3

@Q;Q, 236)

TR-1327 September, 1983
DAAK70-81-C~0055%/P00007

APPLICATION OF HIERARCHICAL DATA STRUCTURES
TO GEOGRAPHICAL INFORMATION SYSTEMS
PHASE TII

Azriel Rosenfeld
Hanan Samet
Clifford A. Shaffer
Robert Z. Webber

Computer Vision Laboratory
Center for Automation Research
University of Marvyland
College Park, MD 20742

} -
[

PREFACE

This report documents the research conducted under
Phase 1II of Contract DAAK70-81-C-0059/P00007. The report
was prepared for the U.S. Army Engineer Topographic Labora-
tories (ETL), Ft. Belvoir, Virginia 22060. The Contracting
Officer’s Representative was Mr. Joseph A. Rastatter.

This report was prepared by Hanan Samet, Azriel Rosen-
feld, Clifford A. Shaffer, and Robert E. Webber.

SUMMARY

This document is the final report for Phase IT of an
investigation of the application of hierarchical data struc-
tures to geographical information Systems, conducted under
Department of the Army Contract DAAK70-81-C-0059/P000COT7.
The purposes of this investigation were twofold: (1) to con-
struct a geographic information system based on the quadtree
hierarchical data structure, and (2) to gather statistics to
allow the evaluation of the usefulness of this approach to
geographic information system organization.

To accomplish the above objectives, in Phase I of the
project a database was built that contained three maps sup-
plied under the terms of the contract. These maps described
the flood plain, elevation contours, and landuse classes of
a region in California. The map regions were represented in
quadtree form, and algorithms were developed for basic
operations on quadtree-represented regions (set-theoretic
operations, point-in-region determination, region property
computation, and submap generation). The efficiency of
these algorithms was studied theoretically and experimental-

ly.

On Phase II of the project, the following additional
tasks were performed:
(a) Query Language. Design of a high-level query language
permitting easy interaction with the database by users,
thus making the quadtree representation transparent %o
the users.

(b) Database updating. Development of algorithms for addi-
tion, deletion, and editing of data items in a
quadtree-encoded database.

(c) Point and lirtear feature data. Quadtree-like re
tations of point and linear feature data, extr
from the same geographic region, were z2lso constru
Algorithms were developed for interfacing between
representations and the quadtree-represented areas.

1. Introduction e e ettt e i e e e e ettt e e st e et

database query language Ct et e et
An overview of the query 1angUage v uvtee ettt nennnns
The query 1language SYNEAX «vuveeerueeenneenennnnnnns
A demonstration of the query language +.veevenneens
On the timing of the query language demonstration .

[ASINACINAC RN I |
. .
=W N = 0

quadtree editor - a tool for database update
An overview of the quadtree editor v v eeeneennes
Quadtree editor commands D
Implementation of the quadtree editor commands
A demonstration of database updating .o i it eeee e

Wwww
.
£EW N -0

4. The quadtree memory management SYSLem ettt eeensnosones
4.1 The user’s view of the memory management system ...
4.2 Implementation of the memory management system

5. Point and 1line data S e s e e e st et et e s e s e e et et s e
6. Conclusions and plans et et ettt e e
Appendix: Facilities USed ..veenirneeeeenseeemme i,

Bidliography on qQUadEIreesS v s euwveereeneeenns s ee e e e s e e

. e

O 00~ AU W —

- ek b A
W N = O
e s e a e .

17.
18.
19.

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

Intersection of the house map with
floodplain map with marked

The
The
The

13
=
(]

‘landuse map c e e e e
updated landuse map

foe]
]
O]
197}

gz2ological survey map of the Russian River valley
floodplain map ... e et et et . . .o
landuSe MAP e veet ooeeesocensneeesa . e e s e e e e e e
topography mMap «.eeeeeeeens st e e e c e e s .
map named T ZZ vttt ettt ot e et e e
map named ‘center’ieeniean. e “ e . “ e
map named “10W T L. i.ih e e, e e G h e e e
map named “stepl’ e e e e e e e ee e e
map named T AnNAl T L it et ettt et e e
roa8d MAD v o v vt et s v oot oneooossseess G h e e s e s e et e s
City border map ..o eeeeeeoos e C e e et e e e s .
powerline map t e e e e . . c e e s e e e e e
railroad map ...eeeee t et e et a s . PN ..
map named “loWroad .. i.eiiiaieneneen.. Ch e e
NOUSE MBD t v vt aa s o oo 0ot osssosoecesocscesecsssoeeses

low’ et et e

revisions S et et e e e e

€ o 6 5 ¢ ¢ & 6 8 2 2 s 8 4 6 3 e 4 & s s s s 6 0

L A R A I I

-3
e
w
-

&}
1%

gs for example demonstration ...

Table

n
s of maps referred to by
ngs for intersection task

e 8 & 3 8 5 o 6 s ¢ 0 s 0 o s s v &

page
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
50
51
52

1. Introduction

This project is concerned with the applicability of a
class of nierarchical data structures, known as "quadtrees™,
to the representation of cartographic data. Section 2 de-
tails the database query language that defines how the sys-
tem appears to the user. Section 3 presents the quadtree ed-
itor which allows the user to directly edit and update a
map. Section 4 describes the quadtree memory management
system which allows the user to manipulate maps that cannot
fit in core. Section 5 discusses the usage of the quadtree
memory management system to store maps of point data (e.g.,
a map of house locations) as well as line data (e.g., a map
of road layouts). Section 6 presents our conclusions and
future plans. At the end of the report is a bibliography on
quadtrees.

The facilities used on the project are described in the
Appendix. In particular, the display deviced used by this
project is a Grinnell GMR-27 Display Processor (see [Kirb79]
for information pertaining to wuse of this device at the
University of Maryland), referred to in the rest of this re-
port as the Grinnell.

2. The database querv language

2.1. An overviasw of the gueryv language

The query language is an English-like keyword-based in-
terface between the database user and the database system.
The query language allows the user to display, window, and

construct submaps from individual maps, perform set-
theoretic operations on groups of maps, and extract various
kinds of information from a map (e.g., find the total area

of a map, list the polygons in a map, etc.). It also allows
the user to access the quadiree editor (describded in Section
3) which enables the user to update maps and draw new ones.

The query language is embedded in the University of
Maryland version of FRANZ LISP ([Fode80],[A11e82]). The en-
tire database system can be viewed operationally as a query
language that is interpreted by LISP as LISP functions which
call C functions (i.e., functions coded in the programming
language C) to actually process the maps. Thus all of the
algorithms of the database are coded in. C, and LISP merely
serves as a convenient front end for translating the query
language into calls to C functions. Although normally it 1is
necessary to enclose a function call in parentheses when us-
ing LISP, the particular LISP we are using interprets an in-
put line containing three or more words as being implicitly
enclosed by parentneses. We make use of this device to give
the interface a more natural appearance to users who are not
used to LISP.

The query language is keyword based, which means that
the database ignores words that it doesn’t understand. This
has the advantage that one can insert words and phrases
(e.g., articles like "the"™ and "an") to give the command a

more natural appearznce, or one can ignore unnecessary
phrases and just type the minimum to cause the appropriate
commands to be executed. This added flexibilicty is bought

at the cost of more obscure error messages resulting from
the misspelling of a keyword. In order to allow the user o
customize his interfacs with the database, there are com-
mands that allow keywords to be changed.

The syntax of the database interface is explained in
Section 2.2. In Section 2.3, an example of an interactive
session with the database is presented. Section 2.4 con-
tains timing statistics gathered when using the database

system.

fro
fro
H

€ gquery language syntax

A description of the query language sSyntax is dresent-
ed. Curly braces {} are used to indicate phrases in the
command where a sequence of non-keywords can be inserted.
These words are used to add clarity to the query. Some
standard sequences are shown in the given command forms.

Words enclosed in angle brackets <> are syntactic un-
its. A syntactic unit is simply something which, when the
query 1s typed, is replaced by its definition. For example,
Suppose we had a syntactic unit <color> whose definition was
red, green, or blue. Then whenever there was a query whose
syntax contained the symbol <color> we would actually type
our choice of red, green, or blue. The query language 1is
presented by describing each syntactic unit.

g.g.l. {command>

The portion of the query language that corresponds to
an English sentence is a <command>. All other syntactic un-
its correspond to words or phrases. The following are the
allowable forms for a command:

Please { explain } {syntactic_unit> { }

Use { the Grinnell at } <window> { }

Measure { points from the lower left corner of } map { }
Measure { points from the } global { origin }

Enter <file name> { into database }

Display <map> { on Grinnell }

Display <map> { on Grinnell starting from } <point> { }
Display { the } wvalue { of } <number> { }

Let <name> { } denote { } <objectd> { }

Let <name> { } rename { } <map> { }

Describe { the type of this } <name> { }

Forget { about the meaning of this } <key word> { }
List { all the } classes { on } <map> { }

List { all the } polygons { on } <map> { }
Edit { } <map> { with the database editor }
Move { to } <point> [}

Perhaps most useful to the beginning user is the Please
command. The request
Please explain <command>
gives 2 list of the allowable forms for a {command>. In
general, one uses the Please command as a help function
Wwnich gives information about syntactic units.

The following three commands are used to initialize the
database System: the Use command, the Measure command, and
the Enter command. The Use command enables the user to
specify a portion of the display device (in our case, a
Grinnell GMR-27) that is to be used in displaying the map.

The Measure commands tell the database system how “he user
Wwishes coordinates of points to be interpreted. One can ei-
ther measure locations from the lower left-hand corner of
the map or from some =Xxternal global origin (defined when
the map was built or last edited). The Znter command places
the name of a quadtree file into the database’s list of
known gquadtree files. The Enter command also checks the
file to make sure that it is a quadtree file.

There are three different types of Display commands.
The first type simply causes a map to be displayed in the
portion of the display device that was defined by the Use
command. This command places the lower left-hand corner of
the map in the lower left-hand corner of the display region.
The second type of Display command allows the user to speci-
fy some other part of the map to be placed in the lower
left-hand portion of the display region. This is particu-
larly useful for displaying maps that are larger than the
display region. The third type of Display command allows
one to display the value of a clause (expression) without
first having to bind the value to a name.

There are four commands that allow the user to manipu-

late the names that the query language interpreter ¥nows
about (these are in addition to the Enter command described
above): two forms of the Let command, the Describe command,

and the Forget command. The first form of the Let command
2nables the user to associate a name with an object. The
value of the name becomes the value of the object at the
time the Let was performed. The second form of the Let com-
mand permits the user to name a map and at the sazme time re-
move the o0ld name of the map. This is particularly useful
because each map name corresponds to a file in the operating
system and one doesn’t want to clutter up one’s dirsctoriss
With the names of many temporary maps. The Describe command
tell the user what the query language interpreter knows
about a2 particular name (generally its type and something
about its value). When the Describe command is applied to a
guadtree file, the quzdtree file’s header information is
displayed on the terminal. The Forget command causes the
interpréter to forget 2 previous meaning that had been asso-
cliated with a name.

Finally there are four miscellaneous commands: two
types of List commands, the Edit command, and the Move com-
mand. The first type of List command allows the user to get
a list of the classes that are used by a particular map.
Each class corresponds to a color on the map. The second
type of List command provides the user with a list of po-
lygons (simply-connected regions) in a map. Note that a po-
lygon name is a c¢lass name concatenated with the x and vy
coordinates of some point inside the polygon. The =Zdit com-
mand allows the user to access the the quadtree editor (QED)

described in Section 3. The Move command causes a cursor on
the display device to be moved to a specified location.

2.2.2. <syntactic unit>

The possible {syntactic_unit>s constitute the allowable
parameters to the Please command. They also correspond to
the actual syntactic units of the query language grammar
augmented by two additional values, <{system)> and {syntax>,
whose explanations tell how to interpret the results of a
Please command. The following are the allowable
{syntactic_unit>s:

{system>
{syntax>
{eclass>
{command>
<eplist>
{file name>
<{key_ word>
<map>
<name>
<number>
{object>
{point>
{polygon>
{syntactic unit>
{window>

The explanation of a <syntactic_unit> is an abbreviated ver-
sion of its description in this document. Note that
<syntactic_unitd>s are meant to be used with angle brackets
enclosing them. Thus for an abbreviated version of Section
2.2.1, one would type

Please explain <command>

An error would result from a request to explain anything
other than one of the {syntactic_unit>s that are listed
above, Fajilure to use angle brackets also generates an er-
ror. Clearly a more forgiving version could be provided if

ever needed.
g.g.i. {number

A number can be represented in decimal format or by a
<name> that denotes a number., It can also have one of the

following forms:

{
{

cr cr

h a { of } <map>
h i

e } are
e } perimeter { of } <map>

The area form allows one to calculate the total area of the
non-white parts of a line, point, or area map. The perime-
ter form is used to calculate the perimeter of the non-white

v i

parts of an area map.
2.2.4. {name>

A name can be represented by a letter followed by any
sequence of characters. Names are used to denote kKeywords
in the query language and the values of objects created by
the user. A name can be used wherever the object that the
name denotes can appear.

2.2.5. <{point>

A point represents a location on the map. A map loca-
tion can be specified in one of the following ways:

{ the point where x = } <number> { and y = } <number>
{ the point at the } cursor

The specification of a point by the value of its x and ¥y
coordinates is useful when these values are known. Often it
is difficult to determine accurate x and y values by Just
looking at the screen. When an accurate point value is
needed, the most convenient way to get it is to position the
cursor at the location on the map that is desired. The lo-
cation of the cursor can then be referred to using the Key-
word "cursor".

