CAR-TR-241 DCR-86-05557
CS-TR-1740 December 1986

A POPULATION ANALYSIS OF QUADTREES
- WITH VARIABLE NODE SIZE

Randal Nelson
Hanan Samet

Department of Computer Science and
Center for Automation Research
University of Maryland
College Park, Maryland 20742 USA

ABSTRACT

A new method termed population analysis is presented for approximating the dis-
tribution of node occupancies in hierarchical data structures which store a variable
number of geometric data items per node. The basic idea is to describe a dynamic data
structure as a set of populations which are permitted to transform into one another ac-
cording to certain rules. The transformation rules are used to obtain a set of equations
describing a population distribution which is stable under insertion of additional infor-
mation into the structure. These equations can then be solved, either analytically or nu-
merically, to obtain the population distribution. This technique is used to model
hierarchical data structures with variable node capacity as a set of interacting popula-
tions where each population represents the nodes of a given occupancy. Quadtree data
structures for storing point and line data are analyzed in detail, and the results are com-
pared to experimental data. Two phenomena referred to as aging and phasing are
defined and shown to account for the differences between the experimerital results and
those predicted by the model. The population technique is compared with statistical
methods of analyzing similar data structures. '

Key words and phrases: analysis of algorithms, bucketing methods, multidimension-
al attributes, hierarchical data structures, line representations, quadtrees.

The support of the National Science Foundation under Grant DCR-86-05557 is gratéfuily ac-
knowledged. :

I. Introduction

A large group of data structures employ a representational scheme which can be
applied at different spatial resolutions to allow the structure to be adapted to the data.
Such representations are sometimes referred to as hierarchical data structures because
the different levels of resolution can be considered to form a hierarchy. The group
includes structures such as quadtree and octree varieties [Same84a], bintrees [Same84c],
grid files [Niev84], and also techniques which are less explicitly based on spatial decom-
position such as extendible hashing [Fagi79]. However, all these structures are variable
resolution representations which have locally similar structure at different resolutions.

Because of their adaptive nature, the structure of these representations depends on
the data being represented. This makes it difficult to analyze their performance. Tradi-
tional worst-case analysis is often inappropriate because the worst case tends to be both
very bad and highly improbable. What is generally desired is some sort of a “typical
case” description of properties of interest such as required storage per data item or
access time.

Most approaches to the analysis of hierarchical structures have thus been statistical
in nature, most notably, Fagin et al. in their analysis of extendible hashing [Fagi79]
which also applies to certain types of quadtrees. Regnier [Regn85] and Tamminen
[Tamm83] have also published statistical analyses of grid files and a structure called
EXCELL respectively. These analyses are based on the computation, relative to some
model of data distribution, of statistical sums over the space of possible data structure
configurations.

A major drawback of such statistical analyses is that they are complicated to per-
form, even for the case of uniformly distributed point data which can be treated one-
dimensionally. The prospect of attempting a similar analysis for more complicated data
primitives (e.g., line segments or polygons) interacting in higher dimensional spaces is
discouraging. Furthermore, since such analyses depend on some model of data distribu-
tion, they will at best yield approximations to the expected values when real data is
used.

The original motivation for this study was an effort to analyze the storage behavior
of certain quadtree data structures which we used in the implementation of a geographic
information system [Same85c]; specifically, the PMR quadtree [Nels86] which organizes
line segment data using quadtree nodes of variable capacity. A straightforward statisti-
cal analysis of the structure in terms of its configuration space promised to be an exceed-
ingly laborious method of obtaining what would be, in any case, an approximation based
on a data model. Since we were interested in the distribution of the nodes as a function
of their occupancy, we decided instead to model a quadtree as a collection of populations
where each population represented the nodes in the quadtree having a particular occu-
pancy. Thus the set of all empty nodes constitutes one such population, the set of all
. nodes containing a single line segment another, and so forth. A certain approximation is
involved since the set of all nodes of a given occupancy contains nodes at many different
levels in the quadtree. Since the nodes at different levels represent physical blocks of
different areas, the population is not, strictly speaking, homogeneous. However, since
the structure of hierarchical data structures is similar at different resolutions, it was
expected that the effect of this approximation would be relatively minor.

As information is added to a quadtree with variable capacity nodes, each popula-
tion grows in a manner which depends on the other populations. For instance, consider

1

a structure in which nodes can hold up to m data elements and are split when the capa-
city is exceeded. In this case, the probability of an insertion producing a new node with
occupancy ¢ depends both on the fraction of the nodes with occupancy i~1 and on the
population of full nodes (occupancy m) since nodes of any occupancy can be produced
when a full node splits. Our goal is to determine a steady state, where the proportions
of the various populations are constant under addition of new information according to
some data model. If such a steady state exists, then it can be taken as a representative
distribution of populations from which expected values for structure parameters such as
average node occupancy can be calculated.

The population analysis described above may be viewed as an alternative method
(vis-a-vis statistical sums) of defining a ‘“‘typical”’ structure. This method has the advan-
tage that the dependencies between various populations can be determined, and the
steady state computed, with relative ease in cases where statistical analysis would be
difficult. Furthermore, the method is flexible, and is adaptable to any hierarchical data
structure where the decomposition is determined adaptively by the local concentration of
the data. Finally, the notion of a steady state corresponds to the intuitive notion of a
typical structure more closely than does a statistical average, which is defined even if the
structure changes radically from insertion to insertion. Such a formalization of intuitive
expectations is useful because it is frequently easier to understand the behavior of a com-
plicated system in terms of a simple model with added corrections, than in terms of a
more accurate but more complicated monolith.

The remainder of the paper is organized as follows. Section II gives a brief over-
view of quadtrees. Section III describes the use of the population model in detail, and
illustrates its use by analyzing the simple PR quadtree for storing points. Section IV
extends the analysis to the generalized PR quadtree, and compares the results with
experimental data. Section V accounts for the discrepancy in the model in terms of two
phenomena termed aging and phasing which are characteristic of hierarchical data
structures in general. Section VI considers the asymptotic case of the PR quadtree. Sec-
tion VII applies the method to the analysis of the PMR quadtree, a structure for storing
line data, and compares the results with experimental data. Section VIII presenis our
conclusions and suggestions for further work.

II. Quadtrees

A quadtree [Same84a) is a hierarchical, variable resolution data structure based on
the recursive partitioning of the plane into quadrants. It ¢an be viewed as a 4-ary tree
where each node represents a region in the plane called a block, and the sons of each
node represent a partition of that region into four pieces. This scheme is useful for
representing data having geometric distribution at variable resolution. Variations exist
for representing planar regions [Klin71], collections of points [Fink74, Same84b], and col-
lections of line segments [Same85b, Nels86] as well as more complicated objects (e.g., rec-
tangles [Kede81]). Generalizations of the principle to three and higher dimensions (e.g.,
octrees [Hunt78, Jack80, Meag82] and bintrees [Know80, Tamm84, Same85a]) have also.
been investigated, and have many of the same basic properties.

