3

@Q;Q, 236)

TR-1327 September, 1983
DAAK70-81-C~0055%/P00007

APPLICATION OF HIERARCHICAL DATA STRUCTURES
TO GEOGRAPHICAL INFORMATION SYSTEMS
PHASE TII

Azriel Rosenfeld
Hanan Samet
Clifford A. Shaffer
Robert Z. Webber

Computer Vision Laboratory
Center for Automation Research
University of Marvyland
College Park, MD 20742

} -
[

PREFACE

This report documents the research conducted under
Phase 1II of Contract DAAK70-81-C-0059/P00007. The report
was prepared for the U.S. Army Engineer Topographic Labora-
tories (ETL), Ft. Belvoir, Virginia 22060. The Contracting
Officer’s Representative was Mr. Joseph A. Rastatter.

This report was prepared by Hanan Samet, Azriel Rosen-
feld, Clifford A. Shaffer, and Robert E. Webber.

SUMMARY

This document is the final report for Phase IT of an
investigation of the application of hierarchical data struc-
tures to geographical information Systems, conducted under
Department of the Army Contract DAAK70-81-C-0059/P000COT7.
The purposes of this investigation were twofold: (1) to con-
struct a geographic information system based on the quadtree
hierarchical data structure, and (2) to gather statistics to
allow the evaluation of the usefulness of this approach to
geographic information system organization.

To accomplish the above objectives, in Phase I of the
project a database was built that contained three maps sup-
plied under the terms of the contract. These maps described
the flood plain, elevation contours, and landuse classes of
a region in California. The map regions were represented in
quadtree form, and algorithms were developed for basic
operations on quadtree-represented regions (set-theoretic
operations, point-in-region determination, region property
computation, and submap generation). The efficiency of
these algorithms was studied theoretically and experimental-

ly.

On Phase II of the project, the following additional
tasks were performed:
(a) Query Language. Design of a high-level query language
permitting easy interaction with the database by users,
thus making the quadtree representation transparent %o
the users.

(b) Database updating. Development of algorithms for addi-
tion, deletion, and editing of data items in a
quadtree-encoded database.

(c) Point and lirtear feature data. Quadtree-like re
tations of point and linear feature data, extr
from the same geographic region, were z2lso constru
Algorithms were developed for interfacing between
representations and the quadtree-represented areas.

1. Introduction e e ettt e i e e e e ettt e e st e et

database query language Ct et e et
An overview of the query 1angUage v uvtee ettt nennnns
The query 1language SYNEAX «vuveeerueeenneenennnnnnns
A demonstration of the query language +.veevenneens
On the timing of the query language demonstration .

[ASINACINAC RN I |
. .
=W N = 0

quadtree editor - a tool for database update
An overview of the quadtree editor v v eeeneennes
Quadtree editor commands D
Implementation of the quadtree editor commands
A demonstration of database updating .o i it eeee e

Wwww
.
£EW N -0

4. The quadtree memory management SYSLem ettt eeensnosones
4.1 The user’s view of the memory management system ...
4.2 Implementation of the memory management system

5. Point and 1line data S e s e e e st et et e s e s e e et et s e
6. Conclusions and plans et et ettt e e
Appendix: Facilities USed ..veenirneeeeenseeemme i,

Bidliography on qQUadEIreesS v s euwveereeneeenns s ee e e e s e e

. e

O 00~ AU W —

- ek b A
W N = O
e s e a e .

17.
18.
19.

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

Intersection of the house map with
floodplain map with marked

The
The
The

13
=
(]

‘landuse map c e e e e
updated landuse map

foe]
]
O]
197}

gz2ological survey map of the Russian River valley
floodplain map ... e et et et . . .o
landuSe MAP e veet ooeeesocensneeesa . e e s e e e e e e
topography mMap «.eeeeeeeens st e e e c e e s .
map named T ZZ vttt ettt ot e et e e
map named ‘center’ieeniean. e “ e . “ e
map named “10W T L. i.ih e e, e e G h e e e
map named “stepl’ e e e e e e e ee e e
map named T AnNAl T L it et ettt et e e
roa8d MAD v o v vt et s v oot oneooossseess G h e e s e s e et e s
City border map ..o eeeeeeoos e C e e et e e e s .
powerline map t e e e e . . c e e s e e e e e
railroad map ...eeeee t et e et a s . PN ..
map named “loWroad .. i.eiiiaieneneen.. Ch e e
NOUSE MBD t v vt aa s o oo 0ot osssosoecesocscesecsssoeeses

low’ et et e

revisions S et et e e e e

€ o 6 5 ¢ ¢ & 6 8 2 2 s 8 4 6 3 e 4 & s s s s 6 0

L A R A I I

-3
e
w
-

&}
1%

gs for example demonstration ...