2.

o

.6 <window>

A window describes a rectangular region. A window can
be specified in one of the following ways:

{ from } <point> { extending } <number> { by } <number>
{ the smallest } window { for } <map>

he first specification, <point> refers to the coordinate

T the lower left corner of the window. It is followed by
width and the height of the window. The smallest window

a map is the smallest rectangle that encloses all the
non-white regions in the map.

g.g.z. {file name>

{file-name> is a special type of name which is in r
1y

.
preted 2s the name of a file in the operating system. Or
such names ars valid parameters to the Enter command.

3

-

2.2.8. <Kmap>

A map can be denoted by a <file name> that has been en-
into the database. It can also be constructed by one
following phrases:

"3

(o8

O ct
¢t
oy
®

(D

{ the } intersection { orf } <map> { with } <map>

{ the } union { of } <map> { with } <map>

{ the } windowing { of } <map> { with } <window>

{ the } map { formed from } <eplist> { in } <map>

{ the } points { in } <number> { of } <point> { in } <map>

The first two phrases construct the obvious set-theoretic
results. There is no phrase to construct the set-theoretic
complement of a map, because this can be done easily in the
quadtree editor described in Section 3. The windowing con-
struction creates a map whose lower left-hand corner is the
lower left-hand corner of the window and which has had all
the area that lies outside the window painted white. A
<eplist> is a collection of classes and polygons. The map
formed from a <cplistd> looks exactly like the original map
except that all regions not specified in the <cplist> have
been painted white. The <cplist> construct in conjunction
with union, intersection, and windowing will allow the user
to create maps containing any c¢ollection of polygons from
any set of maps he desires. The points construction is used
to build a map of the points within a distance <number)> of a
location <point> in a point map <map>.

g.g.g. <object>

The types of objects that can be associated with a name
are the following:

<class>
<key_word>
<map>
{number>
<point>
{polygon>
<window>

2.2.10. <class>

A class is used to refer to a collection of regions in

a map that have the same color. There are two kinds of ob-
Jects that have colors associated with them. One is the po-
lygon, which is a simply-connected region of one color, and
the other is the point, which is a location that can have a
color. Thus classes can be'specified in the following two
ways:

{ the } class { of } <polygon>
{ the } class { at } {point> { on } <map>

The word “class’ comes from the concept of a landuse class -
for example, all of the wheatfields might form a class.
Here that notion has been extended so that egach topography

level has a predefined class - e.g. 211 the polygons with
elevation below 100 feet are part of the class levell. Ad-
ditionally there is the class of polygons which are white
(no information or binary value “07). All <classes have a
unique color value, and new classes can be created on the
fly (and renamed if desired) by giving a polygon an unused
color.

2.2.11. <polygon>

A polygon is a simply-connected region in a particular
map. Any point in a polygon can be used to denote a po-
lygon. Thus the internal form for a polygon 1is a point
value concatenated with a map name. Sometimes it is useful
to have a unique name for a polygon. A typical case might
be when polygons of the same class are derived from two dif-
ferent methods, and the user wishes to know if they are the
same polygon. In those situations, an arbitrary ordering 1is
imposed on the points inside the polygon (corresponding to
the order in which a tree traversal would find them) and the
least point (according to this ordering) that is inside the
polygon 1is used to uniquely denote the polygon (when con-
catenated with the polygon’s map name). Quite often, howev-
er, a unique name is not needed. Since calculating uniqgue
polygon names is expensive, the following two forms are
given to allow the user to specify a polygon and whether or
not the name should be unique: ’

{

he } polygon { at } <point> { on } <map>
e } unique { } polygon { at } <point> { on } <map>

~
cr ocr
o3

3'3'13' Kkev word>

The keywords recognized by the guery language are any
words that appear outside the curly braces in a syntax
description. These include the syntactic units (see Saction

2.4) and the following: area, class, classes, cursor,
denote, global intersection, map, perimeter, polyzon, DO -
lygons, renzame, union, unique, value, window, windowing.
Also included are: Describe, Display, =dit, Enter, Forget,

Let, List, Measure, Move, Please, Use.
2.2.13. <ecplist>

A cplist is a nonempty 1list of classes and polygons.
This allows the user to specify any arbitrary subset of po-
lvygons from an area map. This is a portion of the grammar
that could easily be extended to include various operators
for bdbuilding a list of classes and polygons using set-
theoretic operations in conjunction with the total list of
classes or polygons in a map. However, so far, no need has
been found for such a capability.

2.3, A demonstration of the guery language

Below is an example of an interactive session between a
user and the database. Qur database is a collection of maps
relating to the Geological Survey Map shown in Figure 1.
Phase I of our project used three maps that represented
three different partitionings of Figure 1, and are shown in
Figures 2, 3, and b, Note that these figures represent
"multi-color maps. The first portion of this demonstration
will be concerned with showing how the tasks of Phase I can
be done using the query language. We assume that the data-
base has already been invoked via the appropriate system
calls.

help

The one word phrase help is used to remind the user of how
to use the Please command. This ability is not actually
part of the formal query language, but exists to maintain
compatibility with the user’s expectation that if he types
help at a system, he will be told something useful.

Please explain this {system>

This 1s the official way to find out how to get a 1list of
the system commands.

Please explain <command>

And this is the official way to get the list of the system
commands. These are the same commands listed in Section
2.2.

Enter flood into the database
Enter land in

These two Enter commands verified that flood and land are
names of files that contain wmaps. A connection between
these names, flood and land, and those files, has been made
by the query language interpreter. Note that flood is the
name of the floodplain map and land is the name of the land-
use map.

Let be denote denote

This allows us to use "be" anywhere we could use the keyword
"denotem", This illustrates thow the user can tailor the
query language to his own taste.

Let extra be land

s
8]
3
(0%
o
w
[§]

Now both extra and Yland ecan be used as names for the
map. Note that this does not create a new map.

Describe extra please
The Describe command allows the user to verify that the pre-
vious Let command actually worked. Perhaps a more rsalistic
usage of the Describe command would be to asx for a descrip-
tion of a name that had been set thirty commands ago and
whose exact usage had now been forgotten.

Let x be 100
Let y be 400

We can now use x and y to denote 100 and Y400 respectively.
Let z be the polygon at x y in extra

Thus the above command causes z to refer to the polygon at
100 400 in the landuse map.

Use 0 0 512 512 to open Grinnell
This tells the database to use a window size of 512 by 512
(the entire Grinnell screen) for displaying a map. This 1is
the standard size for our maps.

Let zmap rename the map for z from extra

is the name of a map that is white except for a po-
100 400 that has been copied from the landuse map.

Let center be map of class at 100 400 in flood from flood

Now center refers to a map that contains only the polygons
of the floodplain map that have the same color as that of
the polygon at 100 400 (in the floodplain map).

Display center please
This enables the user to see the new map called center.
Seeing the map we named center, we notes that it actually
contains the left bank of the floodplain.

Let left renace center
Thus, we rename it laft.

Display center please
This results in an error wmessage because the rename form of
the Let command does an implicit Forget command on the file
name that corresponds to its object.
Disp
th S

18]
he

Let frame be

Since zmap is a map containing only the polygon z, frame now
denotes the smallest rectangle that encloses the polygzon z.

Enter top into the database
Note that top is the name of the topography map.
Let zz be the windowing of land with frame

We have now created a new map that is smaller than land and
includes that portion of the landuse map that was within the
smallest enclosing rectangle of the polygon z. Thus zz con-
stitutes a map of z with some surrounding context (as oD~
posed to a map of z surrounded by white).

Display zz quickly!

Note that the word "quickly" has no special meaning to the
system, although in this case the display is indeed done
quickly. A picture of zz is shown in Figure 5.

Use 256 256 128 128 to open Grinnell

Here we see one of the benefits of being able to specify
that output is done in a particular part of the display re-
gion. After execution of the nex: command, we Will be able
to have two copies of the map zz on the screen. Using this
type of facility, one could edit a map while simultaneously
iewing a copy of the original map. Unfortunately, the
t implementation only allows manipulation of the map
e last window created using the Use command. A more
SO ticated system might allow one to edit more than one
map at the same time, much as some text sditors allow the
editing of more than one textfile during the same invoca-

fer
O
o

Display zz please
Use 0 0 512 512 to open Grinnell

NoW We resume using the entire Grinnell screen.
Display the value of the area of left

Recall that left is the name of the left bank in the flood-
plain.

Display the value of the perimeter of left
These Display commands are printing values to the terminal.

Let center be a map of class at 100 300 on flood from flood
Display center please

ct
jax
1]

time we maxe center from the correct portion .of
plzain (as shown in Figure 5).

Let low be the map of levell on top
Display low please ‘

Low is a convenient name for a map of the lowest contour
level in the topography map. Note that levell is a class
name that is currently hardwired into the system and indi-
cates the first level in a topography map (as shown in Fig-
ure 7).

Let step?l be the intersection of land with low
Display stepl please

Now we are creating a2 new map (Figure 8) that contains those
portions of the landuse map that lie inside the boundaries
of levell in the topography map.

Let final be the intersection of stepl with center

The result of the previous operation is in turn intersected
with the center regicn of the floodplain map.

Display final please
Now the results are on the Grinnell screen (and Figure 9).

This particular result was one of the computations per-
formed by the system during Phase I and reported in
f{RoseB82a]. Recalling the sequence of operating system com-
mands that were necessary to perform the same calculation
before the query language was inplemented, one can sSee the
merits of having such a query language associated with a da-
tabase system. Such an interface makes the commands more
2asily understood znd provides a way of using the systen
that is transportablzs across different operating systems.

-~

=3
~
0«
a
o

Phase II of our project reguired integration of line
and point data into the databass. "From the map of Figure 1,
four mapds of line data were extracted. The most interesting
one is shown in Figure 10, and consists of the roads shown
on Figure 1. Figures 11, 12, and 13 show other linear
features on Figure 1. The Power Lines Map and the Railroad
Map are conceptually similar to the Road Map (zlthough wmuch
simpler). The City 3crder Map contains a closed curve (the
line b=gins and ends on the same point). This information
could have been stored as an area map with the region within
the city border as a single polygon {(a “black’ area) and the

outside region another polygon {(a “white’ area). Converting
betwesn line maps and a"°= maps in such a way is a task out-
side the scope of hdase II of this project; nowever this
ne maps are en-

might b2 a suitabls fask for future work. Lin

tered into the database and displayed by the same commands
as are area maps, as 1is snown in the following commands.

Enter road into the database
Display road please

Line maps can be intersected with area maps, but not with
point maps or other line maps.

Let lowroad denote the intersection of road and low
Display lowroad

The result of this intersection 1is shown in Figure 14,
Display the value of the area of lowroad

The above returns the number of pixels in the digitization
of the lines in the map lowroad. This yields a rough esti-
mate of the length of the lines in the map.

We also have a set of point data, shown in Figure 15,
which corresponds to the location of the houses on the map
in Figure 1. This map can also be entered and displayed in
a natural manner.

Enter point into database
Display point please

It is possible to display map expressions, as well as map
names, as demonstrated by the following command.

Display the intersection of point with low

- The result of this command is shown in Figure 16. As with
line maps, point maps can only be intersected with area
maps. It is also possible to ask for the area of a point
map, which has the natural interpretation of returning the
number of points in the map.

STATZ ZF ZALIFORNIA
SCIZOWIN 1G VIZRNOR
Py
N
A
3 CLOvEROALL 18 &, EEY TETIN Y 4
SivicavniL 88w Sy ¢ 3 s < s B Vb (I TOw s " 29w

e

ercnoandaat

T TR

re 2. The

floodplain

map.

Figure 3. The landuse nap.

W

~lgU1 =1 -) (S ¢ 77 a2 1n o) a 1 =%
D Th ~ + A
= u L& W e
(.&..dv o]
) L h e
l
naus

i
a

O
I

Figure 6. The map named ‘center’ (the center region of the
floodplain map).

N
)
1

Figure 7. The map named “low’ (the lowest contour of the to-
pography =map).

intersection of the

(the
“low).

-

Figure 8. The map named ‘step1”’

landuse map with the map named

(the intersection of

‘step1”

Th

‘canter

¢ map named

Y.

L

The road map.

Figure 10.

2]]
(=3

18]

11.

The city border

map.

}e

12.

The powerline

map.

n

wi

™~ 2
19

~gure 13. The railroad map.

Figure 14, The map named “lowroad-

(the intersection of the
road map with the map named “low’).

[a 9]
[9Y]

. ot . A
P T
s ..
v ’
y
H) . .
! (RN
[
y
CL
Ve o
t oy

house map.

The

15.

Figure

-

rxy

igure 16. Intersection of the house map with “low

2.4. On the timing of the query language demonstration

The timing of the execution of commands in the query
language, as done for Phase II, 13 quite different from the
timing of the programs developed in Phase 1I. First, a dif-
ferent mechanism 1is performing the timings. In Phase I, a
system routine was being accessed directly by the C progranm
that was performing the calculation. In Phase II, the tim-
ing 1s being done by the LISP system. Therefore, in addi-
tion to the time it takes for the C functions to perform the
query, our values include the time necessary for the LISP
functions to interpret the query language, parse the com-
mand, and cross the interface between LISP and C. Second,
the kernel (which was not used in Phase I) explicitly per-
forms memory management functions that were handled less ef-
ficiently, but invisibly to the Phase I timing mechanism, by
the operating system in Phase 1I. Third, the quadtree file
representation used in Phase II requires considerably more
space than the file representation used in Phase I, but the
Phase I quadtree files had to be read sequentially, whereas
the Phase II quadtree files can be accessed randomly. The
result of this is that in Phase II, commands that manipulate
a part of map have been speeded up at the expense of com-
mands that manipulate the entire map.