Quadtrees can be divided into two types: those based on regular decomposition of
space using pre-defined boundaries, and those where the partition is determined expli-
citly by the data as it is entered into the structure. The usual method of regular decom-
position is to start with a unit square region, and partition blocks into equal quarters as

2

additional resolution is required locally. In this case, all blocks are square, and have a
side length which is an integral power of 1/2. Figure 1 shows a quadtree representation
for a set of points based on regular decomposition. The region of interest has been recur-
sively partitioned into quadrants until no quadrant contains more than a single point.
This structure is known as the PR quadtree [Oren82, Same84b]. A second decomposi-
tion method has been investigated in applications where it is desired to adapt the struc-
ture closely to the data (e.g., the classical point quadtree [Fink74]). When such a
method is used, the partitions are typically irregular and of odd sizes, and the shape of
the final structure depends critically on the order in which the information was inserted
into the tree. In exceptional cases this dependency can lead to badly balanced structures
(e.g., consider the case of a binary search tree when the items are inserted in sorted
order). For most applications, regular decomposition works at least as well as data-
based, and is easier to implement and analyze. In this paper, only structures utilizing
regular decomposition are considered.

The condition used to determine when a quadtree block should be partitioned is
called the splitting rule. This rule is usually a function of the data stored in the
corresponding node, thus making it easy to evaluate using local information. The form
of the rule depends on the type of data being stored. For instance, if a quadtree is being
used to store a collection of of points, one possible rule is “split until no block contains
more than one distinct point”. This is reasonable since any pair of points can eventually .
be separated by a sufficiently fine dissection. The structure produced by the use of this
rule is the PR quadtree described above. On the other hand, if a quadtree is used to
store line segments, then some other condition should be used, since intersecting seg-
ments cannot be separated no matter how far the decomposition is carried. In this case,
a rule of the form “split once if an inserted segment intersects a block already containing
one or more segments’ is appropriate. This procedure will eventually separate disjoint
segments, and isolate the intersection points of segments that intersect. It requires the
capability to store an arbitrary quantity of information at each node; however, the aver-
age node occupancy remains low. The structure produced by this rule is known as a
PMR quadtree |[Nels86]. These data structures are described fully in the referenced
papers.

The PR and the PMR quadtrees described above can be generalized by permitting
the nodes to contain more than one data item before splitting. The rule for the general-
ized PR quadtree then becomes ‘“‘split until no block contains more than m points™.
This principle is similar to that used by Tamminen in his EXCELL system [Tamm81]
and by Nievergelt et al. in the grid file [Niev84]. Analogously, for the generalized PMR
quadtree, the rule becomes “split once if an inserted segment intersects a block already
containing m or more segments”. The generalization of the point representation is of
interest because it is possible to decrease the number of nodes by allowing several points
to. be stored per node. If access to a node is slow in comparison with the time needed to
examine the contents, (e.g., if accessing a node requires one or more page faults), then
storing several points per node can lead to a considerable reduction in the cost of opera-
tions such as region queries which involve local search. The same principle applies in the
case of line data. Furthermore, in the line representation, permitting several lines to
occupy a node before its block is split reduces the amount of splitting required to isolate
intersection points, and hence reduces the amount of storage necessary to store the data.
This strategy is particularly useful if there is some bound on the number of segments
likely to intersect at a point (e.g., three for a Dirichlet tesselation or four for a collection

Figure 1. PR quadtree for four points. Biocks are recur-
sively quartered until no block contains more than one
point.

of line segments representing a network of roads) since the node capacity can be set to
that bound.

For the purposes of predicting the expense of processing information stored in data
structures such as those described above, and for determining the optimal node capacity
for a particular application, it is desirable to be able to predict the storage characteris-
tics for different node capacities. For example, the obvious method of determining all
intersections of a set of line segments stored in a PMR quadtree requires time propor-
tional both to the total number of nodes and to the square of the average node occu-
pancy. Since larger node capacities generally result in a smaller total node count, there
is a tradeoff involving the node capacity that must be considered.

In this paper we describe a framework for predicting the distribution of node occu-
pancies based on a steady state model of the populations in a dynamic quadtree, and use
it to compute population distributions for some instances of the generalized PM and
- PMR quadtrees described above. The results are compared with distributions in actual
quadtrees, and are found to agree overall, within approximately 10 percent. We show
that the discrepancy is attributable to a pair of properties termed aging and phasing,
which are typical of hierarchical data structures in general. Thus the population model
provides both a means of obtaining useful quantitative predictions about the expected
storage properties, and a framework for understanding some of the more complex
behavior of quadtrees and similar hierarchical data structures.

III. Computation of the expected distribution

Consider a quadtree data structure whose leaf nodes each contain between 0 and m
data items which are members of some set A (e.g., the PR quadtree for points). The
number of data items stored in a node is the occupancy of the node. We can describe
the distribution of node occupancies in a particular quadtree Q by a state vector
d= (PoP1, * * * ,Pm) Where p; is the proportion of the nodes having occupancy i. As a
consequence of this definition po+p+ - - - +p,, = 1. We would like to define an aver-
age or typical state vector, say €, for the data structure which could be used to predict
storage properties with some degree of accuracy. We will call this vector the expected
distribution. The following discussion makes specific reference to quadtrees, but the
same principles apply in the case of octrees and higher dimensional data structures.

A typical statistical approach to defining € would be the following. Let d; be the
average value of the state vector d over all quadtrees which represent a subset of A con-
taining ¢ elements. Generally, Ef, is defined relative to some model of data distribution.
Define the expected distribution € as the limit of the sequence 31 , 32, <o, If € exists
and can be calculated, then it could serve as a representative distribution.for quadtrees
of a given type. Fagin et al. have used a statistical approach to calculate average node
occupancies as a function of the number of data points in the context of extendible hash-
ing [Fagi79]. The application of their results, with slight modifications, to the PR quad-
tree, indicates that the limit € does not exist. Specifically, the vector sequence d; ,
32, -+ - undergoes oscillatory behavior of increasing period and non-decreasing ampli-
tude. We will show in Section V that this sort of oscillatory behavior, which we refer to
as phasing, is typical of hierarchical data structures in general when a uniform data dis-
tribution is present. '

The above statistical calculation represents a considerable mathematical effors.
Furthermore, it cannot be easily generalized to hierarchical representations for other
data primitives (e.g., line segments). Calculating the vectors d directly seems to be
difficult in general, especially if the data primitives are non-trivial. For these reasons, we
decided to pursue an alternative definition for a typical distribution.

We consider a quadtree as a set of populations of nodes where each population con-
sists of all nodes having a given occupancy. Thus empty nodes form one population,
nodes containing one point a second, and so forth. Insertion of a point into a node of
occupancy ¢ either transforms it into a node with occupancy 1+1 or else causes the node
to split, increasing several populations. The expected distribution € is defined by the
condition that the proportion of each population making up the structure remains
unchanged if data is added to the tree in accordance with statistical expectations, i.e., @
is a fixed point under the operation of insertion. This condition can be used to deter-
mine € if the data distribution and the statistical results of adding a datum to a node
.can be calculated. The key difference between our method and the statistical approach
of Fagin et al. is that our method considers only the local probabilities for the distribu-
tion of data items in a single node into its quadrants rather than a distribution for the
whole population. It is more tractable than the direct statistical approach, and yields
results which are in reasonable agreement with experimental data for several quadtree
data structures. We first illustrate the use of this technique by means of a specific exam-
ple, and then demonstrate its application to generalized PR and PMR quadtrees.