Table

n
s of maps referred to by
ngs for intersection task

e 8 & 3 8 5 o 6 s ¢ 0 s 0 o s s v &

page
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
50
51
52

1. Introduction

This project is concerned with the applicability of a
class of nierarchical data structures, known as "quadtrees™,
to the representation of cartographic data. Section 2 de-
tails the database query language that defines how the sys-
tem appears to the user. Section 3 presents the quadtree ed-
itor which allows the user to directly edit and update a
map. Section 4 describes the quadtree memory management
system which allows the user to manipulate maps that cannot
fit in core. Section 5 discusses the usage of the quadtree
memory management system to store maps of point data (e.g.,
a map of house locations) as well as line data (e.g., a map
of road layouts). Section 6 presents our conclusions and
future plans. At the end of the report is a bibliography on
quadtrees.

The facilities used on the project are described in the
Appendix. In particular, the display deviced used by this
project is a Grinnell GMR-27 Display Processor (see [Kirb79]
for information pertaining to wuse of this device at the
University of Maryland), referred to in the rest of this re-
port as the Grinnell.

2. The database querv language

2.1. An overviasw of the gueryv language

The query language is an English-like keyword-based in-
terface between the database user and the database system.
The query language allows the user to display, window, and

construct submaps from individual maps, perform set-
theoretic operations on groups of maps, and extract various
kinds of information from a map (e.g., find the total area

of a map, list the polygons in a map, etc.). It also allows
the user to access the quadiree editor (describded in Section
3) which enables the user to update maps and draw new ones.

The query language is embedded in the University of
Maryland version of FRANZ LISP ([Fode80],[A11e82]). The en-
tire database system can be viewed operationally as a query
language that is interpreted by LISP as LISP functions which
call C functions (i.e., functions coded in the programming
language C) to actually process the maps. Thus all of the
algorithms of the database are coded in. C, and LISP merely
serves as a convenient front end for translating the query
language into calls to C functions. Although normally it 1is
necessary to enclose a function call in parentheses when us-
ing LISP, the particular LISP we are using interprets an in-
put line containing three or more words as being implicitly
enclosed by parentneses. We make use of this device to give
the interface a more natural appearance to users who are not
used to LISP.

The query language is keyword based, which means that
the database ignores words that it doesn’t understand. This
has the advantage that one can insert words and phrases
(e.g., articles like "the"™ and "an") to give the command a

more natural appearznce, or one can ignore unnecessary
phrases and just type the minimum to cause the appropriate
commands to be executed. This added flexibilicty is bought

at the cost of more obscure error messages resulting from
the misspelling of a keyword. In order to allow the user o
customize his interfacs with the database, there are com-
mands that allow keywords to be changed.

The syntax of the database interface is explained in
Section 2.2. In Section 2.3, an example of an interactive
session with the database is presented. Section 2.4 con-
tains timing statistics gathered when using the database

system.

fro
fro
H

€ gquery language syntax

A description of the query language sSyntax is dresent-
ed. Curly braces {} are used to indicate phrases in the
command where a sequence of non-keywords can be inserted.
These words are used to add clarity to the query. Some
standard sequences are shown in the given command forms.

Words enclosed in angle brackets <> are syntactic un-
its. A syntactic unit is simply something which, when the
query 1s typed, is replaced by its definition. For example,
Suppose we had a syntactic unit <color> whose definition was
red, green, or blue. Then whenever there was a query whose
syntax contained the symbol <color> we would actually type
our choice of red, green, or blue. The query language 1is
presented by describing each syntactic unit.

g.g.l. {command>

The portion of the query language that corresponds to
an English sentence is a <command>. All other syntactic un-
its correspond to words or phrases. The following are the
allowable forms for a command:

Please { explain } {syntactic_unit> { }

Use { the Grinnell at } <window> { }

Measure { points from the lower left corner of } map { }
Measure { points from the } global { origin }

Enter <file name> { into database }

Display <map> { on Grinnell }

Display <map> { on Grinnell starting from } <point> { }
Display { the } wvalue { of } <number> { }

Let <name> { } denote { } <objectd> { }

Let <name> { } rename { } <map> { }

Describe { the type of this } <name> { }

Forget { about the meaning of this } <key word> { }
List { all the } classes { on } <map> { }

List { all the } polygons { on } <map> { }
Edit { } <map> { with the database editor }
Move { to } <point> [}

Perhaps most useful to the beginning user is the Please
command. The request
Please explain <command>
gives 2 list of the allowable forms for a {command>. In
general, one uses the Please command as a help function
Wwnich gives information about syntactic units.

