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SUMMARY

This document is the final report for an investigation
of the application of hierarchical data structures to geo-
graphical information systems, under Department of the Army
Contract DAAK70-81-C-0059/P00007. The purposes of this
investigation were twofold: (1) to construct a geographic.
information system based on the quadtree hierarchical data
structure, and (2) to gather statistics to allow the evalua-
tion of the usefulness of this approach to geographic infor-
mation system organization. To accomplish the above objec-
tives, a database was built that contained three maps sup-
plied under the terms of the contract. These maps described
the flood plain, elevation contours, and landuse classes of
a region in California.

This study report presents the results of the prelim-
inary investigation. It includes analysis of the merits and
deficiencies of the various approaches, and provides recom-
mendations for further research.
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1l. Introduction

This project is concerned with the applicability of a
class of hierarchical data structures, known as "quadtrees",
to the representation of cartographic data. Section 2
presents a tutorial on quadtree data structures. Section 3
describes the database used, and the process of digitizing
and editing it. Section 4 describes the process of quadtree
encoding of the data, . including algorithms and
space/time/acreage tables. Section 5 discusses region
analysis and manipulations using quadtrees, including algor-
ithms and tables (time, etc.). The algorithms implemented
include set theoretic operations on regions, point-in-region
determination, region property measurement, and construction
of submaps and merged maps. Section 6 presents a bibliogra-
phy on quadtrees. The facilities used on the project are
described in the Appendix.

2. Tutorial on guadtrees

2.1. Introduction

In our discyussion we assume that a region is a subset
of a 2 by 2 array which is viewed as being composed of
unit-square pixels. The most common region representations
used in image processing are the binary array and the run
length representation [1]. The binary array represents
region pixels by 1°s and non-region pixels by 0°s. The run
length representation represents each row of the binary
array as a sequence of runs of 1°s alternating with runs of
0°s. :

Boundaries of regions are often specified as a sequence
of unit vectors in the principal directions. This represen-—
tation is tegmed a chain code {2]. PFor example, letting i
represent 90°* i (i=0,1,2,3), we have the following sequence
as the chain code for the region in Figure 2.la:

23523123303251%0101030101

030
Note that this is a clockwise code which starts at the left-
-most of the wuppermost border points. Chain codes yield a
compact representation; however, they are 3somewhat incon-
venient for performing operations such as set union and
‘intersection. For an alternative boundary representation
see the strip trees of Ballard (3].

Regions can also be represented by a collection of max-
imal blocks that are contained in the given region.  One
such trivial representation is the run 1length where the
blocks are 1 by m rectangles. A more general representation
treats the region as a union of maximal blocks (of 17s) of a
- given shape. The medial axis transform (MAT) {4,5] is the

set of points serving as centers of these blocks and their
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corresponding radii,

The quadtree is a maximal block representation in whiech
the blocks have standard sizes and positions (i.e., powers
of two). It is an approach to region representation which
is based on the successive subdivision of an image array
into quadrants. If the array does not consist entirely of
1°s or entirely of 0”s, then we subdivide it into quadrants,
subquadrants,... until we obtain blocks (possibly single
pixels) that consist of 1°s or of 0°s, i.e., they are
entirely contained in the region or entirely disjoint from
it. This process is represented by a tree of out degree 4
(i.e., each non-leaf node has four sons)} in which the root
node represents the entire array. The four sons of the root
node represent the quadrants {(labeled in order NW, NE, SW,
SE}, and the leaf nodes correspond to those blocks of the
array for which no further subdivision is necessary. Leaf
nodes are said to be "black" or "white" depending on whether
their corresponding blocks are entirely within or outside of
‘the region respectively. All non-leaf nodes are said to be
"gray". Since the array was assumed to be 2" by 27, the
tree height 1is at most n. AsS an example, Figure 2.1lb is a
block decomposition of the region in Figure 2.la while Fig-
ure 2.lc is the corresponding quadtree. Each quadtree node
is implemented, storage-wise, as a record with six fields.
Five fields contain pointers to the four sons and the father
of a node. The sixth field contains type information such
as color,- etc. Note that the guadtree representation dis-
cussed here should not be confused with the quadtree
representation of two-dimensional point space data intro-
duced by Finkel and Bentley [6] and also discussed in [7,8]
and improved upon in [9].

The quadtree method of region representation 1is based
on a regular decomposition. It has been employed in the
domains of computer graphics, scene analysis, architectural

design [10], and pattern recognition. In particular,
Warnock”s [10-13} algorithm for hidden surface elimination
is based on such a principle--i.e., it successively subdi-

vides the picture into smaller and smaller squares in the
process of searching for areas to be displavyed, -Application
of the quadtree to image representation was proposed by
Klinger [14] and further elaborated upon in f15-201. It is
relatively compact [15] and is well suited to operations
such as union and intersection [21-23], and detecting vari-
ous region properties [15,21,22, 24}. Hunter”s Ph.D. thesis
[21,22,24], in the domain of computer graphics, develops a
variety of algorithms (including linear transformations) for
the manipulation of a quadtree region representation. In
[25-27] variations of the quadtree are applied in three
dimensions to represent solid objects and in [28] to more
~dimensions.

There has been much work recently on. the



interchangeability between the quadtree and other tradi-
tional methods of region representation. Algorithms have
been developed for converting a binary array to a quadtree
{2901, run lengths to a quadtree [30] and a guadtree o run
lengths {31], as well as boundary codes to a quadtree [32]
and a quadtree to boundary codes [33]. Work has also been
done in computing geometric properties such as connected
component labeling ([34], perimeter [35], Euler number [36],
areas and moments [23], as well as a distance transform
{37,38}. In addition, the gquadtree has been used in image
processing applications such as shape approximation [39},
edge enhancement [40], image segmentation [41}, threshold
selection {42}, and smoothing [43].

2.2. Preliminaries

In the guadtree representation, by virtue of its tree-
like nature, most operations are carried out by techniques
which traverse the tree. 1In fact, many of the operations
that we describe can be characterized as having two basic
steps. The first step either traverses the gquadtree in a
specified order or constructs a gquadtree. The second step
performs a computation at each node which often makes use of
its neighboring nodes, i.e., nodes representing image blocks
that are adjacent to the given node”s block. For examples,
see [30-381. Frequently, these two steps are performed in
parallel. -

In general, it is preferable to avoid having to use
position (i.e., coordinates} and size information when mak-
ing relative transitions (i.e., locating neighboring nodes)
in the quadtree since they involve computation (rather than
simply chasing links) and are clumsy when adjacent blocks
are of different sizes {e.g., when a neighboring block is
larger). Similarly, we do not assume that there are 1links
from a node to its neighbors, because we do not want to use
links in excess of four links from a non-leaf node to its
sons and the link from a non-root node to its father. Such
techniques, described in [44], are wused "in [30-38] and
result in algorithms that only make use of the existing
structure of the tree. This is in contrast with the methods
of Klinger and Rhodes {19] which make use of size and posi-
tion information, and those of Hunter and Steiglitz [21,
22,241 which locate neighobrs through the use of explicit
links (termed nets and ropes).

Locating neighbors in a given direction is quite
straightforward. Given a node corresponding to a specific
block in the image, its neighbor in a particular direction
{horizontal or vertical)}) is determined by locating a common
ancestor. For example, if we want to f£ind an eastern neigh-
bor, the common ancestor is the first ancestor node which is
reached via its NW or SW son. Next, we retrace. the path
from the common ancestor, but making mirror image moves



about the appropriate axis, e.g., to find an eastern or
western neighbor, the mirror images of NE and SE are NW and
SW, respectively. For example, the eastern neighbor of node
32 in Figure 2.lc is node 33. It is located by ascending
the tree until the common ancestor, H, is found. This
requires going through a SE link to reach L and a NW link to
reach H. Node 33 is now reached by backtracking along the
Previous path with the appropriate mirror image moves (i.e.,
going through a NE link to reach M and a 8W 1link to reach
33). :

In general, adjacent neighbors need not be of the same
size. If they are larger, then only a part of the path to
the common ancestor is retraced. 1If they are smaller, then
the retraced path ends at a "gray" node of equal size. Thus °
a "neighbor® is correctly defined as the smallest adjacent
leaf whose corresponding block is of greater than or equal
size. If no such node exists, then a gray node of equal
size 1is returned. Note that similar techniques can be used
to locate diagonal neighbors (i.e., nodes corresponding to
blocks that touch the given node”s block at a corner)., For
example, node 20 in Figure 2,lc is the NW neighbor of node
22, Por more details, see [44].

In contrast with our neighbor finding methods 1is the
use of explicit links from a node to its adjacent neighbors
in the horizontal and vertical directions reported in
{21,22,24), This is achieved through the use of adjacency
trees, "ropes,” and "nets." An adjacency tree exists when-
ever a leaf node, say X, has a GRAY neighbor, say Y, of
equal size. 1In such a case, the adjacency tree of X is a
binary tree rooted at Y whose nodes consist of all sons of Y
(BLACK, WHITE, and GRAY) that are adjacent to X. For exam-
ple, for node 16 in Figure 2.1, the western neighbor is GRAY
node F with an adjacency tree as shown in Figure 2.2. A rope
is a link between adjacent nodes of equal size at least one-
of which is a leaf node. For example, in Figure 2.1, there
exists a rope between node 16 and nodes G, 17, H, and F.
Similiarly, there exists a rope between node 37 and nodes M
and N; however, there does not exist a rope between node L
and nodes M and N. '

The algorithm for finding a neighbor wusing a roped
quadtree ' is quite simple. We want a neighbor, say Y, on a
given side, say D, of a block, say X. If there is a rope
from.X on side D, then it leads to the desired neighbor, If
no such rope exists, then the desired neighbor must be
larger. 1In such a case, we ascend the tree until encounter-
ing a node having a rope on side D, that leads to the
desired neighbor. In effect, we have ascended the adjacency
tree of Y. For example, to find the eastern neighbor of node
21 in Figure 2.1, we ascend through node J to node F, which
has a rope along its eastern side leading to node 16.
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rigure 2.2. &qjacency tree for the western neighbor of noae 1o
in Figure 2.1.

figure 2.3. Sample pair of blocks illustrating porder tollowlnd.

rigure Z.4. slocks Is ana & endiing at a common corner.



At times it is not convenient to ascend nodes searching
for ropes. A data structure named a net is used [21, 22,
24] to obviate this step by linking all leaf nodes to their
neighbors regardless of their size. Thus in the previous
example there would be a direct link between nodes 21 and 16
along the eastern side of node 21. The advantage of ropes
and nets is that the number of links that must be traversed
is reduced. However, the disadvantage is that the storage
requirements are considerably increased since many addi-
tional 1links - are necessary. In contrast, our methods are
implemented by algorithms that make use of the existing
structure of the tree -- i.e., four links from a nonleaf
node to its sons, and a link from a nonroot node to its
father.

2.3. Conversion

2.3.1. Quadtrees and Arrays

The definition of a quadtree leads naturally to a "top
down" gquadtree construction process. This may lead to
excessive computation because the process of examining
whether a guadtrant c¢ontains all 1°s or all 0°s may cause
certain parts of the region to be examined repeatedly by
virtue of being composed of a mixture of 1°s and 0°s.
Alternatively, a "bottom-up" method may be employed which
scans the picture in the sequence . -

1 2 5 6 17 18 21 22
3 4 7 8 19 20 23 24
9 10 13 14 25 26 29 30
11 12 15 16 27 28 31 32
33 ...

where the numbers indicate the sequence in which the pixels
are examined, As maximal blocks of 0°s or 1°s are
discovered, corresponding leaf nodes are added along with
the necessary ancestor nodes. This is done in such a way
that leaf nodes are never created until they are known to be
maximal. Thus there is never a need to merge four leaves of
the same color and change the color of their common parent
from gray to white or black ag is appropriate. See [29] for
the details of such an algorithm whose execution time is
proportional to the number of pixels in the image.

If it is necessary to scan the picture row by row
(e.g., when the input is a run length coding) the quadtree
construction process is somewhat more complex. We scan the
picture a row at a time. For odd-numbered rows, nodes
corresponding to the pixel or run values are added for the
pixels and attempts are made to discover maximal blocks of
0°s or 1°s whose size depends on the row number {e.g.,. when
processing the fourth row, maximal blocks of maximum size
4-by-4 can be discovered). In such a case merging 1is said



. to take place. See [30] for the details of an algorithm
that constructs a guadtree from a row by row scan such that
at any instance of time a wvalid quadtree exists. This
algorithm has an execution time that is proportional to the
number of pixels in the image.

Similarly, for a given guadtres we c¢an output the
corresponding binary picture by traversing the tree in such
a way that for each row the appropriate blocks are visited
and a row of 0°s or 1°s is output. 1In essence, we visit
each gquadtree node once for each row that intersects it
(i.e., a_, node corresponding to a block of size 2% by 2R ig
visited 2™ times). FPor the details see {31} where an algor-
ithm is described whose execution time depends only on the
number of blocks of each size that comprise the image - not
on their paticular configuration.

2.3.2. Quadtrees and borders

In order to determine, for a given leaf node M of a
quadtree, whether the corresponding block is on the border,
we must visit the leaf nodes that correspond to 4-adjacent
blocks and check whether they are black or white. For exam-—
ple, to find M”s right hand neighbor in Figure 2.3, we use
the neighbor finding techniques outlined in Section 2.2. 1If
the neighbor is a leaf node, then its block is at 1least as
large as that of M and so it is M“s sole neighbor to the
right. Otherwise, the neighbor is the root of a subtree
whose leftmost leaf nodes correspond to M"s right-hand
neighbors. These nodes are found by traversing that sub-
tree.

Let M,N in Figure 2.3 be black and white 1leaf nodes
whose associated blocks are 4-adjacent. Thﬂs thﬁ pair M,N
defines a common border segment of length 2 (2 is the
minimum of the side 1lengths of M and N) which ends at a
corner of the smaller of the two blocks (they may both end
at a common point as in Fiqure 2.4). 1In order to produce a
boundary code representation for a region in the image we
must determine the next segment along the border whose pre-
vious segment lay between M and N. This is achieved by
locating the other leaf P whose block touches the end of the
segment between M and N. If the M,N segment ends at a
corner of both M and N, then we must f£ind the other leaf R
or leaves P,Q whose blocks touch that corner (see Figure
2.4) Again, this can be accomplished by using neighbor find-
ing techniques as outlined in Section 2.2.

For the non-common corner case, the next border segment
is the common border defined by M and P if P is white, or.
the common border defined by N and P if P is black., 1In the
common corner case, the pair of blocks defining the next
border segment is determined exactly as in the standard
"crack following”" algorithm {451 for traversing region



borders. This process is repeated until we re-encounter the
block pair M,N. At this point the entire border has been
traversed. The successive border segments constitute a 4-
direction chain code, broken up into segments whose lengths
are sums of powers of two. The time required for this pro-
cess is on the order of the number of border nodes times the
tree height. For more details see [33].

Using the methods described in the last two paragraphs,
we can traverse the gquadtree, find all borders, and generate
their codes. During this process, we mark each border as we
follow it, so that it will not be followed again from a dif-
ferent starting point. Note that the marking process is
complicated by the fact that a node’s block may be on many
different borders. . :

In order to generate a gquadtree from a get of 4-
direction chain codes we use a two-step process. First, we
trace the boundary in a clockwise direction and construct a
quadtree whose black leaf nodes are of a size equal to the
unit code length. All the black nodes correspond to blocks
on the interior side of the boundary. All remaining nodes
are left uncolored. Second, all uncolored nodes are set to
black or white as appropriate. This is achieved by travers-
ing the tree, and for each uncolored leaf node, exXamining
its neighbors. The node is colored black unless any of its
neighbors is white or is black with a border along the
shared boundary. At any stage, merging occurs if the four
rows of a non-leaf node are leaves having the same color.
The details of the algorithm are given in [32]. The time
- required is proportional to the product of the perimeter
(i.e., the 4-direction chain code length) and the tree
height. ‘

2.3.3. Quadtrees of derived sets

Let S be the set of 1°s in a given binary array, and
let S5 be the complement of S. The guadtree of the comple-
ment of S8 is the same as that of §, with black leaf nodes
changed to white and vice versa. To get the quadtree of the
union of 5 and T from those of S and T, we traverse the two
trees simultaneously. Where they agree, the new tree is the
same and if the two nodes are gray, then their subtrees are
traversed. If S has a gray (=nonleaf) node where T has a
black node, the new tree gets a black node; if T has a white
node there, we copy the subtree of S at that gray node into
the new tree. If S has a white node, we copy the subtree of
T at the corresponding node. The algorithm for the inter-
section of 5 and T is exactly analogous, with the roles of
black and white reversed. The time required for these .
algorithms is proportional to the number of nodes in the
smaller of the two trees [23]. '
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2.3.4. Skeletons and medial axis transforms

The medial axis of a region is a subset of 1its points
each of which has a distance from the complemént of the
region (using a suitably defined distance metric) which is a
local maximum. The medial axis transform (MAT) consists of
the set of medial axis or "skeleton"” points and their asso-
ciated distance values. The gquadtree representation may be
rendered even more compact by the use of a skeleton-like
representation. Recall that a quadtree is a set of disjoint
maximal square blocks having sides whose lengths are powers
of 2. We define a guadtree skeleton to be a set of maximal
square blocks having sides whose lengths are sums of powers
of two, The maximum wvalue (i.e., "chessboard") distance
metric [45] is the most appropriate for an image represent=d
by a quadtree. See [37] for the details of its computation
for a quadtree; see also [38] for a different quadtree dis-
tance transform. A guadtree medial axis transform (QMAT) is
a quadtree whose black nodes correspond to members of the
quadtree skeleton while all remaining leaf nodes are white.
The OMAT has several important properties. First, it
results in a partition of the image intc a set of possibly
non-disjoint squares having sides whose lengths are sums of
powers of two rather than, as is the case with quadtrees, a
set of disjoint squares having sides of lengths which are
oowers of two, Second, the QMAT is more compact than the
gquadtree and has a decreased shift sensitivity. See [46]
for the details of a quadtree to QMAT conversion algorithm
whose execution time is on the order of the number of nodes
in the tree. :

2.4. Property measurement

2.4.1. Connected component labeling

Traditionally, connected component labeling is achieved
‘by scanning a binary array row by row from left to right and
labeling adjacencies that are discovered to the right and
downward. During this process equivalences will be gen-
erated. A subsequent pass merges these equivalences and
updates the labels of the affected pixels. In the case of
the quadtree representation we also scan the image in a
seqguential manner. However, the sequence’s order is dic-
tated by the tree structure - i.,e., we traverse the tree 1in
postorder. Whenever a black leaf node is encountered all
black nodes that are adjacent to its south and east sides
are also visited and are labeled accordingly. Again,
‘equivalences generated during this traversal are subse-
guently merged and a tree traversal is used to update the
labels. The interesting result is that the algorithm”™s exe-
cution time is proportional to the number of pixels., An
analgous result is described in the next section. See [34]
for the details of an algorithm that labels connected com—
ponents in time on the order of the number of nodes in the
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tree plus the product of B'log B where B is the number of
black leaf nodes.

2.4.2. Component counting and genus computation

Once the connected components have been labeled, it is
trivial to count them, since their number is the same as the
number of inequivalent labels. We will next describe a
method of determining the number of components minus the
number of holes by counting certain types of local patterns
in the array; this number, g, is known as the genus or Euler
number of the array.

Let V be the number of 1°s, E the number of horizon-
‘tally adjacent pairs of 1°s (i.e., 11) and vertically adja-
cent pairs of 1°s, and F the number of two by two arrays of
1°s in the array; it is well known [45] that g=V-E+F. This
result can be generalized to the case where the array 1is
represented by a quadtree ([35]. In fact, let V be the
number of black leaf nodes; E the number of pairs of such
nodes whose blocks are horizontally or vertically adjacent;
and F the number of triples or quadruples of such nodes
whose blocks meet at and surround a common point (see Figure
2.5). Then g=V-E+F. These adjacencies can be found (see
section 2.3.2) by traversing the tree; the time required is
on the order of the number of nodes in the tree.

2.4.3. Area and moments

The area of a region represented by a gquadtree can be
obtained bg summing the areas of the black leaf nodgs, i'e'ﬁ
counting 4 for each such node that represents a 2 by 2
block., Similarly, the first x and y moments of the region
relative to a given origin can be computed by summing the
first moments of these blocks; note that we know the posi-
tion (and size) of each block from the coordinates of its
leaf in the tree. Knowing the area and the first moments
gives us the coordinates of the centroid, and we can then
compute central moments relative to the centroid as the ori-
gin. The time required for any of these computations is
proportional to the number of nodes in the tree. Further
details on moment computation from quadtrees can be found in
[23].

- g.g.g. Perimeter

An obvious way of obtaining the perimeter of a region
represented by a quadtree is to simply traverse its border
and sum the number of steps. However, there is no need to
traverse the border segments in order. 1Instead, we use a -
method which traverses the tree in postorder and for each
black leaf node examines the colors of its neighbors on its
four sides. For each white neighbor the 1length of the
corresponding border segment is -included in the perimeter.
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See [35] for the details of such an algorithm which has exe-
cution time proportional to the number of nodes in the tree.
An even better formulation is reported in [47] which gen-
eralizes the concept of perimeter to n dimensions.

2.5. Concluding remarks

We have briefly sketched algorithms for accomplishing
traditional region processing operations by use of the quad-
tree representation. Many of the methods used on the pixel
level carry over to the quadtree domain (e.g., connected
component labeling, genus, etc,). Because of its compact-
ness, the quadtree permits faster execution of these opera-.
tions. Often the quadtree algorithms require time propor-
tiocnal to the number of blocks in the image, independent of
their size.

The quadtree data structure requires storage for the
various links. However, use of neighbor finding techniques
rather than ropes a la Hunter {21, 22, 24] is a compromise.
In fact, experimental results discussed in the data analysis
segment of this report show that the extra storage cost of
ropes' is not justified by the resulting minor decrease in
execution time. This is because the average number of links
traversed by neighbor finding methods is 3.5 in contrast
with 1.5 for ropes. Nevertheless, there is a possibility
that the quadtree may not be efficient spacewise. For exam-
ple, a checkerboard-like region does not lead to economy of
space. The space efficiency of the quadtree is analyzed in
[48]. sSome savings can be obtained by normalizing the quad-
tree [49,50] as is alsoc possible by constructing a forest of
quadtrees [51] to avoid large regions of WHITE. Storage can
also be saved by using a locational code for all BLACK
blocks [52]. Gray level quadtrees using a sequence of array
codes to economize on storage are reported in [53].

The quadtree is especially useful for point in polygon
operations as well as for guery operations involving image
overlays and set operations. The hierarchical nature enables
. one to use image approximations. In particular, a breadth-
first transmission of an image yields a successively finer
image yet enabling the user to have a partial image. Thus
the quadtree could be used in browsing through a large image
database.

Quadtrees constitute an interesting alternative to the
~standard methods of digitally representing regions. Their
chief disadvantage is that they are not shift-invariant; two
regions differing only by a translation may have quite dif-
ferent quadtrees (but see [46]). Thus shape matching from
guadtrees is not straightforward. Nevertheless, in other
respects, they have many potential advantages. They provide
a compact and easily constructed representation from which
standard region properties can be efficiently computed. In
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effect, they are "“variable-resolution arrays"™ in which
detail is represented only when it 1is available, without
requiring excessive storage for parts of the image where
detail is missing. Their variable-resolution property 1is
superior to trees based on a hexagonal decomposition [54]
in that a square can be repeatedly decompcesed into smaller
squares {as can bhe done for triangles as well {[55]) whereas
once the smallest hexagon has been chosen it can not be
further decomposed into smaller hexagons. Note that the
variance of resolution only applies to the area. For an
rapplication of the quadtree concept to borders, as well as
area, see the line quadtree of [56].
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Database, digitization, and editing

él
3.1. Procedures and results

The data supplied by ETL consisted of three map over-
lays (Figures 3.1-3) representing land use classes, terrain
elevation contours, and flood plain boundaries for a small
area of Northern California. These overlays are shown, at a
reduced scale, in the figures attached to this section. In
the case of the elevation contours, only those at multiples
of 100 feet were to be digitized, and for all three over~
lays, only the portions bounded by the fiducial marks.