The main intent of timing measures is to give a feel
for how interactive a nprocess is. Timinzs are most useful
when the process being timed is computzs bound (as opposed to
I/0 bound). Unfortunately, it is not clear whether signifi
cant portions of the database system are compute bound; but
given this and the =zbove considerations, we submit the fol
lowing two timing results.

typical work session
Table 1 presents the
ration of section 2.3.
, time is measured in
seconds. Looking at the timings, ind that the most =
pensive operations are taking a single arez map and ¢

structing a new map that corresponds to a subset of the
gions in the map or the windowing (clipping) of a region of
the map. This is because these operations require the most
processing time per node of the quadtree. For example, wWin-
dowing requires calculation of what portion of each node
lies within the window. The processing of a node to deter-
mine whether or not it is in a given class (as is done in
the case of the construction of the Low Map) would be trivi-
al except that it is done in a 3zeneral setting where the
node could conceivably be compared to many class or polygon
types; thus carrying more overhsad than is obvious f{from the
usage given. The cost of the intersection commands are not
surprising when one considers the size of the gquadtrees in-
volved (as shown in Table 2) in the case of zrea maps and

The first timing task anal
dinvolving =z wide variety of gu
timings for the query language 4
In botn this table and the late

I

b I el o
D

-t

[B

T
3 0O
o

the necessary calculations performed per node in the case of
the point and line map intersections.

The second timing task analyzes 3 single query (the in-
tersection query) on a wide variety of data. In Table 3,
results are shown for the intersection of each of the land-
use classes (see Figure 3 and the Phase I report [Rose82a])
with each of the following three maps: the Center map (Fig-
ure 6), the Houses Map (Figure 15), and the Road Map (Figure
10). The size information given in Table 3 indicates the
result of calculating the area of the map that results from
the intersection. Note that the time needed to construct a
map for each of the landuse classes is not included in these
times. Recall from [Rose82a] that the landuse class WS was
the Russian River - Dry Creek water system of Figure 1.
Then, looking at Table 3, we 3ee that 9 houses are insepar-
able from the water at the level of accuracy (discussed in
[Rose82a]) with which the maps are encoded.

(WS]
3]

Table 1. Timings for Example Demonstration
(time i3 measured in seconds).

T et s - - - n o o ts - = o e v s Wt W M A e s e G 4 e Am Am m e W me e A

A e e m mm ms YEL AN e em e e S 6 T W e e WS W e e N - e s 4m e e h m e M e G i v W o - - — -

| Please <system>

| Please <command>

| Enter flood

| Enter land

| Let be denote denote

I Let extra be land

| Describe extra

! Let x be 100

| Let y be 400

] Let z be polygon x y extra
[Use 0 0 512 512

| Let zmap rename map 2z extra
| Let center be map class 100 400 flood flood
| Display center

| Let left rename center

! Display center - error return
| Display left

| Let frame be smallest zmap
|

l

[

|

l

I

|

|

l

l

|

|

!

]

]

|

l

]

f

l

!

. * e - . .

— e
. . . . e

I
l
l
l
l
l
l
|
|
l
|
|
I
|
I
I
l
Enter top |
Let zz be windowing land frame l
l

|

|

l

|

l

!

|

|

|

l

l

I

|

I

l

I

I

I

Display zz

Use 256 256 128 128
Display zz

Use 0 0 512 512

Display value area left
Display value perimeter 1
Let center be map class |
Display center

Let low be map levell top
Display low

Let stepil be intersection land low
Display step]

Let final be intersection step?l center
Display final

Enter road

Display road

Let lowroad denote intersection road low
Display point

Pisplay intersection point low

—
. .

o)) (V8] (@0
VT2 OWOW WU 2 =22 WOoONOMN0O aeaMNO 2 a0 0000000000000

w
.

. . - - .
MOO VWM WOTWWOMNMO-2NA 20 200N aENDWaNa 02 000 —

i
La)
(W8]

1

Table 2. Sizes of Maps Referred to by Table 1.

| Name of Map | Number of Nodes in Map |
I center | 4687 !
| extra (land synonym) ! 28447]
| final J 10080 |
| flood I 5248 I
| intersection point low] bsy f
! land ! 28447 |
J left ! 3197 J
| low | 4996 |
| lowroad | 3091 !
| point | 1906 i
I road I 7729 |
| step1 | 15898 |
| zmap | 1765 |
l | |

2z (shifted zmap)

_——————-—__..__.._.\.._..—_—-—_...—_—-..-—....__.__...._..—__._...—_____—

Size

(an area map)

i

Road Map

Time

I
[

landuse map with:

Map
Size

!

floodplain map

(a point map)

(a line map)
is measured in number of non-white pixels

is measured in seconds)
Houses

the
Time

I
Il

Intersection Task

each c¢class from the
Map
Size

!

Pl

ion oOf

i

er region o

¢
Center
Time

Timings for

road map
time

bl

I

the nouse map
si

tersec

1) the cen

2)

3) the
(Note:

Land

Class

n

T
|
!

N MO WO O O MNMo OO OO
31.41 1,3.! 9 1|

— — o O — E=) Land

OCOOMIT O T O v~ N ODTTONMNM—-OOMONME-O0OOO0 OO0

71647144595454656M 668655865656 MO - N

e . s s s s s
23223322229_229_9_9_22229_9_22?_2202?,239_2
—

oooooo

) O G > LT 00 XN nXTOWHOO>LCnnw 0.
OO0 &> p»>000L 0L OO 00 Q Awrtr OO0 O0OO0O0TLTILII>0 0 X
o dgod 8000064 L 3T I I I3 3333 T3 >3 2%

3- The guadtree editor - a tool for database update

3.1. An overview of the quadtree editor

=

The quadtree editor (QED) exists to facilitate the ina-
teractive construction and updating of maps stored as quad-

trees. Rather than forcing the user to think in terms of
the tree structure, QED tree manipulation commands make ref-
erences to logical units of the map (e.g., lines, points or

polygons). The user performs editing operations such as in-
serting a line or point, changing the value of a specified
polygon, or splitting a specified polygon into more than one
piece.

When many changes are to be made, the user may wish to
see the effects of each step. Commands are provided to al-
low him to examine all or part of the map at a selected lo-
cation on a display device. This display is continuously
updated as further map manipulation commands are executed.
Associated with each map s quadtree representation is a
descriptor termed the quadtree header. It contains informa-
tion such as the size and location of the map. There exist
commands which allow the user to modify this neader. In ad-
dition, he may also insert textual comments into the header
for documentation purpos=es.

QED is a command based system - i.e., the user gives =z
command and it is executed, after which the system 1s resady
to executs the next command. There 1s no notion of compos-
ing functions as there is in the quadtree database language.
When the editor is ready to receive a new command the promps:
<?7> is displayed. Area maps are updated by use of the re-
place, change, and split commands which replace all polygons
of a given value with a new value, change the value of 2
given polygon, or split a polygon into multiple polygons,
respectively. Line and point maps are updated by use of the

insert and delete commands which insert or delete lines

or

points, respectively. In order that the user nay see wha:

ne is editing, there are commands that draw all or oart of
- “

the map onto a selected section of the Grinnell display dev-
ice. The user may also alter the header of the map.

To begin using the editor from the database system, the
user types
Edit <file> please

where <(file> is the name of the disk file in which the map
to be edited is stored. If the file does not already exist,
then the editor assumes a new map is to be created. In this
case the user will be prompted to indicate what the map type
is (region, line, or point data). New maps are initially
entirely white. If the file does exist, then it must be a
legal quadtree file; otherwise QEZD informs the user thabt the
file cannot be edited and halts. In order to protect the

i
[WN]
On
1

user against errors and machine crashes, a complete copy of
the file being edited is made, and all editing is actually
done on the copy. At the termination of an editing session
the old copy of the file being edited is stored in a backup
file, and the copy containing the revisions replaces it.
For example, after editing a file named "mymap", the prior
version is stored in the backup file "mymap.bk", and the new
(edited) version will then reside in "mymap". The commands
typed while editing are also recorded in a file with the
suffix "T.tyn". Therefore, in this example, file "mymap.ty"
would contain the commands used in the last editing session.

Sections 3.2 describes each command in greater detail.
Where syntax lines are given, names enclosed in angle brack-

ets (> are syntactic type indicators - the user would type a
numerical value or name in their place. Arguments enclosed
in square brackets [] are optional. In Section 3.3, some of

the implementation details of QED commands for region maps
will be considered. Implementation details for point and
line maps may be found in Section 5. Section 3.4 presents a
demonstration of database updating for an area map.

;.g. Quadtree aditor commands

3.3.1. Header and comment commands

zach map file includes a header which contains informa-
tion such as the width of the map, its location and orienta-
tion in space, and the type of data represented - say, to-
pograpny or landuse data for region maps, roads for line
maps. A comments section is also provided to allow the user
to document his maps. The following commands allow the user
to change the header, add comments, and read the header.
Note that once the map’ s type has been set to region, line,
or point, the map type can not be changed.

3.

fro

.l.l. Header

Syntax: Header

This command allows the user to view and alter informa-
tion in the header. For each item of data contained in the
headzr, the editor gives the user the opportunity to change
it. The editor outputs a description of the information,
its old value (in parentheses) and a prompt for the user to
insert the new value. If no change is desired, typing the
return key will leave that item as is. The modifiable
values are:

Map size - 411 maps are a square of size N x N where N
is some integer power of two. If the value given
is not a power of two, then it will be converted
to the least power of two greater than the Ziven
value., ‘

First X and First Y - The external coordinates of the
lower left corner of the map. This might be used
by other functions in the database for comparing
the relative positions of two maps.

Rotation Angle - A real number which is the tilt (in
radians) of the map from the =xternal horizontal.
Once again, it could be used to compare two maps.

Data Type - A single capital letter. This describes
the type of information conveyed by the map. Some
currently understood values are:

B binary map (all polygons are black or
white)
T topography map
L landuse map
U unknown type
Adhen eating a new map, the editor will automatically
execut to

cr
the header command in order to allow the user
1 neader information.

3.2.1.2. Comment
Syntax: comment <comment-line>

Add <comment-lined> to the comments which are stored
along with the header. These comments are provided by the
user to say whatever he wishes about the map. Some database
functions may also add to the comments. For example, when
QED creates a map, that map receives a comment stating that
it has been created by QED. All comments are automatically
prepended with the date and time.

3.2.1

.3. Print
Syntax: print

Print out the header and comments (see header and com-
ment commands).

3.2.2. Grinnell manipulation commands

The following commands allow the user to select the
section of the map ne wishes to view and on what portion of
the Grinnell. When the Grinnell viewing functions are on,
all changes to the map which occur within the user’s viewing
window will be displzyed.

Syntax: gon <fx> <fy> <nx> <ny>

This command selscts (or changes) the section of the
nnall on which the user will display his map. The four
egers <fx>, <fy>, <nx> and <ny> describe the window -
r left x and y coordinates, width and height, respsc-
ely (the lower left corner of the Grinnell is assumed to
e (0,0)). The selected section of the Grinnell is erased
y this command.

Gr

n
i

[0}

i
t
oW
ve

},_.

O U ot l-‘ IS8

3.

2.2.2. Goff
Syntax: goff

This command releases the Grinnell. After this command
is given the Grinnell window is erased, and no further

changes to the map will be shown on the Grinnell.

3'3'2'2' Look

Syntax: look <fx> <fy>

|
L)
Ve
|

This command selects the portion of the map which is to

Se viewed, and displays it on the Grinnell in the window de~
fined by the last gon command. The integers <fx> and <fy>
describe the lower left x and y coordinates of the portion
of the map to be viewed (the height and width are taken from
the previously defined Grinnell window).

3.2.2.4, Point

Syntax: Point <x> <y>

This command places a flashing cursor in the Grinnell
window at the point specified by the arguments.,

3.2.3.

Area map changing commands

The three commands replace, change and split enable the
user to make changes to a region map. These changes are re-
flected on the Grinnell if they occur within the current
user specified window of the map and a Grinnell window has
been opened by a gon command.

o
o
fwo

.l. Reglace

Syntax: replace <old-val)> <new-val>

11 polygons of the map with (integer) value <old-vald
¢ replaced by polygons of type <new-val).

i'é'i'é' Change

Syntax: zhange <(x> <y> <new-val>

This command changes the value of one particular DO -
~ygon °f the map to the given (integer) value <new-val)>.
“he integer values <x> and {y> define a <coordinate which
lies withi

n the polygon to be changed.

plit

—_—

[[oN)
leo
lwo
[[¥)

n

Syntax: split [s] <vald> [<file>]

This command is used %o split a polygon into more than
one region. The user supplies a chain code which is drawn
onto the map with value <val>. Typically, one of the
resulting subpieces of the polygon will subsequently be
given a nsw value with %the change command.