Recall the simple PR quadtree described above. Every node contains either zero or
one data points. There are thus two distinct populations. We refer to these as types ng
and n, respectively. If a point is added to a node of type ng, that node is transformed
into a single node of type n;. On the other hand, if a point is added to a node of type
ny, then the block must be split, perhaps several times, until the two points lie in
separate blocks. In this case, several nodes, of both types, are generated. For any nede
type, the average result of a,dding a point to the node can be described by a transform
vector t——(tg 1) where ty is the average number of nodes of type ng produced by the
insertion of a point, and ¢, is the average number of n, nodes. Let % be the tra,nsform
vector describing the results of adding a point to a node of type n;. The vectors t; form
the rows of a ma.trlx T called the transform matrix. We already know that £ = (0,1).
To determine tl, we use the geometry of the situation to write a recurrence relation. If
the distribution of data points is uniform, then in 3/4 of the cases, a single split will
suffice, dividing the block into four quadrants, two of which are empty, and two of
which contain a single point. In 1/4 of the cases, both points will fall in the same qua-
drant which must be split again under the same conditions as the original spht This
allows us to write the recurrence relation

1= -4- (2,2) + — (3 0) + Itl_
Solving this vector equation gives 7; — (3,2).
The transform matrix T is thus given by
Too Toy 0 1
T = To Tu = 9 6
: 3 3

Note that the rows of the transform matrix describe the results of the transformation of

a node of a given type, while the columns describe all transformations which can produce
a node of a given type.

If we now assume that the probability of a data point being inserted into a node of
a given occupancy is proportional to the numerical fraction of nodes of that type in the
tree, then we can use the above results to write equations which € must satisfy. Note
that this assumption is equivalent to the assumption that the distribution of node occu-
pancies is independent of the geometric size of the corresponding block — i.e., that nodes
at depth n in the tree do not have different occupancy distributions than those at level
n+1. Empirical studies indicate that this is not strictly true — larger nodes tend to have
slightly higher average occupancies. We refer to this phenomenon as aging, and will
examine it in more detail later. However, for PR quadtrees, the approximation is close
enough to be useful.

Under the above assumption, the insertion of new data points into a PR quadtree
will transform nodes of types ny and n; with relative frequency e and e, respectively
(recall that @ is the expected distribution). The number of nodes in each population-
which receive new points and thus are transformed is proportional to the size of that
population. Consequently, the population distribution of the remaining, untransformed
nodes remains €. Thus in order for € to be a fixed point, the distribution of node types
produced from the transformed nodes must also be €. This allows us to formulate equa-
tions which can be solved for € as follows. Suppose that the number of data points is
increased by An. In this case, the expected number of new nodes of each type can be
calculated from the distribution of node types in the tree (assumed to be €) and the

transform vectors (represented by the matrix T). Specifically, the expected number of
new ng nodes is TogegAn + Tige;An, and the expected number of new n; nodes is
Ty epAn + Tye;An. The expected total number of new nodes is the sum of these two
quantities. Requiring the proportion of new ny nodes to be ey gives

Tooe Q+T1081
Tw€0+Tlne 1+T0180+T118 1

== €y,

Similarly, requiring the proportion of new n; nodes to be e; gives

Toeot+Thier
Toeot+Troe1+Toreo+They

== €,

These equations can be concisely expressed in matrix notation by the formula
eT = a¢ (1)

where a is the scalar Typeo+Tpe+Toe9+T 1€, Note that since @ is a function of €,
(1) does not represent a set of linear equations, but rather a set of quadratic equations
involving the components of €. This particular example can be solved analytically to
yield €=(1/2,1/2), the only positive solution. Thus a PR quadtree with a maximum of
one point per node, should have approximately equal numbers of full and empty nodes.
This agrees fairly well with experiments in storing random points in PR quadtrees where

we found approximately 53% empty and 47% full nodes. The particular causes of
discrepancy are examined later.

IV. Analysis of generalized PR quadtrees

The above technique can be used to analyze the generalized PR quadtree where a
node may contain up to m points. The integer m is known as the node capacity. The
expected distribution € has m-+1 components there are m-+1 node types ny through
n,, and there are m+1 transform vectors fy through T, whlch form the rows of the
m-+1Xm+1 transform matrix T™. The transform vectors 7y through ,_, are simple
because the new data point is just added to the node w1thout ca,usmg a split, so that a
node of type n; becomes a node of type n;,y. The vectors fp through #,,_, thus have the
form

t; = (0,...,0,1,0,...,0).
where there are m+1 components and 1 is in the i 4+1% position.

The vector t which represents the splitting of a node into four quarters when its
capacity is exceeded is found by determining the expected distribution of the poants into
the quadrants, and using this information to write a recurrence relation for t as illus-
trated above in the case of the PR quadtree for m=1.

As another example, consider the case of m=2, i.e.,, nodes are split when their
occupancy reaches 3. Splitting a node containing 3 points once will produce one ng node
and three n; nodes with probability 3/8; two ny nodes, one n; node, and one n, node
with probability 9/16; and three n, nodes and one n; node with probability 1/16. The
last case supplies the recurrence since it must be split again. Thus when m=2, ¢,
satisfies

3 9 1 1
t, = —(1,3,0) + —(2,1,1 —(3,0,0) + —t
2 8(};)+16(J:)+16(11)+162
which can be solved to obtain T, = (27/15, 27/15, 8/15). Note that for m greater than
about 4, the effect of the recurrence term is effectively zero since its coefficient is equal to
four times the probability of m+1 points falling into the same quadrant, ie., 4™™.

In general, the expected distribution of m 41 points into quadrants is just the bino-
mial distribution for m+1 objects placed independently into four buckets. The expected
number of buckets containing ¢ items, P;, is thus given by

P, = (;) —
The term Pm+1 represents the case where all m+1 pomts end up in the same quadrant
so that recursive splitting occurs. A recursive relation for t can thus be written

=(P9)P1J"' P)+Pm+1t

The value of P, 4 is 4™ whlch is a common factor in all the factors P;. By multiplying
both sides by 4™, subtracting tm and dividing by 4™™-1 we obtain the following expres-
sion for the components T, of t,.

Note that for m larger than three or four, the probability of splitting more than once is
negligible, and T,,; is closely approximated by P;.
The transform matrices for the first few value of m are as follows:
0 0 0 1 0 O
T?= 0 (1) 1 T3=0 o L9
9 0 0 0 1

27 2T 9 81 108 54 4

15 15 15 63 63 63 21

This should give a general idea of the pattern in the first m rows. The last rows of the
transform matrices for 1<m <6 are given below. In order to show the regularlty in the
denominators, the fractions have not been reduced.