The following three commands are used to initialize the
database System: the Use command, the Measure command, and
the Enter command. The Use command enables the user to
specify a portion of the display device (in our case, a
Grinnell GMR-27) that is to be used in displaying the map.

The Measure commands tell the database system how “he user
Wwishes coordinates of points to be interpreted. One can ei-
ther measure locations from the lower left-hand corner of
the map or from some =Xxternal global origin (defined when
the map was built or last edited). The Znter command places
the name of a quadtree file into the database’s list of
known gquadtree files. The Enter command also checks the
file to make sure that it is a quadtree file.

There are three different types of Display commands.
The first type simply causes a map to be displayed in the
portion of the display device that was defined by the Use
command. This command places the lower left-hand corner of
the map in the lower left-hand corner of the display region.
The second type of Display command allows the user to speci-
fy some other part of the map to be placed in the lower
left-hand portion of the display region. This is particu-
larly useful for displaying maps that are larger than the
display region. The third type of Display command allows
one to display the value of a clause (expression) without
first having to bind the value to a name.

There are four commands that allow the user to manipu-

late the names that the query language interpreter ¥nows
about (these are in addition to the Enter command described
above): two forms of the Let command, the Describe command,

and the Forget command. The first form of the Let command
2nables the user to associate a name with an object. The
value of the name becomes the value of the object at the
time the Let was performed. The second form of the Let com-
mand permits the user to name a map and at the sazme time re-
move the o0ld name of the map. This is particularly useful
because each map name corresponds to a file in the operating
system and one doesn’t want to clutter up one’s dirsctoriss
With the names of many temporary maps. The Describe command
tell the user what the query language interpreter knows
about a2 particular name (generally its type and something
about its value). When the Describe command is applied to a
guadtree file, the quzdtree file’s header information is
displayed on the terminal. The Forget command causes the
interpréter to forget 2 previous meaning that had been asso-
cliated with a name.

Finally there are four miscellaneous commands: two
types of List commands, the Edit command, and the Move com-
mand. The first type of List command allows the user to get
a list of the classes that are used by a particular map.
Each class corresponds to a color on the map. The second
type of List command provides the user with a list of po-
lygons (simply-connected regions) in a map. Note that a po-
lygon name is a c¢lass name concatenated with the x and vy
coordinates of some point inside the polygon. The =Zdit com-
mand allows the user to access the the quadtree editor (QED)

described in Section 3. The Move command causes a cursor on
the display device to be moved to a specified location.

2.2.2. <syntactic unit>

The possible {syntactic_unit>s constitute the allowable
parameters to the Please command. They also correspond to
the actual syntactic units of the query language grammar
augmented by two additional values, <{system)> and {syntax>,
whose explanations tell how to interpret the results of a
Please command. The following are the allowable
{syntactic_unit>s:

{system>
{syntax>
{eclass>
{command>
<eplist>
{file name>
<{key_ word>
<map>
<name>
<number>
{object>
{point>
{polygon>
{syntactic unit>
{window>

The explanation of a <syntactic_unit> is an abbreviated ver-
sion of its description in this document. Note that
<syntactic_unitd>s are meant to be used with angle brackets
enclosing them. Thus for an abbreviated version of Section
2.2.1, one would type

Please explain <command>

An error would result from a request to explain anything
other than one of the {syntactic_unit>s that are listed
above, Fajilure to use angle brackets also generates an er-
ror. Clearly a more forgiving version could be provided if

ever needed.
g.g.i. {number

A number can be represented in decimal format or by a
<name> that denotes a number., It can also have one of the

following forms:

{
{

cr cr

h a { of } <map>
h i

e } are
e } perimeter { of } <map>

The area form allows one to calculate the total area of the
non-white parts of a line, point, or area map. The perime-
ter form is used to calculate the perimeter of the non-white

v i

parts of an area map.
2.2.4. {name>

A name can be represented by a letter followed by any
sequence of characters. Names are used to denote kKeywords
in the query language and the values of objects created by
the user. A name can be used wherever the object that the
name denotes can appear.