The chaincodes may be entered in one of two ways. ir
{file> is given, then the editor gets the code from a disk
file with the name <file>. Otherwise, the editor will

prompt the user to input the chaincode online. The syntax
of a chaincode is as follows:

(<x>,<y>)<list>#
<{x> and <y> specify the beginning coordinate. Each direc-
tion is either one of the letters h, j, Xk or 1, or else a
number followed by one of those letters. The letters have
the following meanings:

move left
move up

move down
move right

[anl- U &P o

If a number is given before the letter, than the code moves
that number of pixels in the appropriate direction. An ex-
ample of a chaincode starting at (100,100) and forming a 5 X
5 box would be:

(100,100)4814k8n335f

As the user types the chaincode (or as it is read from
the file), it is drawn onto the map. It is also displayed
on the Grinnell if a window has been opened, thereby ena-
bling the user to see the chain growing as he inputs it.
Typing the backspace Key Wwill erase the last pixel of the
chaincode. If the "s" option has not been given then the
chain may extend across any number of polygons. If the ngr o
option is given then the chain will stop when it attempts to
cross into a polygon other than the one it began in. In ei-
ther case, the chain will stop if it attempts to go off the
edge of the map.

3.2.4%, Point map changing commands

The commands insert and delete enable the user to make
changes to a point map. These changes are reflected on the
Grinnell if they occur within the current user specified
Wwindow of the map and a Grinnell window has been openad by a
gon conmand. :
3.2.4.1. Insert

Syntax: insert <x> <y>
A single point is inserted at the coordinates specified
by <{x> and <y>. If a point already exists there, nothing

will be changed.

3.2.4,

fio

. Delete

Syntax: delete <x> <y>

The point at the specified coordinate is removed. Irf
no point exists there the editor will complain, but nothing

Wwill be changed.

3.2.5. Line map changing commands

The commands insert and delete enable the user to make
changes to a line map. These changes are reflected on the
Grinnell if they occur within the current user specified
window of the map and a Grinnell window has been opened by a
gon command. While they have the same name as similar com-
mands for point maps, they take different parameters.

;.2.2.1. Insert

Syntax: insert <ax> {ay> <bx> <by>

A line segment 1is inserted from (<ax>,<ay>) to
(<bx>,<by>).

jwo

-2.5.2. Delete

Syntax: delete <ax> ay> <bx> <Kby>

A line segment is deleted from (<ax>,<ay>) to
(<bx>,<by>). If no line segment exists over all or part of
this span, no change will occur in the clear sections. if,

however, another 1line segment crosses the (non-existent)
Segment specified by the user, this other line segment may
develop a gap where the intersection occurs. The user is
encouraged to view line segments as atomiec units when delet-
ing. Only segments Xnown to have been inserted should be

deleted, and the end points should be given in the same ord-
er. The safest way to delete a part of a line segment is to
remove the entire line segment and then re-insert the ap-
propriate parts. This way one avoids problems relating to
roundoff errors in line slope calculations.

If used correctly, where the deleted line Segment
Passes through another line segment, this other line segment
will not be lef: with a gap.

fuo

fro

.5, Miscellaneous commands

-

3.

1o
[on

1. Quit

Syntax: quit

This command signals the editor to save the changes
made to the map and finish processing. It is the normal way
to exit the editor. When this command is given, QED will
ask the user for a parting comment. This makes it easy for
him to keep a history of editing sessions on the file. It
no comment is desired, typing a carriage return will insert
no comment. Otherwise, the user s comment and the date will
be inserted into the comments section.

3.2.6.2. Abort
Syntax: abort

This command signals the editor to stop without saving
the changes to the map. The state of all files is exactly
as it was before the editing session took place, except that
the file which contains the commands typed during an editing
session will reflect this latest session. This command pro-
tects the user in case of error.

3.2.6.3. Shell

Syntax: shell <command>

This command enabdles the user to access the UNIX shell.
Whatever the user types as the <command> argument will be
executed as though the user were not in the editor. After
the command is executed, the bell on ths terminal will ring,

and the command prompt will be given.

3.2.6.4, Help

Syntax: help [<command>]

If <command> is not specified, then a list of the edi-
tor commands 1s displayed along with their syntax (as given
on the syntax line in this section) and an extremely brief

descripticn of their functions. It serves to remind the
user of the available commands and their correct usage. if
{command> is given, then =2 longer description of that com-
mand 1s output on the user’s terminal. The help command (as

well as the editor itself) is controlled by the map type.
This means that the commands which the user sees relate to
the map currently being edited. If, for example, the map
being edited is a line map, help with no <command> option
will give the list of commands applicable to line maps. The

change, replace and split commands will ct be listed. The
insert and delete commands will each be listed with four
parameter for specifying line segments. Both asking for

help or t

line map wi

command do
=3

rying to execute a change command while editing a
11 result in the editor —complaining thav this
es not exist. Asking for help on the insert com-
editing a point map will give the description in

Section 3.2.4.1,
j.g.é.é. Value

Syntax: value <x> <y>
Alternatively: value -

This command returns the value or color of the node at
a given pair of coordinates in the map. If "-" is the only
argument, then the coordinates are taken from the position
of the Grinnell cursor. This enables the user to determine
the point visually via the trackball.

3.2.6.6. Set

Syntax: set <variable> <value)

This command allows the user to change the wvalue of
certain user accessible variables. The only variable imple-
mented in the editor is called "global." It may be set to
either "true" or "false" and is initialized to "false." 3o,
to use this command to change "global," the user would type:

set global true

When global is set to M"false" all coordinate values supplied

To commands are interpreted relative to the lower lef

corner of the map being edited. When global is set to
"true" all coordinate values are interpreted relative t5 the
global coordinate system - in other words, the editor looks

at the wvalues for First ¥ and First Y as set by the header
command. These values are subtracted from the given coordi-
nate to calculate the position relative to the lower left
corner of the map. Coordinates returned by editor commands
will also be relative to the global system when global is
set to "true," and relative to the lower left corner of the
is "false."

- 44 -

S
.
[[o)
.

Implementation of the guadtree edivor functions

- aid

As explained in Section 4, all gquadtree primitives and
memory management functions are handled by an underlying set
of general purpose quadtree routines. The quadtree editor
itself «views these functions as atomic actions. The editor
proper is then concerned with receiving and executing com-
mands provided by the user.

When the editor is called, the user gives the name of
the file to be edited. A temporary disk file 1s created on
which a2ll editing is to be done. Anotner file is created to
store the commands given by the user. These files help pro-
tect the user from serious loss due to system crashes or his
own errors such as mistyped or unwanted commands. They also
enable him to abort the editing session without damaging the
original cCopy. Irf the file to be edited is an old one, a
copy 1s made in the temporary file. If a new map is to be
created, then a default header is installed and the map 1is
initialized as all white. The memory management initializa-
tion routine 1s executed and (for new maps) the user is re-
quested to supply initial header information through the
neader editor function.

From here on, the editor accepts commands from the
user. For each command, it parses the command line and exe-
cutes the resquest. Many of the commands were guite easy to
implement. The abort command neseds only to remove the
editor’s temporary file (since the original file and its
backup are not affected by the editor). The quit command
first invokes the memory management functions which write
the quadtree and memory management headers to disk along
Wwith the B-tree pages currently in core, and then moves the
original guadtree file to the backup file and copies the
temporary {(edited) file in place of the original. The
header command changes values in the header structure. The
comment command passes the user’ s comment Lo the memory
managenant function which inserts the comment into the con-
ment list. Print uses memory management functions to read
comments and then writes them with the header to the user’s
terminzl. The shell command uses a standard C system call
to allow the user to execute normal T program calls.

The Grinnell accessing commands gon and goff <change
global variables used by the map manipulating functions.
These variables include a Boolean flag to indicate if map
changes are to be displayed, and a description of the Grin-
nell window available. The look command (after changing
other Zzlobal variables which describe the map window) per-
forms a2 traversal of the entire tree. For each node, it
determines if the node lies within the chosen map window. If
it is, then the appropriate offsets are calculated and the
node is displayed on the creen,

The commands value and point were included to assist
the user in relating the map coordinates to what is
displayed on the Grinnell. Without them, choosing coordi-
nates for the beginning of a chaincode or determining the
current value of a polygon would be difficult. The value
command searches for the node at the requested location and
returns its value. The point command uses a standard Grin-
nell primitive function to set the cursor to a requested po-

sition.

In order for the quadtree editor to be useful, a set of
map manipulating functions i3 needed that permits the user
to create any desired map. The user of a geographic data-
base system such as this will view the units of his map in
terms of logical units. such as "linesgn" or "polygons," and
not square "nodes." Therefore, for region maps it is clear
that the most natural implementation is one that allows the
modifying commands to make changes to specified polygons.
This means that when implementing these commands it must be
possible to modify all of the nodes which make up a polygon
or group of polygons without affecting nodes of neighboring
polygons. In our system, each node has a value field. Each
polygon (and hence each node making up the polygon) is con-
sidered to be a member of a "class", This class could be an
elevation range or a landuse type such as "wheatfields™".
The wvalue of the node indicates the class of which it is a
menber,

The following commands apply only to region maps. In-

serting and deleting lines or points is discussed in Section
5.

The replace command is executed by traversing the en-
tire gquadtree. Those nodes with the old (class) value have
that value replaced by the new. For this command it is not
necessary to distinguish between polygons of the same class
since they are all processed in the Ssame Way.

The change command is more complicated. This command
should manipulate only one polygon; however, other polygons
of that class may also exist. After the command line has
been parsed, a recursive function is called which actually
performs the desired work. This function takes a node as
its parameter. This node is checked to see that it has the
old valus (the one to be changed). If so, then its value is
changed to the new one and the function is recursively ap-
plied to all of the node’s neighbors. In this way, all
nodes of a polygon will eventually be reached and only nodes
in the polygon will have their values changed (since only
four-neighbors of nodes in the desired polygon are ever can-
didates for processing).

- 486 -

The split command allows the user to impose an arbi-

trary 1line, one pixel wide, of a designated value onto the
map. The intended use of the command is to split a polygon
into two or more separate parts. One of these parts would

then become a polygon of the same class as the chaincode via
subsequent invocation of the change command. The pixels of
the chaincode would then be part of this new polygon. Al-
ternatively, the split command can be used to make slight
modifications of only a very few pixels, such as correcting
a slightly misplaced border of a polygon. This type of
correction could not be applied in any other way with the
available command set.

The split command operates by first inserting a one
pixel node into the tree corresponding to the first coordi-
nate given and then following the chaincode inserting nodes
as it reads the code. As the user types the code, the code
is also inserted into the command file. Allowing the user
to observe the progress of the chaincode as he is inputting
it is a2 key feature of our implementation of the split com-
mand. Typing an incorrect.chaincode was judged to be a very
common source of error when the implementation was designed.
Enabling the user to see the chain displayed as he inputs it
allows ‘the rapid destection and correction of errors. When
the backspace key is typed the chaincode is backed up one
pixel. This is accomplished by examining the end of the
command file. The last direction of the code is read %o
determine the coordinates of the previous pixel of the
chaincode and then both the map and the command file are up-

dated to reflect the backup. In typical usage of the split
command, the result will bde a2 line splitting a polygon into
two or more pieces. The user would then change the value of

some of the pieces wvia the change command.

By repeated use of the three commands replace, change,’
and split, it is possible to a make any desired changes to a
region map. €Clearly this 1is true since in the worst case
the user could cons“ruct an entire map from one pixel chain-
codes. dowever, it is hoped that the provided commands are
of sufficient power to enable a user to easily edit maps as
he wishes.

-

3.4. A demonstration of database updating.

Figure 17 shows the orizinal floodplain data provided
for this oproject. Also included are four regions bordered
by dotted lines indicating intended revisions to the landuse
map. This section demonstrates how these revisions can be
executed using the quadtree editor. When in the database
System, if the user wishes to edit the landuse map (which
has been given the name “land’) he would begin by typing:

Edit land please

The editor will then start up, prompting the user with the
symbol <?>. Following are the necessary commands to create
figure 19 from Figure 18, along with explanations of the
steps taken. Messages from the editor to the user are typed
in capital letters.

OLD FILE

<?> gon 0 0 512 512
<?> look 0 O

DISPLAY AREA MAP
28447 NODES DISPLAYED

The editor informs the user that the file is an old (already
existing) quadtree file. The gon command clears the Grin-
nell screen, then the look command displays the landuse map
for the user to see. There are 28447 nodes in this tree.

The map of revisions shows a polygon which should have class
value of ACC. In the original landuse map, this area is two
Polyzons - the one on the left having value AVV, and the one
on the right having value ACC. The change command is used
to convert the AVYV part to ACC.

<{?> change 19 247 100
NODES FOUND: 408, # NODES IN POLYGON: 112

This command changes the color value of the polygon contain-
ing the 9point (19,247) to color 100 (the integer code for
landuse class ACC). During the processing, the change func-
tion examined 408 nodes, of which 112 where actually in the
polygon and had their value changed. The AVYV polygon has
noWw merged with the ACC polygon to create the desired revi-
sion.

The AVYV polygon is somewhat harder to construct. On the
original landuse map, this region contains a polygon of
class AVV and a polygon of class ACP. The rest of the new
region consists of two parts of a large AVF class polygon.
To make the requested revision, it is necessary to draw the
border of the new polygon through the AVF section. This is
done with the split command in two pieces. The newly creat-

ed polygons will then be converted to class AVV via the
change command. Lastly, the ACP polygon will De converted
to AVV. '

<?> split 96

PLEASE ENTER CHAINCODE (ENDING WITH #):
(32,238)k1klklkl11k#

<?> split 96

PLEASE ENTER CHAINCODE (ENDING WITH #):
(62,219)4khkh7k7hj10h#

Note that 96 is the integer code for AVV and that the 1line
is therefore of class value AVV. The following change com-
mands complete the AVV polygon revision.

<?> change 50 211 96.