T! =

wlo ©
wlc: s

-~ (9 6

=1: t: — -

" 1= 13 3]
meg T (2 2 8
15’15 ' 15

(8L 108 54 12
63 ' 63 ' 63 ' 63

L7 (243 405 270 90 15
m =4 t4 = y) ’ »
265 255 ° 255 © 255 © 255
m =5 I.= (729 1458 1215 540 135 18]
5 | 1023 ' 1023 ' 1023 ’ 1023 ' 1023 ' 1023

7+ _ {2187 5103 5103 2835 945 189 21
4095 ' 4095 ' 4095 ' 4095 ' 4095 ' 4095 ' 4095

As in the m="1 case, a set of equations for the components of € can be expressed
in terms of the transform matrix T.

T = a® ' (1)

The scalar a is the normalizing factor in computing the proportions and is given by
m m
=23 M Tye
§i—=0j—0
that is, the sum of the coefficients of € multiplied by the sum of the components of the
transform matrix in the corresponding row. The row sums of the transform matrix
represent the number of nodes produced by a node of type n; upon absorbing an addi-
tional point, and hence all are equal to unity with the exception of row m whose sum is

8

(4™*1-1)/(4™-1) (i.e., slightly greater than four). Thus & can be written
. 4m+1_1

G=60+81+"'+F:1—6m

The matrix equation (1) represents a set of m+1 quadratic equations for the com-
ponents of € . In general, such a set of equations can have up to 9m+1 golution vectors;
however, since the components of € represent proportions, we are interested only in solu-
tions for which all the components are positive. It can be shown that for sets of equa-
tions of the above form, at most one positive solution is possible. To see this, consider
the general form of the individual equations. For every 0<i <m there is an equation of
the form

ae; = Ty j6i1+ Thien (2)
These equations correspond to columns in the matrix T. Expanding e and grouping
similar powers of e; gives
8.’2 -+ Be,- + G == 0

Where B is the part of @ which does not involve e;, and C is the negative of the right
side of (2). This is just a quadratic equation in ¢;, and thus e¢; must satisfy

_ -B+VB*-4C
2

Now, if all the components of € are positive, then B must be positive. In this case, only
one of the solutions to the quadratic formula can possibly be positive, hence there is at
most one positive value for e; which satisfies the system. Similar expressions hold for e,
and e,,, and thus, since there is at most one possible positive value for each of the com-
ponents, there is at most one solution for € in which all the components are positive.
We are thus free to solve the equations numerically, with the assurance that any positive
solution we find will be appropriate.

The equations were set up and solved for PR quadtrees with node capacities m
ranging between one and eight points. For each node capacity 1<m <8, the transform
matrix T was used to obtain a system of equations describing the expected distribution
€. The systems were solved numerically using an iterative technique which converged
on the positive solution. Experimental data was collected by constructing ten quadtrees
of 1000 random points for each case and averaging the results. Corresponding data
points from different trees were typically within about 10% of each other. Below, the
theoretical and experimental values are compared. In each case, the theoretical result is
given first.

~ Expected distribution in PR quadtrees — theoretical (thy) and experimental (ezp)
m =1 thy: € = (.500, .500)

exp: € = (.536 , .464)

m =2 thy: € = (.278 , 418 , .304)

exp: € = (.326 , .427 , .247)

m = 3 thy: € = (165, .320 , .305 , .210)

exp: € = (.213 , .364, .273, .149)

m = 4 thy: & = (102, .239 , .276 , .225 , .158)

exp: € = (139, 293 , 264 , .184 , .120)

m =5 thy: € = (.065, .179 , 238 , 220, .172, .126)

exp: € = (.084 , .217 , 241, .204 , .151 , .104)

m = 6 thy: € = (.043, .132, .200, .207 , .176 , .137 , .105)

ezp: € = (.050, .150, .201, 215 , .176 , .127 , .081)

m =17 thy: & = (.028,.098 , .165, .189 , .173 , .143 , .114 , .090)

exp: ¢ = (034, .110, .177 ,.214, .187 , .143 , .001 , .044)

m =8 thy: €= (019, .073, .135, .168 , .166 , .145 , .119 , .097 , .078)
exp: € = (.024 , .086 , .151 , .206 , .194 , .156 , .100 , .049 , .034)

Experiment and theory agree fairly well as to the general form of the expected dis-
tribution €. Both show, for all node capacities m, a distribution which has a small
value for low occupancies, rises to a peak, and decreases again for high occupancies. The
values for individual components of € are in rough agreement, but in isolated cases,
differ by as much as 20% of the peak value.

A quantity which conveniently summarizes the information contained in € for
many practical applications is the average node occupancy. This value is calculated
from € by adding e, to twice ey and so forth, i.e., the dot product of € with the vector
(0,1,2,...,m). A good general idea of the accuracy of the theoretical model is obtained by
comparing, for each m, the average node occupancy predicted by the model with that
observed in the experiments. These values are tabulated in Table 1. The agreement is
not exact, but it is close enough to be useful, and to establish the utility of the underly-
ing model. »

Two characteristics evident in Table 1 are noteworthy. First, the ‘theoretical occu-
pancy predictions are slightly but uniformly higher than the experimental values.
Second, the size of the discrepancy seems to have a cyclical structure. This behavior is
primarily due to two phenomena, exhibited by hierarchical data structures under certain

10

Table 1
Average Node Occupancy
node experimental | theoretical percent
capacity occupancy occupancy | difference
1 0.46 0.50 7.2
2 0.92 1.03 10.8
3. 1.36 1.56 12.9
4 1.85 2.10 11.6
5 2.44 2.63 7.4
6 3.03 3.17 4.4
7 3.44 3.72 7.5
8 3.79 4.25 10.8

circumstances, which are not taken into account in the rather simple model derived
above. The explanation of these phenomena is the subject of the next section.

V. Sources of discrepancy: aging and phasing

We examine first a phenomenon referred to as aging. It accounts for the consistent
over-estimation of the average node occupancy by the theoretical model. Recall that in
the derivation of the model, an assumption was made that the probability of a point,
randomly selected from a uniform distribution, falling into a node of type n; (occupancy
i) was proportional to the fraction of total nodes which were of type n;. Since the pro-
bability of a point falling into a node of type n; is actually proportional to the fraction
of the total area occupied by nodes of type n;, this was equivalent to the assumption
that the distribution of node types within the population of nodes of area (1/2%) was
independent of i. In fact, nodes having greater area tend to have a slightly higher aver-
age occupancy. ' ’

The higher occupancy of large nodes can be understood in two ways. If the quad-
tree is viewed as a static structure where a set of points is given and splitting of qua-
drants takes place until no block contains more than m points, then for a random, uni-
form distribution, the bigger nodes will tend to be better filled simply because their area
is larger and the point density is (more or less) uniform. This occurs in spite of the fact
that the splitting is adaptive.