Conversion of the data to machine-readable form was
carried out as follows: Each overlay was superimposed on a
grid (graph paper, 20 boxes to the inch). The boundaries to
be digitized were followed by hand and marked on a second -
sheet of graph paper. Every box on the original graph was
copied onto a 2-by~2 block of boxes on the second sheet.
Thisg yielded increased resolution and also separated boun-
dary 1lines which on the original graph would have been in
adjacent boxes. This graph was then hand chain-coded and
the chain-codes were typed into the computer (see the
description of the program "mkbin" for a definition of the
chain~code used),

A binary array was created for each of the three
overlays 1in which the pixels that were on a boundary in the
original overlay are represented by a value of 1, and all
other pixels are represented by a value of 0. A connected
component labeling program was then applied to this array
yielding an array in which the pixels in each connected
region have a unique 1label, (Pixels of wvalue 1 were
regarded as connected even if they were only diagonally
adjacent, whereas pixels of value 0 were regarded as con-
nected only if they were horizontally or vertically adja-
cent.} A lookup table was then created to convert these
labels to a consistent label set in which all regions of a
given land-use class,or all regions between a given pair of
elevation contours, had the same label. At this time, all
polygons on the landuse map which either had no label or for
which the label was unclear were placed in a special landuse
class "unk". :

The final data preparation task was to remove the
boundary lines separating the regions (those pixels given a
value of 1 in the binary array). This was uniformly done by
assigning to each boundary pixel the label of its right-~hand
neighbor, or if this was also a boundary pixel, the label of
- its neighbor in the row above. The three digital maps (one
per overlay) resulting from this processing were 450 pixels
high by 400 wide, partitioned into labelled regions with no
"black" boundary lines separating them.



rfigure 3.1. Land use classes.
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The resulting maps were then quadtree encoded using
the quadtree building algorithm described in the Section 4,
For each map, a multi-color quadtree was built giving every
region in the map a unique label. A multi-color quadtree
refers to a quadtree in which the leaf nodes can have dif-
ferent colors. Thus a multi-color quadtree is an extension
of the black and white (or binary) quadtree that is dis-=
cussed in Section 2. Certain operations, for example union
and intersection, are not defined in terms of multi-color
- quadtrees, but rather are defined in terms of binary quad-
trees that are derived from the multi-color quadtrees by
considering  one of the colors as black (this is usually the
color of the object of interest) and the other colors to be
white. - In addition to the above three multi-color quad-
trees, a gquadtree was built for each land-use class or
elevation level (i.e. regions in the class or elevation are
labeled, all other regions are white). Programs  were then
written to manipulate and display quadtrees, as well as cal-
culate region properties and compute set theoretic opera-~
"tions on the trees. These programs are described in later
sections. :

The hand digitization process took approximately 100
manhours, including both planning and implementation. This
time could be greatly shortened by using coordinate digitiz-
ing equipment. Editing of the hand-input data was carried
out by visual inspection of the resulting regions to verify
that there were no gaps or overlaps. This process, together
with a few hand corrections of touching lines, took at most
20 manhours.

Figures 3.4-3.38 show the components of each land use
class., Figures 3.39-3.49 show the components of each eleva-
tion level, and Figure 3,50 shows the three components of
the flood plain map. ' ' :
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Figure 3.20. The 1 component of the land-use class Uud.
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3.2. Data editing functions

Below we describe the algorithms that were implemented
to edit the maps prior to storing them as quadtrees. These
algorithms were implemented in the programming lanquage C to
run on the PDP-11/45, VAX 11/780, and GRINNELL configura-
tion, which is described in the Appendix to this report.
The maps provided were initially hand-digitized and stored
in a chain code representation, as described in Section 3.1.
Although quadtrees could have been built directly from the
chain code representation, it was considered useful 1instead
to use picture files as an intermediate representation
between the initial chain codes and the final quadtrees.
This allowed access to many standard routines that are part
of our software library. Below, we describe the nonstandard
routines that were used on this project.

The algorithm descriptions proceed in the following
manner. First we describe the program MKBIN, which converts
the chain codes to picture file format. Then three routines
for manipulating the picture files are described. These are
FIXPIX {changes the value of pikels referenced by their
coordinates), RELABEL (translates one list of pixel values
into another), and LINERM (erases lines from maps).

The function MKBIN {make binary array) takes as input a
file that describes a chain code segmentation of the origi-
nal maps and creates a picture file, For the following
descriptions, it is simplest to view a picture file as a
binary array that has been laid out on a disk in a row by
row manner. The file that results from MKBIN will describe
the map as a white map broken up by a series of black lines.
Since the black lines are described by the chain codes,
MXBIN simply traces the chain code on a binary array,  mark-
ing each pixel that lies on the chain code as black. |

Having created the picture file, two minor utility rou-
tines were found useful. One of these is FIXPIX, which
changes the value of a pixel when given the coordinates of
the pixel and the new value. This is the equivalent of
assigning to an entry in a 2-d array. FIXPIX is used to fix
problems that result from errors in the entry of the chain
code digitization and also errors that result from labeling
the regions of the map. The other utility is RELABEL, which
produces a copy of the input picture file where all the
pixel values are changed according to a given translation
table. Both of these utilities are used for changing pixel
values, but FIXPIX does this based on specified coordinates,
whereas, RELABEL changes all pixels that have a given value,

The land-use classes (as well as contours, etc.) are
labeled by using a standard connected component program and
then using RELABEL to merge the labels of components of the
same class. There still remains the problem of which labels
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to assign the pixels that 1lie on the boundaries of the
regions. It is this assignment plus the original hand enced-
ing of the map that accounts for any errors in the calcula-
tion of statistics by the guadtree algorithms. The assign-
ment decision is rather arbitrary (but applied consistently
to each pixel alike) and implemented by the function LINERM.
The decision of which region to assign a given bhoundary
pixel 1is based on the direction of easiest movement through
a picture file (which is from right to left and from top to
bottom} . Thus a BLACK pixel (a pixel having the color of
the boundary line} is given the value of its neighbor on the
right if that neighbor is not BLACK and the value of the
neighbor above otherwise. Note that at any point during
LINERM, the algorithm stores two rows of the picture in
core, When working with the first row of the picture, the
second neighbor used is the neighbor below since there is no
neighbor from above. This processing is repeated over the
entire picture file as many times as the maximum of the
line”s thickness (measured in pixels). A line of thickness
greater than one can be created by MKBIN when many lines
touch. ' o
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/* Take a picture and a data file "input” which contains records
declared: "x=-coord y-coord newval”. The pixel at coord
<x-coord ., y-coord> will be changed to newval. The records must
be in ascending order of y-coords as only one pass is made
through the picture (getting new rows as necessary).

The procedure getrow reads the picture file filling the buffer
with the next row. */

fixpix(inpic, lnput numcols, numrows)
INTEGEK numcols , numrows:

{DATA FILE inpic, input;

INTEGER ARRAY rowbuff[ numcols]:
INTEGER rownum = Q3

INTEGER x, y, val;

getrow{inpic ,rowbuff);
W?ILE(NOT end of file "input")
getrecord{input ,x .y .val):
if{y > rownum)
POR(rownum=rownum TO y)
getrow(inpic ,rowbuff);
rowbutf[x] = val;
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/* Remove the black pixels from a multi-color picture. For every
pixel in the picture, do the following: If the pixel is black,
then if the right neighbor is not black, give the pixel the
value of its right neighbor. If the right neighbor is also
black, then give the pixel the value of the neighbor above it.
Some pixels may remain black (they have both neighbors black),
if so the algorithm should be repeated. */

linerm{inpic ,numcols ,numrows)
INTEGER numcols .numrows:;
DATA FILE inpic;
{

INTEGER ARRAY inbufff 2J[numcols+l];
INTEGER ARRAY outbuff{numcols]:;
INTEGER POINTER currpnt, otherpnt,
INTEGER i,3;:

currpnt = 0y
otherpnt = 1;
getrow{inpic,inbuff{0]);
getrow(inpic.inbufff 0]);

reset inpic file to beginning;

/* As a special case, the top row actually uses the neighbor below
it rather than the neighbor above it , and the right hand col
uses the neighbor to the left. This is done by putting an
imaginary row above the first, and an extra col to the right
of the last. */

‘inbuff[ 0]l numcols] = inbuff{ 0]l numcols=2];

fog(i=l TO numrows)
currpnt = (currpnt == 0); .
otherpnt = (otherpnt == (0); /* £lip these two pointers */

/* Currpnt always points to the current row. Otherpnt points at
the row above. */ ,

getrow{inpic,inbuff[ currpnt]):
inbuff{ currpntl]{ numcols] = 1nbuff£currpnt}[numcols—Z],
FOR(j=0 TO numcols-l)

IF(inbufff currpnt]{ j] == BLACK)
IF(inbutffl currpnt][j+1] <> BLACK)
outbuffl j] = inbufflcurrpnt]ii j+1];
ELSE ‘
outbuff[ j1 = inbutfl{otherpnt](jl:
ELSE ' ’
outbuff{ j] = inbufflcurrpntl{j]:

output(outbuff);
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/* Make a binary array from a set of chaincodes. The chaincode
used 1is as follows: “<coord-part><directiconal-part>#"
<coord-part> is simply a six digit number with the 3 digit
x=coord and the 3-diglt y-coord. .
<directional=-part> is one or more occurrences of:

<direction=~character> or "{<number><direction-character>j"
<number? is a 2-digit number which means tha. the
<direction-character> occurs number times. '
<direction-character> is one of of:
i op
\/

k =%~
/1N

-/
If the character is "k" this would indicate one step west,

“," would indicate one step soutnwest, etc. These symbols
were chosen because of their location on the keyboard. */

’

makebin(width ;height)}
INTEGER width, height:
/* lreate a binary array of size width X height. */
/* The function getchar returns the next character that is not a
line-feed from file "input". */
{

BINARY ARRAY arr[widthl{height];
INTEGER xcoord, ycoord, numb, i;
CHARACTER ch:

wWHILE{getcoords (xcoord ,ycoord))
: /* For each chaincode in the file... */
arr{ xcoord]lf ycoorda] = 1;
ch = getchar(input):
WHILE(ch <> ‘'g§')
{
IF{ch == *'["'}
run{numb ,ch});
ELSE
numb = 1;
FOR(i=1l TV numb)
CABE OF ch
{

'i': xcoord = xcoord - l; ycoord = ycoord - 1
‘o': ycoord = ycoora - 1;:

'p': xcoord = xcoord + l; ycoord = ycoord - 1l;
'k': Xcoord = xXcoord - 1;

';': xcoord = xcoord + 1; :

*.': xcoord = xcoord - l; ycoord = ycoord + 1:
'.': ycoord = ycoord + 1;

"/': xcoord = xcoord + 1; ycoord = yeoord + Ll;

}
arr[ xcoord ]l ycoord] = 1;
cii = getchar(input};

}
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BOOLEAN FUKNCTION getcoords(x,y)
INTEGER x, ¥:
/* 1i the input file is empty return FALSE. Otherwise read the
cooras from the input file (into x,y) and return TRUE. */

PROCEDURE myget{numb ,ch)
INTEGER numb;
CHARACTER ch;
/* Read the 2~digit number and the following character from the
input file, then skip the character "]*, returning the number
in numb and tne character in ch. */
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Algorithm- 3.4. RELABEL

/* Cnange the value of tne Pixels in a picture as determined by the
labels given in file "labels". This file has as its first value
an integer which is the largest value occurring in the original

" picture , followed by records of the form “old-val new=-val", */

relabel(inpic;labels ,numcols ,numrows)
INTEGER numrows , numccls:
INTEGER ARRAY inpic[numcols]{numrows];
DATA FILE labels;

{

INTEGLR val ,new,old,i;j;

INTEGER POINTER table;

val = getnun(labels);
table = create~storage({val+l) * sizeof val):

/* Create-storage is a system function which dynamically reserves
the number of words given by the parameter. The sizeof operator
returns the number of words used by the variable following. */

/* Initialize table so that the new label will be the same as the
©ld label, unless a change is indicated in the file "labels" . */

FOR(i = 0 TO val) '
tablefi] = i;
WHILE(not at end of "labels")

old = getnum(labels);
new = getnum{labels);
table[ 0ld] = new;

/* Change picture. */
FOR(i=0 10 numcolsg)
FOR(3=0 TO numrows)
inpic[i](5]1 = tablelinpicfi]{j§]];
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4. Quadtree encoding

4.;. Introduction

This section describes the quadtree encoding algorithms
as well as various primitive functions used in conjunction
with quadtree data structures. Display of gquadtree-encoded
data was particularly facilitated by the ability of the
GRINNELL to accept specifications of rectangles to be out-
put. It should be noted that all of the following algor-
ithms work on the digitized version of the maps described in
Section 3 and that no new errors are introduced by these
algorithms”® manipulations of the gquadtrees, since the
representation of the digital data remains exact. No devia-
tion from pure quadtree representation has been introduced.

_ The algorithm descriptions proceed in the following
manner. First we present a set of primitive functions that
form the building blocks for later algorithms. Then we dis-
cuss two algorithms that were instrumental in building the
quadtree database from the digitized maps. The first of
these two algorithms builds a quadtree from a map by scan-
ning the map in a row by row fashion (referred to as raster
scanning). The second algorithm labels the connected com-
ponents of a map.

4.2, Primitive functions

The functions SON, FATHER, SONTYPE, NODETYPE, BLACK,
WHITE, and GRAY can be thought of as defining the guadtree
as an abstract data type. Although their implementation is
trivial, their usage gives the other guadtree algeorithms a
certain independence from the chosen representation of the
quadtree data structure. Since it is our intent to experi-
ment with other quadtree representations, this will save
future programming effort. Currently each node of the quad-
tree is represented by a record consisting of five pointers
and an integer. T"he pointers are used to link to other
nodes; one pointer 1links to the node”s father and the
remaining four pointers link to the node”s four sons and are
indexed by the quadrant in which the son lies. A value of
NIL 1is stored to indicate the absence of a son in a given
direction. An integer value is used to uniquely identify the
polygon, land-use class, or contour to which the region
represented by the node belongs. If this value is not unique
for the region, then the value is considered gray ({(this term
comes from the usage. of gray nodes in black and white
binary-valued quadtrees).

Using such a quadtree representation, the above defin-
ing functions work as follows. The function SON takes a
node and a guadrant as parameters and returns the node that
is the son of the given node in the given gquadrant by deref-
erencing the appropriate pointer. Similarly, the  function
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FATHER takes a node as parameter and returns the father of
“the given node by simply dereferencing the appropriate
pointer. The function SONTYPE takes a node as parameter and
returns the quadrant that expresses the direction Ffrom the
father of the given node to the given node by comparing the
address of the given node to the address of each of its
father”s sons. This function returns a special value NIL to
indicate that the given node is the root of a quadtree and
hence has no father. The function NODETYPE takes a node as
its parameter and returns the integer data item that is
stored at that node which generally indicates a region
color, class type, or elevation. The predicates BLACK,
WHITE, and GRAY each take a node as parameter and return
true if the value of NODETYPE is to be interpreted as having
the value indicated by the function®s name. This allows mul—
ticolor quadtrees to be easily interpreted as binary-colored
quadtrees when it is convenient to do so.

The functions OPSIDE, CCSIDE, ADJ, REFLECT, QUAD, and
QPQUAD provide a simple set of operations to manipulate
- directions. There are two important classes of directions

~used by quadtree algorithms. The first is the four basic
directions denoted N, E, S, and W that are used to indicate
the side of the sguare that lies in that direction from the
square”s center. The second is the four compound directions
denoted NW, NE, SE, and SW that are used to indicate the
quadrant of the sguare that lies in that direction from the
square”s center., The functions OPSIDE and CCSIDE each take
a side as parameter and return respectively the side in the
opposite direction and the side in the direction 90 degrees
counterclockwise from the square”s center. The predicate
ADJ takes a side and a quadrant as parameters and returns
true iff the given quadrant is adjacent to the given side.
For example, the NE quadrant is adjacent to both the N and E
sides but not to the S or W sides. The function REFLECT
takes a side and a quadrant as parameters and returns the
quadrant that is the reflection of the given quadrant with
respect to a line through the center of the square that is
parallel to the given side. For example, the SW quadrant is
the reflection of the NW quadrant with respect to a line
through the square”s center that is parallel to either the N
or S sides. The function QUAD takes as parameters two sides
and returns the quadrant that is adjacent to both sides if
this condition uniquely determines one quadrant. If it does
not (i.e., the two sides are either opposite or the same) ,
then the value NEG is returned. The function OPQUAD takes a
quadrant as parameter and returns the quadrant that lies in
the opposite direction from the center of the square (i.e.,
180 degrees). In our particular implementation, each of the
two classes of directions is represented by the integers 0
thru 3 inclusive; so the above functions are implemented by
modular arithmetic where convenient and otherwise by
enumeration of the possible values (i.e., table lookup via a
case statement). o
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Central to the approach to gquadtrees that we have
adopted 1s the ability +to find a node”s neighbor without
storing explicit links to each node”s neighbors as 1is done
in some other implementations. This ability is encoded in
the function FIND NEIGHBOR, which takes as parameters a node
and a side and returns a node that abuts the indicated side
of the given node and is either a leaf or is of the same
depth as the given node. The manner in which this is done is
described in the tutorial section of this report. The func-
tion MAKE_NEIGHBOR behaves in the same manner as
FIND_NEIGHBOR except that if it fails to £find .a common
ancestor or runs into a leaf before it has finished the mir-
rored path, then it modifies the tree by inserting the
sought-after node and continues on.,

" The remaining functions GETNODE, CREATENODE, and
RETURNTOAVAIL are used for storage management. Unused nodes
are kept on an AVAIL list. The function GETNODE returns a
used node by first looking on the AVAIL list and if the
AVAIL list is empty then requesting more storage £from the
operating system. An error message results if no storage is
available and the program terminates. The function
CREATENODE takes a node, a guadrant, and an integer nodetype
as parameters and uses GETNODE to create a new node of the
given nodetype which has the given node as father, lies in
the given gquadrant of the given node, and itself has no
sons. The function RETURNTOAVAIL takes a node as parameter
and inserts it into the AVAIL list.

4.3. Database building

Prior to constructing the gquadtree database, the maps
were stored in picture files, which can be viewed as 2-4d
arrays laid out on a disk in row-by-row order, Thus the
first task to be performed to convert each picture file into
a quadtree file, which is a preorder listing of the nodes in
a quadtree. This is accomplished by the R2Q (raster to guad-
tree) function. This function reads a picture file one row
at a time (raster scan order) and builds the corresponding
quadtree using the MAKE_NEIGHBOR primitive. As the gquadtree
is being built, identical leaf brothers are merged as indi-
cated in the discussion of the WINDOW function. An addi-
tional efficiency results from realizing that it is only
necessary to check for these mergers on even-numbered rows;
any leaf on an odd-numbered row, still has two brothers that
have yet to be read in.

The original picture files had each pixel labeled
according to the land-use class {(contour, etc.) to which it
belonged. Thus, these labels were the only distinctions
that c¢ould be carried over in the construction of the gquad-
trees by R2Q. However, the database design called for unique
labels on each connected component of each c¢lass. Hence, it
was necessary to perform a connected component analysis in
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order to label the quadtrees in the desired format. This was
done by the function QCONCOM (quadtree connected component
finder). This analysis was performed on the quadtree data
structure directly ({instead of being done on the picture
files prior to quadtree construction) because the number of
nodes to be processed in the quadtrees was substantially
smaller than the number of pixels to be processed in the
original picture thereby allowing the analysis to be per-
formed faster. The function QCONCOM works in the following
manner (processing only one class at a time). The first step
assigns an initial tentative labeling to the quadtree. This .
labeling is based on a preorder traversal of the gquadtree
that starts in the northwest corner of the image and moves
in the south and east directions. If a BLACK node is met
that 1is unlabeled (with respect to the component within
which it is contained), then a new label is created for 1it,
When processing a BLACK node, FIND NEIGHBOR is used to exam-
ine its southern and eastern neighbors to determine if they
are also BLACK, but have no component label. In such a case,
they are assigned the component 1label of . the BLACK node
being processed. If they already had a component label, then
both labels are placed (as an ordered pair) on an
equivalence 1list. Once all the nodes have been tentatively
labeled, one merges the equivalence classes and then updates
the component labels so that each connected component has
just one label. L : .
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Algorithm 4.1. PRIRITIVES

/* The following is a description of the prlmltlve functions
used in the quadtree algorithms. */

node FUNCTION son(p.i)
/* Given node p and quadrant i, return the node which is the
son representing gquadrant i of node p. */

node FUNCIION father{p)
/* Given node p. return the node which is the father of p. * /

INTEGER FUSCTION sontype(p) '
/* Given node p, return g where son(father(p),q) . If p is
the root, then return NIL. */

INTEGER FUNCTION nodetype{p)

/* Return the value of node p. This can be considered as GRAY ,
WHITE ; or BLACK for a binary tree; and GRAY, WHITE or a class
type or elevation level value for a multi-colored tree. */

BOOLEAN PUNCTION black(p)

/* TRUE when nodetype(p) is BLACK if the tree is binary, or
when nodetype(p) is a value specified as BLACK by the user
if the tree is multi-colored. */

BOOLEAN FUNCILION white(p)

/* WRUE when nodetvpe(p) is WHITE if the tree is binary, or
when nodetype{p) is a value specified as WHITE by the user
if the tree is multi-colored. */

BCOLEAN FUNCTION gray(p)
/* TRUE iff nodetype{p) is GRAY. */

INTEGER FUNCIION opside(b)
/* Given a side b, return the opposite side (e.g.,
opside(E) = w). */

INTEGER FUNCTION ccside{b}
/* Returns the side adjacent to side b in the clockwise
direction (e.g., ccside(E) = N). */

BOULEAN FUNCTION adj(b,i)
/* TRUE i1ff quadrant i is adjacent to bouLdary b of the node's
block (e.g., adj(N ,Nw) = TRUE; adj(d ,Sw) = FALSE). */

INTEGER FUNWCTION reiflect(b,i)
/* Returns the gquadrant which is adjacent to guadrant i along
boundary b (e.g., reflect(N ,Nw) = Sw). */

INTEGER FUNCTION gquad(b,c)
/* Returns the quadrant bounded by b and ¢ if it exists and the
value NEG if it does not exist. */

INTEGER FUNCTION opquad{qg) '
/* Returns the guadrant opposite {(non-adjacent) to g
{e.g., opquad(iw) = Si). */



node FULCTION find: nelqnuor(q,s)
/* Return the node which is adjacent to side "s" of node "“g°
' and is either a lear or is at the same depth as node "gq".
This is done by foliowing the father links until the common
ancestor is reached and then following the rerlected path
downward , stopplng s;nort only if a leaf is met. */
node POINTER q;
INTEGER s;
!
node POINTER .p;
INTEGER i ,stypeq;

/* ¥irst find a common ancestor. */
IF{(&ULL(sontype(q))) /* Common ancestor does not exist. */
RETURN{NIL) ;
ELSE IF(acj(s,sontype(q))) /* nNeighbor is not a sibling -
go up to next level. */
p = find neighbor(father(q) ,s);
ELSE /* Nelghbor is a sibling. Prather is a common ancestor. */
p = father{q): :

/* After finding the comron ancestor , reflect about side "s"
back to the level of the original request. */
IF(NULL(p) OR NULL(son(p.reflect(s ,sontype{qg)))))

/* Either there was no common ancestor or p is a leaf
and in either case p is what we want to know;
so, don't change it. *x/

RETURﬂ(p),

‘ELSE /* Return the calculated son. */
RETURN (son(p,reflect(s ,sontype(q))));

}

node FUNCTION make neighbor(qg,;s)

/* Return the node which is adjacent to side “s" of noge "g"
and at the same depth as the node "g". Tnis is done by
following the path through the tree that would lead us
to said neighbor if it existed and creating, along the way,
any nodes that are necessary. wWhenever such nodes are created,
all created sons are set to WHITE. They are later reset to
GRAY or BLACK as appropriate, c.f., find-neighbor */

node POINTER q;

thLGER S;:

node POINTER p:

INTEGER i ,stypeq;:

~/* First find the nearest common ancestor. */

IF(NULL(sontype(q}}} /* Common ancestor does not exist. */
i
. /* Create a common zncestor and initialize its

pointers. */

p = createncde ( NULL ;WULL ,GRAY ) ;

stypeqg = quad(ccside(s) ,opside{s)):

p->sons] stypeq] = q:
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g->fathr = p;
/* Create the other three sons of p. */
createncde (p ,opquad(stypeq) wHITE);
createnode (p ,opgquad{(reflect(s ,stypeq)) ,wHITE);
}createnode(P,reflect(s;stypeq);HHITE):
ELSE If(adj(s,sontype(q))) /* Neighbor is not a sibling -
go up to the next level. */
P = make neighbor(father(q) ;s);
ELSE /* nNeighbor is a sibling. Father is common ancestor. */
p = father{q); g

/* After finding the nearest common ancestor , reflect about
side "s" back to the level of the original request. */
Ir(NULL(son(p.rerlect(s Sontype(agl)))))
/* 1If tne node does not have children to descend a level,
change the node to gray and give it children. */
p=>nodetype = GRAY:;
FOR(1i = hw ,NE ,SE ;5w)
createncde(p ,i ,WdIlE);
return(son(p ,reflect(s ,sontype(g)))};

) | :

node FUNCTION getnode()
/* Reserves storage for a quadtree node and returns a pointer
to this unit of storage */ '

node FUWCTIOW createncde(root ;s ,t)

/* Create a node p with nodetype t which corresponds to son s
of node root and return p. */

node POINTER root;

INTEGER s ,t;

{

node POLNTER p;

P = getnode():

if{root l= NIL)
roct~=>sons sl = p;

p=>fathr = root;

P=>ntype = t;

for{i = NW ,NE ,SE ,5W)
p=>sonsli] = NIL;

return(p);

PROCEDURE returntcavail(p}
/* Return node p to the available storage pool. */
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/* Run a connected components algorithm on a binary quadtree -

l1.e.,assgign every connected component a unigue label. ‘This is

achieved in three steps. Step 1 assigns labels to each BLACK

node . This is done by traversing the tree and

for every HBLACK

node , examining its eastern and southern neignbors. If these are
unlabeled, a new label is generated for the current node. If
either of them are labeled, and the current node is unlabeled,
then assign current node the label of its neighbor. If the
neighbor is labeled and the current node is labeled, tnen these
labels are equivalent and so the pair of labels is added to a
list of equivalence classes. The second step is to put the list
of equivelance classes into a hierarchal order so that all of

the nodes in the class can be given one label.