NODES FOUND: 125, # NODES IN POLYGON: 33
<?> change 29 227 96

NODES FOUND: 288, # NODES IN POLYGON: T4
<?> change 32 207 96

NODES FOUND: 265, # NODES IN POLYGON: 70

The UIS polygon is formed in a manner similar to that wused
to form the AVYV region - once again the split command is
used to complete the border of the new polygon, and the
change command then merges the pieces together. 3080 is the

integer code for UIS.

<?> split 3080

PLEASE ENTER CHAINCODE (ENDING WITH #):
(53,273)32nh1035135h4351351213¢#

<?> change 30 297 3080

NODES FOUND: 321, # NODES IN POLYGON: 82
<{?> change 26 289 3080

NODES FOUND: 94, # NODES IN POLYGON: 27
<?> change 25 279 3080

NODES FQUND: 99, # NODES IN POLYGON: 27

For the final revision, the URS'pdlygon, we simply draw the
complete border of the polygon and fill in the pleces. 3268
is the integer code for URS.

<?> split 3268
PLEASE ENTER CHAINCODE (ENDING WITH #):
(213,205)68115k15kllklllkkhkkl10k3h15kﬂ§hk6h35jh9j19h6j#
<?> change 241 203 3268

NODES FOUND: 559, # NODES IN POLYGON: 151
<?>'change 246 179 3268

NODES FOUND: 217, # NODES IN POLYGON: 63
<{?> change 253 199 3268 -
NODE FOUND: 139, # NODES IN PQOLYGON: 41
<?> change 264 188 3268

NODES FQUND: 283, # NODES IN POLYGON: 79

- 49 -

<?> change 260 1562 3258
NODES FOUND: 232, # NODES IN POLYGON: 63
<?> change 276 190 3258
NODES FQUND: 272, # NODES IN POLYGON: 77

The line codes for this demonstration were of course
prepared Dbeforehand, and the commands shown here are pol-
ished final results. However, a user who has only a hard
Copy map in front of him can determine by eye what points to
use via the point and value functions. He can easily
correct errors while drawing line boundaries by using the
backspace key. So while this demonstration does not Show
commonly occurring errors, these errors can easily be dealt
with by the user as he makes them.

-

2 URS
MOTE: —meeeees REVISIONS
- - T/?AF,:/C ~r

qLM OF /e0 ya

Floco Flaw

TOF

11y

igure 17. The floodplain map with mzrked revisions

updac

The

4. The gquadtree memory management system

4.1. The user’s view of the memory management sSystem

The quadtree memory management Ssystem, henceforth known
as the kernel, controls the interface between the quadtree
files and the programs that the database uses to view and
manipulate quadtrees. At the level of the kernel, the three
types of quadtrees (region quadtrees, point quadtrees, and
edge quadtrees) re identical. The kernel views the quad-
tree file as a collection of quadtree leaves, each leaf hav-
ing some value associated with it. One could view the ker-
nel as defining the quadtree file as an abstract type, as
all routines in the database use the kernel to access the
quadtree files. The word ‘user’ in this section refers to
the programmer of the quadtree database (i.e. the ‘user” of
the kernel routines), not the ‘user’ of the quadtree data-
base system described in Section 2.

From the user’s point of view, a quadtree file has
three parts: an array of user defined information, a list of
comments, and a list of quadtree leaves.

The array of user defined information, known as the
user’s header, is a fixed size array that is set up when the
quadtree file is created and its usage 1s totally up to the
user. The kernel supports the array by offering the user two
routines: read head and write head. These routines transfer
the wuser’s header between the quadtree file (where the user
can’t change it, but it is associated with the file) and a
character array (where the user can change it, but it is no
longer associated with the file). The routines read_head
and write_head do not allow access to any part of the quad-
tree file that is outside of the initially defined wuser’s
header. Typical usages of the user’s header would be to
kKeep track of whether a quadtree file is to be interpreted
as a point quadtree or a region quadtree, the x and y coor-
dinates of the lower-left-hand corner of the quadtree (with
respect to some global coordinate system), and how many pix-~
els wide the quadtree is.

The 1list of comments provides a variable size disk area
where the user ¢can place comments (usually a list of the
function calls used in the creation of the file). The com—
menting feature is .maintained by three routines:
append_cmnt, read ecmnt, and cmnt init. Note that a comment
cannot be changed once it has been inserted, because the
only write capability is to append. The read_cmnt routine
allows the user to feteh the next n characters of comments.
Thus it was necessary to provide a cmnt _init routine, to re-
turn the read routine to the beginning of the comment list
(allowing rereads).

Most of the code in the kernel is dedicated to main-
taining the list of quadtree leaves. The kernel user ianter-
faces with this code through twenty C subroutines and mac-
ros. The major distinction between these routines is wheth-
er they access the quadtree file or are utilities for mani-
pulating quadtree leaf descriptions.

The quadtree leaf description has three parts. It con-
tains the depth of a leaf (accessed via qd depth), the coor-
dinates of the lower left hand corner of the leaf (accessed
via qd x and qd y), and the user interpreted value of the
leaf (accessed via qd _value). A leaf also lies in a partic-
ular quadrant of its father- which quadrant the leaf lies in
can be computed by qd_which. As well as interpreting exist-
ing leaves, there are routines that allow the zconstruction
of leaf descriptions. The basic constructor is qd_clear,
which <c¢reates a leaf of depth 0, with value UNUSED, whose x
and y coordinates are <0,0> (which is always measured from a
leaf’s lower left hand corner where the entire tree’s lower
left corner has <0,0> for its coordinates). The user inter-
preted value of a leaf description can be changed using the
qd set command. A leaf description of a leaf having a cer-
tain depth and x and y coordinates relative to a tree with a
given maximum depth is built by the qd _Xy routine A leaf
description for a node which would be the father or son of a
given node can be built using qd_father or qd_son (respec-
tively). A copy of a leaf description can be made using the
qd_copy routine. Two leaf descriptions can be compared re-
lative to their visitation order by a preorder traversal
ordering using the addr_gt function. The number of Dbytes
used by a leaf description is kept in a macro called
B_ADDR_SIZE.

Those routines that access the quadtree file can be di-

vided into those that search the file and those that change
the file. The most basic of the functions that search the
file is gd find. Given a leaf description, it returns the
description of the leaf in the quadtree that would contain
the given leaf. Sometimes the leaf to be found is larger
than the actual leaves at the appropriate position in the
file, there is no “containing” leaf. In this case, qd_find

returns the leaf in the quadtree contained by the given
leaf’s description that is least (using the ordering defined

by addr_gt). If one wants to find a leaf description in the
quadtree that is the preorder successor, neighbor with
respect to a particular side, or a diagonal neighbor, then

one uses the qd_preorder, qd_nesighbor, or gd_diagonal func-
tions {respectively). Often one wishes to apply the same
function to every leaf in a quadtree. One way to implement
this would be to have the function be the body of a loop
that calls gd preorder until it runs off the end of the map.
However, qd preorder works by first calculating the value of
the successor of a given leaf, and then searching for this

¢
N
N
|

newly zalculated leaf. Since we know that we wish to exe-
cute the same function on every leaf in the tree in any con-
venient order, 1%t is not necessary to search for a particu-

lar leaf. Instead we can use whatever leafr is next in the
tree. Qd_travel is a kernel routine which takes a function
as its a;gument, and applies this function to every leaf in
the file in the most efficient manner.

The principal way to change a quadtree file is to in-
sert a leaf using the qd_insert routine. If one inserts a
leaf description that is identical to one that is already in
the quadtree (except for the leaf having a different color),
then the color associated with that leaf description is
changed and if that causes any leaves to merge (due to four
sidblings having the same color), then ‘those 1leaves are
merged. If the leaf description to be inserted describes a
leaf that contains more than one leaf already in the quad-
tree, then the contained leaves are deleted and the new leaf
is inserted. Thus one can empty a quadtree by inserting a
white leaf at depth zero. If one inserts a leaf description
that is contained by a leaf description that is already in
the quadtree, then the leaf in the quadtree is split into
its four sons (each with the same color as the father) and
the insertion attempt is repeated. There is also a quadtree
file changer called qd_packer that tries to compress the ar-
rangement of leaves in the quadtree file. Although
qd_packer can change the quadtree file, its effects are in-
visible to the routines described above (with the exception
that zost routines run faster on a8 quadtree file that has
been packed),

ally, there are two routines needed to monitor the
between the external operating system, in which the
files persist across many invocations of the data-
tem, and the kernel, whose memory vanishes when the
system exists. The first routine is qb_init, which
allocztes and initializes a portion of core that can be used
2y the routines that manipulate a particular quadtree file.
The second routine is gb_post, which deallocates the portion
O cors that was associated with a quadtree file (most im-
portantly, - gqb_post makes sure that all buffers have been

written back onto the quadtree file).

S

4.2, Tmplementation of the memory management system

The major question in the implementation of the kernel
is toc decide how to order the storage of the leaf descrip-
tions., It can be seen [Garg82a)] that if one orders the
leaves according to how they would be visited by a preorder
traversal of the quadtree, then the next leaf description
sought will tend to be near the last leaf description found.
In the kernel, a leaf description 1is stored in two long
words (22 bits each). The first long word is split into one
field of 3 bytes (24 bits) that contains the result of in-
terleaving the bits of the x and the y coordinates of the
leaf described. The second field of 1 byte (8 bits) con-
tains the depth of the leaf described. It can be shown that
if one compares this four byte address descriptor of two
leaves (using an arithmetic comparison of the absolute value
of the two long words), then the leaf corresponding to the
greater value will be visited later by a preorder traversal

of a quadtree than will the other leaf. Thus we have a
quick and efficient way of determining a linear ordering of
leaf descriptions. The second 1long word of the leaf

description 1is used to store the value/color of the leaf,
Note that this leaf description structure will support quad-
trees with 1leaves at depth twelve or less. Tuis limit ar-
ises from the 3 bytes (24 bits) that are used to store the
interleaved coordinates. This gives a maximum size of 20438
by 2048 pixels for any map. Our original database consists
of three maps each approximately 400 by U450 pixels, so this

sufficient.

<

® @

Given the linear ordering of leaf descriptions
ribed above and the fact that we will be storing collec-
ns of leaf descriptions containing as many as 30,000
=}

®

[

-

it is obvious that the quadtree files should be or-
as some kind of b-tree structure [Come79]. The ker-
nus becomes a collection of routines that maintain a
pool in core and a b-tree in the disk file, allowing
er to manipulate the leaf descriptions without having
about any of the details. Note that the buffer
ontains that portion of the quadtree file that there
or in core at any given time and, due to locality
nce considerztions, is probably best maintained on

that replaces the 1least recently wused Dbuffers

v O
B3OM O w
<:

[\

o 2 ol)
M ry j—
'y }r
N
203 ot b W
[S 2 & W

O
"3

Yot O3 R O oo
<

Yy O 0
O
R
'3 O
M (O

ey H O3 W

DO
S W
w o
[

s

=
@

are currently using 512 byte b-tree nodes, which al-
m for up to s8ixty leaf descriptions. Each b-tree
c
t

o)

ept the root of the b-tree) is guaranteed to have
thirty leaf descriptions in it. Thus one will
that is deeper than four b-tree nodes.

i1s much research that can be done with regards to the
implementation. It would be interesting to know the
of different size betree nodes, different size

3
oot O 0O
}—J

[T
]
L -~ '3

o O

v

3 '3 «
[¢ BT I
!

o

ot

1

Q.

W)

o

I

“r

'3

()]

o

ct
W

P B S V)

@

0
LIRS B
o

-
.

3 O

N
]

buffer pools, and different bH- ree node balancing schemes on

the response time of the kerne

!
(92
w

i

5. Point and line data

In the final report on Phase I [RoseB2a], the details
of implementing region quadtrees were discussed. In Phase
II, quadtrees wWwere also used to store two new types of data:
points and lines. The details of our usage of quadtrees for
these two new data types will be discussed below. Tt should
be noted that the same kernel (described in Section U) is
used for manipulating quadtrees involving each of these
three data types. When storing area data in region quad-

ees8, the value of a leaf corresponds to the color of the
region that contains the leaf. Since there is no notion of
color associated with either point or line data, other in-
terpretations will be placed on the information stored in
the value portion of the leaf description. What interpreta-
tion a particular routine makes of a leaf’s value is depen-
dent on what type of data is being stored in the quadtree.
The user keeps track of this in the user header described in
Sections 4.1 and 3.2.1.

To be precise, the routines that manipulate region
quadtrees view the 32 bit value field associated with each
leaf’s location as containing three subfields. The first
field (lLeftmost bit) is set to indicate that an erron=zous
value has been placed there. This corresponds to using a
negative long integer 2s the value of a node. As it hap-
pens, the routine that creatss an empty leaf description
(qd_clear) pDlaces a -5 in the value field to indicate :that
no one has specified a value for this leaf description vyet.
This is consistent with the usage described, as something is
probably wrong if there is a leaf description in the tree
that does not have an zgsgigned value. The second field
(also a one bit field) is the rmark bit that is used by
sweep-and-mark type algorithms, e.g., connected component
labeling. The remaining field (30 bits) contains the <c¢olor
of the descri

The imp n on of the point quadtree interprets the
value field as centaining five subfields. The first two
fields are the error and mark fields that are used just as
in the region quadtree. The third field (two bits) is
unused. The fourth field (14 ©bits) contains the X -

coordinate of the point stored in the leaf. The fifth field
(also 1% bits) contains the y-coordinate of the same point.
Fourteen bits is more than sufficient considering the imple-
mentation restriction of using quadtrees with a depth less
than or egual to twelve. Note that a depth of twelve will
handle a 2048 by 2043 map. Thus we can interpret a y value
of 4096 as an unused value that can be used to denote a leaf
description for a region that contains no points.