Another way of viewing the same phenomenon is to consider the quadtree as a
dynamic structure which has reached its present state through a history of point inser-
tions. A particular leaf node can be considered to have a lifetime extending from the
time it is created by the splitting of its parent, until it absorbs enough points to fill it to
capacity and is itself split. This “filling up” process will be referred to as aging..
Clearly, as a population of nodes representing blocks of a given area ages, the average
occupancy increases. Consider a time scale defined by the rate of insertion of points,
where each point insertion Tepresents a tick of the clock. On such a scale, if the points
are drawn from a uniform distribution, large nodes will, on the average, age faster than
small ones since their area is greater and more points will be inserted into them in a

11

given interval of time. Now, consider a quadtree which has populations of nodes of two
or more sizes. Since nodes at any level are created by the splitting of full nodes in the
previous generation, the average occupancy of a hypothetical age-zero population of
nodes is the same for every generation. Since large nodes are formed before small ones,
the average number of clock ticks which have passed since the creation of the node is
greater for large nodes than for small ones. Combined with the fact that large nodes fill
up faster than small ones, this implies that the effects of aging (i.e., increased occupancy)
are always more pronounced in the large node population. Thus the average occupancy
of large nodes would be expected to be higher.

Table 2 demonstrates that the relative, average occupancy of nodes does indeed
decrease with decreasing block size. The data represent averages over 10 PR quadtrees
of 1000 points with m==1. Block area is proportional to 479?* hence the large nodes
appear first in the table. The general tendency is for node occupancy to decrease with
block size towards the expected value for a population created by splitting a set of full
nodes. This value is given by the dot product t,,-(0,1,...,m—1,m) which is .40 for m=1.
The experimental data shows the predicted decrease towards this value which is reached
at depths 7 and 8. The anomalously high value for the average occupancy at the
deepest level (depth — 9) is an artifact of the implementation which truncates the tree
at that depth. However, since there are only a few nodes at the maximum depth, the
net effect of this perturbation on the experimental data is negligible:

If larger nodes have a higher average occupancy, then conversely, nodes with higher
occupancies tend to have larger average sizes. Corrections to our theoretical model to
account for the effects of aging can thus be qualitatively described as follows. Since
nodes of higher occupancy are larger, they are individually more likely to be encountered
when a point is inserted. Thus to maintain a steady state, the fraction of high-
occupancy nodes must be less than predicted by the model, which assumed the average
sizes of the nodes to be independent of the occupancy. Conversely, the fraction of low
occupancy nodes must be higher. Examination of the occupancy data indicates that this
correction is consistent with the observed discrepancy between the theoretical and exper-
imental values. The proportion of high occupancy nodes observed in the experiments is
uniformly lower than predicted by the model, while the proportion of low occupancy
nodes (e.g., ng) is uniformly higher. The effect of the correction on the modeled average
occupancy would be to. decrease it, which is also consistent with the observed

Table 2
Occupancy by node size
| Depth | ngynodes | n; nodes | occupancy
4 5.6 20.1 .75
5 300.2 -354.3 - .54
6 533.7 411.6 44
7 2254 | 1449 .39
8 . 715 49.6 41
9. 16.1 19.5 - - .55

12

discrepancy.

A second phenomenon referred to as phasing is responsible for the periodic
behavior of the discrepancy between the observed and theoretical average occupancies
considered as a function of node capacity m. This effect is due to the fact that for a
uniform distribution of points, the nodes in the quadtree tend to stay about the same
size. Moreover, all nodes of the same size tend to fill up and split at about the same
time. As a quadtree is built, there will be cycles of relative activity as the uniform point
density approaches a value at which nodes of a certain size split, followed by periods of
inactivity as the new, smaller nodes fill up. Thus, when the points in the quadtree are
drawn from a uniform distribution, the nodes will tend to split and fill in phase with a
logarithmic period which repeats every time the number of points increases by a factor
of four. The average occupancy will follow a similar cycle, attaining its highest value
just before a group of uniformly sized nodes begins to split up, and its lowest value just
after most of the nodes have been split. This effect becomes more pronounced as the
node capacity increases since the probability of having a local density fluctuation which
places all m points in one quadrant, thus causing splitting at more than one level,
decreases exponentially with increasing m. Because the distribution of node sizes
depends only on the statistical fluctuations in point density which is scale invariant for a
uniform distribution, the oscillations will not damp out. Thus the limit of the sequence
31,3'2, * » + mentioned in section III does not exist.

Table 3 illustrates the cyclical variation of the average occupancy with the number
of points for a node capacity of 8. The data were generated by averaging the results
from 10 quadtrees built from the specified number of points drawn from a uniform dis-
tribution. The sample sizes were chosen along a logarithmic scale so that the number of
points in the samples quadruples over four steps. Note that relative maxima and
minima are separated by factors of four (four steps) as hypothesized. The data is shown
plotted on a semi-log scale in Figure 2 which illustrates the cyclical behavior more
clearly.

For different node capacities, the relative maxima and minima of the average occu-
pancy occur at different numbers of data points. Thus when the size of the data sample
is fixed and the node capacity is allowed to vary, the average occupancy will be observed
at different points along the cyclical curve. Since the prediction of the population model
is independent of the number of data points, the discrepancy between the observed and
predicted values would be expected to vary cyclicly with node capacity if the data is
gathered for a fixed number of points. The smooth oscillation in the percent difference
between theoretical and experimental results in Table 1 represents approximately one
cycle of such a variation.

The oscillatory behavior results from the semi-synchronous splitting of nodes of a
given generation when the density of a uniform distribution of points reaches a certain
value. If a non-uniform distribution were used, the effect would be expected to disap-
pear. Table 4 and Figure 3 show the results of the same experiment using a Gaussian
distribution of points two standard deviations wide centered in the square region covered
by the quadtree. Oscillatory behavior is observed while the number of points is rela-
tively small, but in this-case it damps out as node populations in regions of different
densities get out of phase. For the case of the Gaussian, a small residual oscillation
might be expected because of the large central area of near constant density.

13

average occupancy

average occupancy

H

lill 1 1 1 llJlll

50 |00 S00

000
number of data points -

Figure 2. Experimental results and interpolated curve
showing variation of average node occupancy with number
of data points for uniform distribution of data.

S000

IlJil 1 1 Illllll

3
S0 |00 500

1000

number of data points

Figure 3. Experimental results and -interpolated curve
showing variation of average node occupancy with number
of data points for Gaussian distribution of data.

5000

Table 3
Variation of occupancy with tree size
' averages for 10 trees
points nodes occupancy
64 16.9 3.79
90 21.7 4.15
128 35.2 3.64
181 54.4 3.33
256 67.3 3.80
362 90.7 3.99
512 145.0 - 3.53
724 216.4 3.35
1024 266.5 3.84
1448 350.8 4.13
2048 560.5 3.65
2896 876.6 3.30
4098 1075.6 3.81
Table 4
Variation of occupancy with tree size
Gaussian_distribution
points nodes occupancy
64 17.2 3.72
90 21.7 4.15
128 35.2 . 3.63
181 52.3 3.46
256 - 68.2 3.75
362 99.1 3.65
512 1441 3.55
724 203.5 3.56
1024 275.5 3.72
1448 393.4 3.68
2048 565.3 3.62
2896 784.9 3.69.
4096 1104.7 3.71

The cyclicity observed in our results is the same effect predicted by Fagin ef al. -
[Fagi79] in their analysis of extendible hashing, where it appears as higher terms in a
Fourier series expansion. Our discussion indicates that such cyclical behavior will tend
to appear in data structures based on regular spatial decomposition whenever a data
model assuming uniform distribution is incorporated. :

14

Obtaining quantitative expressions for the effects of aging and phasing is a topic for
future research. However, rough bounds can be easily obtained to show that the effects
are limited. For the case of PR quadtrees with a uniform data distribution, the average
node occupancy must be less than m because a full node is always split into nodes whose
average occupancy is less than m. On the other hand, since not every insertion causes a
node to split, the average occupancy must be greater than the expected occupancy of
nodes produced by splitting 2 full node. For m=1 this expected occupancy is 2/5, and
for higher m it approaches (m+1)/4. These bounds are crude indeed for the case of the
PR quadtree, for which they do little more than demonstrate that the effects of aging
and phasing do not get completely out of hand. However, the same principle can be
used for other structures to show that the average node occupancy is bounded, including
some involving more complex data primitives for which complete statistical analysis may
be impractical and the behavior non-obvious.