No algorithm is

given for this step - for an example ©f a typical algorithm ot
this kind see Knuth; vol 1. The third step simply traverses
the tree again, relabeling each node to the value of the

- representative for its equivalence class.

componentkquadtree)

*/

/* "Quadtree" is a pointer to the input tree. At the end qf this
algorithm, "quadtree" will point to the labeled tree. */ '

node POQINTER quadtree:

{

pairlist POINTER merges; /* Pointer to the list
equivelances. */

merges = NIL; _

label{quadtree); /* step 1 */

Process the equivalences in the list merges; /[/*

}update(quadtree); /* step 3 */ )

label(p) _
/* Perform step 1. Assigns labels to node p and
node PUINTER p;

node POINTER q:
INTEGER i;

I¥{gray(p))
FOR(i = NW ,NE ,SE ;SwW)
label(son{p.i));
EL?E IF(black(p)
q = find neighbor(p.E);
1f(NOT(NULL(g))) _
label-adjacent(q ,Nw ;Sw,p);
g = find neighbor(p,S};
1£(NOT(NULL(g) )}
label adjacent({qg ,Nw NE ,P):;
1£(NOT(labeled(p)))
pP->nodetype = getnewregion();

of pairs of

step 2 */

its sons. */
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label adjacent(r ;ql ,qa2.p) :
/* Find all descendants of node r adjacent to node p - i.e.,
in quadrants gl and g2. */
node POINTER r ,p; .
{INTEGER gl ,a2;
IF{gray(r))

label adjacent(son(r ,ql) ,ql ,q2,p):
label-adjacent(son{r ;q2) ,al ;92 .,p):
N -
ELSE IF(black(r))
assign_ label{p.,r):

assign-label(p.q}

/* Assign a label to nodes p and q if they do not already have one .
If both have different labels, then enter them in “"merges". */

node POINTER p,q:

{ .
IF%labeled(p) AND labeled(q))

IF(nodetype(p) <> nodetype(q))
| add <nodetype(p) ,nodetype(g)> to merges;
ELSE I1F(labeled{p))
g->nodetype = nodetype(p):
ELSE IFf(labeled{q)})
p->nodetype = nodetype(g):
ELSE
p~>nodetype = g=>nodetype = getnewregion():

update (p);
/* Perform step 3. */
node POINTER p;

{
INTEGER i;

Ir(gray(p))
FOR(i = NW,NE,SE ,SW)
update (son{(p,i));
ELSE IF{black(p})
p~>nodetype = aquivalence of value nodetype(p),
}.
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/* Convert an input picture in the form of a binary array (or
raster) into a binary quadtree. Basically, the algorithm works
by doing a raster scan of the input picture , and as each pixel
is read, the quadtree is modified so that it would be a valid
quadtree representing the input picture if all unprocessed pixels

'~ were WHITE. Tnis is in contrast to an algorithm which first
builds a complete quadtree with one node per pixel and then
attempts to merge nodes (replace GRAY nodes that have all sons
the same color with a node of that color). The input picture is
read one row at a time by a special function getrow which
returns the next row of the picture. The function color returns
the color of the pixel given as an argument. The boolean
function lastrow is true iff the current row is the last row of
the picture. whenever all the children of a node have been
processed, an attempt 1is made to merge them togetner. because
Orf this there is a distinction between odd rows and even rows
(no pixels in an odd row can ever complete tne processing of all
the children of a gray node ; hence tnere is never an attempt to
merge aifter processing any of these pixels). ‘lhe picture is
assumed to be an 2**N by 2**N picture - if not, wWHITE pixels are
assumed to fill it out. */

node POINTER quadtree{p ,width): , _

/* Given a picture p (viewed as a list of rows} and its width,
return a guadtree. */

LIST p; . ‘

INTEGER width; . : -

{ : .

BOOLEAN ARRAY gl l:widthl; /* Holds a row of the picture. */

node POINTER first:

INTEGER 1;

q = getrow(p);
first = createnode (NIL ,NULL ,g{1]); /* PFirst pixel. */
oddrow{qg,.first ,width);
i= 2;
p = NEXT(p):
first = evenrow(getrow(p) ;make neighbor(first S) i ,widtn);
WHILE {NOT lastrow()) DO - .

{ /* Process the rest of the rows. */

p = NEXT(p);

oddrow(getrow(p) ;first ,width):

P = NEXT(p}:

i = i+2; .

}first = evenrow(getrow(p);make;neighbor(first;s);i;width);
while (NOT NULL(father(first)))

first = father(first); /* Set first to root of the tree. */
return{first);

}

cddrow(row ;nd ,width)

/* Add the odd-numbered row of width "widtn" represented by array
"row" to a quadtree whose node "nd" corresponds to the first
pixel in the row. */ : '
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INTEGER width;
IiifEGER ARRAY row{l:width];
node POINTER nd; '
i .
nd->nodetype = color(rowll]):
FOR({i=2 UNTIL width)
{
nd = make_ neighbor(nd,k);
nd=->nodetype = color(rowli]):

}

node FUNCTION evenrow({row,first ,i ,width)

/* Add even numbered row “i" of width "widtn" represented by array
"row” to a quadtree whose node “first" corresponds to the first
pixel in the row. During this process, merges of nodes having
four sons of the same color are performed. */

CINTEGER ARRAY row:

node POINTER first;

fNTEGER i,width;

node POINTER p,r:
INTEGER 3:

p = first;
IF({NOT lastrow{})
~ /* Remember the first node of the next row. */
first = make neighbor(p,S):
_FO?(j=l UNTIL width-l)

r = make-neighbor(p;k):
p->nodetype = color({row(iJ):
IF(EVEN(]))

merge(i,j.father(p)):
P=r;

p->ncdetype = color(rowlwidthl); /* Don't invoke make-neighbor for
the last pixel in a row. ¥/
IF(EVEN(width)) :
merge (i ,width ,father(p}):
RETURN(first); /* Return the first node of the next row. */

}

node FUNCTION merge(i,3j.,p)
/* Attempt to merge a node having four sons of the same cclor
starting with node "p" at row "i" column "j". */
node POINTER p;
{INTEGER i3
INTEGER k:

WHILE(EVEN(i) AND EVEN(J) and
{nodetype(scn(p ,Nw))
nodetype{son(p,Sk)}

nodetype(son(p ;HE)) =
nodetype (son{p .5w)))

& u
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{
i i/2;
j = 3j/a:
pP->nodetype = nodetype(son(p ,Nw)):
FOR(Kk = Nw ,NE ,SE ,8W)
{
returntoavail(son(p,k));
}p->sons[k] = NIL;

p = father(p):

return{p)};
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4.4. Tabulation of results

Below we describe the tables of data collected about
the quadtree-represented regions. The times are measured in
seconds by a special routine on the VAX 11/780, which allows
us to factor out the disk I/0 time. Thus the times reported
reflect the notion of CPU time as implemented on that
machine. These times were measured while the machine was
not loaded with any other jobs, because the timing routine
does vary in its results as the system load changes. For
many algorithms, a better idea of the cost in time can be
determined from such machine independent concepts as number
of nodesg visited., These are also included in many of the
tables or are easily deducible from the descriptions of the
algorithms in the algorithm overview.

The tables are discussed in the order that they appear
appended to this section. These tables treat the data base
as a collection of possibly unconnected regions on the maps
that are 1logically connected by the sharing of some pro-
perty, e.9., having the same land-use class.

The first group of tables ({4.1-3) are the QUADTREE
BUILDING STATISTICS. These reflect a process by which the
R2Q algorithm was used to build a separate quadtree for each
logically connected class of polygons is a picture file, No
execution time is indicated because the times were dominated
by the cost of reading an entire picture file, one line at a
time. Each quadtreé took approximately 3 minutes to build.
If the quadtree had been constructed by building a complete
4-ary tree and then merging where possible, it would be
necessary for the memory to be large enough to contain
262,144 (512x512) nodes. By merging during the building
process,as R2Q does, a much smaller maximum memory is
required in practice. The size required is recorded in the
column “nodes created”. Note that never are more than
15,000 nodes needed. The following column indicates the per-
centage of this maximum that was actually used when the tree
was finished. The remaining columns give a breakdown of
the number of nodes of each type in the resulting binary
quadtree,

The CONNECTED COMPONENT RESULTS (Tables 4.4-6) record
the data collected on three variations of the connected com-
ponent algorithm, QCONCOM. 1In each variation, the algorithm
uses two of the neighbors of a node, as described in the
algorithms overview, to assign a tentative label to a node.
The “number of neighbors sought” is the number of times this
process of finding a neighbor must be performed, thus yield-
ing an indication of its importance  to the algorithm”s
analysis. The three variations are three different methods
of finding the required neighbors. For purposes of com-
parison, the average cost for a single finding of a neighbor
is calculated to show <clearly the variance within each
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technique as well as the relative costs ameng techniques.
The average cost is measured in number of nodes accessed per
neighbor found. Since the ammount of work performed by the
algorithm 1is proportional to the number of nodes accessed,
this average cost measure gives an accurate view of the
relative tradeoffs among the various methods. The portion
of a second required to find a neighbor (an alternative
measure) could not be calculated due to the inaccuracy of
the system timing algorithm. Also, measurement in seconds
of algorithm efficency can be misleading because the algor-
ithms were coded in a highlevel language 2nd some of the
timing differences could reflect the relative efficencies of
the compiler”s optimizer rather than that of  the quadtree
algorithm.

The first method is FINDNBR, which is the FIND NEIGHBOR
pPrimitive mentioned in the algorithm overview and described
in the tutorial section. The time in the final column 1is
for  this method. The second method, ROPES, is due to
Hunter”s quadtree work referred to in the tutorial. It con-
sists of placing a link directly between each neighbor of
the same size. This results in a reduction in exzecution
time at a major cost in storage (due to storing the extra
links). The third method was discovered during work on this
project and consists of causing the traversal algorithm to
pass as parameters the neighbors of each subtree”’s root.
This - requires. more time than ropes, but does not require as
much memory. The added memory cost with respect to the
FIND NEIGHBOR technique results from the additional stack
size needed due to the larger parameter list of the recur-—
sive routines, The average value is based on equating the
cost of passing a parameter to a subroutine with the cost of
dereferencing a link. This equivalence 1is clearly
compiler-dependent as well as machine-dependent, The final
column of the table indicates overall execution time of the
connected component algorithm, QCONCOM, which uses the
FIND NEIGHBOR.,
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Taghk 4.1. QUADTREE BUILDIWG STAYISTICS rUR LAWDUSE AP

i | wODkS | wODES | % USED | GRaY | wiolTwn | sLack |
| CLASS | Id TREE | CkeATRD | I TxEE | wUbLsE | wObks | NODLS |
i acc ] 4337 | 5925 | 73.2 | 1Cova | 1«47 | 1lalo |
| acp | 7725 | . s98l | 86,0 | 1931 | 304s | 27«6 |
| ar i 1145 | 2697 | 42.5 | 20 | 49y | 360 |
| are | 129 | 1725 | 7.5 | 32 i 7L | 20 |
| avf | 11937 i 13341 | sv.5 | 2984 | 4770 | 4177 |
| avv i 13193 | las44s | 9i.3 | 32%s | S35y | 4b53e |
{ bbr | 537 | 2109 | 25.5 | 134 | 250 | 153 |
| beg | 353 | 1873 | lg.8 | go | 168 | 97 |
| bes ] 193 | 125 | 10.6 | 4o | Y4 | 51 |
| bt | 2293 | 3841 | 59.7 | 673 | 951 | 709 |
i fo | 5485 | 7109 | 77.2 1 1371 | 2121 1 19®3 |
| lr | 1481 | 3045 |  4B.0 } 370 070 l 441 |
i ¢ | 70601 | 5609 | &l .3 1750 ! 2792 2459 |
i ucb | 249 | 1831 | 13.2 | 02 | 1ls | o9 |
| ucc | 817 | 2433 | 33.6 | 204 | 3l | 232 |
| uer i 1069 | 2701 | 39.0 | 207 | 457 | 345 |
| uew | 449 | 2081 | 2.6 | 112 | 197 | 140 |
| ues } 1113 | 2737 | 40.7 | 278 | 500 | 329 |
| uil | 345 | 1977 | 17.5 | b | 158 | 10L |
| uis { 1037 | 2649 | 39.1 | 259 | 453 | 325 |
i uiw | 293 | 1w17 | 15.3 | 73 1 139 | sl |
| unk | 1121 | 2051 | 41 .8 | 260 | 540 | 3ul |
| uoc | 173 i 1805 | 9.0 | 43 | 7% | 51 |
| uog ! 377 | 2009 | 1s.8 | Y | luy | 134 |
| uco ! 429 | 206l | 20.58 | 107 | 201 | 121 |
i uop | 269 | lgor | le.2 | o7 | l3e | oo |
| uov | 22y | lsel | 12.3 | 57 | vy | 73 |
| urn i 237 | 1801 | 12.7 | 59 | 125 | 53 |
| urs | 9921 | 11313 | 7.7 | 2«80 1 3993 | 3aaes |
{ uus i 297 | 1921 | 15.5 | 74 | 142 | 8l |
| uut i 3069 | 4621 | 66.4 | 77 | 1379 | 923 |
| ww | 183 | 1785 | 5.6 | 38 | 76 | 39 |
| wo I 485 | 2028 | 23.9 | 121 | 225 | 139 |
| ws | 4677 | 6245 | 74.9 | 1leéew | 2025 | 1483 |
| wwp | 457 | 2049 | | 114 | 1oL | 242 |

- ———r— v W T W S S e i A S 0 =

22.3
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TABLE 4.2. QUADTREE BUILDING STATISTICS FUR TUPOGRAPHY AP

i | =®NODES | NODES | % USED | GRAY | whdITe | BLACK |
| ELEVATION | IN YREE | CREATED | In 'PRAE | NOLEs | wobos | moDkS |

o — - —— - -—— E — . —— -

1702

i 0 - 100 | ex0y | slel |  g83.4 | | 2577 | 2530
| 100 - 200 | 13853 | 14913 | Y2.9 | 3403 | 5295 | 5095
| 200 -~ 300 | 11813 | 13351 | B8.3 | 2933 | 4713 | 4147
| 300 -« 400 | 8845 | 10469 | 4.5 | 2211 | 3596 | 3038
| 400 - 3500 | 7121 | 5745 | gl.4 | 1780 | 2917 | 2424
| 500 - 00 j 6005 | 702y | 7a.7 | 150L 7] 2534 | 1970
Il 600 - 700 | . 5341 | 6973 | 7o.0 | 1333 | 2140 | loéo
| 700 - &00 | 4725 | 6357 |} 74.3 | 1llel | 1955 | 1589
| 800 - 900 | 3121 | 4753 | 65.7 | 7a0 | 1292 | 1049
i 900 - 1000 | 1277 | 2909 | 43.9 | 319y | 5le | 442
11000 - 1100 | lel | 1793 | v.0 | 40 | B | 33
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TABLE 4.3. QUADIREE BUILLIWG STATISTICS FOn FLOUDPLAIL BAP

" o e e e will ke Sl sl g e S T — -—— - I Y O YT A WA VIR A I S R R AW W) T G - Y YO TV W XD

| -} nODRS | wODES | % USED | GrRAY | wHiITe | BLACK |
| AREA i IN TREE | CrRBATED | 1i TREE | WOLES | wODBS | i0Dks |
| lett bank | 4021 | 5473 I - 73.5 | 1005 | laul | 1525 |
| floodplain | 6257 i 7645 | &lL.6 | 1564 | 2483 | 2208 |
| right bank |. 2885 | 400v | 72.0 | 721 | 1133 | 1031 |
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TaBLE 4.4. LANDUSE CONWECYED COMPONEWT RESULLS

. U A e . W A iy TS L ke S . 4 S D A S S vk e Sy o —

LI Lk |
In |
| SECS |

| ArGS
AVG |
COsT

|
I

KOPLES
AVG
CasT

I
i

AVG
CcosT

l

[ NUMBER OF | FINDWBR|
SQUGHT

—-—— —

CLASS |HEIGHBOKS |

|
|
} -

Illlllllll..l-cll-llllll.llllll.l.ll.llllIlllolllllllllll{lllllllllllllllllltl

lli.ll-ll-lrrlllillllllll-ll.lllilllllll!lllIliill.llllnl.ll.lrtllllllll.llllllllllll

-.l-...l.ll.lllll.llllllI.lol.!.ol-lll'lulci.lll.l.l.l-l-lllllll.lillll!.ll!cllllllllll.llllllli.lll.ll-..l.

Il.....l[lu.ll..l.ilIll..l....l.i.lllil....liitlillll.llllllllllrslll.lllllll.llllll

..ll.llllllrll.lllll.lulll......lljllilnl.llll.llllll-ll|..Illl|l.ll|l|l||||||..ll..lul..l||||llinll.l|lll




92

TABLE 4.5. TOPOGRAPHY CUWWECTLD CUL*;PONELJ‘].“ RESULYYS

———— —— . ——————— T — " S ) Y

i | NUMBER UF | FInDubBR|. ROPES | ArGs [TImE]

| LLEVATION |WEIGRBORS| ave | ave | Aave | Iw |
T | sousgT | cosT | COsT | Cust |saisi
{ 0 - 100 | 5060 | 3.45 | l.4l | 2.09 | 3.71
| 1Loo = 200 | 10190 | 3.5L | l.ak | 2.72 | 7.8i
| 200 - 3200 | 4294 | 3.53 § 1.41 | 2.85 | 5.8l
[ 300 - 400 | 6076 | 3.57 | 1.3 | 2.91 | 4.0}
| 400 - 500 | agab | 3.62 | 1.3 | 2.94 | 3.0]
| 500 - 600 | 3940 | 3.64 | Ll.36 | 3.05 | 2.5{
| 000 = 700 | 3732 | 3.2 | l.30 | 2.80 | 2.4
| 700 - 800 | 3176 | 3.69 | 1.38 | 2.97 | 2.1}
| 00 - 900 | 2098 } 3.87 | 1.37 | 2.958 | 1.31
| 900 = L000 | B84 | 3.54 | Ll.aL | 2.89 | 0.6l
{1000 - 1100 | 66 | 3.56 | 1.41 | 4.88 | 0.1|
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TABLE 4.6. FLOOLDPLAIN CONNECLIEL CURPOMENY RESULYS

INUMBER OF |FINDNEX]| KUPEs | AKGS |TImk|
KEGION INmIGHBOKS| AVG | AVe | &VG | In |
| sousrT | cosft | CosT | cost |SECS|

i

i

i
-} left bank | 3050 | 3.25 1 1.35 | 2.4 |
|

1.9
floodplain | 44lo | 3,50 1 Ll.do | 2.83 | 1.5}
right bank | 2062 | 3.02 i l.66 | 2.80 | 3.1
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5. Region analysis and manipulation

5.1. Region analysis

The functions described in this section are used to
gather basic statistics about the regions encoded by the
gquadtree data structure, The simplest of these is NDCOUNT,
which sets three global variables to indicate the number of
gray nodes, white nodes, and black nodes in the given quad-
tree, This 1is achieved by performing a preorder traversal
of the guadtree -- i.e.,, first it calculates its statistic
for the current node {in this case incrementing a
global counter) and then it recursively processes the
node”s four subtrees (if they exist). It should be noted
that the functions described in this and in subsegquent
sections are currently implemented as stand alone pro-
grams that are invoked by executing a file under the UNIX
operating system. This entails a fairly large amount of
housekeeping details, such as decoding the arguments with
which the file 1is invoked, opening various files, and
initializing various devices. None of this will be discussed
herein, nor will it appear in the algorithm descrip-
tions. Among the other details that are thus swept under
the rug, so to speak, would be the initializing of
the variables queried by the functions BLACK, WHITE, and
GRAY in order to determine {when processing a multicolored
quadtree) which nodes should be considered of the indi-
cated colors. Although we speak herein of functions
computing values, we actually have programs that generate
files and output 1listings containing function values.
For instance, the implementation of NDCOUNT terminates
by outputting the counts for the three types of nodes.