The above interpretation of the leaf description wvalue
field has the following consequences with respect to point
quadtree algorithms. No more than one point can be stored

in a quadtree leaf. Insertion of a point in a point quad-
tree works as follows. First we find the leaf that contains
the point’s 1location. If the leaf 1is empty, then the
point’s x and y coordinates are placed in the learf descrip-
tion. Otherwise, the leaf is split into its four sons, the
old leaf’s point value 1is copied into the appropriate son,
and insertion is re-attempted. Deletion of a point in a

point quadtree is a matter of finding the leaf that contains
the point and then changing the leaf description to that of
an empty leaf. Next, one checks to see if it is possible to
merge the new empty leaf with its siblings.

The point quadtree described above differs from the
original point quadtree of Finkel and Bentley [Fink74], in
that the structure of our point quadtree is independent of
the order of point insertion. This is a result of the fact
that leaves are always split by the kernel into four
congruent squares, whereas the original point quadtree split
leaves up into rectangles whose dimensions were a function
of the Iirst node inserted into the leaf’s region.

The value field of the line quadtree 1leaf description
has four subfields. The first field (one bit) indicates er-
ror values as it does for the other two types of quadtree

leaf descriptions. * The second field (one bit) indicates
Wwhether or not the leaf corresponds to a single pixel in the
map. The third field (two bits) tells which son a node is
with respect to its father, By " setting this field, we

guarantee that the leaf will not be automatically merged
with its brothers by the kernel s insert routine. The only
time this field is not set is Wwhen the leaf contzins no line
segments. Thus empty regions automatically merge.

The fourth field (28 bits) of the line quadtree in-
terpretation of a leaf’s value contains different informa-
tion depending on whether or not the leaf corresponds £o a
single pixel in the map. If the leaf corresponds to a Dix-
el, then the fourth field indicates how many lines Dass
through that pixel. If a leaf corresponds to a larger re-
gion, then it is either empty (and contains a special empty
leaf code) or it contains exactly one line segment. If it
contains exactly one line segment, then the 1intercepts of
the line segment with the leaf’s region are stored. Since
the line must intercept the region at the region’s perime-
ter, it is possible to encode each intercept with 14 »its

and be able to handle regions as large as 4095 by 4095, In
our implementation, this fourth field is further split into
four subfieslds. The first two bits determine the side of
the node on which the first intercept occurs, The next 12
bits indicate how far from the corner the intercept occurs

(the left corner for the north and south edge
corner for the east and west edges). The next f
and 12 bits repeat this for the second intercept

s, the lower
ields of two

The insertion and deletion algorithms for line quad-
trees are designed so that if one viewed the line segment as
an indivisible atomic unit, then 1line segments could Dbe
dynamically inserted and deleted without roundoff errors
creeping into the map representation to the extent that a
line’s endpoints have changed. This is important because
the only way of indicating a line is by specifying its end-
points. Note however that the renoresentation does not ex-
plicitly store the endpoints of a line segment, but rather
stores a compact form of the digitization of all the lines
in the map. The digitization of the lines is eight-
connected, i.e., connection of the 1line is maintained
across horizontal, vertical, or diagonal neighbors.

With the above details in mind, the insertion and dele-
tion algorithms for line quadtrees are analogous to those of
region or point quadtrees. 1Insertion of a second line seg-
ment into a region described by a leaf already containing
one line segment causes the leaf to be quartered, the infor-
mation that was in the original leaf to be distributed among
the new leaves, and then the insertion attempt is repeated.
The important thing to remember is that when a line segment
lies across two leaves, the appropriazte intercepts in both
leaves nmust be eight-neighbors of each other. Deletion of
line segments is simply a matter of deleting all the infor-
mation that is specific to that line segment.

5. Conclusions and plans

é.l. Conclusions

This project has developed a set of software tools for
use with a quadtree-encoded cartographic database. A query
language was developed to make it easier for a user to work
with the database. An editing capability was developed to
permit database updating. A memory management system was
developed for manipulation of maps too large to fi¢t into
main memory. Finally, the original database of regions was
augmented with a set of point and linear feature data fronm
the same geographical region. Those data were also quadtree
encoded, and programs were written to answer queries
(points-in-region, lines-meeting-region) that make use of
more than one type of data.

6.2. Plans

It is planned to extend the work on this project to
evaluate other types of hierarchical representations for re-
gions, linear features, and point data. These representa-
tions include

(a) For point data: point quadtrees, K-d trees, GRID
files, EXCELL :

(b) For linear feature da-a: Strip trees, edge quad-
trees, line quadtrees _

(¢) For region datza: B-tree encoded quadtrees, Dyvram-
ids, DF-expressions, qQuadtree Medial Axis

Transforms, forest-based methods.

The evaluation will make use of the same data base usa2d on
the present project. It will involve timing and storage
space studies, and will also investigate the structure”’
amenability to use in an off-line storage environment.

Octher extensions include enhancement of the Query
language, and an investigation of representations for gray-
scale data (in contrast with binary images). A1l methods
will be scrutinized from the viewpoint of their amenability
tO use in an off-line environment. The evaluation will make

use of the same database used in Phases I and II and will
consist of studies of time and storage requirements.

i
(G2}
N

1

Appendix: Facilities used

The computer used during this projsct was a VAYX 11/780
produced by the Digital Equipment Corporation. I nas four
megabytes of actual memory, six megabytes of virtual memory,
a disk fetch speed of approximately 0.6 megabits per second,
and a memory cycle speed of approximately 1400 nanoseconds.
The wordsize for the VAX is 32 bits broken into four 8-bit
bytes. Data is stored on two DD 11/300 disk drives produced
by Plessey Peripheral Systems. Each disk drive has a
storage capacity of 300 megabytes. The VAX 11/780 runs
under the UNIX operating system (Berkley Release 4.1).

The picture output device used by this project is a
Grinnell GMR-27 Display Processor. Its memory consists cf
thirteen 512x512 bitplanes. Twelve of these bitplanes carry
color information (four bits for each of the colors: blue,
green, and red). The thirteenth bitplane is used for a
white overlay capability. The high order eight bitplanes of
the twelve color bitplanes can also be displayed to create a
grayscale output. The output speed of quadtrees on this
device compares favorably to a raster scan output of a pic-
ture file, because the GMR-27 can outpu:t a rectangle on the
display screen directly from the rectzngle s coordinates
(i.e., a separate command is not necessary for each pixel in
the rectangle as is done when a picture file is output in
raster scan mode).

Bibliography on quadtrees

(Abel83a] - D.J. Abel and J.L. Smith, A data structure and
algorithm based on a linear key for a rectangle
retrieval problem, to appear in Computer Vision,
Graphics and Image Processing, 1983.

(Abel83b] - D.J. Abel, A B+-tree structure for large quad-
trees, to appear in Computer Vision, Graphics and
Image Processing, 1983.

(Ahuj83] - N. Ahuja, On approaches to polygonal decomposi-
tion for hierarchical image representation, to ap-
pear in Computer Vision, Graphics and Image Pro-
cessing, 1983 (see also Proceedings of the IEEE
Conference on Pattern Recognition and Image Pro-
cessing, Dallas, TX, 1981, 75-80).

(Alex78)] - N. Alexandridis and A. Klinger, Picture decompo-
sition, tree data structures, and identifying
directional symmetries as node combinations, Com-
puter Graphics and Image Processing 8, 1978, u3-
TT. '

(Alle82] - E. Allen, R. Trigg, and R. Wood, Maryland Artifi-
cial Intelligence Group Franz Lisp Environment,
Computer Science TR-1225, University of Maryland,
College Park, MD, 1982.

{A0ki79] - M. Aoki, Rectangular region coding for image data
compression, Pattern Recognition 11, 1979, 297~
312.

[321181] - D.4. Ballard, Strip trees: A hierarchical

representation for curves, Communications of the
ACM 24, 1981, 310-321 (see also corrigendum, Com-
munications of the ACM 25, 1982, 213).

[Bent75a) - J.L. Bentley and D.F. Stanat, Analysis of range
Searches in quad trees, Information Processing
Letters 3, 1975, 170-173.

[Bent75b] - J.L. Bentley, Multidimensional binary search
trees used for associative searching, Communica-
tions of the ACM 18, 1975, 509-517.

[Bent77] - J.L. Bentley, D.F. Stanat, and E.H. Williams Jr.,
The complexity of fixed radius near neighbor
searching, Information Processing Letters 6, 1977,
209-212.

i
[®2Y
-
|

,[Bent79a] - J.L. Bentley, Decomposable searching problems,
Information Processing Letters 8, 1979, 133-136.

[Bent79b) - J.L. Bentley and J.H. “riedman, Data Structures
for range searching, ACM Computing Surveys 11,
1879, 397-409.

[Bent80] - J.L. Bentley and H.A. Maurer, Efficient worst-
case data structures for range searching, Acta In-
formatica 13, 1980, 155-168.

[Bess82] - P.w. Besslich, Quadtree construction of binary
images by dyadic array transformations, Proceed-
ings of the IEEE Conference on Pattern Recognition
and Image Processing, Las Vegas, NV, 1982, 550-
554,

[Blum67] - H. Blum, A transformation for extracting new
descriptors of shape, in Models for the Perception
of Speech and Visual Form, W. Wathen-Dunn, Ed.,
M.I.T. Press, Cambridge, MA, 1967, 362-380.

{Burt80] - pP.J. Burt, Tree and pyramid structures for coding
hexagonally sampled binary images, Computer Graph-
ics and Image Processing 14, 1980, 249-270.

{Burt81] - P. Burt, T.H. Hong, and 4. Rosenfeld, Segment
tion and estimation of image region propert
through cooperative hierarchical computation, I
Transactions on Systems, Man, and Cvbernetics 1 ,
1981, 802-809. d

[3urt77] - W. Burton, Representation of many-sided polygons
and polygonal lines for rapid processing, Communi-
cations of the ACM 20, 1977, 166~171. '

arl82] - W.E. Carlson, An algorithm and data structure for
3D object synthesis using surface patch intersec-
tions, Computer Graphics-SIGGRAPH 82 Conference
Proceedings 156, 1982, 255-26%.

-
|
L

(@]

y The ubiquitous B-tree, ACM Computing
i1, 1979, 121-137.

[Come79] - D. Comer
Surveys 1

[Cook78] - B.G. Cook, The structural and algorithmic basis
of a geographic data base, in Proceedings of the
First International Advanced Study Symposium on
Topological Data Structures for Geographic Infor-
mation Systems, G. Dutton, Zd., Harvard Papers on
Geographic Information Systems, 1978.

(DeCo76] - e DeCoulon and . Johnsen, Adaptive Dlock
schemes Ffor source coding of black-and-white fac-

U
n
!

simile, Electronics Letters 12, 1976, 61-62 (see
also erratum, Electronics Letters 12, 1976, 152)

[DeF132a] - L. DeFloriani, 3. Falecidieno, and cC. Pienovi,
Triangulatead irregular networks in geographical
data brocessing, in Environmental Systems dnalysis
and Management, S. Rinaldi, Ed., North—Holland,
Amsterdam, 1982, 801-811.

[(DeF181b] - L. DeFloriani, 3, Falcidieno, G. Nagy, and cC.
Pienovi, Yet another method for triangulation and
contouring for automated cartograpﬁy. Proceedings
Of the American Congress on Surveying and Mapping,
American Society orf Photogrammetry, F.S. Cardwell,
R. Black, .and 3.M. Cole, Eds., Hollywood, FL,
1982, 101-110.

[(Dett82] ~ g. Dettori and B. Falcidieno, An algorithm for
selecting main points on a line, Computers and
Geosciences 8, 1982, 3-10.

Duda and P.=,. Hart, Pattern Classification

0.
Scene Analysis, Wiley, New York, 1973.

(Duda73] - R.
and

[Dutt78] - g, Dutton, Ed., Proceedings of the First Interna-
tional Advanced Study Symposium on Tcocpological
Data Structures for Seogranhic Information Sys-
tems, Harvard Papers on Geographnic Information
Systems, 1978,

e F 1]

[Dyer80a] - c¢.5. Dyer, 4. Rosenfeld, and H. Samet, Region
representation: boundary codes from'quadtrees,
Communications of the ACM 23, 1980, 171-179.

[DyerBOb} - C.R. Dyer, Computing the Zuler number of an im-
age from its qQuadtree, Computer Graphics and Image
Processing 13, 1980, 270-275.

[Dyer81b] - C.R. Dyer, A VLSI pyramid nacnine parallel

image Processing, ’roceedings of the
gnce on Pattern Recognition and Image
Dallas, TX, 1981, 381-386.

for
IZEZ Confer-
Processing,

[(Dyer82] - ¢.R. Dyer, The space efficiency orf quadtrees,
Computer Graphies and Image Processing 19, 1982,
335-348,

[East?O] - C.M. Eastman, Representations for space planning,
Communications of the ACM 13, 1970, 242-250.

[Ede181] - y. Edelsbrunner and 3.4A. Maurepr, A space-optimal

solution of general region location, Theoretical
Computer Science 16, 1981, 329-336.

1
(@A)
N

|

(2del832a] - 4. Edelsbrunner, 3.A. Maurer, and D.G. Kirkpa-
trick, Polygonal intersection searcning, Informa-
tion Processing Letters 14, 1982, 74-.79.