2.2.5. <{point>

A point represents a location on the map. A map loca-
tion can be specified in one of the following ways:

{ the point where x = } <number> { and y = } <number>
{ the point at the } cursor

The specification of a point by the value of its x and ¥y
coordinates is useful when these values are known. Often it
is difficult to determine accurate x and y values by Just
looking at the screen. When an accurate point value is
needed, the most convenient way to get it is to position the
cursor at the location on the map that is desired. The lo-
cation of the cursor can then be referred to using the Key-
word "cursor".

2.

o

.6 <window>

A window describes a rectangular region. A window can
be specified in one of the following ways:

{ from } <point> { extending } <number> { by } <number>
{ the smallest } window { for } <map>

he first specification, <point> refers to the coordinate

T the lower left corner of the window. It is followed by
width and the height of the window. The smallest window

a map is the smallest rectangle that encloses all the
non-white regions in the map.

g.g.z. {file name>

{file-name> is a special type of name which is in r
1y

.
preted 2s the name of a file in the operating system. Or
such names ars valid parameters to the Enter command.

3

-

2.2.8. <Kmap>

A map can be denoted by a <file name> that has been en-
into the database. It can also be constructed by one
following phrases:

"3

(o8

O ct
¢t
oy
®

(D

{ the } intersection { orf } <map> { with } <map>

{ the } union { of } <map> { with } <map>

{ the } windowing { of } <map> { with } <window>

{ the } map { formed from } <eplist> { in } <map>

{ the } points { in } <number> { of } <point> { in } <map>

The first two phrases construct the obvious set-theoretic
results. There is no phrase to construct the set-theoretic
complement of a map, because this can be done easily in the
quadtree editor described in Section 3. The windowing con-
struction creates a map whose lower left-hand corner is the
lower left-hand corner of the window and which has had all
the area that lies outside the window painted white. A
<eplist> is a collection of classes and polygons. The map
formed from a <cplistd> looks exactly like the original map
except that all regions not specified in the <cplist> have
been painted white. The <cplist> construct in conjunction
with union, intersection, and windowing will allow the user
to create maps containing any c¢ollection of polygons from
any set of maps he desires. The points construction is used
to build a map of the points within a distance <number)> of a
location <point> in a point map <map>.

g.g.g. <object>

The types of objects that can be associated with a name
are the following:

<class>
<key_word>
<map>
{number>
<point>
{polygon>
<window>

2.2.10. <class>

A class is used to refer to a collection of regions in

a map that have the same color. There are two kinds of ob-
Jects that have colors associated with them. One is the po-
lygon, which is a simply-connected region of one color, and
the other is the point, which is a location that can have a
color. Thus classes can be'specified in the following two
ways:

{ the } class { of } <polygon>
{ the } class { at } {point> { on } <map>

The word “class’ comes from the concept of a landuse class -
for example, all of the wheatfields might form a class.
Here that notion has been extended so that egach topography

level has a predefined class - e.g. 211 the polygons with
elevation below 100 feet are part of the class levell. Ad-
ditionally there is the class of polygons which are white
(no information or binary value “07). All <classes have a
unique color value, and new classes can be created on the
fly (and renamed if desired) by giving a polygon an unused
color.

2.2.11. <polygon>

A polygon is a simply-connected region in a particular
map. Any point in a polygon can be used to denote a po-
lygon. Thus the internal form for a polygon 1is a point
value concatenated with a map name. Sometimes it is useful
to have a unique name for a polygon. A typical case might
be when polygons of the same class are derived from two dif-
ferent methods, and the user wishes to know if they are the
same polygon. In those situations, an arbitrary ordering 1is
imposed on the points inside the polygon (corresponding to
the order in which a tree traversal would find them) and the
least point (according to this ordering) that is inside the
polygon 1is used to uniquely denote the polygon (when con-
catenated with the polygon’s map name). Quite often, howev-
er, a unique name is not needed. Since calculating uniqgue
polygon names is expensive, the following two forms are
given to allow the user to specify a polygon and whether or
not the name should be unique: ’

{

he } polygon { at } <point> { on } <map>
e } unique { } polygon { at } <point> { on } <map>

~
cr ocr
o3

3'3'13' Kkev word>

The keywords recognized by the guery language are any
words that appear outside the curly braces in a syntax
description. These include the syntactic units (see Saction

2.4) and the following: area, class, classes, cursor,
denote, global intersection, map, perimeter, polyzon, DO -
lygons, renzame, union, unique, value, window, windowing.
Also included are: Describe, Display, =dit, Enter, Forget,

Let, List, Measure, Move, Please, Use.
2.2.13. <ecplist>

A cplist is a nonempty 1list of classes and polygons.
This allows the user to specify any arbitrary subset of po-
lvygons from an area map. This is a portion of the grammar
that could easily be extended to include various operators
for bdbuilding a list of classes and polygons using set-
theoretic operations in conjunction with the total list of
classes or polygons in a map. However, so far, no need has
been found for such a capability.