VI. The asymptotic case

In this section we consider the behavior of the expected distribution of occupancies
in the PR quadtree as the node capacity m approaches infinity. In this limit, the possi-
ble occupancies are approximated by a continuum. Let the continuous variable 2 on the
interval 0<z <1 represent the fullness of a node. Thus z=0 refers to empty nodes, and
z=1 to completely full nodes. The expected distribution can then be represented by a
function f where f(z) is proportional to the probability of an arbitrary node having an
occupancy between z and # + Az. For convenience, we consider f(z) to be normalized
so that it takes on a maximum value of 1.

Now, consider the expected occupancy of the offspring nodes when a node of occu-
pancy m is split. The most probable occupancy is m /4, ie., z==1/4. Moreover, as m
approaches infinity, the width of the distribution about x=1/4 relative to the entire
interval from =0 to 2=1 decreases. Thus, in the limit, full nodes at =1 can be con-
sidered to split into four equal-sized nodes with occupancy z=1/4. One consequence of
this is that f(z) is essentially O for <C1/4 since it is improbable that nodes of smaller
occupancy will be created.

The condition that the distribution must be stable under insertion of new data into
the tree can now be used to determine f. Suppose that the number of points in the tree
is increased by An. This produces a corresponding number of new nodes of every occu-
pancy. In the continuous approximation the number of new nodes can be represented by
a function Af(z,An) = ¢ An-[G(fy)|(x) where ¢ is a constant and the functional G
describes how the number of new nodes at any occupancy depends on the existing distri-
bution fy of occupancies. Since full nodes split into four new nodes with occupancy 1/4,
[G(f))(1/4) must be proportional to 4fo(1). To determine the behavior of G for other
values of 2, we must consider the discrete structure. Recall that a node of occupancy ¢
is formed by the insertion of a point into a node of occupancy i-1, or by the splitting of
a full node. As m becomes large, the contribution of the splitting factor becomes small
for values of i greater than m /4. Thus for {>m /4 the number of nodes of occupancy :
formed by the insertion of new data is proportional to the number of nodes of occu-
pancy i-1 prior to insertion. Under the continuous approximation, this is equivalent to
making [G(fy)|[(z) proportional to fo(:c—e) for all 1/4<z <+1) where e=1/m and is
thus a small but non-zero constant. '

15

Let us assume that the occupancy is stable under insertion of data. Then f; is f.
If the occupancy is stable, then the ratio of Af for any two values of z must be the
same as the corresponding ratio for f. Hence

fz) _ Af(z1) _ [GUl(=) _ S(z1-e)

f(ze) Af(zg) [G((z2) (=€)
for any values of z; and x5 in the range 1/4<<z <1. Thus f must be an exponential
function of the form f(z)=ae®® in the range 1/4<z <I.

A node which reaches occupancy z==1 splits into four nodes of occupancy 1/4 when
additional data is added. Therefore, there must be four times as many nodes of occu-
pancy z=1/4 as there are nodes of occupancy x=1. This yleids the boundary condition
f(1/4) = 4f(1). If we arbitrarily normalize f so that the maximum value, i.e., f(1/4) is
1, then we can solve for the constants ¢ and &, obtaanmg

=[]
b= [%]ln[%] = -1.8484

The average occupancy O,, can be found by computing the normalized first
moment of the distribution f:

1 1 .
Op = m [af(z)dz / [f(z)dz = 541m
1/4 1/4

Thus as the node capacity becomes large, the usage of the nodes under this model
approaches .541m. This can be compared to the results obtained by Fagin et al., which
if adapted to the case of splitting a node into four parts, predict that the occupancy
should oscillate about a value of m /3logse = .463m. This value is the result of a pre-
cise statistical computation for uniform distributions of points. The difference is due to
the aging phenomenon discussed earlier. For the case of uniformly distributed points,
the statistical prediction agrees with the experimental data better than our model. How-
~ever, even for this simple case, the derivation of the formula is quite involved. Applying
such analysis to structures which store more complicated primitives such as line seg-
ments or rectangles is difficult. Our model however, is easily adaptable to the analysis of
other data structures since only the local statistics of splitting a full node need to be
determined to set up the equations. In the next section we show how this is done for the -
case of the PMR quadtree, a data structure for storing line data.

VII. Analysis of PMR gquadtrees

The PMR quadtree is a hierarchical data structure for storing sets of line segments
[Nels86]. It is a variant of the PM quadtree introduced by Samet and Webber
[Same85b]. The basic idea is to recursively subdivide the plane into blocks in a manner
which focusses resolution where the density of line segments is highest, and then store
with each block the line segments passing through it. This subdivision is performed

16

Figure 4. Building a PMR quadtree with node capacity
equal to two. Three segments have been inserted causing
. the plane to be quartered once as indicated by the small
circle. Segments were inserted in the order indicated, and
the number of the small circle identifies the segment which
caused the split.

(7))

A
oD

Zla)

Figure 5. Building 2 PMR quadtree (continued). Seg-
ments 4-7 have been inserted causing three more blocks to
be quartered as indicated. -

dynamically as the quadtree is constructed. A line segment is stored in a PMR quadtree
by inserting it into the nodes corresponding to all the blocks that it intersects. The
occupancy of each such node is checked when the insertion occurs, and if it exceeds a
preset threshold N, then the node is split once into four equal quadrants. An example
of the construction of a PMR quadtree is given in Figures 4 and 5. Note that the split-
ting rule does not guarantee that all nodes will have occupancy less than N as was the
case with the PR quadtree for points. In fact, such a subdivision is impossible to achieve
for line data since an arbitrary number of line segments can intersect at a single point.
However, empirical tests indicate that the average occupancy of nodes produced by this
scheme is good, i.e., less than N. We also note that the exact structure of the PMR
quadtree produced for a given set of data is dependent on the order of insertion of line
segment data. However, since the subdivision is regular, and focussed on regions of high
data density, the effect of this on the average occupancy is small. In the following, we
show that quantitative predictions for the average occupancy and expected distribution
can be made on the basis of our population model.