{Edel182b»] - H. =delsbrunner and H.A. Maurer, On the
equivalence of some rectangle intersection prob-
iems, Information Processing Letters 14, 1982

124-127.

~—

©del83] - Y. Edelsbrunner and J. V. Leeuwen, Multidimen-
sional data structures and algorithms: a bibliog-
raphy, Institute for Information Processing Report
F104, Technical University of Graz, Graz, Austria,

1983.

[Fagi79] - R. Fagin, J. Nievergelt, N. Pippenger, and H.R.
Strong, Zxtendible hashing - a fast access method
for dynamic files, ACM transactions on Database

Systems 4, 1979, 315-344.

[Fink74] - R.A. Finkel and J.L. Bentley, Quad trees: a data
structure for retrieval on composite keys, Acta
Informatica 4, 1974, 1-9.

{Fode80] -~ J. K. Foderaro, The Franz Lisp Manual, The BRe-
gents of the University of California, 1980.
{Tree7d4) - 4. Freeman, Computer processing of line-drawing
images, ACM Computing Survevs 6, 1974, 57-97.
{Frie75] - J.H. Friedman, F. Baskett, and L.J. Shustek, An
algorithm for <{finding nearest neighbors, IEEE
Transactions on Computers 24, 1975, 1000-10056.
[Frie77] - J.H. Friedman, J.L. Bentley, and R.A. Finkel, An

r finding best matches in logarithmic
;» ACM Transactions on Mathematiczal
7, 209-226.

algorithm b
expected ti
Software, 19

ey

Gibs82] - L. Gibson and D. Lucas, Vectorization of raster
images using hierarchical methods, Computer Graph-
ics and Image Processing 20, 1982, 82-389.

[Garg82a] - I. Gargantini, An effective way to represent
quadtrees, Communications of the ACM 25, 1982,
905-910.

{Garg82b] - I. Gargantini, Linear octrees for fast process-

ing of three dimensional objects, Computer Graph-
ics and Image Processing 20, 1982, 365-374.

, Optimal quadtrees f

{CGros) - W.I. Grosky and R. J
I Transactions on

r m
age segments, a r

i

j'o O
O

+
w

3

-
o

Analysis and Machine Intelligence 5, 1983, 77-83.

(Hend82)] - T.C. Henderson and E. Triendl, Storing feature
descriptions as 2-d trees, Proceedings of Pattern
Recognition and Image Processing 82, Las Vegas,
NV, 1982, 555-55%6,

(Hoar72] - C.A.R. Hoare, Notes on data Structuring, in
Structured. Programming, 0.J. Dahl, E.W. Dijkstra,
and C.A.R. Hoare, Eds., Academice Press, London,
1972, 154,

(Horo76] - S.L. Horowitz and T. Pavlidis, Picture segmenta-

tion by a tree traversal algorithm, Journal of the
ACM 23, 1976, 368-388,

(Huff52] - D.A. Huffman, A method for the —construction of
minimum-redundancy codes, Proceedings of the IRE
40, 1952, 1098-1101.

G.M. Hunter, Efficient computation and data
structures for graphics, Ph.D. dissertation,
Department of Electrical Engineering and Computer
‘Science, Princeton University, Princeton, NJ,

1978.

[Hunt 78]

(Hunt79a] - G.M. Hunter and X. Steiglitz, Operations on im-
ages using quadtrees, IEEE Transactions on Pattern
Analysis and Machine Intelligence 1, 18979, 145~
153. '

(Hunt79p] - G.M. Hunter and X. Steiglitz, Linear transforma-
tion of pictures represented by quadtrees, Comput-

er Graphics and Image Processing 10, 1979, 289-
296.

[Jack80] - C.L. Jackins and S.L. Tanimoto, Oct-trees and
their use in representing three-dimensional ob-
Jects, Computer Graphics and Image Processing 14,
1980, 249-270.

{Jack82] - C. Jackins and S.L. Tanimoto, Quad-trees, oct-
trees, and k-trees - a generalized approach to re-
cursive decomposition of Euclidean space, Depart-

ment of Computer Science Technical Report 82—02—v
02, University of Washington, Seattle, WA, 1982.

[Jone81) - L. Jones and S.S. Iyengar, Representation of re-
gions as a forest of quadtrees,, Proceedings of
the IEEE Conference on Pattern Recognition and Im-
age Processing, Dallas, TX, 1981, 57-59.

[Xawa80a] - =. Kawaguchi and T. Endo, On a method of binary

picture representation and its application to data
compression, EEE Transactions on Pattern Analysis
and Machine Intelligence 2, 1980, 27-35.

(Rawa80b] - E. Kawaguchi, T. Endo, and M. Yokota, DF-
expression of binary-valued picture and its rela-
tion to other pyramidal representations, Proceed-~
ings of the Fifth International Conference on Pat-
tern Recognition, Miami Beach, FL, 1980, 822-827.

(KawaB82] - E. Kawaguchi, T. &Endo, and J. Matsunaga, DF-
expression viewed fron digital picture processing,
Department of Information Systems, Kyushu Univer-
sity, Japan, 1982,

[Xede81] - G. Kedem, The Quad-CIF tree: a data sStructure
for hierarchical on-line algorithms, TR 91, Conm-
puter Science Department, The University of Ro-
chester, Rochester, NY, 1981. :

[Xell71] -~ M.D. Kelly, Edge detection in pictures by comput-
er using planning, Machine Intelligence §, 1971,

397-409.

[Xim81a] -~ C.E. Kim, On the cellular convexity of complexes,
IZEEE Transactions on Pattern Analysis and Machine
Inte

lligence 3, 1981, 617-625.

[Xim81b] - C.E. Xim and 4. Rosenfeld, Digital straightness
and convexity, Proceedings of the 13th Annual ACM
Symposium on Theory of Compu?fng, Milwaukee, WI,
1981, 80-89,

(Xim82a] ~ C.E. Kim and 4. Rosenfeld, Digital straight lines
‘ and convexity of digital regions, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence

51 1982, 149-153,

(Xim825] - C.E. Kim, Digital convexity, straightness, and
convex polygons, IZEEE Transactions on Pattern
Analysis and Machine Intelligence b, 1982, 618~

626.

[(Kirb79) - R. L. Kirby, R. Smith, P. A. Dondes, S. Ranade,
L. Kitchen, and F. Blonder, Interfaces, Subrou-
tines, and Programs for the Grinnell GMR-27
Display Processor on a PDP-11/45 with the UNIX
Operating System, Computer Science TR-810, Univer-
sity of Maryland, College Park, MD, 1979,

[K1in71) - A. Xlinger, Patterns and search statisties, in
’ Optimizing Methods in Statisties, J.S. Rustagi,
Ed., Academic Press, New York, 1971.

[(X1in76) - A. Xlinger and C.R. Dyer, Zxperiments in picture
representation using regular decomposition, Com-
puter Graphics and Image Processing 5, 1976, 68~
105.

(K1in79) - A. Xlinger and M.L. Rhodes, Organization and ac-
. cess of image data by areas, IEEE Transactions on
Pattern Analysis and Machine Intelligence 1, 1979,

50-60. :

(Rnow80] - K. Knowlton, Progressive transmission of grey-
scale and binary pictures by simple, efficient,
and lossless encoding schemes, Proceedings of the
IEEE 68, 1980, 885-896.

[Knut73] - D.E. Knuth, The Art of Computer Programming, vol.
3, Sorting and Searching, Addison-Wesley, Reading,
MA, 1973.

(Knut75] - D.E. Knuth, The Art of Computer Programming, vol.
1, Fundamental Algorithms, Second Edition,
Addison-Wesley, Reading, MA, 1975.

[Krau?S]‘- E.F. Krause, Taxicab Geometry, Addison-Wesley,
Reading, MA, 1975.

(Lee78] - D.T. Lee and C.X. Wong, Worst-case analysis for
region and partial region searches in multidimen-
sional binary search trees and gquad trees, Acta
Informatica 9, 1978, 23-29.

(Lee80] - D.T. Lee and C.K. Wong, Quintary trees: a file
structure for multidimensional database systems,
ACM Transactions on Database Systems, 1980, 339~

353,
[Lete82] - >, Letelier, personal communication, 1982.
(Li82] - M. Li, W.I. Grosky, and R. Jain, VNormalized quad~
trees with respect to translations, Computer

Graphics and Image Processing 20, 1982, 72-81.

in a coloring book,
78 Conference Proceed-

[(Lied78] - H. Lieberman, How to color
Computer Graphics-SIGRAPH
ings 12, 1978, 111-116.

(Linn73) - J. Linn, General methods for parallel searching,
Technical Report 81, Digital Systems Laboratory,
Stanford University, Stanford, CA, 1973.

[(Luek78] - g. Lueker, A data structure for orthogonal range
queries, Proceedings 19th Annual IEZEE Svmposium on
Foundations of Computer Science, Ann Arbor, MI,

1978, 28-34,

[(MeCl165] - E.J. MeCluskey, Introduction to the Theory of
Switching Circuits, McGraw-Hill, New York, 1965,
60-61.

(Mart82] - J.J. Martin, Organization of gecgrapnical data
with quad trees and least square approximation,
Proceedings of the IEEE Conference on Pattern
Recognition and Image Processing, Las Vegas, NV,
1982, 458-463,.

(Mats83] - T. Matsuyama, L.V. Hao, and M. Nagao, A file or-
ganization for geographic information systems
based on spatial proximity, to appear in Computer
Vision, Graphics and Image Processing, 1983.

[(Meag82] - D. Meagher, Geometric modeling using octree en-
coding, Computer Graphics and Image Processing 19,
1982, 129-147,

(Merr73] - R.D. Merrill, Representations of contours and re-
gions for " efficient computer search, Communica-

tions of the ACM 16, 1973, 69-82.

— — At it

(Mins69] - M. Minsky and S. Papert, Perceptrons: An Intro-
duction to Computational Geometry, MIT Press, Cam-
bridge, MA, 1963.

[Mont70] - U. Montanari, On limit properties of digitization
schemes, Journal of the ACM 17, 1970, 348-360.

-

[(Morté6] - G.M. Morton, 4 computer oriented geodetic data
base and a8 new technique in file sequencing, I3M
Canada, 1965.

[(Nagy79] - G. Nagy and S. Wagle, Geographic data oprocessing,
ACM Computing Surveys 11, 1979, 139-181.

(Nash83) - C. Nash and N. Ahuja, Octree representations of
moving objects, to appear in Computer Vision,
Graphics, and Image Processing, 1983.

(Newm79] - W. Newman and R.F. Sproull, Principles of 1In-
teractive Computer Graphics, Second Edition,
MeGraw-Hill, New York, 1979.

[Niev81] - J. Nievergelt, H. Hinterberger, and X.C. Seveik,
The GRID file: an adaptabdle, symmetric multi-key
file structure, Report 46, Institut fir Informa-
tik, ETH, Zurich, Switzerland, 1981. '

[Ni1s69] - N.J. Nilsson, A mobile automaton: an application

Of artificial intelligence techniqueS, Proc edin5§
Of the First International Joint Conferencg on Ar-
=520

tificial Intelligence, Wasnington,'DC, 509-

[01iv83] M.A. Oliver and N.E. Wiseman, Operations on
quadtree—encoded images, The Computer Journal 26,
1983, 83-91, .

[Omo180] - J.9. Omolayole and 3. Klinger, g hierarchical
data structure Scheme for storing pictures, in
Pictorial Information Systems, S.K. Chang and X.s.
Fu, Eds., Springer Verlag, Berlin, 19890,

[ORou81a] . ;. 0 "Rourke, Dynamicaliy quantized spaces ap-
plied to motion analysis, Technical report JHU-®EZ
81-1, Electrical Engineering Department, Johns
Hopkins University, Baltimore, MD, 1981. '

[ORou81p] - J. O “Rourke, Dynamically quantized spaces for
focusing the Hough Transform, Proceedings of the
Sixth International Joint Conference on Artificia)
Intelligence,.Vancouver, BC, 1981, 7372737,

[Pavl76] - T. Pavlidis, The Use of algorithms Of piecewise
approximations for picture Processing - applica-
tions, acM Transactions on Mathematical Software
2, 1976, 305-3271.

[Pavi79] - 1. Pavlidis, Filling algorithms for raster grapn-
ics, Computer Graphics and Image Processing lg,
1979, 126-1047.

[Peuc76] - 7. Peucker, 4 theory of the cartograpnic 1line,
International Yearbook of Cartography, 1976, 134.
142,

-1

tPeuq79] - D.J. Peuquet, Raster bProcessing: an alternative
approach to automategd cartographic data handling,
American Cartographer 6, 1979, 129-139,

\ —

[Piet82] - M. Pietikainen, a. Rosenfeld, ang I. Walter,
' Split—and-link algorithms for image Segmentation,
Pattern Recognition 15, 1982, 287-298.

[Prai1s7] - J.L. Pfaltz ang A. Rosenfeld, Computer represen-
tation of planar regions by their skeletons, Com-
Dunications of the ACM 19, 1967, 119-122,

[Rana280] - g. Ranade, 1. Rosenfeld, ang J.M.S. Prewitt, Use
of quadtrees for image Segmentation, Computer Sci-
ence TR-878, University of Maryland, College Park,

MD, 1980. : '

[Ran381a] - S. Ranade, Use of quadtrees for edge enhance-
ment, IZXEE Transactions on Systems, Man, and Cy-
bernetics 11, 1981, 370-373.