2.3, A demonstration of the guery language

Below is an example of an interactive session between a
user and the database. Qur database is a collection of maps
relating to the Geological Survey Map shown in Figure 1.
Phase I of our project used three maps that represented
three different partitionings of Figure 1, and are shown in
Figures 2, 3, and b, Note that these figures represent
"multi-color maps. The first portion of this demonstration
will be concerned with showing how the tasks of Phase I can
be done using the query language. We assume that the data-
base has already been invoked via the appropriate system
calls.

help

The one word phrase help is used to remind the user of how
to use the Please command. This ability is not actually
part of the formal query language, but exists to maintain
compatibility with the user’s expectation that if he types
help at a system, he will be told something useful.

Please explain this {system>

This 1s the official way to find out how to get a 1list of
the system commands.

Please explain <command>

And this is the official way to get the list of the system
commands. These are the same commands listed in Section
2.2.

Enter flood into the database
Enter land in

These two Enter commands verified that flood and land are
names of files that contain wmaps. A connection between
these names, flood and land, and those files, has been made
by the query language interpreter. Note that flood is the
name of the floodplain map and land is the name of the land-
use map.

Let be denote denote

This allows us to use "be" anywhere we could use the keyword
"denotem", This illustrates thow the user can tailor the
query language to his own taste.

Let extra be land

s
8]
3
(0%
o
w
[§]

Now both extra and Yland ecan be used as names for the
map. Note that this does not create a new map.

Describe extra please
The Describe command allows the user to verify that the pre-
vious Let command actually worked. Perhaps a more rsalistic
usage of the Describe command would be to asx for a descrip-
tion of a name that had been set thirty commands ago and
whose exact usage had now been forgotten.

Let x be 100
Let y be 400

We can now use x and y to denote 100 and Y400 respectively.
Let z be the polygon at x y in extra

Thus the above command causes z to refer to the polygon at
100 400 in the landuse map.

Use 0 0 512 512 to open Grinnell
This tells the database to use a window size of 512 by 512
(the entire Grinnell screen) for displaying a map. This 1is
the standard size for our maps.

Let zmap rename the map for z from extra

is the name of a map that is white except for a po-
100 400 that has been copied from the landuse map.

Let center be map of class at 100 400 in flood from flood

Now center refers to a map that contains only the polygons
of the floodplain map that have the same color as that of
the polygon at 100 400 (in the floodplain map).

Display center please
This enables the user to see the new map called center.
Seeing the map we named center, we notes that it actually
contains the left bank of the floodplain.

Let left renace center
Thus, we rename it laft.

Display center please
This results in an error wmessage because the rename form of
the Let command does an implicit Forget command on the file
name that corresponds to its object.
Disp
th S

18]
he

Let frame be

Since zmap is a map containing only the polygon z, frame now
denotes the smallest rectangle that encloses the polygzon z.

Enter top into the database
Note that top is the name of the topography map.
Let zz be the windowing of land with frame

We have now created a new map that is smaller than land and
includes that portion of the landuse map that was within the
smallest enclosing rectangle of the polygon z. Thus zz con-
stitutes a map of z with some surrounding context (as oD~
posed to a map of z surrounded by white).

Display zz quickly!

Note that the word "quickly" has no special meaning to the
system, although in this case the display is indeed done
quickly. A picture of zz is shown in Figure 5.

Use 256 256 128 128 to open Grinnell

Here we see one of the benefits of being able to specify
that output is done in a particular part of the display re-
gion. After execution of the nex: command, we Will be able
to have two copies of the map zz on the screen. Using this
type of facility, one could edit a map while simultaneously
iewing a copy of the original map. Unfortunately, the
t implementation only allows manipulation of the map
e last window created using the Use command. A more
SO ticated system might allow one to edit more than one
map at the same time, much as some text sditors allow the
editing of more than one textfile during the same invoca-

fer
O
o

Display zz please
Use 0 0 512 512 to open Grinnell

NoW We resume using the entire Grinnell screen.
Display the value of the area of left

Recall that left is the name of the left bank in the flood-
plain.