Closely related to NDCOUNT is a function called AREA.
AREA takes as parameters a node and an indicated width for
that node. AREA calculates the area and centroid of the
region encoded by black nodes relative to this indicated
size for the entire quadtree. This is achieved by a preorder
traversal that works as follows. If the current node is a
leaf, then its size is added to the global count in accor-
dance to whether or not it is black. If the current node is
not a leaf, then AREA processes each of 1its four subtrees
using a width value adjusted to half of the value associated
with the current node,

Next in order of complexity is HANDW, which takes as
. its parameters: a node, the x and y coordinates of its upper
left corner, and its width. Its value is the coordinates of
the upper left corner, the height, and the width of the
smallest rectilinear rectangle (i.e., the smallest rectangle
with sides parallel to the x and y axis) that encloses all
the regions that are considered black., This is done by com-
paring the coordinates of each black node to the most
extreme values found so far. Again we are dealing with a
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preorder traversal of the quadtree with the X, ¥, and width
values being updated as one descends from a gray node to its
c¢hildren. :

The last of the statistics gathering functions is PER-
IMETER. It also updates a global variable and calculates
its desired value via a preorder traversal. Like AREA, it
takes a node and its width as parameters. Unlike AREA, it
uses the width value to calculate the length o©of a node”s
side instead of the node”s area. The function PERIMETER
‘Teturns as its value the sum of the lengths of the perime-
ters of all the black regions. ULike AREA, it does this from
the point of view, so to speak, of the black nodes. The
side of a black node is part of the perimeter (and hence its
length is to be counted) only if the neighbor on that side
of the black node is a white node. The neighbor is located
using FIND_NEIGHBOR. :
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/* A simple tree traversal to count the number of GRAY , wHlTE ana
BLACK nodes. */

INTEGER numgray = 0Q;
INTEGER numwhite = 0
INTEGER numblack = Q;

PROCEDURE ndcount{rt)
node PUOINWIEK rt;

{

INTEGER i;

IF(gray(rt->ntype}}
S
nungray = numgray + 1;
"FOR(i = WW,NE,SE ,8W)
. ndcount{rt=->sons{il);
}

- ELSE
IF{black{rt->ntype))
numblack = numblack + 1;
ELSE
numwhite = pumwhite + 1;
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/* civen a quadtree, compute the area and centroid of the black
region of that tree. */

INTEGER area, xsum, ysum;

main(root, width)
/* To compute the area, simply sum up the number of pixels in each
black node. _ '
To compute the centroid, for x-coord sum up all of the x-coord
- of black pixels and divide by area; for Yy=COOrd sum y=-coords
and divide by area. */
node POINTER root:
INTEGER width;
{
area = xsum = ysum = Q;
doarea({root ,width,0.,0); /* compute area
' (stored in global.variable area) */
xsum/area; /* xcoord of centroid */
ysum/area; /* ycoord of centroid */

xcent
ycent

doarea{root, width, fx, fy}

/* This function does the work of computing the area and the
centroid. For each black node, add the number of pixels to the
global variable area; sum up the x-coordinates and add to the
global variable xsum, and sum up the y-coordinates and add this
to global variabkle ysum. */

node POINTER root; o

INTEGER width, temp; :

INTEGER f£x, fy; /* Coords of the upper left pixel of the node. */

{

if{gray(root))
{ /* for each child, compute area */
deoarea(width/2 ,son{root ,NW) ,£x ,fy);
doarea(width/2 ,son{root ,NE) ,fx+widtin/2,fy);
doarea{widtih/2 ,son(root ,Sk) ,fx+width/2 ,fy+width/2);
doarea(width/2 ,son{root ,sw) ,fx ,fy+width/2);

alse
if(black(root))
{
/* Incorporate area of current node into
running totals. */ '
temp = width * width; :
xsum = xsum + {(fx + width/2 - .5} * temp;
ysum = ysum + (fy + width/2 - .5) * temp:
area = area + temp;
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/* Find the smallest enclosing rectangle for the black area of a
quadtree. Specify this rectangle by its upper left coordinates
and its height and width. #*/

INTEGER leastx.leasty,highx ,highy: /* The highest and lowest
values yet found. */

main(root ,width) '

/* Given a quadtree, call handw to get the highest and lowest
values of x and y coords. The upper left corner is <least-x.,
least-y> and the width and height is the difference between the
x's and y's respectively. ¥/

node POINTER root;
INTEGER height ,width;

leastx = leasty = width + 1;
highx = highy = Q:
handw(root ,Q ,0 ,width);
height = highy - leasty:
width = nighx - leastx;

J

handw({root ,x ,y ,width) _

/* X and y are the coordinates of the upper left corner of the
ncde width is the width of the node. If the node is black,
check if the extreme corners of the node are within the least
and high bounds - if not, then change the bounds. If the node
is gray, check the sons. */

INTEGER x .,y .width;
node POQINTER root:

{ ‘
if(gray{root))

/* For each son, do handw. */
nandw(son{root ,Nw) ,x .y ,width/2):
handw(son(root ,NE)} ,x+width/2 ,yv ,width/2);
handw({son(root ,SE) ,Xx+width/2 ,y+width/2 ,width/2);
handw({son(root ,SW) .x .y+width/2 widtn/2)};

else
if{black{rcot))
H

1f(x < leastx)} leastx = Xx;
if{(x+width=-1) > highx) highx = x + width = 1;
if{y < leasty) leasty = y:
}if((y+width-l) > highy) highy = y + width = 1;
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/* Given a quadtree and its width, compute the length of the
perimeter of the black areas. This is done by traversing the
tree and calling addperim for each black node. Adaperim looks
.at each of the neighbors of the black node. If that neighbor is
white , then the lengtn of the edge is added to the perimeter
total. 1If it is gray, then sons along the edge of tne the black
node are run with addperim. */

INTEGER perimlength = 0;

perim(root ,width)
/* Traverse the tree calling addperim for black nodes. */
node. POINTER root;

INTEGEK width:

{
IF(gray(root))
FOR{i = NW to 8W) .
rerim(widtnh/2 ,son{root ,i));
ELSE
IF%black(roqt))

addperim(£find neighbor(root ;N) ,width ,SE ,Sw);:
addperim(find neighbor(root ,E) ,width ,dw ,Sw):
addperim(£find- neighbor(root ,S) ,width ,NW NE);
addperim({find neighbor (root ;W) ,width ,NE ,8E);

}

addperim(root ,width ,ql ,q2)

/* Root is a neighbor of a black node. If root is white, ada width
to tne perimeter length, if it is gray, then perform addperim on
the children which are adjacent to the original black node .
(quadrants gl and g2). */

node POINTER root;
INTEGER width gl ,q2;

{

If{nil(root)} /* The black node was on the edge of the tree = no
neighbor exists. */ '
perimlength = perimlength + width:
ELSE
IF(white{(root})
perimlength = perimlength + width;
.ELSE{IF(gray(root)) ‘

addperim(son(root ,ql) ,width ,ql ,q2);
addperim(son{(root ,g2) ,width ,ql ,q2};
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5.2. Region mahipulation

Of the basic operations described herein, the only one
that does not produce a new gquadtree is the PT2POLY func-
tion, which given a quadtree, a coordinate structure (x and
y coordinates of the upper left corner and the width for the
entire tree), and a (u,v) coordinate pair, returns the value
(color) of the leaf node that represents the region that
contains the coordinate pair. Unlike the statistics gather-
ing programs that had to traverse the entire tree, the
PT2POLY function only visits those nodes that 1lie on a
direct path between the quadtree”s root and the sought after
leaf. This is done by determining the gquadrant of the
current node within which the coordinate pair lies and then
recursing down into that subtree while updating the coordi-
nate structure to reflect the new location.

. One of the basic operations that take one quadtree as a
parameter and . return a new quadtree as the result is the
WINDOW function. Besides its quadtree parameter, the WINDOW
function also takes a specification of where the window
should be placed-- i.e., the current width of the quadtree,
the c¢coordinates of the upper left corner of the window, and
the width of the window. For the present, the window must be
a square whose width is a power of 2. The new gquadtree is
constructed by recursively performing the following steps.
. Find the smallest subtree of the given quadtree that con-
tains the window. If this subtree coincides with the window
then return the subtree. If this subtree is a leaf then
return a leaf of  the same color. Otherwise, split the
current window into quadrants and process each of these
subwindows with respect to the current subtree. Upon return-
ing from each recursive call, it is necessary to check if
four leafs are brothers of the same c¢olor, and when this
happens, replace the father by cone of the four leafs. This
process results in a quadtree that represents the windowed
portion of the map encoded by the given quadtree.

The two basic operations that take two guadtrees as
parameters are the set-theoretic operations of INTERSECTION
and UNION. Both of these functions work on binary gquadtrees,
taking two gquadtrees as parameters and creating a resulting
guadtree. In both cases, we assume that the input guadtrees
are of the same width and have the same upper left coordi-
nates., If this were not the case, the user could perform
the WINDOW function to align the two quadtrees. Like the
statistics gathering functions, these two operations perform
"preorder traversals of the quadtree parameters. However,
now the traversals are performed in parallel; so that at any
time during the processing, the algorithms keep track of the
two nodes (one in each quaditree) which correspond to the
same areas in the two encoded maps. The logic of these two
operations is summarized below,. '
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if current function is Lfunction is

nodes are INTERSECTION UNION

both black Teturn black return black

both white return white return white

both gray recurse recurse

one black return other return black

subtree

one white return white return other

subtree

In the above table, “recurse” indicates that one needs to
traverse each of the remaining subtrees, and “return other
subtree” indicates that the value of the function is a copy
of the other subtree. Just as with windowing, when the
recursion unwinds, one has to check to see if four brothers
are identical 1leaves and merge them as indicated in the
discussion of the WINDOW function. Examples of performing
these basic set-theoretic operations are shown in Figures
5.1-5.3. Table 5.1 shows the area of the landuse polydgons
in Figure 5.3, using the naming conventions discussed in
Section 5.3.

- The set-theoretic operation of complement can be per-
formed using the more general function QMASK. OMASK takes a
quadtree and a range as parameters and returns a gquadtree
that has all the nodes with values within the range set to
BLACK and all the nodes with values outside the range set to
WHITE. Thus the tree that results from QOMASK is always a
binary-colored quadtree. The OMASK algorithm is implemented
as a preorder traversal of the input quadtree that simul-
taneously constructs the output quadtree. In constructing
the output quadtree, the QMASK algorithm merges nodes when
necessary as indicated in the discussion of the WINDOW func-
tion.

The final gquadtree manipulation function is QDISPLAY,
which does double duty both as a quadtree manipulator (it
truncates quadtrees) and as an output routine. fThe parame-
ters of OQDISPLAY are a quadtree, specifications of how the
quadtree should be displayed (location, width, coloring
algorithm, etc.), and the depth at which the quadtree
should be truncated. The coloring algorithm is determined
by two flags, COLOR and BLOCK. If COLOR is true, then the
quadtree is displayved as is, each node”s value being inter-
preted as a color. If COLOR is true and BLOCK is false,
then the quadtree is output as a - binary-colored gquad-
tree, where the colors mapped to BLACK are defined by set-
ting the range used by the primitive function BLACK. If
BLOCK is true, then a special table of colors is used
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and the color of a node is determined by its depth and its
binary-colered value. If COLOR is false, then one has
the option of setting the maximum depth of a node that will
be displayed. wWhen a gray (internal non-leaf) node is
to be displayed, the—function—examines—the—gray-nede’s—des

cendants and considers the node to be BLACK if the black
nodes (when weighted according to their depth in the tree)
exceed the white nodes (when similarly weighted). Thus a
node 1is output as BLACK in the truncated tree, 1if it |is
BLACK or it is a gray node at the maximum depth and the
average color of the region it subtends is more black than
white, The algorithm is implemented as a preorder
traversal of the input quadtree that outputs the nodes in
the order they are visited. Figures 5.4-5.8 show the
output of QDISPLAY when COLOR and BLOCKS are false and the
polygon flood.center is considered BLACK. These figures
give an idea of the initial gentle degradation of the image
as the quadtree is truncated. Table 5.12, discussed in
Section 5.3, shows that Figure 5.5 uses only two-thirds
the number of nodes as Figure 5.4, with wvirtually no loss
in the basic image shape. This shows that guadtree trunca-
tion is a useful image approximation technique.
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 Figure 5.2. Kesult of executing I«VekssClIuw on the entire
land-use map and tne complement of the 5tn
elevation level (4U0-500 rt. elevation) of tne
topography map. :
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Figure 5.3.

Result of executing INTERSECTION on the 1st
elevation level (0-100 ft. elevation) of the
topography map, the flood.center region of the
floodplain map, and the entire land-use map.




TABLE 5.1.

AREA RESULTS FOR LANDUSE

POLYGOWS IN FIGURE 5.3

| POLY-|
[ con |

i | PIXELS

jace.2 |
lace.10|
lacc.12]
lacc.15]
lacp.l
|lacp.4
lavE .4
lavf.s
|avt.e
javt .8
javf.9
javfi.l0}
javE.ll]
javf.l5]
{avf.l7]
lavf .18
favE.l9]
lavf.21|

———rr S — k. S———— T—

lavf.24]

lavE.25]
lavv.3 |
javv.6 |
lavv .7 |
javv.lél
favv .17
lavv .18}
_]avv.lQl
|avv .20
javv .23
lavv.26]
lavv .28}
i bbr .1
| bbr .2
|beq.l
ibes .l
Ibt .2

| fo.3
| fo.4
lir.l
|ir.2
|1r .3

{1 of 2}
AKEA | AREA |
IN | IN i
| ACRES |
14 0.14|
711 10.08i
- 948| 134.62]
452} 64.18]
2&{ 3.98)
124 17.ell
209 29.68]
279  39.e2z|
423} 60.07]
554 7 .81
81} 11.50|
611] 86.76l
538 76.40]|
1033} 146 .69}
151 2.13}
72} 10.22}
713} 101 .25}
750| 106 .50}
2141 30.39}
659 93.58]
214|{ 30.39]{
71 0.99]
23} 3.27)
7936]1126.91 |
34 4.83|
255 36.211
18301 266.96]|
5821 82.64|
129 18.32|
55 | §.24]
217 30.81}
711 10.08|
3611 51.26}
229 32.52{
114f le.19{
858 12.50]
293] 4l.é1}
291 4.12}
8| 1.141
91| 12.92}
63| 8.95|
620] 58.041
129 18.32]

i
|
|
|
_ |
ffo.l |
|
!
I
i
|
|

|1r .4
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AREA RESULTS FOR LANDUSE
POLYGUNS IN FIGURE 5.3

(2 of 2)
i POLY-| AREA | AREA |
| GoN | InN | IN |,
b | PIXELS| ACRES |
jr.2 i 23] 3.274
ir.4 | 1] 0.14|
Juec.6 | 3 0.43]
fues .1 | 548| 77 .82}
| uves .2 | 6581 93.44}|
fuis.5 | 101] 14.34}
}uco.3 | 751 10.65}
| uop.2 | 148| 21.02}
furh .l | 201 2.84]
|urs .l | 2451 34.791
jurs .4 | 722 102.52]
|urs .5 | 73| 10.37]|
jurs.6 | 1071 15.19]
furs.7 | 501 7.101}
jurs.s8 | 123] 17.47{
lurs.2 | 92| 13.06|
furs.r0] 34| 4.83|
lurs .11} 48| 6.82]|
|urs .18] 3zi 4 .54
luus.1 | 246] 34.93]
juus.2 | 3] 0.43]
|aut .1 | 25| 3.98]
juut .3 | 196l 27.83]
fvv .l | 108f 15.34/|
lwo.l | 535] 75.97|
{wo.2 | 126 17 .89
!

|ws .1l 3394| 481 .95

——— i e i sk e et Sl s e Sy . S —— T —— Y
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Figure S5.4. Hesult of executing QUISPLAY on flcod.center of
the flood-plain map using lu levels.




Figure 5.5.

result of executing
the flood-plain map

LLISPLAY on flood.center of
using v l=avals.



Figure 3.5.
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Result of executing QDISPLAY on flood.center ot
the flood-plain map using b levels.
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Figure 5.7. Result of executing QDISPLAY on flood.center ot
the flood-plailn map using 7 levels.




Figure 5.4.

Result of executing QLISPLAY on flood .center of
the flcood-plain map using o levels.
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/* Given a tree and the coordinates of a point, return the value of
the leaf node containing that point. [t is assumed that in a
database system the tree used for this operation would have a
different node value for each polygon. This would allow a
simple lookup to determine the corresponding polygon once the
nocde value in the tree has been found by this algorithm. */

INTEGER FUNLTION ptdpoly(fx, £y, width, xcoord, ycoord, rt)
node POINTER rt; /% Yhe root of the tree. */
INTEGER £x, fy: /* This is the upper left coord of the tree. */
INTEGER width: /* The width of the tree. */
_{INTEGER xcoord, ycoord; /* The given coord being searched for */
IF({ gray(nodetypei{rt)))
RETURN (ncdetype(rt));
ELSE /* Gray tree - find which quadrant contains the coord. */
IF(ycoord < (fy + width/2)) /* North half */
IF(xcoord < (fx + width/2)) /* Nw */
RETURN (pt2poly(fx, ry,w1ath/2,xcoord,ycoord,son(rt,uw)),
ELSE /* NE */
RETURN (pt2poly(fx+width/2 ,£y ,width/2 ,xcoord ,ycoord,
- sonf{rt ,NE)): _
ELSE /* Soutnh half */
1F(xcoord »>= (fx -+ width/2)) /* spg */
RETURN(ptholy(fx+width/2;fy+width/2;widtn/Z;xcoord;ycoordL
son(rt;SE))-
ELSE /* Sw */
RETURN (pt2poly(tx ,fy+width/2 ,width/2 ,xcoord ,ycoord,
} son(rt .8w));
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f* Given a gquadtree and its width, along with the specitications of
a window, create a tree whicn is tne section of tne input tree
spe01fled by the window. */

main{root ,width ,wcol ,wrow ,wwidth)

node POINTER root; /* Root is the input tree. */

INTEGER width ,wcol ,wrow ,wwidth:

/* wWidth is the width of the input tree, <wecol ;wrow> is the coord
of the upper left corner of the window, wwidth is the 51ze of
the window (must be a power of 2). */

node rnode; /* Dummy node to start the answer tree. */
node PUINTER rptr; /* Eventual root of the answer tree. */

rptr = rnode;

rnode .fathr = NIL;
dowindow(root ,width ,0,0 ,rptr Nw ,wwidth ,wcol ,wrow);
rptr = son(rptr ,Nw):;

/* Rptr is now the root of the answer tree. */

dowindow{inrt ,inwidth ;incol ,inrow ,outfthr ,whichson ,outwidtn,

cutcol ;outrow)

/* From the input tree create a tree described by the given ‘window
which has father outfthr and is son whichson. */

node PUINTER inrt ,outfthr; /* Inrt is the root of the current
input tree. Outfthr is the father of the output tree. */
INTEGER inwidth ;incol ,inrow ,whichson ,outwidth ;outcol ,outrow;

/* Inwidth, incol and inrow are the window described by the input
tree; outwidth, outcol , and outrow are the window to be .
described by the tree being built and whichson indicates the
sontype of tne tree being built in relation to the whole

{ output tree. */

node POINTER nd;
INTEGER i, goodguad;

/* First, cut the input tree down to the smallest subtree which
contains the window desired - i.e., if the window is completely
contained in one of the children of the input tree , make the
the input tree that child (and continue for its children...) */

goodguag = 1;
wh%le({goodquad <> NMEG) AND (inrt == GRAY))

goodguad = NEG;
/* For each quadrant, check if window in gquadrant. */
if(inrect(incol inrow ,inwidth/2 ,outcol ,outrow ,outwidth))
goodguad = NW;
1f(1nrect(1ncol+1nw1dth/2,1nrow,1nw1dth/2,outcol,outrow.
outwidtn})
goodguad = NE;
1f(1nrect(1ncol+1nw1dth/2,1nrow+1nw1ath/2,1nw1ath/2,outcol
outrow,outw1ath))
goodguad = BSE; '
if(inrect(incol ,inrow+inwidth/2 ,inwidth/2 ,outcol ;outrow,



115

outwidth)}
goodquad = SwW;
if(goodquad <> WEG)
{ /* wWindow in input quadrant -
make input tree that quadrant */
inrt = son(inrt ,goodquad);
inwidth = inwidth/2;
if(goodquad == NE OK SE)
incol = incol + width;
if(goodquad == SE OR Sw)
inrow = inrow + width:

}.
if({incol == outcol) AND-(inrow == cutrow)} AnD
(inwidth == outwidth))
/* If the windows are the same , then the output tree is the
same as the input tree, so copy the input tree. */
copysub(inrt ,outfthr ,whichson):
2@lse
if(nodetype{inrt) <> GRAY)
/* 1f the input tree is a leaf node , then the window is
also a leaf of the same colior. */
createnode(outfthr;whichson;nodetype(inrt));
else
[ /* No single child of the input tree contains the window, and
the input tree is not a leaf node. Therefore , repeat
dowindow on each quadrant of the window desired. To do
this, first install a GRAY node in the output tree and
_ then call dowindow for each quadrant. */
nd = createnode(outfthr;whichson;inrt->ntype):
dowindow({inrt ;inwidth jincol ,inrow;
nd ,8W ;outwidth/2 ,outcol ;outrow):
dowindow(inrt;inwidtn;incol;inrow;
nd;NE;outwidth/2;outcol+outwidtn/2;outrow):
dowindow(inrt;inwidtb;incol}inrow; o :
nd}SE;outwidthfz;outcol+outwidth/2;outrow+outwiqth/2):
dpwindow(inrt;inwidth;incol;inrow;
nd ,SW,cutwidth/2 joutcol ;outrow+outwidth/2) ;
1£(All children of nd have the same nodetype )

nd->ntype = nodetype (son{nd ,Nw)) :
Return all children of nd to avail list:;

}

BOOLEAN FUNCTION inrect(bigcol;bigrow;bigwidth;litcol;litrow}
litwidtn):;
/* Return TRUE if and only if the second window is contained
in the first window. */
INTEGER bigcol;bigrow;bigwidth;litcol;litrow;litwidtn;

if((bigcol <= litcol) AND (bigrow <= litrow) AND
(bigcol+bigwidth »>= litcol+litwidth) AND
(bigrow+bigwidth »>= litrow+litwidth))
return(TRUE); .
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alse
return{ FALSE);
}

copysub(root ,fthr ,whichson)

/* Create a copy of tne subtree with root "root". The created
tree will be son "whichson" of the node "fthr" (part of the
global answer tree). */

node POINTER root ,fthr;
{INTEGER whichson;

node POINTER root;
INTEGER 1i:

nd = createnode(fthr ,whichson ;nodetype(root));
for{i = NW,NE ,SE ,SW)
copysub(son{root ;i) ;nd ;i);
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/* Given two (possibly multi-colored) guadtress, return a binary
quadtree which is the intersection of the input trees. */

node FUNCILION inter(rtl, rt2, fthr, whichson} :

/* Return the intersection of the trees whose roots are pointed to
rtl and rt2. This is done by simultaneously traversing the
input trees and performing inter on each guadrant. If either
tree is WHITE, the intersection is WHITE. If either tree is
BLACK, the intersection is the other tree.