(Rana81b] - S. Ranade and M. Shneier, Using quadtrees to

smooth images, IEEE Transactions on Systems, Man,
and Cybernetics 11, 1981, 373-376.

(Rana82] - 3. Ranade, 4. Rosenféld, and H. Samet, Shape ap-
proximation using quadtrees, Pattern Recognition
15, 1982, 31-40.

[Redd78] - D.R. Reddy and §. Rubin, Representation of
three-dimensional objects, CMU~CS-78-~113, Computer
Science Department, Carnegie-Mellon University,
Pittsburgh, PA, 1978.

(Rise77] - ©.M. Riseman and M.A. Arbib, Computational tech-
niques in the visual Segmentation of statie
‘scenes, Computer Graphics and Image Processing 6,
1977, 221-276,

(Roseb66] - A. Rosenfeld and J.L. Pfaltz, Sequential opera-
tions” in digital image processing, Journal of the
ACM 13, 1966, 471-49y,

[Rose7H4] - 1. Rosenfeld, Digitail straight 1line segments,
IZEE Transactions on Computers 23, 1974, 126L4.
= xbOputers 23
1269.

[Rose76] -~ 1. Rosenfeld and &
cessing, Academic P

{Rose79] - 4. Rosenfeld, Digital Topology, American
Mathematical Monthly 86, 1979, 521-630.

C. Xak, Digital Picture Ppro-
ess, New York, 19756.

.
v
%

fRose82a] - 3. Rosenfeld, H. Samet, (. Shaffer, and R.E.
Webber, Application 0of hierarchical data struc-
tures to geographical information systems, Comput-
er Science TR-1197, University orf Maryland, Col-
lege Park, MD, 1982,

(RoseB82b] - 4. Rosenfeld and C.E. Kim, How a digital comput-

€ can tell whether a line is straight, American

Mathematical Monthly 89, 1982, 230-235.

[Rose83a] - Rosenfeld, A., Picture processing: 1982, Comput-
er Graphics and Image Processing 22, 1983.

[Rose83b] - 4. Rosenfeld, Ed., Multiresolution Image Pro-
cessing and Anzlysis, Springer Verlag, Berlin,
1683, -

[Ruto&8] -

[Same80a]

{Same80b]

[Same80c]

[Same80d]
[Samé81a]

[SameB81b]

[Same81c]

[Same82a]

TSame82b]

[Same82¢]

[Same82d]

D. Rutovitz, Data structures for operations on
digital images, in Pictorial Pattern Recognition,
G.C. Cheng et al., Zds., Thompson Book Co., Wash-
ington, DC, 1968, 105-133.

- H. Samet, Region representation: quadtrees from
boundary codes, Communications of the ACM 23,
1980, 163-170.

- H. Samet, Region representation: quadtrees from
binary arrays, Computer Graphiecs and Image Pro-~

cessing 18, 1980, 88-93.

- H. Samet and A. Rosenfeld, Quadtree structures
for image processing, Proceedings of the Fifth
International Conference on Pattern Reggggffion ’
Miami Beach, FL, 1980, 815-818,.

- H. Samet, Deletion in two-dimensional quad
trees, Communications of the ACM 23, 1980, 703-
710.

- H. Samet, An algorithm for converting rasters to
quadtrees, IEEE Transactions on Pattern Analysis
and Machine Intelligence 3, 1981, 93-95.

- H. Samet, Connected component labeling using
quadtrees, Journal of the ACM 28, 1981, u487-501.

- H. Samet, Computing perimeters of images
represented by quadtrees, IZEE Transactions on
Pattern Analysis and Machine Intelligence 3, 19871,
683-687.

- H. Samet Neighbor Tinding techniques for images
represented by quadtrees, Computer Graphics and

Image Processing 18, 1982, 37-57.

- H. Samet, Distance transform for images
represented by quadtrees, IEEE Transactions on
Pattern Analysis and Machine Intelligence 5, 1982,

298-303.

- H. Samet and R.E. Webber, Line quadtrees: a
hierarchical data structure for encoding boun-
daries, Proceedings of the IEEE Conference on Pat-
tern Recognition anE—Image Processing, Las Vegas,
NV, 1982, 90-92.

- H. Samet, Data structures for quadtree approxi-
mation and compression, Computer Science TR-1209,
University of Maryland, College Parkx, MD, 1982,

N T

[Same82e] - Y. Samet, Reconstruction of quadtrees from quad-
tree medial axis transforms, Computer Science TR~
1224, University of Maryland, College - Park, MD,
1982.

(Same82f] - H., Samet, A top-down quadtree traversal algor-
ithm, Computer Science TR-1237, University of
Maryland, College Park, MD, 1982.

{Same83a] ~ H. Samet, A quadtree medial axis transform, to
appear in Communications of the ACM, 1983 (also
University of Maryland Computer Science TR-803).

[Same83b] - H. Samet, Algorithms for the conversion of quad-
trees to rasters, to appear in Computer Vision,
Graphics and Image Processing, 1983 (also Univer-
sity of Maryland Computer Science TR-979).

(Same83c] - H. Samet and E. V. Krishnamurthy, A quadtree-~
based matrix manipulation system, 1in progress.

(Same83d] - H. Samet and R. E. Webber, Using quadtrees to
represent polygonal maps, Proceedings of Computer
Vision and Pattern Recognition §§, Washington, DC,
1983, 127 - 132.

(Sham75] - M.I. Shamos and D. Hoey, Closest-point problems,
Proceedings of the Sixteenth Annual IEEE Symposium
on the Foundaticns of Computer Science, Berkelevy,

CA, 1975, 151-162.

(Shan80] - U. Shani, Filling regions in binary raster im-
ages: a graph-theoretic approach, Computer
Graphics-SIGGRAPH 80 Conference Proceedings 14,
1980, 321-327.

[Shne81a] - M. Shneier, Calculations of geometric propertiszs
using Qquadcrees, Computer Graphics and Image Pro-

cessing 16, 1981, 296-302.

[Shne81b] -~ M. Shneier, Path-length distances for quadtrees,
Information Sciences 23, 1981, 49-67.

[Shne81c] - M. Shneier, Two hierarchical 1linear feature
representations: edge pyramids and edge quad-
trees, Ccmputer Graphics and Image Processing 17,
1981, 211-224,

[S10a79] - K.R. Sloan Jr. and S.L. Tanimoto, Progressive re-
finement of raster 1images, IEEE Transactions on
Computers 28, 1979, 871-8T4.

[Slcad1] - X.R. Sloan Jr., Dynamically quantized pyramids,

1
B
(9]

I

Proceedings of ‘the Sixth International Joint

Conference on Artificial Intelligence, Vancouver,
BC, 19871, 7304-733.

(Smit79] - A.R. Smith, Computer Graphics-SIGGRAPH 79 Confer-
ence Proceedings 13, 1979, 276-283.

(Suth74] - I.%E. Sutherland, R.F. Sproull, and R.A. Schumack-
er, A characterization of ten hidden-surface al-
gorithms, ACM Computing Surveys 6, 1974, 1-55,

[(Tamm81)] -~ M. Tamminen, The EXCELL method for efficient

: geometric access to data, Acta Polytechnica Scan-
dinavica, Mathematics and Computer Science Series
No. 34, Helsinki, 1981,

{Tamm83] - M. Tamminen, Encoding pixel trees, Laboratory of
Information Processing Science, Helsinki Universi-
ty of Technology, Espoo, Finland, 1983.

[Tani75] - s. Tanimoto and T. Pavlidis, A hierarchical data
structure for picture processing, Computer Graph-
ics and Image Processing 4, 1975, 104-119.

[Tani76] - 3. Tanimoto, Pictorial feature distortion in a
Pyramid, Computer Graphics and Image Processing 5,
1976, 333-352.

[Tani80] -~ 3§. Tanimoto and a. ¥
i

S., Structured Com-
puter Vision, Acaden e

1
c P W York, 1980.

Tous80] -~ G.T. Toussaint, Pattern recognition and geometri-
cal complexity, Proceedings of the Fifth Interna-
tional Confersnce on Pattern Recognition, Miami
Beach, FL, 1980, 1324-7344.

[Trop81] - H. Tropf and H. Herzog, Multidimensional range
Search in dynamically balanced trees, Angewandte
Informatik 2, 1981, 7T1-77.

[Ohr72) - L. Uhr, Layered "recognition cone™ networks that
Preprocess, classify, and describe, IEEE Transac-
tions on Computers 21, 1972, 758-768,

[(Warn69] - J.L. Warnock, A hidden surface algorithm for com-
buter generated half tone pictures, Computer Sci-
ence Department TR 4.15, University of Utan, Salt
Lake City, UT, 1969,

[Webe78] . w. Weber, Three types of map data sStructures,
their ANDs and NOTs, and a possible OR, in
Proceedings of the First International Advanced
Study §meoszam on Topological Data Structures for

Geographic Information Systems, G. Dutton, =d.,
Harvard . Papers on Geographiec Information Systems,

1978.

(Wil178] - D.E. Willard, Predicate-oriented database search
algorithms, Report TR-20-78, Harvard University
Aiken Laboratory, 1978,

(Wil182] - p.&. Willard, Polygon retrieval, SIAM Journal on
Computing 11, 1982, 149-165,

[Wood82] - J.R. Woodwark, The explicit gquadtree as a struc-~
ture for computer graphics, The Computer Journal
25, 1982, 235-238,

{Wu82)] - A.Y. Wu, T.H. Hong, and 3. Rosenfeld, Threshold
Selection wusing quadtrees, IEEE Transactions on
Pattern Analysis ang Machine Intelligence 4, 1982,
90-94,

(YauB81] - M. vau and S.N. Srihari, Recursive generation of
’ hierarchical data structures for multidimensional
digital images, Proceedings of the IEEE Conference
on Pattern Recognition and Image Processing, Dal-
las, TX, 1987, T2-0T.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

: REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
(1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
ETL-0337 ‘
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
APPLICATION OF HIERARCHICAL DATA STRUC- §3§§§§§t_R§5§§fg3
TURES TO GEOGRAPHICAL INFORMATION
SYSTEMS (PHASE II) 6. PERFORMING ORG. REPORT NUMBER
. TR-1327
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMEER(a)
Hanan Samet ‘ DAAK70-81-C-005°9
Azriel Rosenfeld
9. PERFORM!NG ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Computer Vision Laboratory AREA & WORK UNIT NUMBERS :
University of Maryland R3205HTOS
College Park, MD 20742
f1.- CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
U.S. Army Engineer Topographlc Labs. september 30, 1983
Fort Belvoir, VA 22060 ‘%iWMBEROFPAGﬁ
14, MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS. (of this »rcport)
UNCLASSIFIED

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited

7. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, if different from Report)

18, SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse sida if necessary and identlfy by block number)
Query language Data structures

Quadtree editor Quadtrees
Storage management
Geographical information systems

20. ABSTRACT (Comtfrue am reverse sidw [f neceasary aud idemify by block number)

This document is the final report for Phase II of an inves-
tigation of the application of hierarchical data structures to
geographical information systems. It describes a set of software
tools developed for use with a guadtree encoded database contain-
ing area, point, and line data. Included in this software is an
English-like query language, an editing capability to permit data-
base updating, and a memory management system to allow manipula-

: tion of maps too large to fit into main memary
FORM
w Vian T 1473 EDITION OF ' NOV 55 IS OBSOLETE UNCLASSIFIED

SECURH'Y CLASSIFICATIONR GF THIS PAGE (When Data Entered)

SECURITY CLASSICICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE SEFORE COMPLETING FORM
7. REPORT NUMBER 3 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
ETL-0337
4. TITLE (and Subtitie) s, TYPE OF REPORT & PERIOD COVERED

Contract Report

APPLICATION OF HIERARCHICAL DAT RUC-
C N OF HIERARCHICAL DATA STRUC 7/29/82 - 6/29/83

TURES TO GEOGRAPHICAL INFORMATION

SYSTEMS (PHASE II) 6. PERFORMING ORG. REPORT NUMBER
. TR~1327
7. AUTHOR(s) 8. CONTRACT OR GRANT NUME&ZR(a)
Hanan Samet DAAK70~81-C-0058
Azriel Rosenfeld
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Computer Vision Laboratory AREA & WORK UNIT NUMBERS :
University of Maryland R3205HTO9
College Park, MD 20742
11, CONTROLLING OFFICE NAME AND ADDRESS 12.. REPORT DATE
U.S. Army Engineer Topographic Labs. September 30, 1983
Fort Belvoir, VA 22060 ‘%iWMBEROFPAGﬂ

T4. MONITORING AGENCY NAME & ADDRESS({! different from Controlling Ottice) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. OECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse sida i necessary and identify by block number)
Quzry ~anguage Data structures

Quadtree editor Quadtrees
Storage management
Geographical information sys

L

ms

r!
(I)

20. ABSTRACT (Cartizus ax reverwe side ff mecoasary acd identily by block number)

This document is the final report for Phase II of an inves-
tigation of the application of hierarchical data structures toO
geographical information systems. It describes a set of software
tools developed for use with a guadtree encoded database contain-
ing area, point, and line data. Included in this software is an
English-like query language, an editing caoabLWLLy to permit dataf

base updating, and 2 memory management svstem to allow manipula-
tion of maeps ton lz3rogs +n £i+ din+A main momas-r

FORM
” \ s 73 1473 EDITION OF 7 NOV 5515 OBSOLETE UNCL

=D
=3

AGE (When Deta Entered)

ASSIZT
S=C’JR{'Y CLASSIFICATIONR &F TH! s