Display the value of the perimeter of left
These Display commands are printing values to the terminal.

Let center be a map of class at 100 300 on flood from flood
Display center please

ct
jax
1]

time we maxe center from the correct portion .of
plzain (as shown in Figure 5).

Let low be the map of levell on top
Display low please ‘

Low is a convenient name for a map of the lowest contour
level in the topography map. Note that levell is a class
name that is currently hardwired into the system and indi-
cates the first level in a topography map (as shown in Fig-
ure 7).

Let step?l be the intersection of land with low
Display stepl please

Now we are creating a2 new map (Figure 8) that contains those
portions of the landuse map that lie inside the boundaries
of levell in the topography map.

Let final be the intersection of stepl with center

The result of the previous operation is in turn intersected
with the center regicn of the floodplain map.

Display final please
Now the results are on the Grinnell screen (and Figure 9).

This particular result was one of the computations per-
formed by the system during Phase I and reported in
f{RoseB82a]. Recalling the sequence of operating system com-
mands that were necessary to perform the same calculation
before the query language was inplemented, one can sSee the
merits of having such a query language associated with a da-
tabase system. Such an interface makes the commands more
2asily understood znd provides a way of using the systen
that is transportablzs across different operating systems.

-~

=3
~
0«
a
o

Phase II of our project reguired integration of line
and point data into the databass. "From the map of Figure 1,
four mapds of line data were extracted. The most interesting
one is shown in Figure 10, and consists of the roads shown
on Figure 1. Figures 11, 12, and 13 show other linear
features on Figure 1. The Power Lines Map and the Railroad
Map are conceptually similar to the Road Map (zlthough wmuch
simpler). The City 3crder Map contains a closed curve (the
line b=gins and ends on the same point). This information
could have been stored as an area map with the region within
the city border as a single polygon {(a “black’ area) and the

outside region another polygon {(a “white’ area). Converting
betwesn line maps and a"°= maps in such a way is a task out-
side the scope of hdase II of this project; nowever this
ne maps are en-

might b2 a suitabls fask for future work. Lin

tered into the database and displayed by the same commands
as are area maps, as 1is snown in the following commands.

Enter road into the database
Display road please

Line maps can be intersected with area maps, but not with
point maps or other line maps.

Let lowroad denote the intersection of road and low
Display lowroad

The result of this intersection 1is shown in Figure 14,
Display the value of the area of lowroad

The above returns the number of pixels in the digitization
of the lines in the map lowroad. This yields a rough esti-
mate of the length of the lines in the map.

We also have a set of point data, shown in Figure 15,
which corresponds to the location of the houses on the map
in Figure 1. This map can also be entered and displayed in
a natural manner.

Enter point into database
Display point please

It is possible to display map expressions, as well as map
names, as demonstrated by the following command.

Display the intersection of point with low

- The result of this command is shown in Figure 16. As with
line maps, point maps can only be intersected with area
maps. It is also possible to ask for the area of a point
map, which has the natural interpretation of returning the
number of points in the map.

STATZ ZF ZALIFORNIA
SCIZOWIN 1G VIZRNOR
Py
N
A
3 CLOvEROALL 18 &, EEY TETIN Y 4
SivicavniL 88w Sy ¢ 3 s < s B Vb (I TOw s " 29w

e

ercnoandaat

T TR

re 2. The

floodplain

map.

Figure 3. The landuse nap.

W

~lgU1 =1 -) (S ¢ 77 a2 1n o) a 1 =%
D Th ~ + A
= u L& W e
(.&..dv o]
) L h e
l
naus

i
a

O
I

Figure 6. The map named ‘center’ (the center region of the
floodplain map).

N
)
1

Figure 7. The map named “low’ (the lowest contour of the to-
pography =map).

intersection of the

(the
“low).

-

Figure 8. The map named ‘step1”’

landuse map with the map named

(the intersection of

‘step1”

Th

‘canter

¢ map named

Y.

L

The road map.

Figure 10.

2]]
(=3

18]

11.

The city border

map.

}e

12.

The powerline

map.

n

wi

™~ 2
19

~gure 13. The railroad map.

Figure 14, The map named “lowroad-

(the intersection of the
road map with the map named “low’).

[a 9]
[9Y]

. ot . A
P T
s ..
v ’
y
H) . .
! (RN
[
y
CL
Ve o
t oy

house map.

The

15.

Figure

-

rxy

igure 16. Intersection of the house map with “low