In order to use the technique that we applied for PR quadtrees, we need to deter-
mine the distribution of occupancies that results when we split a node containing m line
segments. For points, determining the distribution was relatively simple since the situa-
tion was equivalent to the distribution of m points into four buckets. For line data
however, the geometry begins to complicate the situation, since a line segment can inter-
sect several quadrants of a block while a point can intersect only one. We begin by con-
sidering the case of a block that contains a single line segment. To simplify matters, we
assume that the block does not contain either endpoint. This assumption is equivalent
to requiring that the average block width be small in comparison with the average
length of a line segment in the data set. This will be the case if the data consists of line
segments which frequently cross one another as might happen in a map of airline routes
or in a photograph of a bubble chamber. If the segments form a planar graph, as in a
road map, then the occurrence of endpoints may have to be taken into account.

Consider the set L of all parallel lines passing through a quartered block B at some
angle @ (see Figure 6). Every line in L passes through one, two, or three quadrants of B.
Let a be a line perpendicular to the set L, and for any point p on a, let ¢(p) be the
number of quadrants intersected by the line perpendicular to ¢ at p. Then a can be
partitioned into sections depending on the value of ¢. Figure 6 shows this partition,
with the sections corresponding to q(p) values of 1, 2, or 3 labeled z,, z,, and z3 respec-
tively. Because of the symmetry of the square block, the total length of the sections
with ¢(p) = 1, is equal to the total length of the sections with ¢(p) = 3 independent of
the value of 8. The value of ¢ over the remainder of the intersection of ¢ with L is 2.
Thus the average value of ¢ over the intersection of a with L is 2 for any angle 8. If
the lines are drawn from a sample distributed uniformly in space and orientation, this
value corresponds to the average number of quadrants intersected by a line passing
through the block. Therefore, on the average, a line stored in a node will have to be
stored in two of the children if the node is split. '

If the line segments stored in the node are uncorrelated, then each quadrant has, .
independently, a 2/4 = .5 probability of being intersected by any line segment stored in
the parent node. Thus the distribution of occupancies, resulting when a node is split
into quadrants, is given by-a binomial normalized so that the expected total number of
quadrants is 4. In particular, the expected number of quadrants of occupancy ¢ pro-

duced by splitting a node of occupancy m is (T’) 2(2-%),

17

A

7))

7070

3l

Figure 8. Congruent triangles show that |z,|

The above results can be used, as in the case of the PR quadtree, to produce a
transform matrix T the rows of which describe the results of adding a line segment to
nodes of different occupancies. The only difference is that, in the case of the PMR quad-
tree, there is no absolute upper bound on node occupancy for a given threshold N.
Since we do not wish to deal with matrices of infinite size, we choose a cutoff point, and
assume that the proportion of nodes with occupancy higher than that cutoff is negligible.
We choose to neglect nodes of occupancy higher than N+2. This is justified by the
observation that for the case of N=1, considering nodes of occupancy higher than 3
changes the results of the analysis by less than 1%. For higher thresholds, the effect
would be even less since the probability of having all the the segments in a node inter-
sect the same quadrant, producing a node of occupancy higher than N when the node is
split, decreases exponentially with increasing N.

Below we give the transform matrices for the first few values of V.

01 0 0 0 o0 r o0 0 0 0C

0100 00 1 0 0 0 .0 1 0 0 0
o210 . 133 1, a0 0 0 1 00
1331 2 2 2 2 ~1 4 6 4 1
1456 4 44 4 4 1 1 5 1010 5 1

4 444 1 5 10 10 5 8 8§ 8 8 8 8
T8 8 8 8 1 6 15 20 15 6

[+]
e 4]
[» 4}
a0
a0

The first N rows indicate the growth of a node as data is added to it below threshold.

" The last three rows describe the splitting of a node with occupancy equal to, or higher

t

han the threshold.

As in the case of the PR quadtree, the transform matrices were used to obtain a set
of quadratic equations for the components of ¥, the expected distribution of occupancies
in a steady state. These were solved using the same iterative technique. Experimental
data was generated by connecting pairs of points randomly selected from a uniform dis-
tribution over a square region, to produce a set of line segments randomly crisscrossing
the plane. Ten samples each containing 100 line segments were generated for each value
of N and the results averaged. The experimental and theoretical values for the expected
distribution € are compared below for N ranging between one and eight.

N =1thy: ¢ = (183, .470 , .288 , .059)

exp: € = (.192, 462, .284 , .057)

N =2 thy: ¢ = (092, .323, .434, .135, .016)

exp: € = (103, .332, .427 , .132, .015)

N =3 thy: €= (.042,.192, .355, .350, .057, .004)

18

exp: € = (.053,.209 , .351 , .325, .058, .004)

N =4 thy: € = (.019, .105 , .249 , .328, .275, .023, .001)

exp: € = (.027, .126, .262 , .320, .240, .024, .001)

N =5 thy: € = (.008, .055, .159 , .263, .285, .221, .009, .000)

exp: € — (014, .074 , .181 , .275, .259, .189, .008, .000)

N = 6 thy: € = (.004, .028 , .096 , .191, .253, .242, .182, .004, .000)

exp: € — (009, .046 , .119 , .209, 251, .215, .148, .003, .000)

N =17 thy: € = (.002, .014, .056 , .131, .205, .232, .205, .153, .002, .000)

exp: € = (.005, .031,.082 , .154, .212, .218, .176, .121, .001, .000)

N = 8'thy: @ = (.001, .007 , .032 , .085, .154, .204, .208, .176, .132, .001, .000)

ezp: @ = (.002, .021, .056 , .118, .169, .201, .186, .146, .100, .001, .000)

Again, there is generally good agreement between the experimental and theoretical
results. The agreement is excellent for low node capacities. As the node capacity
increases, the effect of aging starts to skew the predictions slightly. As in the case of the
PR quadtree, this is reflected in the tendency of the model to underestimate the number
of low occupancy nodes, and overestimate the number of high occupancy ones.

A better indication of the overall accuracy of the model is obtained by comparing
the predicted average occupancy with that measured in the experiments. This is done in
Table 5. In this case, the theoretical results are actually closer to the experimental
results than for the PR quadtree. Several points should be noted. First, as in the PR
quadtree, the theoretical predictions are slightly higher than the measured values.
Again, this is due to the implicit assumption in the model that the proportion of nodes
of a given occupancy is not correlated with the size of the node. As in the PR quadtree,
the phenomenon of aging ensures that this assumption does not strictly hold. Neverthe-
less, the model yields results which are close enough to be useful. Second, the phasing
effect, which was apparent for the point data in the PR quadtree, does not appear to be
as significant for line data represented by the PMR quadtree. The apparent reason for
this seems to be that the local fluctuations in data density are greater for randomly"
intersecting line segments than for random points. This has the eflect of smoothing out
the transition from one generation of nodes to the next as the tree grows in size.