Fthr is the father of the resulting tree. This allows the
current subtree to be inserted into the complete output tree.
Whichson tells which son of the output tree the current tree
is. The function is initially called with these values equal
to NIL. */ : '

node PCINTER rtl, rt2, fthr;

int whichson;

{

node POINTER nd;

INTEGER i

IF (white(nodetype(rtl)) OR white(nodetype(rt2)))
RETURN{createnode ( fthr ;whichson ,WwHITE) ;
IF (black{nodetype(rtl)) '
RETURN(copysub(rt2 ,£thr ,whichson});
IF (black(nodetype(rt2)) ,
RETURN (copysub(rtl ,fthr ,whichson));
/* Both trees are GRAY - call inter for each quadrant. */
nd = createnode(fthr ,whichson ,GRAY); ‘
FOR{i = NW,NE ;SE,Sw) : .
' inter(rti->sons{i] ,rt2->sons{i] ,nd ,i); -
IF(all children of nd are WHITE)
{ /* Condense tree. %/
nd=>ntype = WHITE; .
FOK(i = NW,NE ,SE ,Sw)
} returntoavail{nd->sons{i]);

RETURKN(nd) ;
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/* Given two (possibly multi~colored) gquadtrees, return a binary

quaatree which is the union of the inpu

t trees. */

node FUNCIION union{rtl, rt2, fthr, whichson)
/* Return the union of the trees whose roots are peintad at by
rtl and rt2. Tnis is done by simultaneously traversing the
input trees ana performing union on each quadrant. [f either
tree is black, the union is BLACK. If either tree is wWHITE,

the union is the other tree. Fthr is the fatner ol

tne

resulting-tree. This allows the current subtree tc be inserted
into the complete output tree. whicnson indicates tae sontype
of the current tree relative to the output tree. Union is

initially called with these values equal to WIL. */

node POINTER rtl, rt2, fthr:
int whichson;

node POINTER nd;
INTEGER i;

IF (black(nodetype{rtl)) 0R-black(nodetype(ft2)))

RETURN (createnode{ fthr ,whichson |BLACK) ;.
IF (white{nodetype{rtl}) *

RETURN(copysub(rt2 ,fthr ,whichson)): /*
IF (white(nodetype(rt2)) /*

RETURN(copysub(rtl ;fthr ,whichson)); /*
/* Both trees are GRAY and union must be

each quadrant. */
nd = createnode{fthr ,whichson ,GRAY): -
FOR(i = Ww ,NE ,SE .SW)

union{(rtl=>sons{i] ;rt2=->sons{i] ;nd ;i);
IF(All children of nd are BLACK)

{ /* Condense tree. */

‘nd=>ntype = BLACK:

FOR(1 = NW ,NE SE ,SW)

returntoavail(nd=->sons{i]);
i

RETURN(nd) ;

If treel is
copy treez.
If treel is
cCopy treel.
applied to

WHITE , */
*;"
WHITE , */
*/



Algoritnm 5.9. QrASK
119

/* ror a quadtree with root 'root' , for eacn leaf node, if its
value is between tne parameters nigh and low (inclusive) , tuen
set node valug 1o BLAJA..else set to widllhk. wnen necessary,
wmarge cnildaren of a gray ncae tocether. */

lwibkGhkr low, higi;

quaski\rc)

ncae PUOLNTER rtg
t .
INTeuGhs 17

Ir{eraY(rt))

{

FOR{L = KW, Nk ,Sb,5w)
amask{rt->sons{i]):

I¥(all children of rt are the same leaf color)

{ /* condense tree */
rt->ntype = ncdetype{rt- >SOHbLHW]),
FOR(1I = Nw,dk ,55 ,5wW)
returntoavail{rt->sons{i]};

}
bl :
If({rt=->ntype >= low) AND (rt->ntype <= high))
re=>ntype = BLACK:
ELSE
rc=>ntyps2 = wWHITE;

}
main(root ,low,high)

node PUINTEK root; /* input tree */

Inwlbeih low, hign; . /* input parameters - values in this rangs

are BLACK. */ -
{ -
qmask{root}):
AETURN (root});
}
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/* Lisplay a quadtrese on the grinnell. %his 1s done by traversing
tne tree. wnile tne ctraversal 1s being done, the program Keebs
track or tne size and position of tne current node , and displays
that node on tne grinnell. Tnere are two boolean options -
color and block. If color is WKRUL, tnen nodes will pe displaved
by their color , 1f FALSE then all non-wihlih nodes are displayed
as sLACK. Ir block is true, then the displaved color depends
on tiie depth ©f the node in the tree = not its value. At most
on2 of tnese options may be true. Additionally, if color is
FaALshk , the user may wish to display nodes only down to a certain
deptn by adjusting maxdepth. In tnis case, tne smallest node
size displayed can be changed. ¥or example, with a 512 X 512
picture , there are 10 levels and tne smallest node is one pixel
wide . Ir the user sets maxdeptih as ¥, then tne smallest node is
2 X 2 pixels. For any gray nodes at level Y%, tne runction ok
aads up tne nunber ©f pblack pixels ot its cnildren and ii more
tnan half are black, tne gray node is displayea as black. otnar
wise it 1s displayea as white.

‘next' is a tunction which returns the value of tihe next node
of the preoraar traversal of the input tree stored in tree. */

DATA PFILE tree; /> preorder traversal of the input tree. */

InPEGER color, block:

INPLGER maxlevel:;

INTEGEK larr{10]:; /* This array holds grinnell color values to be
used with option block. */

coloror({val .currlevel)
/* Letermine the actual color value to be displayed on the grinnell.

for the node with value val. 4whis is determinsa by the options,
tne value of the node and possibly the level of the noue in the
tres. */

INTEGER val, currlevel /= curcleval is the level in the tree of
the current node. */

i

INTEGER v

IF{block)
{ /* color determined by level */
v = larricurrlievel - 1];
IF(black{val})
v = v¥*2bo;

/* wnite nodes will be displayed as some tint of rea, black nodes
will be displayed-as some tint of blue. ultiplying by 256
shirts a red value to a blue one whan dlSplayea. */

returni{v);

ELon
If{plack(val))
IF(color)
RETURN{wval);
aLbhL
RETURN{ BLACK) ;



121

ELBE
REVURN (widl'I'E ) ;

pk(width)
/* meturn the number oI pixels of the current node and its
cnildren wnich are plack. */
I ThGER widtn;
i
INTREGER val;

val = next{(}; /* causing this function to have a side erfect */
Ir{black({val})
KETURW (wiath * width);
I (white{val))
KETURN{O) ;
/* gray node =- calculate black pixels in chilaren */
RETURN (bk(width/2) + bk(widtih/2) + bk(width/2) + bk(widtn/2)):

display(fcol ,frow ,width ,currievel)
/* Display tne next node of the prsorder traversal on the grinnell .
This node has its upper letft corner at fcol, Irow and has width
width. It is at level currlevel in the tree. */
INTEGER fcol, frow, widtn, currlevel;
{ .

IlTeEGER ccl . total, val;

val = next();
Ir{mwul gray(val))
{ : .
col = colorof(val ,currlevel);
<write to grinnell a square at fcol .frow of size wiatn witn
color cel.> /* this is a commanda and not a commant */
} \

ELSE
IF{currievel == maxlevel)
Ifgblock)

col = colorof{wval ,currlevel):
<nr1te to grinnell a square at fcol ,frow of size width and
coleor col.>

ELSE
{
total = bk{width/2)+bk(width/2)+bk(width/2)+bk{widath/2);
IF({2 * total)) > (width * width))
val = 1;
ELsE
val = 0;

col = colorof(val ,currlevel);
- <write to grinnell a square at fcol .frow of size width and
color cel.>
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ELSL

i /* Lisplay children of a gray node */
display(fcol ,{frow+wiactn/2} ,(wiath/2) .(curcrlevel+l));
aisplay((tcol+wiatn/2) ,{frow+widtn/2} ,{width/2) ,{currlevel+l));
display({fcol+width/2) ,frow,(wiath/2) ,(currlevel+l));
display({(fcol ,frow,{(width/2) ,{currlevel+l}};
j .

main(fcol ,frow ,color ,blLock maxlevel ,width);
IwiaGkR fcol frow ,width;
{
/* Angle brackets enclose commands written in English and are not
just comments. */
<Fill larr witn grlnnell-depenaent values useq with optlon bleock. »
display(fcol ftrow,width ,l);
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5.3. Tabulation of results

In the tables presented in this section, the basic
unit of manipulation is the connected component., The names
of these basic units are created by suffixing a digit to the
land~use class (or contour) to which the unit belongs. These
~digits can be dereferenced by referring to the figures in
Section 3. For example, in Table 5.2, the first polygon
name we encounter is acc.l. Looking at Figure 3.4, one sees
the 19 components of the class ACC. The component labeled 1
in that figure is the polygon refered to by the name acc.l.
The units of the flood-plain map are so few that they are
given names of their own, i.e., left and right bank instead
of bank.l and bank.2. Note that there are no tables showing
the execution times for the PT2POLY function. This 1is
because all times were 1less than a tenth of a second and
hence were beyond the range of the system timing algorithm.

The first group of tables (Tables 5.2-4) are the AREA
RESULTS tables. They are organized according to which map
the polygons (i.e., simply-connected components) belong.
They summarize the results of two programs: NDCOUNT {which
counts the number of black nodes, i.e., those belonging to
the polygon) and AREA (which calculates the area in pixels
and centroid (first moment) of the polygon). The execution
times immediately follow the results of the same algorithm.
The times for NDCOUNT indicate the cost of visiting every
node in the tree exactly once. Hence the time is relatively
constant for each map because so little processing is done
at each node. This value also gives an indication of the
reliability of the system timing routine used. - Substan—
tially more calculation is performed by AREA with more vari-
ation with respect to the amount of time spent at a black
node vs. a gray or white node. The conversion from area in
Pixels to area in acres was calculated based on .142 acres
per pixel. The value is given in hundredths of an acre,
although the pixel size is about one seventh of an acre.
The coordinates used for ‘the centroid are based on the
upper left-hand corner being (0,0) and the number of pixels
in both directions range from 0 to 512. The same coor-
dinate system is used in the other tables.

The REGION PROPERTY RESULTS (Tables 5.5-7) show the
cost of two statistics gathering programs: PERIMETER and
HANDW. The perimeter is measured in pixel widths. The
enclosing rectangle calculated by HANDW 1is given by the
coordinates of its upper left-hand corner and its width and
height. HANDW is another algorithm that treats each node
equally and hence produces little variation in its timings
within a given map. This is quite different from PERIMETER,
which performs four FIND NEIGHBOR operaticons for each black
node; hence the variations in the cost of PERIMETER.

The data for the WINDOW program is presented in the
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WINDOW RESULTS (Tables 5.8~10). The window used is the
smallest sgquare whose width is a power of two, that encloses
the smallest bounding rectangle of the polygon {calcu-
lated by HANDW), and sharing the =same upper left-hand
corner with that rectangle. The relation between the
times and the input is complicated, as it 1is effected by
both the size of the window and the greatest common
denominator of the tree size and the two coordinates of the
upper left-hand corner. The smaller the greatest common
denominator of these three numbers, the greater the possible
fracturing of large nodes in the input tree.

The next table, INTERSECTION STATISTICS (Table 5.11),
is the only table showing a binary relation, that of INTER-
SECTION. Three large regions (the center of the flood
plain and the two lowest contours) are chosen to be
intersected with the land-use classes because they are most
likely to yield interesting results. Since the center
of the flood plain is not eguivalent to a contour class,
it is also intersected with each of the contour classes.
Note that the cost of INTERSECTION can be less than the cost
of doing a NDCOUNT on both trees because a large white
node in one tree can make it unnhecessary to process a large
subtree  in the other tree. As well as the cost of per~
forming the INTERSECTION operation (measured in seconds),
the table also gives the area and number of nodes in the
result. Note that a UNION table is not shown because UNION
behaves in the same manner as INTERSECTION on the logical
complement of the inputs (i.e., switch the black and white
node colors). Note that the INTERSECTION algorithm is
greatly simplified by the digitization process”s alignment
of the maps so that the pixel at (0,0) corresponds to the
same ground truth in each map.

The final table, QUADTREE TRUNCATION STATISTICS (Table
5.12), shows the amount of compression one can obtain by
truncating the quadtree maps. The usability.of the truncated
quadtrees is discussed at the end of Section 5.2 and shown
in Figures 5.4-5.8. Under each map”s name there are two
columns. The first column shows the number of nodes in the
gquadtree that is formed by truncating the full (depth 10)
quadtree to the depth indicated in the far left column. The
second column shows the percentage of nodes in the £full
{depth 10) quadtree that would not be needed for the trun-
cated quadtree.
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TABLE 5.2. LANDUSE AREA RESULTS

T A ST SEAS R ST S e e i e s B e s e —— i Ui e ———— i S i i e W p e v ——— ——— — —— — T—— il . — —

(1 OF 5)
| POLY-|NUMBITIME| AREA | AREA | CENTROID |TIME]|
I GON | OF | I | 1IN | InN | | IN |
i | NODE | SECS|PIXELS| ACRES | X Y |SEcCS|
lacc.l | 45| 1.3] 201 | 28.541 4.6 143.7] 2.7/
lace.2 | 25| 1.3} 154 | 21.87] 27.0 169.5{ 2.3
lacc.3 | 61} 1.3} 2021 28 .68| 40.6 197.6} 2.2
lacce.4 | 107] 1.3 593| 84.21| 76.6 218.5| 2.3
lace.5 | 13} 1.3] 281 3.96|139.7 190.4} 2.5
lacc.6 | 92| 1.3] 356]| 50.55/157.0 218.4} 2.1
facc.7 | 721 1.31 345] 48 .99}180.6 206.1] 2.1
lacc.8 | 33] 1.3} 270| 38.34{183.6 239.5] 2.1
lace.2 | 12] 1.3| 181 2.56| 38.2 299.1] 2.1
|lacc.10| 59 1.3} 146 | 20.73| 18.6 372.2| 2.1
lacec.1l] 85| 1.3{ 256 36.35157.0 256.5( 2.1
lacec.12) 2111 1.31 1174] 166.7L{131.7 317.7} 2.2
jacc.13] 78i 1.3 5286 74 .961202.0 332.21 2.1
facc.is] w©o1 L.34 292 ] @l .46|250/5 382.71 2.1
lace.15| 124] 1.3} Vo2l Yy .od]l62.9 412.9]1 2.1
lacc.le]| 58] 1.4 214| 30.391244 .3 393.9| 2.1
lace.17| 70| 1.3} 229 32.52(258.2 414.5}) 2.1
lace.18] 120].1.3} 465 | 66.03]329.0 390.6] 2.1
lace.19] 56} 1.4 la8| 26.70(349.3 432.2} 2.1
lacp.l1 | 731 1.5] 187| 26.55| 33.4 242.6} 2.1
lacp.2 | 575] 1.5 6035] 857.97{238.2 182.3] 2.2
tacp.3 | 99| 1.5} 339/ 48 .14] 9.5 349.3] 2.1
lacp.4 | 48| 1.5] ~ 1321 - 18.74) 34.3 361.5| 2.1
lacp.5 | 58] 1.6l 244 34.65] 3.3 394.9] 2.1
lacp.7 | 877! 1.5] 14806} 2102.45}288.9 321.0| 2.2
lacp.8 | 42| 1.5] 93| 13.21]157.4 348.01 2.1
lacp.9 | 120| 1.5{ 666] 94 .57| 15.8 432.0| 2.1
lacp.10} 2961 1.6] 14121 200.501219.0 434.6| 2.1
lacp.ll] 66| 1.5] 2851 40.47[295.3 434.7| 2.1
lacp.l2{ 179 1.5} 9771 138.731323.7 425.6] 2.1
lacp.13] 231] 1.3 1356] 192.55|366.9 426.2] 2.1
b ar.l | 69| 1.4] 204 | 29.971209.7 117.6] 2.1
t ar.2 | o0} 1.3| 195  26.12]359.7 213.0f 2.1
| ar.3 | 571 1.4 135 19.17]104.4 306.4| 2.3
| ar.4 | 114 1.3} 453} 64 .33j172.9 333.9] 2.4
t ar.5 | 60| 1.3| 207] 29.390176 .1 439.4| 2.2
lare.l | 26] 1.3] 1524 21 .581323.1 436.0{ 2.1
tavf.l | 28] 1.3] 121 17.18] 29.1 21.3}1 2.1
lavE.2 | 44] 1.3| 134 19.03] 16.4 118.31 2.1
lavE.3 | 771 1.4 326 46.29]100.6 82.3} 2.1
lavi.4 | 103} 1.4] 628 | 89.18{135.1 104.9) 2.1
lavE.5 | 90| 1.3} 285| 40 .47]105.6 111.4] 2.1
lavf.e | 687| 1.4 4914] 697.79)157.5 lee.l]| 2.2
lavE.7 | 28| 1.3} 46} ©.531259.1 87.6| 2.1
lavE.8 | 565(|.1.3] 3823 542.87| 39.5 185.5] 2.2
lav.9 | 151] 1.3]| 901| 127.94f 9.8 235.61 2.1
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442 .0|

(2 OF 5)
| POLY-|NUMB|TPIME| AREA | AREA | CENVTROID |TIME]
I Gow | oF | In | I | In boIn |
i | NUDE | SECS | PIXELS| ACKRES | X Y |sbCs|
javE.l0l 3850 1.3 1715| 243.53] 7iL.1 250.0{ 2.2|
lavf.rl| 154] 1.3] vol| 136.46[129.0 231.1} 2.14
lavE.l2) 79| 1.3] 325} 46.15)17.2 257.3| 2.1}
jav£.131 lle| 1.3] 704 | 99,971242.3 253.5} 2.1}
lavE.l4) 319} 1.3] 1590f 225.7801347.3 22.3] 2.1}
javE.lS] 176 1.31 1619} 229.90] 59.0 283.4] 2.1
iavi.le} 4o} 1.31] 2351 33.371 11.1 293.5| 2.1}
favE.l7] 35} 1.3| 1524 21 .581 22.9 310.1} 2.1}
favf.ls} 46} 1.3} 106 15.05] 41.9 305.6) 2.21
lavi.ly| 167} 1.3] 7L3] 101.25] 85.5 351 .9 2.1}
lavf.20{ 131 1.3]j 46 | 6.53] 2.7 333.9{ 2.1]
lavi.2l]| 182] 1.3] 8511 120.s4| 36.6 3s8.8] 2.1|
lavE.22f 20} 1.3] 351 4.971172.0 262.9} 2.1/
lavE.23! 40| 1.4} 76| 10.79)157.2 355.2] 2.1|
‘lavf.24] 55| 1.3} 214 | 30.39] 76.9 390.3| 2.1}
lav£.25] 136] 1.3} 1i56! 164.15] 74.8 442.0] 2.2{
favf.26}f 177] 1.3 7711 109.485(|213.6 397.0| 2.2}
favf.27] 28] 1.31 40} 5.681290.2 367.7] 2.1}
favf.28] 17 1.3} 44 | 6.25]1305.3 357.2% 2.2]|
lavi.29} 45} 1.31 138} 19.601268.6 399.1}| 2.1]
lav£.30| 144} 1.3} 9841 139.731295.9 416.5} 2.2]
lavf£.311 45 1.3} 123] - 17.471359.0 420.9| 2.1}
lavv.l | 29} 1.3} 110} 15.62f 5.3 78.9} 2.1}
javv.2 | 29| 1.3} 68 | g.oo] 91.3 73.4) 2.2|
lavv.3 | 100} 1.3] 3731 53.971120.5 1086.5} 2.21
lavv.q | 24| 1.3] 87| 12.35) 27.3 159.4] 2.3]|
javv.5 | 54] 1.3] 105{ 14.91] 9.8 177.9) 2.1]
lavv.e | 109} 1.3] 703] 99,831 19.9 201.5{ 2.1
lavv.7 | 100] 1.4} 328/ 46 .58| 40.6 231.2] 2.1i
lavv.s | 29 1.3} Sel 7.95] 83.1 244.9] 2.1}
favv.9 | 107 1.3{ 449 | 63.76|189.3 177.7] 2.1}
lavv.l0| 6] 1.4} 243] 34,511155.4 170.5| 2.1}
favv.ll]| 96] 1.4 339| 48 .141225.6 191.2( 2.2]
lavv.12{ 47} 1.3} 2001 28.401179.8 247 .4} 2.2]
lavv.13] 35| 1.3] 1401 19.681259 .0 24 .4} 2.2]
lavv.l4] 55| 1.3| 163  23.15{286.9 4.5 2.2|
lavv.l5] 19{ 1.3} 40 5.681275.9 11.81 2.3}
javv.1611076| 1.4| 11390} 1el7.38} 62.8 362.2{ 2.3}
favv.17] 20| 1l .al 38| 5.401 78.7 261 .4) 2.1}
lavv.18] 85{ 1.4] 295{ 4] 89| 91.5 283.6) 2.11
lavv.19| 740] 1.3] 4580 650.36{157.6 363.5] 2.2|
lavw.20| 402] 1.3] 3294| 467.75(149.2 277.7] 2.5|
tavv.21} 229] 1.4]| 2158] 306.44}2156.0 272.0] 2.5}
tavv.221 69| 1.5] 309) 43.88|205.4 347.2] 2.21
tavv.23] 175} 1.5} 1036| 147.11} 17.6 405.0| 2.4l
lavv .24 4 1 .41 251 3.9 1.4 445.9) 2.1}
javv.25} "25) 1.3{ 127} 18.031 24.8 2.3}
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{3 OF 5)
| POLY-|wUks |Tlkk| AREA | AREA | CENTROID
| Gow | OF | In | IN Iiv |

| | WODE | SECS | PIXELS) adrEs | X Y
lavv.2e| 1le] 1.3] 58| 8.241108.0 448.5]
lavv.27] 52| 1.3] 1511 2l .44|192.5 419.7]
lavv.2s 122| 1.3} 500] 7L .00)166 .4 432.5]
lavv.29] 24 1.3] 63| 85.951164.9 444.9}
javv.30{ 81] 1.3] 318/ 45.16(224.9 404.0]
lavv.31] wowsl 1.3 302§  42.8wl217.6 442.9]
lavv.32] 73] 1.4 35&6] . 50.54|27L.9 270.11
lavv.33) 49| 1.3] 124} 17 .6113L3.4 359.0|
lavv.34] 33| 1.3] 72| 10.221265.7 3%0.5|
lavv.30] 15} 1.3| 361 5.111321.3 446.3]
lavv.37] . 30} 1.3 207} 29 .3%|33¢.6 41l0.2].
lavv.3s] 231 1.3} 101} 14.341324.3 420.0]
favv.39| 11| 1.3| 231 3.271363.0 413.0]
lavv.40] 22] 1.3} 731 10.371362.0 427.2§
“lavv.4l]l 97| 1 .4} 331} 47 .00{ 364 .3 424 .2|
fbpor.l | 321 L.3] 711 10.06|102.4 308.5]
ibbr.2 | r21! 1.3} 361] 51 .261145.0 422.9|
|peg.l | 97} 1.3] 2291 32.52|13L.8 439.3]
tbes.1 | 51} 1.3} 147} 20.871101 .4 169 .4
bt.l | 30| 1.3] 132§ 18.74] 54.1 1.5]
bt.2 | 100} 1.3] 268]| 38.06|1486.4 106 .5
bt.3 | 58%{ 1.3 2881} 409.10i1360.2 351.0]|
bt.4 | 50| 1.3} 122§ 17.321283.5 442.2|
fto.l | 75| 1.3| 5&5 | 83.07]220.8 3.6/
fo.2 | 292} 1.3 2605| 369.91i215.5 44.9]
fo.3 {1145] 1.3] 10010 1421 .42]304.5 123.0]
fo.4 | 465 L.4f 37291 529.52[/336.3 50.71
fo.5 | 1le] 1.4] 251 3.55}1l64.0 362.8]
Ir.1 | 56} 1.4} 107| 15.19} 96.3 120.4|
ir.2 | 331 1.4l 63| 8.951103.9 190.6}
ir.3 | 289 1.4 649 | 92.161112.7 281.3]
1r.4 | 63} 1.41 129} 18.32)152.7 437.0]
r.1 | 181} 1.4} 8691 126.24{198.7 138.6!
r.2 | 227] 1.4 1178| 167.281233.0 1086.1
r.3 1428} 1.4 17277] 2453.331330.2 232.2}
r.4 | 232 1.31 1003] '142.43290.2 17.11
r.5 | 391{ 1.4] 2800 397.00{33c.6 79.2|
ucb.l | 39 1.4} 153] 21.731 77.9 7.9
ucb.2 | 30] 1.3 96 | 13.83] 49.3 105.4]
ucc.l | 521 1.4} 430] 6L .06 58.4 14.3|
luec.2 |  4&f 1.3] 141 | 20.02| 55.2 57.5]|
luce.3 | 23 1.3] 1011 14 .34} 44.5. 79.9]
lucec.4 | 13] 1.4 ‘64| 9.09| 77.5 173.5{
luce.5 | 35} 1.3] 119] 16.90| 86.4 83.71
Juce.e | eol] 1.3] 163} 23.15{183.3 379.11
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| POLY-|nUmbs |TIRE| AREA | AkEA | ChNTrOID |PIMb]|

