applied to the population model to 
account for the effects of aging If larger nodes have a higher 
average occupancy, then conversely, nodes with higher occu- 
pancles tend to have larger average sizes Since nodes of 
higher occupancy are larger, they are mdlvldually more likely 
to be encountered when a point 1s Inserted Thus to mamtam 
a steady state, the fraction of high-occupancy nodes must be 
less than predlcted by the original model, which assumed the 
average sizes of the nodes to be independent of the occu- 
pancy Conversely, the fraction of low occupancy nodes must 
be higher Exammatlon of the occupancy data indicates that 
this correction IS conscstent with the observed discrepancy 
between the theoretical and experimental values The effect 
of the correction on the on the modeled average occupancy 
would be to decrease it, which 1s also consistent with the 
observed discrepancy 
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A second effect referred to ss phaarng 1~1 responsible for 
the periodic. behavior of the discrepancy between the observed 
and theoretical average occupancies consldered as a function 
of node capacity m This effect IS due to the fact that for a 
uniform dLstrlbutlon of points, the nodes m the quadtree tend 
to stay about the same size Moreover, all nodes of the same 
size tend to fill up and split at about the same time As a 
quadtree 19 built, there will be cycles of relative actlvlty as the 
uniform point density approaches a value at which nodes of a 
certain size split, followed by periods of mactlvlty as the new, 
smaller nodes fill up Thus, when the points m the quadtree 
are drawn from a uniform dlstnbutron, the nodes will tend to 
spht and fill m phase This actlvlty ~111 follow a cycle with a 
logarlthmlcally mcreasmg period which repeats every time the 
number of points incresses by a factor of four The average 
occupancy will follow a similar cycle, attaining its highest 
value Just before a group of uniformly sized nodes begins to 
split up, and its lowest value Just after most of the nodes 
have been spht This effect becomes more pronounced as the 
node capacity increases smce the probablhty of having a local 
density fluctuation which would require sphttmg at more than 
one level decreases with mcreasmg m Because the dlstrlbu- 
tlon of node sizes depends only on the statlstlcal fluctuations 
m point density which IS scale invariant for a uniform d&r]- 
butlon, the osclllatlons will not damp out Thus the llmlt of 
the sequence dl,Jz, mentioned m section II does not 
exist 

Table 4 Illustrates the cychcal verlatlon of the average 
occupancy with the number of points for a node capacity of 8 
The data were generated by averaging the results from 10 
quadtrees built from the specified number of points drawn 
from a uniform dlstrlbutlon The sample sizes were chosen 
along a logarithmic scale so that the number of points m the 
samples quadruples over four steps Note that relative max- 
ima and mmlma are separated by factors of four (four steps) 
as hypothesized The data 1s shown plotted on a semi-log 
scale m Figure 2 which dlustrates the cyclical behavior more 
clearly 

For different node capacities, the relative maxima and 
minima of the average occupancy occur at different numbers 
of data points Thus when the size of the data sample LS fixed 
and the node capacity IS allowed to vary, the average occu- 
pancy will be observed at dlflerent pomts along the cychcal 

curve Since the predlctlon of the population model 19 
Independent of the number of data points, the discrepancy 
between the observed and predlcted values would be expected 
to vary cycllcly with node capacity If the data IS gathered for 
a fixed number of points The smooth oscdlatlon m the per- 
cent difference between theoretical and experimental results m 
Table 2 represents approximately such cycle 

The observed oscillatory behavior IS due to semi- 
synchronous sphttmg of nodes of a given generatlon when the 
density of a uniform dlstrlbutlon of pomts reaches a certain 
value If a non-umform dlstrlbutlon were used, the effect 
would be expected to disappear Table 5, and Figure 3 show 
the results of the same experiment using a Gaussian dstrlbu- 
tlon of points two standard devlatlons wide centered m the 
square region covered by the quadtree Oscillatory behavior LS 
observed while the number of pomts LS relatively small, but m 
this case It damps out as node populations In regions of 
different densltles get out of phase For the case of the Gaus- 
man, a small residual osclllatlon might be expected because of 
the large central area of near constant density 

The cychclty observed In our results 1s the same effect 
predicted by Fagm et al [Fag1791 in their analysis of extendl- 
ble hashmg, where It appears as higher terms m a Fourier 

Table 4 
Variation of occupan CY 

points 
64 
90 

128 
181 
256 
362 
512 
724 

1024 
1448 
2048 
2896 
4096 

tverages for 
nodes 

169 
21 7 
35 2 
54 4 
67 3 
90 7 

145 0 
216 4 
266 5 
3508 
560 5 
876 6 

1075 6 

with tree size 
trees 
occupancy 

3 79 
4 15 
3 64 
3 33 
3 80 
3 99 
3 53 
3 35 
3 84 
4 13 
3 65 
3 30 
3 81 

number of data points 

Figure 2 ExperImental results and interpolated curve show- 
mg variation of average node occupancy with number of data 
points for uniform distribution of data 
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number of data pomts 

Figure 3 Experimental results and Interpolated curve show- 
mg varlatlon of average node occupancy with number of data 
pomts for GaussIan dlstrlbutlon of data 

r 
Varlat, 

- 
points 

64 
90 

128 
181 
256 
362 
512 
724 

1024 
1448 
2048 
2896 
4096 

Table 5 
of occupan 

lausslan dtsi 
nodes 

17 2 
217 
35 2 
523 
68 2 
99 1 

144 1 
203 5 
275 5 
393 4 
565 3 
784 9 

1104 7 

with tree size 
jutIon 

occupancy 
3 72 
4 15 
3 63 
3 46 
3 75 
3 65 
3 55 
3 56 
3 72 
3 68 
3 62 
3 69 
3 71 

series expansion Our dIscussIon mdlcates that such cychcal 
behavior wdl tend to appear m data structures based on regu- 
lar spatial decomposltlon whenever a data model sssummg 
uniform dlstrlbutlon 1s incorporated 

v. Concluelone 
We have presented a method for analyzing hlerarchlcal 

data structures based on a model of such structures as popu- 
latlons of nodes of dIKerent occupancies The model allows 
the analysis of such data structures wlthout laborious statlstl- 
cal derlvatlons Only the probabdltles of the local interaction 
of the data prlmltlve with the quadrants of a node need be 
evaluated The model represents a formahzatlon of the mtul- 
tlve notion of a “typical case” By mvestlgatmg the sources 
of discrepancy with experimental data, two phenomena which 
are characterlstlc of hierarchIca data structures were 
identified agmg and phasing Agmg IS responsible for larger 
nodes having higher than average occupancy even when spht- 
tmg I adaptive Phasing causes a cychcal variation m the 
average occupancy of nodes which 18 periodic m the logarithm 
of total number of data items stored m the structure, partlcu- 
larly when the dlstrlbutlon of data 1s uniform 

We have applied a similar population analysis to a quad- 
tree lme representation called the Ph4R quadtree [Nels86a] 
The adaptation 19 relatively simple, and yields results which 
agree with experlmental data even better than m the case of 
the PR quadtree This ~3 encouragmg, particularly since 
straightforward statistical analysis of quadtree lme representa- 
tions appears to be much more dlfflcult than the corresporid- 
mg analysis of point structures, and has not, to our 
knowledge, been performed Details of this analysis are con- 
tamed m [NelsS6b] 
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