As in the case of the PR quadtree, rough bounds can be placed on the average node
occupancy to show that the effects of aging and phasing cannot completely dominate the

19

Table 5
Average Node Occupancy for PMR Quadtrees
" node experimental | theoretical percent
capacity ocCupancy occupancy | difference
1 1.22 1.22 0.0
2 1.62 1.66 2.4
3 2.14 2.20 2.9
4 2.70 2.81 4.0
5 3.30 3.46 4.7
6 3.90 4.14 5.6
7 4.51 481 6.5
8 5.12 5.51 7.0

behavior of the structure. To do this, we show that the average occupancy of the nodes
produced when a node is split is bounded, and smaller than the size of the parent. Since
each quadrant has a .5 probability of intersecting each line segment in the parent node,
the average occupancy of the nodes produced will be 1/2 the occupancy of the parent
node. A slight complication arises from the fact that nodes of occupancy higher than NV
exist in the tree. The average size of parent nodes can be bounded, however, by noting
that a node of occupancy >N must be produced by a split in which all ¢ segments
intersect one quadrant. The expected incidence of this situation for 7=N+1 is 4-2-V+1)
per split; the expected incidence for i=N-+2 is 4-2-V+4.9-(N+2. 354 similarly for
higher occupancies. In other words, the expected number of nodes with occupancy
higher than N decreases exponentially with {-N. Thus the average size of parent nodes
is bounded by a geometric series which converges for all N >0, and therefore the average
node size in the tree as a whole is bounded.

VIII. Conclusions

We have presented a method for analyzing hierarchical data structures based on a
model of such structures as populations of nodes of different occupancies. The method is
flexible, and is adaptable to the analysis of any hierarchical data structure in which spa-
tial decomposition is determined by the local distribution of data elements. The model
allows the analysis of such data structures without laborious statistical analysis. Only
the probabilities of the local interaction of the data primitive with the quadrants of a
node need be evaluated. This is generally a much easier task than calculating global
statistics. The model represents a formalization of the intuitive notion of a ‘“typical
case”’. By investigating the sources of discrepancy with experimental data, two
phenomena which are characteristic of hierarchical data structures were identified: aging
and phasing. Aging is responsible for larger nodes having higher than average occupancy
even when splitting is adaptive. Phasing causes a cyclical variation in the average occu-
pancy of nodes which is periodic in the logarithm of total number of data items stored in
the structure, particularly when the distribution of data is uniform. Generalized PR and
PMR quadtrees were analyzed using the population model, and the results compared to

20

experimental data with generally good agreement.

Areas for future research include obtaining expressions quantifying the effects of
aging and phasing. The phenomenon of aging, for instance, could be approached by con-
sidering the distribution of nodes with respect to their sizes as well as with respect to
their occupancies. Another promising area is the application of our method to data
structures involving more complex primitives and higher dimensions. An example is the
use of octrees to store linear or planar data in three dimensions. A third area of interest

_is the investigation of alternative models of data distribution. For example, we have
empirical data which indicates that when a PR quadtree is used to represent geographic
points such as houses or cities, its storage requirements are considerably different than
when the points are uniformly distributed. This is apparently due to clustering of the
data points. Statistical analysis of hierarchical data structures under non-uniform data
distributions would be difficult or at least laborious. Our population method, on the
other hand, allows some data models representing clustering (e.g., fractals) to be investi-
gated in a re]a.tlveiy simple and straightforward manner.

References

[Fagi79] - R. Fagin, J. Nievergelt, N. Pippenger, H.R. Strong, Extendible hashing — a fast
access method for dynamic files, ACM Transactions on Database Systems 4, 3(September
1979), 315-344.

[Fink74] - R.A. Finkel and J.L. Bentley, Quad trees: a data structure for retrieval on
composite keys, Acta Informatica 4, 1(1974), 1-9.

[Hunt78] - G.M. Hunter, Efficient computation and data structures for graphics, Ph.D.
dissertation, Department of Electrical Engineering a,nd Computer Science, Princeton
University, Princeton, NJ, 1978.

[Jack80} - C.L. Jackins and S.L. Té,nimoto, Oct-trees and their use in representing
three-dimensional objects, Computer Graphics and Image Processing 14, 3(November
1980), 249-270. ,

[Kede81) - G. Kedem, The Quad-CIF tree: a data structure for hierarchical on-line algo-
rithms, Proceedings of the Nineteenth Design Automation Conference, Las Vegas, June _
1982, 352-357. -

[Klin71] - A. Klinger, Patterns and search statistics, in Optimizing Methods in Statistics,
J.S. Rustagi, Ed., Academic Press, New York, 1971, 303-337.

[Know80] - K. Knowlton, Progressive transmission of grey-scale and binary pictures by -
simple, efficient, and lossless encoding schemes, Proceedmgs of the IEEE 68, 7(July
"1980), 885-896.

[Meag82] - D. Meagher, Geometric modeling using octree encoding, Computer Graphics
' and Image Processing 19, 2(June 1982), 129-147.

21

[Nels86] - R.C. Nelson and H. Samet, A consistent hierarchical representation for vector
data, ACM SIGGRAPH ‘86, Dallas, August, 197-206.

[Niev84] - J. Nievergelt, H. Hinterberger, é,nd K.C. Sevcik, The grid file: an adaptable
symmetric multi-key file structure, ACM Transactions on Database Systems 9, 1(March

1984), 38-71.

[Oren82] - J.A. Orenstein, Multidimensional tries used for associative searching, Informa-
tion Processing Letters 14, 4(June 1982), 150-157.

[Regn85) - M. Regnier, Analysis of Grid File algorithms, BIT 25, 2(1985), 335-357.

[Same84a] - H. Samet, The quadtree and related hierarchical data structures, ACM Com-
puting Surveys 16, 2(June 1984), 187-260.

~ [Same84b] - H. Samet, A. Rosenfeld, C.A. Shaffer, R.C. Nelson, and Y-G. Huang, Appli-
cation of hierarchical data structures to geographic information systems: phase III, Com-
puter Science TR-1457, University of Maryland, College Park, MD, November 1984.

[Same84c| - H. Samet and M. Tamminen, Efficient image component labeling, Compﬁter
Science TR-1420, University of Maryland, College Park, MD, July 1984.

[Same85a] - H. Samet and M. Tamminen, Efficient component labeling of images of arbi-
trary dimension, Computer Science TR-I480 University of Maryland, College Park, MD,

February 1985.

[Same85b] - H. Samet and R.E. Webber, Storing a collection of polygons using quad-
trees, ACM Transactions on Graphics 4, 3(July 1985), 182-222,

[Same85c] - H. Samet, A. Rosenfeld, C.A. Shaffer, R.C. Nelson, Y-G. Huang, and K.
Fujimura, Application of hierarchical data structures to geographic information systems:
phase IV, Computer Science TR-1578 University of Maryla,nd College . Park, MD,

December 1985,

[Tamm81] - M. Tamminen, The EXCELL method for efficient geometric access to data,
Acta Polytechnica Scandinavica, Mathematics and Computer Science Series No. 34, Hel-

sinki, 1981.

[Tamm83] - M. Tamminen, Performance analysis of cell based geometric file organiza-
tions, Computer Vision, Graphics, and Image Processing 24, 2(November 1983), 168-181.

[Tamm84] - M. Tamminen, Comment on quad- and octtrees, Communications of the
ACM 27, 3(March 1984), 248-249.

22