Guw |} OF | I | IN | IN | i oIn .}
| | 6NODE | SECS|PIXELS) &ACRES | X Y |sECS|
juer.l | 1| 1.3) 35} 4,97 6.8 1.8} 2.2
fucr.2 | 21| 1.3} 45 .39 8.9 25.5] 2.2
luer.3 | 2771 1.3 1342| 190.%6] 34.2 106.5] 2.2
lucr.4 | 331 1.3} 96 | 13.63| 66.4 157 .4} 2.1
fuew.l | 671 1.31 ~ 139{ 19.74] 17.6 95.5) 2.1
fuew.2 | 73] 1.3] loej 23.57| 27.5 127.9}1 2.1
jues.l | 117} 1 .41 960} 136.32f10v.1 137.8] 2.1
lues.2 | 2121 1.3 608 | 94 .86| 87.4 3le.ii 2.1
fuir.i | 501 1.31 239] 33.94] 50.0 134.8] 2.1
juii.2 | 51} 1.3] 153] 20.99]135.9 200.8] 2.2
juis.l | 50 1.3 201 2.84f 1.4 1.91 2.2
luis.2 | 5}-1.3] sl 1.14f 0.3 40.3] 2.1
fuis.3 | 96| 1.3] 255] 40.47} 10.2 58.7| 2.1
fuis.e | 25} 1 .4| 157} 22.29] 47.3 log.v| 2.1
fuis.5 | 47! 1.4] 146 20.731109.4 167.1| 2.1
luis.6 | 34| 1.3} g5l 12.50| 72.0 160.0] 2.1
fuis.7 | 851 1.31 208 | 38.06)166.2 317.1) 2.2
fuis.8 | 281 1.4| 701} 9.94|2488.9 426.1] 2.3
juiw.l | 29| 1.3]| 56| 7.95(1219.2 18l1.2{ 2.2
fuiw.2 | 52{ 1.4 1301 18.46]146.4 252.11 2.2
lunk.l | 128} 1.3] 1343| 190.711374.5 15.3} 2.3
lunk.2 | 50| 1.3l 176l 24.991387.8 255.9| 2.2
unk.3 | 2{ 1.3} 8| 1.14|392.5 187.5] 2.2
junk.4 | 51 1.4} 5] 0.711392.1 193.31 2.2
lunk.5 | 21} 1.3] 33| 4.69|388.7 203.0) 2.1
lunk.6 | 471 1 .41 113] 16.05[{390.5 230.6f 2.1
junk.7 | 4| 1.3] 10| 1.42{392.5 340.0} 2.1
funk.8 | 15} 1.3 21 2.98|390.3 403.8] 2.1
lunk.9 | 19| 1.3] 28 | 3.96[390.9 425.3] 2.1
Junk.l0| 10} 1.3} lo]| 2.271390.6e 447.1) 2.1
juoc.l | 51] 1.3| 254 | 40.90] 97.2 64.0f 2.1
ivog.l | 134) 1.3] 1115 15s5.33|1l1e.2 5%.1}] 2.1
juoo.l | 39{ 1.3} 2731 38.771 7.3 9l.4f 2.2
juoc.2 | 47| 1.31 125} 17.75) 58.2 157.5] 2.3
fuco.3 | 35} 1.3| 92| 13.06]121.7 204.31 2.3
fuop.r | 111} 1.3] 29| 4.12| 33.9 101.4]1 2.2
luop.2 | 55| 1.3] 184 26.13/100.0 150.0{ 2.1
luvov.l | 35| 1.3| 119] 16 .90| 95.6 5.2] 2.1
fuov.2 | 38l 1.4] 119] 16.901103.9 20.9} 2.1
jurh.l | 331 1.3] 126} 17 .89 82.4 loC.9] 2.1
luen.2 | 204 1 .4} 41 | 5.821174.5 304.0] 2.2
jurs.l | 873} 1.3] 90ls| 1280.56) 57.8 ©2.8] 2.3
lurs.2 | 75{ 1.3} 246 34.93] 15.1 108.5| 2.2
lurs.3 | 37| 1.3] 148| 21.02] 3.3 123.8] 2.1
furs.4 | 770 1.3] 10427 lav0.03|179.6 49.6] 2.2
lurs .5 | 1.31 7301 103.66)13%.0 139.5] 2.2
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(5 ofF 5)
| POLY—{wUls | Tibe] AkEa | AReA | CENTROIL |Timk|
PoGow |} oor | I | In | In i |oIn |
| {NODE | SECS | PLXELS] ACkks | X Y |s&Csi
jurs.e | 851 397] S50.371 82.8 175.1) 2.
furs.7 | 32| 1. 621 8.80]112.4 178.0| 2.
jurs.8 | 531 1. 194 27 .55| 6v.l 248.2| 2.
jurs.y | 145 1. 403 ] 57.23} 92.1 2lv.6| 2.
jurs.10i 105) 1. 279 | 39.621277.4 25.4} 2.
jurs.l11| 119} 1. 455 | 6 .87|274.0 T4.3] 2.
furs.12] 19| 1. 49 | 0.96| 17.5 302.3]1 2.
urs.13] 374 1. 211 29 .90} 3.9 36l.81 2.
lurs.la| 37} 1. 112} 15.90}118%.0 272.51 2.
lurs .15} 3271 .. 1650f 234.30]211.9 3e2.8| 2.
lurs.lel oo} 1. 26l | 37.061238.58 283.9) 2.
furs.17] 251 1. 431 6.11] 7.6 3w6.0| 2.
jurs.lgi 7| L. 199] 28 .26 40.3 413.3] 2.
jurs.i2| 33} 1. 631 8.951198.5 400.0} 2.

533 76 .401212.9 420.2}
1014} 143.991259.1 428.4]

furs .20 91}
jurs.2L| 2486

»>
-
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jurs.22]| 71 10} 1.42]306.4 447 .9]

urs.23| 9] 2.131315.58 447 .8|

Jurs.24| 54} 1. 193} 25 .121341.5 445.7| 2.
juus.l | &9l 1. 246 | 34.93] 70.6 308.9| 2.
fjuus.2 | 12} 1. 15 2.13[147.6 367.2) 2.
fuut.l | 246] 1. 600 | 85.20} 40.0 14s.0}{ 2.
juue.2 | w9ij 1. 1e6] 23.57| 6l .4 132.4] 2.
juut.3 | S5e0l 1. 1162 le5.00(1%s.3 305.2] 2.
| vww.l | 39} 1. 1os| 15.341105.0 Lb5.9| 2.
| wo.dl | 94] 1. 535]| 75.97) 8v.8 32v.3] 2.
i wo.2 | 45] 1. 126 17.891129.5 435.7] 2.
| ws.l |la83]| 1. 340%| 484.0s5(131.3 213.2] 2.
fwwp.l | s8f 1. si 1.14}300.0 251.3] 2.
|wwp.2 | 8l 1. i1 1.56] 10.8 43v.3] 2.
fwwp.3 | 24] 1. 45} 6.391307.5 287.0} 2.
iwwp.4 i 24] 1. 51} 7.24|300.6 377.2} 2.
| wwp i 221 1. 6l | 8.66}321.5 370.7] 2.
| wwp { lSI . 301 4.26{355.3 359.7) 2.
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TABLE 5.3. TOPOGRAPHY AKEA RESULTS

(L oF 2)
| POLY-~|NUMB|{TIME| AREAX | AREA | CENTROID |TIME]
| GoN | oF | In | IN | IN | | IN |
| | HODE | SECS | PIXELS| ACRES | X Y |sEcs|
| 1.1 |25304 1.1| 58318] 8281.161 96.4 270.1| 2.2]|
| 2.1 }1268f 1.1] le202| 2300.68| B6.9 6l.4] 2.0]
i 2.2 1 18] 1.2] 511 7.24|196.6 1.51 1.8}
| 2.3 [3146] 1.2] 35351 5019.841242.0 312.61 2.2|
i 2.4 |} 8l 1.2] 8| 1.14} 85.0 150.0] 1.8]
2.5 | 51 1.21 5| 0.71] 93.3 144.9] 1.8
i 2.6 | 35| 1.21 68 | 9.66/101.1 149.9} 1.8]
b 2.7 1 2l 1.21 5] 0.71} 98.7 132.3| 1.8|
| 2.8 | 4} 1.2] 71 0.99[104.4 131.1} 1.8}
i 2.9 | 4} 1.1 4| 0.571 95.5 141.0} 1.8|
| 2.101 5| 1.1| 111 1.56(100.7 142.0] 1.8]
i 2.1} 71 1.1} 71 0.99]1106.2 157.8| 1.8|
i 2.12} 21} 1.1} 331 4.69[103.8 169.4| 1.8]
| 2.13| 3] 1.1} 6i 0.85(108.3 1L77.81 1.8]
| 2.14}1 179) 1.1} 1718 243.96{1355.7 18.4| 1.9]
i 2.151 6l 1.11 120 1.701 3.8 285.31 1.9
i 2.le} of 1.1} 12] 1.70f 0.6 296.8} 2.0l
i 2.17) 70 1.1} 10| 1.42f 0.5 304.2}1 1.9{
| 2.18] 49} 1.1} 214 30.39] 3.1 361.7| 1.9]
b 2.19] 31 1.1} 6| 0.85l188.8 320.31 1.8l
| 2.20f 35] 1.1} 8y | 12.641192.4 384.0| 1.8]
i 2.211 2841 1.2 2453 3485.33]| 28.3 424.9} 1.8]|
I 3.1 | 907! 1.11 3400{ 482.80{166.7 42.5| 2.0}
i 3.2 1 20| 1.2§ 53| 7.53{1111.1 64.7] 1.8
i 3.3 | 3} 1.1 3 0.43]118.8 60.8| 1.9]
| 3.4 [2677] 1.1} 13111} 1861.70}294.3 263.7| 2.21
| 3.5 1 68] 1.1} ig2f - 25.84|201.7 207.4) 1.8]|
| 3.6 | 391 1.1} 1024 14 .48[228.7 257.4}1 1.9]
| 3.7 | 241f 1.1} 841} 119.42|342.6 27.3} 2.0l
| 3.8 1 66} 1.11 243 34.511376.7 11 .7} 1.8}
| 3.9} 11| 1.1l 14| 1.99{227.5 351.1} 1.8}
i 3.101 5( 1.1] sl 1.14]|246.3 350.3} 1.8]|
| 3.11}4 4} 1.11 41 0.57}211.0 359.0| 1.8}
I 3.12{ 5/ 1.1} 5] 0.711217.3 354.3| 1.8{
] 3.13] 41 1.1} 4| 6.571227.0 357.5| 1.8]|
| 3.14] 14} 1.1} 201 2.8401254.1 355.5( 1.8}
| 3.15] 55| 1.1] 313] 44 .45 4.1 425.5| 1.8]
| 3.1el 71 1.1} 71 0.99) 16.5 409.5{ 1.8|
i 3.17) 21} 1.1} 51 { 7.24] 19.9 424.5] 1.8}
4.1 | 5] 1.1} 8| 1.14j10e.8 0.1 1.9l
I 4.2 | 61 1.1] 9| 1.281112.8 11.2§ 1.8}
| 4.3 ] 736} L1.1| 2308] 327.74i1175.4 36.9] 2.0|
| 4.4 |2165] 1.1| 7466| 1060.17}300.1 189.3| 2.2}
i 4.5 | 6l 1.1i 124 1.701279 .8 0.3 1.9]
I 4.6 | 44 1.2} 1341 19.03]382.2 7.71 1.9}
I 4.7 | 6] 1.2§ 81 1.141335.0 306.0| 1.8}
| 4.8 | 9| 1.2] i5} 2.13}347.4 330.2] 1.8}
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TOPOGRAPHY AREA RESULTS

(2 oF 2)

POLY-|uUib | TIRE| ARRAa | AKEA | CRNCRJUID  [TIkE}
GUN | OF } In | I | In i | IN |
[WODE | SECS | PIXELS]l ACRES | X Y [SECSI

4.9 | sl 1.2 5 1.14}1378.5 335.01 1.8}
4.10] 5| 1.4] 1] . 1.561378.3 34v.ll 1.9]
4.11] 3s) 1.2 = 83] 11.79[372.8 364.9] 1.8l
4.2 4f 1.1} 4] 0.571367.0 372.0) 1 .91
4.431. &l 1.1} 4| 0.571374.0 377.01 1.9]
5.1 | of 1.11 12} 1.70[1159.3 14.9] 1.8|
5.2 | 53561 1.1] 1eev] 237.00|1lu4.9 40.4]1 1.9}
5.3 [Lle34] 1.1] 5222} 74L.52]299.0 leg.2] 2.0}
5.4 | 1e] 1.1} 351 4.97|356.1 3.0 1.8l
5.5 1 36| 1.1l 721 10.22]327.3 2885.11 1.9]
5.0 | 4] 1.1] 4 0.571359.0 273.0| 1.9}
5.7 | 1711 1.1} 453 | 64 .33)368.9 302.0) 1.9}
6.1 | 8] 1.1] 11 1.57144.6 31.0] 1.5l
6.2 | 395) 1.1] 803] 114.031205.2 43.8| 1.9]
6.3 | 9] 1.1 18] 2.561153.4 .37.11 1.9}
6.4 | 6f 1.11 6| 0.85[220.0 140.8] 1.9|
6.5 j1458} 1.11 503l] 714.40|305.4 155.2] 2.2}
6.6 | 24} 1.2] 33} 4.69}1383.8 104.5| 1.8}
6.7 |- 3] 1.1} 3 0.43]384.5 115.5] 1.9}
6.8 | 13} 1.1] 28] 3.98]/3Lv.6 235.5f 1.5l
6.9 | 4t 1.2 71 0.99}1335.9 262.1] 1.8}
6.10] 12f 1.2] 124 1.701378.8 291 .4} 1.9|
6.11} 371 1.1} 64 | 9.09{372.6 302.7} 1.9}
6.12] i 1.3} Y 0.571360.5 306.5| 1.8i
7.1 | 334} 1.1] 7031 . 99.83[1210.4 4da.a] 1.9]
7.2 11435] 1.11 5059] 718.38[3L4.7 152.5} 1.9]
7.3 1 90} 1.1i 297§ 42 .171380.7 L0%.4] 1.9}
7.4 | 6] 1.1] 6l 0.851302.0 142.2] 1.9}
7.5 | 1] 1.14 1j 0.141353.5 139.5] 1 .&|
8.1 | 231] 1.1] 459 | 65.18]213 .4 " 45.4] 1.9]
8.2 | 8] 1.1/ 14] 1.991312.0 5s.6l 1.9]
8.3 [1140| 1.2} 384%| 546.50]330.5 135.8! 2.0]|
8.4 | 2| 1.2} 2] 0.28133v.5 51L.0} 1.9}
8.5 | 2041 1.14 645 | 9l .59[375.7 119.1] 1.9}
8.6 | 4} 1.1} 4| 0.571330.0 191.04 1.8]
9.1 | 1271 1.1/ 3101 44,02|216.8 46.0| 1.9{
9.2 | 32} 1.1 62| 8.80}314.8 102.5] 1.9]
9.3 | 74} 1.1} 200| 25.401338.4 75.5] 1.8
9.4 | 775| 1.1{ 2473| 351.1L7}358.1 135.2| 1.9]|
9.5 | 5{ 1.1] 8l 1.14]381.9 195.9) 1.9}
9.6 | 36] 1.1 135] 19.1713768.5 206.31 1.9
10.1 | 351 1.11 1161} le .47]203.1 44.7| 1.9
10.2 | 35[ 1.1] 59 | 8.38]373.8 0.9} 1.8
10.3 | 23} 1.1} 351 4.971353.6 98.0| 1l.5]
10.4 | 3491 1.1| 1420fi 201.62|355.7 154.4} 1.9}
1.4 271 br.1d 57| 5.091352.2 llo.2{ 1.8]
11.2 | 6} 1.1} 6| 0.85]362.5 173.0) 1.9]
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TABLE 5.4. FLOCDPLAIN AREA RESULTS

——————— - s i D ke S Sl D A S kAP b st S e s skl (e e i (e WA sk S A il D) (Y S THP P P W R THS WD WA S

| POLY-|NUMB|TIME|] AREA | AREA | CENTROID |TIME|
| GoN | oF | IN | IN | IN ] | 1IN |
| INODE | SECS | PIXELS| ACRES | X Y |SECS]|

|right {1031} 0.21104270{14806.34|277.1 241.8] 0.5}
jleft |1525{ 0.2] 46003{ 6532.43]| 82.1 141.6} 0.6l
0.2

| center| 2208}

e B - S . S S S S T — i o) il A A S
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TABLE 5.5, LANDUSE REGION PROPERTY RESULTS

(1 OF 5)
| PULY~|PER=~|TIME| ENCLOSING |{TIME]
| GON | IM~} IN | RECTANGLE | IN |
} |ETERISECS]| x Y WID HGT|SECS]|
lacc.l | 7z! 3.9] 0133 14 22| 2.1/
lace.2 | 50§ 3.7] 21 164 13 12| 2.1]
lacc.3 | 78f 4.2} 35 190 1& 19| 2.1|
lacc.4 | 114l 4.0] o1 205 31 25} 2.3
lace.5 | 24| 3.8{137 188 6 6| 2.3]
facc.6 | 106| 3.81139 209 34 19) 2.2}
lace.7 | 88| 4.4}170 195 20 24| 2.21
lacc.d | 94| 3.7l1e64 236 39 8| 2.2}
lacc.9 | 20| 3.7] 37 297 4 6| 2.21
lacc.10]1 88| 3.8] 3 368 34 10| 2.2]
lacc.ll] 92| 3.8(149 245 18 24} 2.31
lacc.12] 212 3.8|116 297 47 46| 2.3|
lacc.13i 120f 3.7{185 319 37  23f 2.1
facc.l4| 92] 3.7{1246 370 17 29} 2.1}
tacc.15) le2| 3.7j146 399 41 34] 2.1)
lacc.l6| 76| 3.7/235 385 20 1wl 2.1|
lacc.17] 86l 3.9vi246 407 25 ‘18{ 2.1
lacc.18) 136 3.7i313 375 33 35| 2.1]
lace.19] 72] 3.71340 425 1le 17| 2.11
lacp.l | 102] 3.8| 24 233 19 24| 2.1]|
facp.2 | 616 4.2]149 142 159 99| 2.1]
lacp.3 | 118} 3.71. 0 336 18 35| 2.1}
lacp.4 | 56| 3.9] 28 356 15 13] 2.1}
lacp.5 | 104| 3.7] 0 372 13 39| 2.1}
lacp.6 | 98] 3.71186 296 21 28] 2.1/
facp.7 | 976] 3.91i99 244 159 156] 2.11{
lacp.8 | 461 3.81153 343 13 10} 2.1l
lacp.9 | 160].3.71 G 413 30 37| 2.1}
lacp.10] 324{ 3.71181 412 78 38| 2.1}
lacp.ll| 90| 3.7[285 422 17 28%{ 2.1|
tacp.12| 264 3.7130& 397 40 53| 2.1
lacp.13] 282] 3.71340 404 53 46| 2.11
| ar.1 | 78] 3.71199 109 21 18| 2.1}
| ar.2 | 821 3.81352 205 19 21{ 2.1}
| ar.3 | 2] 3.8|156 299 17 14| 2.1]
| ar.4 | 106]| 3.9|1157 323 32 20| 2.1}
| ar.5 | 72| 3.7|171 429 11 21] 2.1}
lare.1 | 56| 3.8]319 428 9 19| 2.1/
lavE.l | 501 3.8} 22 18 17 i 2.1
lavE.2 | 66| 3.71 = 111 17 1le} 2.11
favf.3 |- 94] 3.7 w1 71 19 24} 2.1]
lavf.a | 112 3.7[12+ 85 19 36| 2.1}
laveE.5 | 84} 3.8] 95 101 20 221 2.11
lavE.e | 7861 4.11107 8Y 104 130| 2.1/|
lavE£.7 | 40} 4.0/253 85 13 71 2.1}
lavE.s | 688 4.0 © 129 95 108{| 2.1|
favE.9 | 204] 3.9f 92 198 29 72| 2.1}

Ll R L Ly R e b b LY Iy ———
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LANDUSE REGION PROPERIY RESULTS

(2 OF 5)
| POLY=-|PER~|TIKE]} ENCLOSING | TIME |
| GON | I~} Iw | RuCTANGLE | Ini |

i |ETERISECS| X Y  wll ﬂbTISbLbl
tav£.l0] 432] 4.0 33 229 72 52|
javf.lil L90} 3.91108 206 51 39]
lavE.i2| 100f 3.8|174 244 26 24|
lavf.l3] 2021 3.71213 244 58 24}
lavt.lal 386 3.8{293 0 101 57}
lavE.l5] 214] 3.8] 33 260 49 56|
tavE.le| &0 |- 2 283 1s 22|
favE.l7] 56l | L5 305 1e 11|
javE.lg] 56l | 38 296 & 19|
favt.lol 216/ | 70 315 36 58}
lavE.20 30| | 0 330 7 sl
lavf.21| 208 : 4 372 58 40|

i

i

!

!

|

s © s 9
¢ = 4 B & & B3 ¥ & & »

-

L]
L]

b b b b b e b b et b b b b b e b e e e e b e e e

lave.22f 34 170 258 7 10|
{avi.231 40] 151 353 14 o]
lavE.2al 72] | 66 354 21 15}
lavE.25{ 220! 30 436 93 14 .
lavE.20] 222| 186 378 54 371
lavE.27] 30} 289 363 4 11|
lavE.2sl 32| |303 353 6 10|
lavE.2y] 60| j260 394 18 12]
lavE.30] 212} {272 397 42 53|
lavf.31| oud] |1356 411 10 23]

*
*

L]
e B Bt LS BN B BN BN B R I I N N IO I« ol + s RO RN

lavv.l 501 3.71 0 73 14 11}

lavv.2 3wl 3.7]1 87 70 11 sl 2.
lavv.3 val 3.71115 858 12 35| 2.
javv .4 42| .71 21 135 12 9| .
javv.5 : .71 0 170 21 174 2.
lavv.é 134 3.7{ 0 180 35 31} 2.
favv.7 132f 3.8) 18 226 45 15{ 2.
lavv.s 44| 3.8 80 237 7 15] 2.
javv.y 14y} 71173 157 32 37| .

.71147 155 19 28|
81214 180 25 19}
.0l167 244 29 11}
71250 244 21 12}
71272 0 28 12}
{273 6 6 13}
| 0 238 140 201|
| 76 258 6 9l
b 77 272 29 26}
}110 302 99 109]|
}113 240 8Bl 84}
!
i
|

lavv.l10| o8}
javv.ll]| 100}
lavv.r12{ 80}
lavv.13] ¢&6l
lavv.ia] 90|
favv.l5] 3]
tavv.le{l356]
lavv.l7| 30}
lavv.lol 112}
lavv.l9| 7g4]
lavv.20! 444
favv.2l| 264
lavv .22 96|
lavv.23§ 226/
lavv.24] 2&i

- - . [ ] . -
N YR SE SOy VU Sy 5y 55 U U BY U SR

191 244 &3 .52}
192 342 32 1ie
0 382 42 55
0 442 4 sl

*

~J
[+
.:swwwwmwwwwwm.bwwwmwwwu.nwwwwwwwwwwmw‘wwwwuww
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LANDUSE REGION PRUPERTY ReSULTS

(3 OF 5)
| PUOLY=|PER=|TINME| ENCLOSING | PIbis |
| s | Ik=| IN | RECUYANGLE i Ini |
b | ETERISECS] X Y WIL HGT|SLCS|
javv.25] 52| 3.9 18 436 12 14| 2.11{
lavv.261 62] 4.2] 94 448 29 2| 2.1|
favv.27 70} 4.2}182 415 23 12} 2.1/
lavv.28! 1281 4.21155 417 26 33{ 2.1i
lavv.29| 32| 4.l]1l82 441 7 gi 2.1
lavv.30] 108! 4.11211 3ve 33 171 z.11
lavv.31| w4]| 3.9]2006 436 20 la} 2.1}
lavv.32} 130} 3.81255 2%6¢ 29 25] 2.1}
javv.331 o64f 3.7[1307 351 13 19} 2.11
lavv.34] 40} 3.8|203 385 8 12} 2.11
lavv.35) 1l4] 3.91205 390 29 20 2.1}
lavv.3c] 24| 3.71319 444 © el 2.11
lavv.37] 84| 3.50334 392 6 3ol 2.11
lavv.3s! 56} 3.81320 410 8 1ls| 2.11
lavv.39| 20| 3.9/30l 411 5 531 2.11
lavv.4Ul 38 3.71300 421 6 13| 2.1
javv.4l] 104| 3.71375 408 18 31{ 2.11
lbbr.l | 48] 3.7| 99 302 &8 1ol 2.1}
ifpbr.2 | 160j 3.71137 390 16 . 60} 2.1}
ibeq.l | 1301 3.71122 429 19 211 2.1]
fpes.l | 4] 3.8} 95 162 13 1v| 2.1l
-} bt | 80| 3.9/ 35 0 35 51 2.1}
| bt.2 | w8l 3.5/145 90 & 36f 2.1}
| bt.3 | 6701 4.1{340 259 51 la7| 2.11
| brt.4 | 66| 4.0]1275 435 1le 15] 2.1}
| fo.l | 190] 3.9]ls0 0 81 12| 2.1}
| fo.2 | 302] 3.8ll6e 23 94 47| 2.11
| fo.3 1306l 3.9|l84 75 210 107] 2.1}
| fo.a | 5401 3.8{273 13 121 76| 2.1}
| fo.5 | 28| 3.7|160 36l 8 6] 2.11
| 1r.1 | 84f 3.7] 84 118 29 11| 2.1]
| lr.2 | 54 3.8l101 1l&l 7 20| 2.11
i Ir.3 | 3781 3.91105 204 17 149] 2.1}
| lr.4 | 92| 3.38/149 416 ¢ 34| 2.1
| r.l | 204] 3.9]176 117 61 37} 2.11
| r.2 | 298} 3.91205 ®4 62 47| 2.1}
| r.3 11724] 4.1]195.101 196 301 2.1/
| r.4 | 306] 3.91200 © 59 49] 2.11
I r.b i 458] 4.01273 46 121 63| 2.1|
f uch i 521 3.91 70 4 17 9{ 2.11
lucb.z i 50| 3.3! 44 99 11 13| 2.11
luce.l | &8| 3.8| 46 4 24 20} 2.11
Jucc.2 | 52| 4.2f 51 50 11 15} 2.1}
fuec.3 | 46) 4.2f 39 74 11 12! 2.1]
fucc.4 | 321 3.3 74 70 8 sf 2.11
fuece.5 | 50f 3.71 82 77 12 13} 2.1}
lucc.e | 64] 3.81175 373 18 1la| 2.1]

- - - - -
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LANLDUSE RLGIOW PRUPERTY RESULTS

(4 OF 5)
| POLY-|PREk=|TIlkE] ENCLOSING | TIME |
i cunN | Ik} In | RECTANGLL | 1w |

|LTER|SBCS] X Y WID HGT|SkECS]

T i A A A e ke T gy R D D D D W . D S Y St Y P T W S G M A e e A k. e e T S

luer.l | 24 3.71 4 0 7 5| 2.11
juer.2 | 28] 3.7l 6 23 7 71 2.1
luer.3 | 370} 3.71 14 65 46 &7| 2.1
fuer.a | 40| 3.7 63 152 & 12} 2.1
buew.l | 2] 3.7] 11 81 13 28] 2.1
fuew.2 | 99) 3.7 i1v 117 17 20i 2.1
fues.l | lag! 3.7 89 125 40 31| 2.1
fues.2 | 304 3.71 70 280 27 67i 2.1
fuil.l | 8&6f 3.71 3v 124 21 20| 2.1
luil.2 | e8] 3.71127 194 1% 15| 2.1
fuis.l | 18} 3.7 0 00 4 5] 2.1
fuis.2 | 12] 3.71 0 39 2 af 2.1
Juis.3 | 1lel 3.7 2 44 14 35} 2.1
luis.a | 54] 3.7] 42 162 12 14] 2.1
juis.5 | 681 3.7/1105 155 g 25| 2.1
juis.e | 50} 3.7] 66 152 10 15{1 2.1
luis.7 | 82| 3.71153 310 27 14} 2.1
fuis.8 | 46] 3.71243 422 13 10} 2.1
fuiw.l | 38] 3.7]2i6 177 7 11] 2.1
juiw.2 | 64l 3.71139 245 15 14} 2.1
junk.l | 226| 3.7]333 0. 59 54} 2.1
lunk.2 | 801 -3.71378 248 16 21| 2.1
funk.3 | 12} 3.7]1392 lué 2 4l 2.4
funk.4 | 10} 3.7)392 193 2 31 2.1
lunk.5> | 34| 3.7/385 200 9 gf 2.1
junk.6 | 76l 3.713m0 220 8 26l 2.1
lunk.7 | 16] 3.7|3v2 338 2 e 2.1
funk.e | 221 3.7|3s8 402 5 6l 2.1
junk.y | 28| 3.7/3%0 421 3 11] 2.1
funk.l0{ 18] 3.7]35% 445 4 51 2.1
luoc.l | 76| 3.71 87 56 21 17| 2.1
Juog.l1 | 174| 3.71105 30 21 6] 2.1
juoo.l | 74f 3.71 0O &3 17 20| 2.1
juoo.2 | 4] 3.7] 50 152 16 1lej 2.1
juco.3 | 54 3.7{112 200 17 10| 2.1
fuep.l | 28] 3.7] 31 99 7 61 2.1
fuop.2 | 66} 3.7) 92 150 18 14| 2.1
fuov.l | 48} 3.71 90 0 11 13] 2.1
fuov.2 | 48f 3.7j101 13 7 171 2.1
lurh.l | 46 3.7} 76 157 14 9| 2.1
lurn.2 | 3001 3.71171 302 s 71 2.1
{urs.l |1120f 3.51 © 0 1le 157] 2.1
jurs.2 | llel 3.7]1 0 100 34 21f 2.1
jurs.3 | 68| 3.71 0 111 11 23| 2.1
jurs.4 | 924} 3.5]101 0 177 128} 2.1
furs.5 | 148} 3.71117 124 37 31} 2.1
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LANDUSE REGIOQN PROPEKIY RESULTS

{5 OF 5)
| PULY-|PEg~|TIEE | EWNCLOSING I TItuis]
[ GUN | Ib=| Iu | RECTRNGLE [

i |ETERISECS| X Y  WwWID HGT|sLCS|
furs.6 | 1lé6] 3.7] 65 166 - 31 27}
lurs.7 | 40) 3.71110 173 7 13|
|
|

;“‘ .

jurs .& 74| 3. 60 243 22 15| 2.
|urs .9 1701 3. 72 198 27 49) 2.
lurs.LOf 1361 3. 8 32 36l 2.
lurs.l1| 132] 3. b 58 36 27} 2.
furs.r12{ 32| 3. 13 300 10 6f 2.
jurs .13l 78l 3. 0 347 12 271 2.
furs.l4| 54| 102 268 13 14} 2.

173 307 73 83}
233 274. 13 21}

5 383 8  si
406 26 1lai
193 397 11 9 |
197 405 28 26]
232 400 54 50|
305 447 4 3]
314 447 5 31

lurs 15| 408|
lurs.le| 68}
furs.17) 321
lurs.lal 82}
lurs .19 40|
lurs .20 110}
furs .21 3121
jurs .22 14|
furs .23 16}

.

NONNBONOMNNRNUNNRNNNNRDNMROONMNORODONNRONN DN
el e e o ol o f ol ol o Tl Sy Wy S WU U R S TR S S P S S S P A
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-

|
|
|2
| 2
|
I
I
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|
|
I
i
|
l
[
|
|
|
I
|
I
5|1
I1
|
L
s |
|
!
I
I
I
|
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lurs .24} 76| 325 442 30 8f 2.
juus.l | 76l 59 303 25 13} 2.
fuus.2 | 18| 146 366 5 4} 2.
juut .l | 37si 0 104 96 93| 2.
fuut.2 | 140} 36 121 48 22| 2.
fuut.3 | ssel 201 194 249) 2,
t ww.l | 60 180 16 13| 2.
| wo.l | 108| 82 312 18 35| 2.
| wo.2 | 58| 3. 43L 10 19| 2.
| ws.l {2170] 3. o 0 281 450 2.
{wwp.l | 14l 35y 251 4 3| 2.
{wwp.2 | 14| 3.7! 10 438 3 4} 2.
fwwp.3 | 38} 304 282 & 10] 2.
|wwp.4 | 46 298 370 6 15| 2.
lwwp.5 |~ 40| 317 365 9 11§ 2.
fwwp.6 .| 30| 356 356 7 3l 2.
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TABLE 5.6. TOPOGRAPHY REGION PROPERTY RESULTS

(1 OF 2)
{ POLY=|PER-|TINME| ENCLOSING | TIME|
| coN | Id~| IN | RECTANGLE | IN |
i |ETER|{SECS] X Y wiDh HGT|SECSI
i 1.1 J3100) 3.7] O O 283 450| 1.9i
| 2.1 |le08} 3.4} 0 0 276 143] 1.9]
| . 2.2 1 50} 3.2{187 0 21 4] 1.8l
| 2.3 |3646] 3.8l1086 0 272 450| 1.9}
| 2.4 | 121 3.21 85 149 2 4] 1.9]
| 2.5 | 10l 3.21 93 145 3 21 1.8l
| 2.6 | 48] 3.2] 94 146 15 9 1.9}
| 2.7 | 1ol 3.2| 98 132 3 2| 1.8}
| 2.8 | 12} 3.2|104 130 2 4} 1.8]
| 2.9 | 10| 3.2| 95 141 3 2] 1.94
| 2.10] 16| 3.2]100 140 3 5/ 1.8]
i 2.11} 16} 3.2l106 156 2 6| 1.8}
i 2.12} 28} 3.2]102 leé6 5 9{ 1.8l
i 2.13] 10} 3.2]108 177 2 3] 1.8}
|  2.14] 290| 3.21304 0 84 52| 1.9)
| 2.15] 14 3.2 3 284 3 4| 1.8}
| 2.16| e] 3.2 0 295 3 51 1.8}
| 2.171 14| 3.21 0 303 3 4] 1.8]
| 2.18] 86l 3.21 0 343 9 34} 1.8]
| 2.19] 10| 3.3|188 320 3 2] 1.9]
| 2.20] 42] 3.21187 380 12 9| 1.9]|
{ 2.21} 354 3.31 0 380 65 70] 1.8}
| 3.1 |1244] 3.4} 89 0 181 93} 1.9}
| 3.2} 361 3.2il06 62 11 71 1.8]
| 3.3 | g 3.21119 el 2 2l 1.9
i 3.4 |3le2}l 3.7l1l86 0 194 406{ 1.9]
| 3.5 | 108} 3.21196 190 14 38| 1.8{
| 3.6 | 46} 3.21223 253 13 10} 1.8i
i 3.7 | 334} 3.34295 0 93 57f 1.9}
i 3.8 | L02] 3.21306 0 23 27| 1.8}
' 3.9 | 18} 3.21226 350 5 4} 1.8
| 3.10] 121 3.21245 350 4 2{ 1.81
I 3.11] 8f 3.2§211 359 2 2 1.9
[ 3.12] 12} 3.21217 354 3 3] 1.9}
| 3.13| 10} 3.2)227 357 2 3} 1.8
[ 3.14] 20} 3.21252 354 5 5/ 1.8]
| 3.15| 114] 3.2 ©0 410 13 40| 1.9|
| 3.1el 12| 3.21 le 409 3 3f 1.8}
| 3.17] 321 3.2 16 422 9 71 1.8
| 4.1 | 14| 3.2}1105 0 5 2] 1.8
| 4.2 | 14| 3.2/112 10 3 41 1.8i
i 4.3 j1014]| 3.4]119 0 148 771 1.9
| 4.4 }2732] 3.6]195 0 193 335| 1.9]
i 4.5 | 18| 3.2]/277 o 7 2| 1.8l
i 4.6 | 2] 3.2|376 o 13 17| 1.9}
i 4.7 | 121 3.21335 305 2 41 1.8]
{ 4.8 | 18} 3.2]346 329 5 4l 1.9]

e — A T T — . — — — T —— — T —— " — —— . - ——— —
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TUPO&RAPnY REGION PRUOPEXTY RbLSULTS

(2 vr 2)
| PUOLY~|PEx=|TIMs|  ENCLUSING  [TIpE]
| GOw | Ih=l I |  RECTANGLE | I |

| | bTER]|SeC8] X Y wID HGT|SECS]

4.9 | l8l| 3.21379 335 1 8 1.9

4.10] lo| 3.2{375 347 2 ol 1.9

«.11] Seél 3.21364 360 15 10| 1.8

4. 12] gl 3.21367 372 2 2l 1.8

4 .13 sl 3.21374 377 2 2] 1.8

5.1 1 1le| 3.2/1158 114 4 4] 1.8

5.2 | 770} 3.30130 15 126 57! 1.9

5.3°12024) 3.5[204 20 183 257} 1.9

5.4 | 20| 3.2138¢ 0 5 8] 1.8

5.5 | 56l 3.2}324 280 8 171 1.5

5.6 | gf 3.2135v 273 2 2l 1.8

5.7 | 244] 3.2}352 285 30 35| 1l.s

6.1 | 14! 3.2|lsa 30 3 41 1.8

6.2 | 554| 3.2]168 25 &5 40| 1.9

®.3 | 20| 3.2i11l5L 38 6 af 1.9
6.4 | 12} 3.2{219 141 & 2} 1.8

6.5 |1780{ 3.41230 29y 157 2L7] 1.9

6.6 | 32] 3.2{380 102 7 9] 1.9

6.7 | 8] 3.21385 115 1 3l 1.5

6.8 | 24| 3.21317 234 7 5] 1.9

6.9 | 12| 3.21335 261 3 3} 1.6

6.10] 1le| 3.2{378 290 3 5 1.8

6.111 60| 3.21364 29y 17 91 1.8

6.12] 8f 3.21360 306 2 2] 1.9

7.1 | 470] 3.31174 27 75 36l 1.9

7.2 {le%9e| 3.4[244 41 143 191} 1.9

7.3 | 130] 3.21373 92 14 37| r.s

7.4 | 12| 3.21302 142 3 3t 1.8

7.5 | 4] 3.2]384 140 1 1l 1.9

B.l | 348] 3.2]183 30 el 31L] 1.9

8.2 | 18] 3.21310 58 6 31 1.5

8.3 |1400} 3.4/265 53 122 172| 1.8

5.4 | 6l 3.2{340 51 1 2] 1.9

5.5 | 266| 3.3]365 88 22 73} 1.8

8.6 | i 3.21330 191 2 2] 1.8

9.1 | 198 3.31192 34 43 22| l.s

9.2 1 44| 3.21309 99..12 10} 1.8

9.3 | 92} 3.21328 67 20 22} 1.8

9.4 | 982] 3.41325 70 62 127 1.8

9.5 | 12] 3.2}381 195 3 31 1.8

9.6 | 56| 3.2/372 202 12 16| 1.8

10.1 | 58 3.21195 40 19 10| 1.8
10.2 | 4e) 3.21367 78 15 - 7] 1.8
10.3 | 30} 3.21350 95 7 3| 1.8
10.4 | 388| 3.3{1334 106 42 6] 1.9
11.1 | 40| 3 2t347 113 11 9f 1.8
i 3.2} 1.9

11.2 101
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TABLE 5.7. FLOODPLAIN REGION PROPERTY RESULTS

| POLY=|PER=|TIME] ENCLOSING | TIME |
i GON | Ik~ IN | RECTANGLE | IN |
| |ETER|SECS| X Y wID HGT]|SECS|
lright [1776] 0.91105 0 295 450| 0.4|
|left 22701 0.9] © 0 274 450! 0.4}
| center{2642| 1.0 3 0 280 450| 0.4/
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TABLE 5.8. LANDUSE WINDUW RESULTS
(L of 5)

| POLY-| WINDOW | TIME|

| GON | FX | FY |WIDTH|SECS|

———— v —————— . T Y ——— - A

lace.l | 0] 133} 32| 0.8
lacc.2 | 21{ le4] 16 0.21
tacec.3 | 35] 190/ 32| o0.8]
lace.4 | e6li 205] 32) 1.1
lace.5 | 137| 18s} 8| 0.11
lacc.6 | 139] 209| 641 5.01
facc.7 | 1700 195/ 32| 0.8l
lacc.& |.1le4| 2361 64| 1.0l
lace.2 | 37] 297/| 81 0.11
lace .10} 3] 368| . 64| 3.21
lacc.l1i 149| 245]| 32] 1.3}
facc.l2} 1lle} 297{ 64] 3.6]
lacc.13} 1&5f 319] 64| 3.9}
lacc.l4] 246l 370 321 0.6}
lace.15} 146} 399 . 64| 3.8]
lace.le| 235| 385 321 1.4|
jacc.17! 246 407} 321 1.2}
lacc.18| 3131 375} 64| 4.41
lacc.19| 340| 425} 324 1.0l
lacp.1 | 241 233| 32] 1.2
lacp.2 | 149| 142| 256}42.4}
lacp.3 | oi 336} 4| 0.7}
lacp.4 | 28] 356 lof 0.1}
facy .5 | Ol 372 64| 1.1/
lacp .o | Luewl 2ol 321 0.51
lacp.7 | 199{ 2a4| 256|34.0]
lacp.& | 153 343] lel 0.4{
lacp.9 | 0l «l3] 64| 2.8}
jacp.10{ 181 354| 128{10.5}
lacp.1ll 285] 422| 32} 1.2
lacp.12] 308] 397 64{ 3.7]|
lacp.13| 3401 404/| 64| 1.0}
| ar.l | 199} 109/| 321 1.24
| ar.2 | 352! 205} 321 0.7]
| ar.3 | 156} 299] 321 1.3
| ar.4 | 157] 323| 321 1.3
| ar.5 | 1711 429] 321 1.1/
lare.l | 319| 428} 321 0.8
lave.l | 22| 1&} 3z 0.31
Jave.2 | 8} 1111 321 1.4
‘JavE.3 | 91| 7L 32] 1.1}
lavf.4 | 126] 88} 64} 1.8]
lavE.5 | 95| 1011 32] 1.2{
favE.e | 107] 8w 256(55.1]
lave.7 | 2531 851 16| 0.3]
lavt.8 | 0l 1291 128|15.2}-
lavEf.9 | o 19a| 128} 7.8|




LANDUSE WINDOW RESULTS
(2 of 5)
| POLY-| wLivDOw i TLRE]
boson | opxX | FY [wIDDH|SECS|
lavi.l0l 331 229f 12s(17.1|
lavE.li| 108] 206l o4} 2.2
lavE.12] L74f 244] 321 0.6
lavE.13] 213} 244]| 64} 3.1
lavf.le| 293 0l 128{10.5]
Clavillsl 331 2001 04l 3.51
lavf.lo] 2] 283 32| 0.9]
lave. 171 15| 305] lol 0.4
lave.la| 38t 296 32] 0.5
lave.lyl - 70} 315] 04! 4.3
lavE.20} ol 330 sl 0.1
JavE.21} 4] 3721 64| 1.3
favf.22| 170| 258] lef 0.2
|lavE.23] 151} 353} 16] 0.2
lavf.24] o6l 384] 32| 0.3
lavE.25] 30| 3541 128] 3.8
lavf.26] 1a6] 374 64| 2.5
lav£.27} 2891 363 16| 0.3
javE.2a] 303| 353} 1o| 0.4
lavE.29] 2601 3va| 32} 0.7
lave.30| 2721 397| 64| 3.9
lavf.311 356} all] 321 1.0
javv.l | ol 73] 16| 0.3
lavv.2 | 87| 70| le| 0.3
lavv.3 | 115] wsl o4| 3.4
jlavv.4 | 21| 155] le| 0.4
lavv.5 | 0l 170} 32| 0.5
favv.6 | 0l 190} 64{ 2.0
lavv.7 | 18] 226] o4l 2.2
lavv.s | g0l 237] lef 0.3
lavv.9 | 1731 157| 64| 3.9
lavv.l0| 147] 155] 321 1.1
lavv.ll| 214] 1850] 32| 0.5
lavv.12! 187 244) 321 1.1
lavv .13} 250| 244] 321 0.5
|lavv.l4) 272} ol 321 0.4
lavv.15] 2731 ° el le| 0.44
lavv.lo]| 0] 2381 256f25.8]
iavv.17{ 76] 253 le}] 0.1
lavv.lg] 77| 272{ 32] 1.2}
favv.lul 1101 3021 128] 8.1]
lavv.20] 113} 240] 128]13.2]
lavv.21l| 191} 244| 64| 2.9
favv.22| Lv2] 342} 32| 0.41
favv.23] ol 3382 64| 2.0]
lavv.24] ol 442] 8| 0.0}
lavv.25] 18] 436] 16{ Q.11
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LANDUSE wWINDOw RESULTS

T S T S Y TSP P S VT S ST W S SN W e S — —

| POLY-]
|  Gon |

javv.25]
lavv.26l
lavv.271
|avv.2sl
javv .29
|avv .30}
lavv.3li|
tavv .32
lavv.33]
| avv .34
javv .35}
lavv.3e|
lavv.37]
javv.35]|
lavv .39
{avv.40|
|avv .4l
| bbr .1
| bbr .2
|{beqg.l
|bes .1l
| bt.l
I bt.2
| bt.3
| bt.a
| fo.l
| fo.2
| fo.3
| fo.4
| fo.5
| ir.l
| ir.2
| 1r.3
| 1r .4
| r.l
| r.2
}
I
|
}

luce.2
| uce.3
| ucc .4
| uce.5
i ucc.6

—— e — — — — T—— o T—— — g s — — —— V— i Sttt s b Wil A M s ST —. R A s S8

{3 of 5)
wINDOW

X | FY
1si 430l
i | ady|
1w2| 415}
155) 4171
1821 441
211} 396}
_______ 206] 430l
258] 256/
3071 351
263] 3851
2651 390
319} 444
334 3921
320] 410}
36l 4lij
360f 421
375 4051
99| 3021
137 390}
1221 429]
95] 162]
35} ol
145 90|
2561 250]
2751 435}
180} ol
loo| 23]
log| 751
2731 13|
160] 36l]
84| Lloj
101} 181}
105] 204}
149 416}
176l 117
205 84}
ol ol
2601 0]
2731 48}
701 4]
44| 99|
46| 4|
51| 50|
39| 74
74f 701
g2l 771
1751 373]

f LI ME |
| WIDTa | SECS
lofl C.11
32| 0.24
32| 0.9l
eal 3.4}
16l 0.31
64| 4.2}
32] 0.41 .
321 0.4}
321 1.1
le{ 0.3
321 1.1
8| 0.1
64] 2.2
321 0.5
8l 0.1
lef 0.3
321 0.9
le| 0.3
64| 4.0
321 1.2
321 1.2
64] 2.2
64} 3.8
256} 5.1
321 1.1
126] 4.0
12612 .4
256 34 .5
12&]1l4.5
sl 0.1
32| C.el
321 1 .4}
256147 .71
64| 2.8]
64| 3.4]
64| 3.9
512}39 .4}
64| 1.51
128)11 .5/
321 0.4}
lel 0.3]
321 0.31
le] 0.31
16l 0.3{
gl 0.01
lo| 0.4]
3z| 1.4}
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LANDUSE WINDOW RESULTS

(¢ of 5)
| POLY-] WINDOW | TIk |
i GOW | FX | rY |wWIDTH|SECS]
luer .l | 4] 0l 8] 0.0}
“Juer.2 | ol 23] sl 0.1
fucr.3 | 14l 65| 128|15.6l
luer.4 | &3] 152] la| 0.3]
luew.l | 11] &1} 321 1.2
luew.2 | 19| 117] 321 1.54
lues.l | &y} 125§ o4l 4.2}
lues.2 | 76| 266l 12s8| 8.2}
juil.l | 39| L2a] 320 1.1]
fuil.2 | 1271 194 - 320 1.0}
luis.l | 0l of gl 0.0}
luis.2 | ol 39| 4| 0.0j
luis.3 | 21 44 64§ 1.6]
luis.4 | 42| le2| lal 0.1}
fuis.5 | 105} 185] 32| 1.0|
luis.e | 66l 1521 18| 0.2]
duis.7 | 153] 310| 32| 1.0l
fuis.s | 243| 422| lol 0.4]
juiw.l | 216} 177| le|l 0.3
juiw.2 | 139} 245] lel 0.4}
funk.l | 335{ ol 64| 2.8]
lunk.2 | 378 248} 32| 0.31
lunk.3 | 392] L1=6i 41. 0.0}
junk.4 | 392] 193} 4| 0.0}
" lunk.5 | 385 200] lel 0.3
lunk.e | 3s6] 220/ 32| 0.3}
lunk .7 | 32| 335} &l 0.0l
funk.8 | 38| 402] s8] 0.11
lunk.9 | 390} 421 le| 0.2]
funk. L0} 389 445]| 8l 0.1}
tuoc.l | 87| 5¢l 32| 0.8}
luog.l | 1051 301 1Ll28l11.2]
luco.1 | ol 83| 321 1.0}
luco.2 | 50| 152]) 16f ¢.2}
luvoco.3 | 1121 200! 32} 0.3]
luop.l |  31] 99| 8] 0.1]
fuop.2 | 92} 150} 321 0.6]
fuov.r | 90l ol lef 0.2}
luov.2 | loi) 13} 32] G.9}
jurh.l. | 76| 157] 16! 0.3}
lurh.2 } 1711 302{ 8| 0.1
jurs.l | 0l 0] 256{12.2}
furs.2 | 0 L1001 64} 1.6l
furs .3 | O 11t/ 321 1.3]
lurs .4 | 101j ol 256143 .5}
lurs.s |

s i - - -—— e -

1171 124 64] 3.1



LANDUSE WINDOW RbhSULTS

(5 cf 5)
| POLY-| wIliHDOw P LB |
| o | eX | rY [wIDTul|suCol
furs.e | 65| leo| 32] 1.0l
jurs.7 | 1101 1731 18] 0.2]
lurs.g | 60| 243} 321 1.2i0
lurs.9 | 72§ 1l9sl o] 2.1
|urs .10l 257 8] 64] 3.5]
furs.l1| 259} 5si o4 3.0}
furs.121 13! 300l 1lel 0.3}
jurs.13] ol 3471 321 1.0i
‘{furs.lal 1&2] 20s| lo] 0.2}

jurs.1l5] 173] 307{ 12s8]15.1
furs.le| 233] 274] 32] 0.5

lurs.17] 5{ 3831 sl 0.11
lurs.lsl 271 406] 32| 1.0
lurs. 19| 193{ 397] lel 0.3]
lurs .20l 1971 40&| 32f 0.9}
lurs.21] 232 400| o4l 1.11
lurs.22]| 305| 447} = 4| 0.1}
furs .23| 31a] 447] 8l 0.1}
furs .24} 325! 442 32| 0.6}
fuus.l |~ 59| 303]| 321 1.2}
luus .2 | l146| 366i] sl 0.1
fuut.l | of 104 Ll28l 4.7
fuut.2 | 36f 121 - 64 4.2}
juut.3 | 105 201| 256]58.71
| wv.l | 10l] 1lsvui ie]| 0.4]
| wo.l | w2} 312| o4l 2.0|
| wo.2 | 125] 431} 32§ 1.21
i ws.l | 0l ol 512(35.31
fwwp.l | 353 251} 4| 0.0}
fwwp.2 |' 10| 438l 4] 0.0l
fwwp.3 | 3041 2821 161 0.1
lwwp.4 | 29s| 370| lo| 0.2]
| wwp .5 % 317{ 365]| 16| 0.4}
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TABLE 5.9. TOPOGRAPHY WINDOW RESULTS

(1 of 2)

| POLY=| WINDOW | TIME |
| GON | FX | FY |WIDTH]|SECS|
1.1 | ol 0of 512{26.7}
2.1 | ol 0f 51229.2}
2.2 | 187{ 0l 32| 1.51
2.3 | ol 0] 512{30.8{
2.4 | 85| 149} 41 0.0}
2.5 1 93} 1451 4| 0.0l
- 2.6 | 94| l4el 16| 0.2]
2.7 | 98] 132} 4] 0.0]
2.8 | 104| 130} 4| 0.0
2.9 | 95| 141] 4| 0.0}
2.10] 100} 140| Bf 0.1/
2.11| 10e| 156} 8i 0.1}
2.121 102] le6| le] 0.11
2.13| l1e8| 1774 4] 0.0]|
2.141 3041 ol 128| 4.4]
2.15} 3| 284| 4] 0.0}
2.16} ol 295} &l 0.11
2.17} ol 303} 4} 0.0}
2 .18} 0| 343} 641 1.5)
2.19] 188] 320] 4] 0.0]
2.201 187| 380} le| 0.3]
2.211 01 3801 128{ 1.4}
3.1 1 89 ol 256}e6l1.1|
3.2 | 106} 62 le| 0.2}
3.3 } 119j el 2t 0.0l
3.4 | of ol 512133.2]
3.5 | 196]| 190} 04 1.9}
3.6 | 2231 253) isl 0.4]
3.7 | 295] ol 128]15.5{
3.8 | 366l o) 32i 0.5
3.9 | 226| 350 8f 0.5]
3.10|1 245} 350]| 4| 0.0]|
3.11] 211} 3594 21 0.0]
3.12] 2171 354} 4| 0.0}
3.131 2271 357} 4| 0.0}
3.14] 2521 354/ &) 0.1]
3.15] ol 410]| 64 1.1]
3.1el 16| 409]| 41 0.0}
3.171 16| 422| 16| 0.1}
4.1 | 105} ol 8l 0.1
4.2 | 112] 10} 4] 0.0}
4.3 | 119] ol 256)/66.0]|
4.4 | ol 0l 512{34.5]
4.5 | 2771 ol sl 0.1}
4.6 | 376] ol 321 0.2}
4.7 | 335] 305] 4| 0.0]
4.8 | 346] 329 8| 0.1}
4.9 | 379} 335 8l 0.1]
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TOPOGRAPHY wWIDUW RESULTS

(2 of 2)

| POLY=-| .  wIiDuw | TIME |
1 GOl | FX | FY |wIDTal|snts|
4,10] 37 347} 8l 0.1]
4.11] 304 300} 16l 0.2}
4,12] 367 3721 2} 0.0l
4 .13 3741 3771 21 0.01
5.1 | 158 14| 4] 0.11
5.2 | 130] 15} 1l128|le.9i
5.3 | ol 0f 512127.8l
5.4 | 3g4] 0l sl 0.0}
5.5 | 324] 2801 32§ 0.4
5.6 | 359 2731 2 0.0]
5.7 | 352] 2u5] o4f 2.11
.1 | l44| 30} 4} 0.0}
6.2 | lesl 25| 12sl18.9]
6.3 | 1511 36| 8] Q.11
6.4 | 2191 141} 4| 0.0}
6.5 | 230 291 256l4w.2]
6.6 | 3801 102§ lel 0.1}
6.7 | 385! 115| 4] 0.0|
6.8 | 3171 234} sl 0.11
6.9 | 335] 261] 41 0.0}
6.10] 3781 290} 8l 0.1}
6.11} 364! 299]| 321 0.9
6.121 360] 306} 21 0.0l
7.1 | 174) 27} 128120.0]
7.2 | 244] 41| 25¢l42.71
7.3 1 3731 . 92] 64| 1.8]|
7.4 | 302] 142 4} 0.0}
7.5 | 3s4) 140} 1l 0.0}
5.1 | le3f 30i o4l 5.71
8.2 | 3101 58} s 0.1
8.3 | 256 531 256(39.6]
.4 | 340| 51} 2 0.01
8.5 | 365} ws| 128| 4.6}
8.6 | 330 191 2| 0.0}
9.4 | 1u2f 34 o4l 3.2}
g.2 | 309] 99| " lel 0.4]
9.3 | 328 7] 321 1.11
9.4 | 3251 701 12sl1l1.3]
9.5 | 381] 1l95] 4] 0.1}
9.6 | 372] 202) 16| 0.1}
10.1 | 1951 40| 321 1.5}
10.2 | 367} 7} 16| 0.41
10.3 | 350| 95} 8] 0.1]
10.4 | 334} 106} 128] 5.1}
11.1 | 3471 113} le| 0.4}
11.2 | 3e2f 173} 4| 0.0]
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TABLE 5.10. FLOODPLAIN wINDOW RESULTS

- —

| POLY~] WINDOW . | TIME |
| GON | FX | FY |WIDTH|SECS|
[right | ol 0] 512 | 5.2}
{left | ol o 512 | 5.2i

| ol 0l 512 | 5.4}

| center

——— - ——— o . " i Ui S il e g AU e e syl et e St S T v Sl
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TABLE 5.11. INTERSECTION STATISTICS
{1 of 3)

S —— —— i ——— T ————— T TP T —— T o ———— — {— o S . S W P TE WY A T W . S VIS T W VIS A PP . W -

| £f.center| t.1 2844614039 .33 l1e72} 23941 2623| 5.0}

|f.center| t.2 1281] 181.90f 798| 780] 1el5| 2.6}

| £.center| t.3 ol 0.00}| -0l 0l i 0.}

| f.center| t.4 oi 0.00! ol ol 1} o.

| f.center|{ t.5 oi 0.00] 0i ol il 0.

| f.center| t.6 ol 0.001 0l ol 1{ 0.

| £f .center} t.7 0l 0.00] ol 0l 1i 0.

|f.center| t.8 ol 0.00] of - 0l i}l o.

| £.centeri t.9 0l 0.00f . "ol 0l 1| 0.

| £.center|{ t.l10 of 0.00] 0l ol 1{ o.

| £.center| t.il Y 0.00} ol ol 1{ 0.

| f.center| 1l.acc 1472] 209.021 223] 278| 392i 0.

| £f.center| l.acp 152] 21.54| 721 651 1491 O.
| £f.center| 1.ar 0| 0.00} ol ol 1} 0.

| f.center| ' 1.are 0l 0.00]| ol o 1| 0.

| £ .center | l.avft 5869} 833.40| 1225) 1555| 2121 .

| £ .center | l.avv l11376flel5.39} 1277 Lle53| 2179] .

432 61.34] 134] 1531 250]|
229| 32.52}4 88| 97| 1les|
147) 20.871. 48} 51§ 94|
1321 18.74) 46| 511 88|
469 66.60) 166] 178] 321

| £ .center| i.bbr

| £f.center|{ 1.beg

|£.center|{ 1l.bes
| £.center| 1.bt

| £f.canter| 1.fo

. ] L]

o.::-wwwNun-'owwoooob-'oooon—'of-'ou:i—'t—-w-bi-'ooow--.loooooooo

| f.center| 1l.lr 905 128.5L1 354] 416] 647: .
93

| f.center| 1l.ucbk ot 0.00] ol 0l 1l

jf.center{ 1l.ucc 34 0.43] 13} 3| 37| 0.
| f.center| 1l.ucr 0] 0.001 0l ol 1] O.
| £ .center| 1l.ucw ol 0.001} ol ol 1i 0.
| £.center| 1l.ues 1286] 1s2.61] 2751 335 491] 1.
| f.center| l.uil ol 0.00]{ oi ol 1| o,
| £f.center| 1l.uis 107] 10.65| 35| 38| e8| 0.
| £f.center{ 1l.uiw 0l 0.00] ol = o 1} o.
| £f.center{ 1l.unk ol 0.00] o] ol ij 0.
| £f.center| 1.uocc 0l 0.00] 0Ol of 1} 0.
| £ .center| 1.uog 0| 0 .00} ol o} - i| o.
| £f.center | 1l.u00 751 10.65] 31| 334 6l | .
| f .center| 1.uop 184] 20.13] 47| 55} 871 0.
| f.center| 1.uov ol 0.00} ol 0| 1i 0.
| £.center| 1l.urn 20] 2.84] 19| 11} 47| 0.
| f.center| 1l.urs 21804 309.56! 817) 935] 1517§ 2.
| f.center}! 1l.uus 249) 35.36/{ 651 721 124} 0.
| £.center} 1l.uut 224| 31.81| 771 831 149]| 0.
| f.center| 1l.vv 108] 15.34{ 35 39| 76i 0.
| £ .center|{ 1l.wo 661 93.86] 1211 139f 225{ 0.
| f.center| 1l.ws 3401} 482.94] 1170| l4asl| 2030| 3.

|
|
|
|
|
|
|
|
|
I
i
I
i
!
|
|
|
|
I
|
|
|
| £f.center]| 1.r ] 46 | 6.53] 42| 34|
|
i
|
|
!
|
|
|
|
|
|
|
|
}
|
|
J
|
|
|
i
|

OwOOOOMOOOOOOOOOO""OOOOO"‘OOOOO&-P-OOOOOOO‘OOOOO

| f.center| 1l.wwp o] 0.00] (o] ol 1i
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INTERSECTION SrATISTICS
{2 of 3)
i | | AREA | AREA | NUMBER OF NODES |TIME|
| TREE 1 | TREE 2 |PIXELS| ACRES | GKAY|BLACK|WHITE)SECS|

A S T A A iy A Sl Sk Vo e S T P S S T T S W G D W TN — " S i i e S A A S A iy il S v

| t.l | l.acc | 3307} 554.79| e656| 844} 1125)( 2.0}
i t.l1 | l.acp | 1432] 199.c81 4081 490 7351 1.24
| t.l |  l.ar | 58i]  62.50] 1le4l 203] 290] 0.5/
| -t |  1l.are | ol 0.00| Gl ol 1] 0.0}
| t.l | l.avf | 16358|2322.84| 2107} 2972] 3350| ©.5]
! t.l | l.avv | 20288]2880.90) 2180] 2984| 3557| 6.6|
| t.l | l.pbr | 432| 61.34] 134|- 153f 2501 0.4]|
i t.l | 1l.beq | 229f 32.52] 88| 97| 168| 0.3]
i t.l | 1l.bes | 114] 15.19} 521 54| 103}| 0.2]
i t.l | 1l.bt | 88f 12.50| 34| 37| 66| 0.1]
| t.l | 1.fo | 3811 54.10f 165] 168] 328] 0.5§
| t.d1 | l.lr | 9131 129.65] 359} 424] 654] 1.1}
| t.1 | 1l.r | 25| 3.55] 38| 25| 90| 0.11
| t.d | l.ucb | ol G.001 Ol ol 1} 0.0}
| t.l | l.ucc | 139 19.74} 53} 58| 102 0.2}
! t.1 | l.uer | 769) 109.201 179 223f 315| 0.5l
. t.1 | l.ucw | 305} 42.311 112l 1401 197] 0.3}
| t.l | l.ues | 1404} 1%9.37! 348] 447| 598} 1.0]
| £.1 | l.uil | 371f 52.68) 89| 101) 167} 0.3l
i t.l | l.uis | 6271 89.03] 1771 204| 328] 0.5
i t.l | l.uiw | ol 0.00] of ol 1| 0.0}
| t.l | 1l.unk | ol 0.00/{ oi ol 1] 0.0}
] t.l | l.uoc | ol 0.001 - ol ol 1{ 0.0}
| t.l | 1l.ueg | 0f 0.00]| ol 0l 1] 0.0]
1 t.l | 1l.uoco | 490] 69.58|( 107! 121} 201] 0.3]
i t.1 | 1l.uop | 148] 21.02} 501 58| 93| 0.2{
| t.l | l.uov | o]! G.00{ 0l ol 1] 0.0l
| t.l1 | 1l.urh | 126 17.89] 321 33| 64{ 0.l
| t.l | l.urs | 3851} 546.82| 1336 1508("2501{ 4.0|
i t. | Yl.uus | 20l 37.06| 74| 8l] 142] 0.2i
| t.l | l.uut | 938| 133.20| 314 3591 584} 1.0l
i t.l | Ll.vv | 108] 15.34/| 38| 39| 761 0.11
{ t.1 | l.wo | 6o6l| 93.80] 121 1391 2251 0.4]
| t.d | l.ws | 3402]| 483.08] 1168| 1482 2023] 3.4|
| t.1 | 1l.wwp | o}  0.00{ 0} ol 1l 0.0]

—————r s - - e e e s e e e
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INTERSECTION STATISTICS
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TABLE 5.12. QUADTREE TRUNCATION STATISTICS FOR EACH MAP

. — —— . T U S . S e W " Y S T I T T VD T T D il il e — T VER S S A Y S S U T A . - Y . . S oy S

| DEPTH | LANDUSE MAP | TOPOGRAPHY MAP| FLOQDPLAILN MAP]
| oOF | NUM OF| % RE= | NUM Of| % RE- | NUM QF| % RE- |
| TREE | NODES | DUCED | NODES | DUCED | NODES | DUCED |
10 | 38233 | 00.00 | 33349 | 00.00 | €941 | 00.00 |

9 | 22089 | 44.22 | 18517 | 44.47 | 4473 | 35.55 |

& | 9489 | 75.18 | 7473 | 77.59 | 2297 | 66.91 |

7 | 3341 | yl1.26 | 2537 | 92.39 | 1093 | 84.26 |

6 | 1057 | 97.23 | 833 | 97.50 | 529 | 92.38 |

5 | 309 | 929.19 | 296 | 99.19 | 213 | 96.94 |

4 ! 85 | 99.78 | 77 | 99.77 | 77 | 98.89 |

3 ! 21 | 99.95 | 21 | 99.94 | 21 | 99.70 |

2 i 5 | 99.99 | 5 | 99.99 | 5} 99.93 |

1 | 1] 99.99 | 1 | 992.99 | 1 | 99.99 |
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Conclusions and future plans

7.
7.1. Conclusions

This project gave a firm empirical basis to much-of the
theoretical analysis previously undertaken for quadtrees
both as to their structure and their algorithmic efficien-
cies. In particular, the following conclusions should be
noted: :

(1) Errors in the calculations of properties encoded by
quadtrees (e.g., areas and perimeters of various land
use classes) are due entirely to errors introduced by
the original digitization. No new errors are introduced
by quadtree manipulation.

(2) significant reductions in file size are achieved when
an 1image is converted from a binary array representa-
tion to a quadtree representation. This is true for
both the multicolored and black/white cases.

(3) The block decomposition of the image resulting from the
quadtree representations yields major increases in
display speed.

(4) Truncation of guadtrees can be used to generate reason-
able image approximations that are consistently more
compact.

(5) Quadtree algorithms are easy to implement in structured
programming languages (e.g., C).

{6) Neighbor finding was found to require visiting 3.5
nodes on the average for each instantiation. This was
even better than what was expected theoretically.

(7) Ropes (an alternative neighbor finding technique) were
found to be not worth the added expense of extra
storage.

(8) Set operations such as union and intersection are effi-
cient and can be used to extract information from
images containing different properties.

1t should also be noted (in conjunction with ~{(3) and (4)
above) that gquadtrees could be used effectively in image
transmission, enabling the viewer to recieve a very compact
approximation of the image followed by a series of modifica-
tions that render the image increasingly more precise.

7.2. Future plans

The first phase of this project has dealt with digiti-
zation of a government-furnished geographic database and its
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representation in quadtree form; and with development of
algorithms for basic operations on quadtree-represented
regions (set-theoretic operations, point-in-region determi-
nation, region property computation; submap generation). The
efficiency of these algorithms was studied theoretically and
experimentally. :

The following tasks are planned for the second phase:

(a} Query language, Design of a high~level guery language
permitting easy interaction with the database by users,
thus making the quadtree representation transparent to
the users,

(b) Database updating. Develpment of algorithms for a-ddi-
tion, deletion, and editing of data items in a
quadtree-encoded database.

{(c) Point and linear feature data. Quadtree-like data
.structures will also be used for the storage,
retrieval, and editing of point geographic data. Algor-
ithms will be incorporated for performing these func-
tiong and for interfacing hetween tree representations
of point and area data. Recently, gquadtree~like data
structures have been developed for representing region
borders and curves. The interface between these struc-
‘tures and the tree representations of points and
regions will be investigated. -
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8. Appendix: Facilities used

Two computers produced by the Digital Eguipment Cor-
poration are used by this project. Program development and
small-scale testing are performed on a PDP 11/45. Our PDP
11/45 has a 256k pbytes of actual memory of which only 64k
bytes are directly addressable, no virtual memory capabili-
- ties, a disk fetch speed of 1.2 megabits/second, and a
memory cycle speed of approximately 500 microseconds. The
execution times in the tables of this report refer to the
execution speed on the VAX 11/780. The VAX 11/780 has 2000k
bytes of actual memory, 6000k bytes of virtual memory, a
disk fetch speed of approximately 0.6 megabits/second, and
a memory cycle speed of approximately 1400 nanoseconds,
The size of a quadtree node is 12 bytes on the PDP 11/45
and 24 bytes on the VAX 11/780. This difference is caused
by the different word size on each machine. Both the PDP
11/45 and the VAX 11L/780 run the UNIX operation system
(versions &6 and 7 respectively).

The picture output device used by this project 1is a
Grinnell GMR-27 Display Processor. Its memory consists of
thirteen 512x512 bitplanes. Twelve of these bitplanes carry
color information (4 - bits for each of the colors: blue,
green, and red). The thirteenth bitplane is used for a
white overlay capability. The high order eight bitplanes of
the twelve color bitplanes can also be displayed to create a
grayscale output. The output speed of quadtrees on this
device is considerably faster than a raster scan output of a
picture file, because the GMR-27 can output a rectangle on
the display screen directly from the rectangle”s coordinates
(i.e., a separate command is not necessary for each pixel in
the rectangle as is done when a picture file is output in
raster scan mode).

As our display device is connected to a computer with
_restricted memory (see Appendix), we will, in addition to
the above, be investigating more compact in-core representa-
tions and the effect of user-controlled paging on algorithm
efficiencies. This will be done in conjunction with the
development of a guadtree editor (which requires interactive
use of display device}.
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