
High-Dimensional Similarity Retrieval Using Dimensional Choice

Dave Tahmoush and Hanan Samet

University of Maryland, College Park

tahmoush at cs.umd.edu

Abstract

There are several pieces of information that can be

utilized in order to improve the efficiency of similarity

searches on high-dimensional data. The most commonly used

information is the distribution of the data itself, but the use of

dimensional choice based on the information in the query as

well as the parameters of the distribution can provide an

effective improvement in the query processing speed and

storage. The use of this method can produce dimension

reduction by as much as a factor of n, the number of data

points in the database, over sequential search. We

demonstrate that the curse of dimensionality is not based on

the dimension of the data itself, but primarily upon the

effective dimension of the distance function. We also

introduce a new distance function that utilizes fewer

dimensions of the higher dimensional space to produce a

maximal lower bound distance in order to approximate the

full distance function. This work has demonstrated significant

dimension reduction, up to 70% reduction with an

improvement in accuracy or over 99% with only a 6% loss in

accuracy on a prostate cancer data set.

1. Introduction

 In order to create an effective classification technique for

bioinformatics data, methods are needed to efficiently retrieve

data based on similarity to a given exemplar or set of

exemplars. This type of query is referred to as similarity

retrieval. Of these queries, the nearest neighbor query is

particularly important, and it is the one that is emphasized in

this paper. An apparently straightforward solution to finding

the nearest neighbor is to compute a Voronoi diagram for the

data points (i.e., a partition of the space into regions where all

points in the region are closer to the region's associated data

point than to any other data point), and then locate the

Voronoi region corresponding to the query point. The

problem with this solution is that the combinatorial

complexity of the search process in high dimensions,

expressed in terms of the number of objects, is prohibitive

thereby making it virtually impossible to store the Voronoi

diagram which renders its applicability moot.

The problem described above is typical of the issues that

must be faced when dealing with high-dimensional data.

Multidimensional problems such as these queries become

increasingly more difficult to solve as the dimensionality

increases. The difficulties that are encountered are attributed

to the curse of dimensionality which surfaces in a number of

different forms. In essence, the term was coined by Bellman

[3] to indicate that the number of samples needed to estimate

an arbitrary function with a given level of accuracy grows

exponentially with the number of variables (i.e., dimensions)

that comprise it. For similarity searching (i.e., finding nearest

neighbors), this means that the number of objects (i.e., points)

in the data set that need to be examined in deriving the

estimate (i.e., the nearest neighbor) grows exponentially with

the underlying dimension.

The curse of dimensionality has a direct bearing on

similarity retrieval in high dimensions in the sense that it

raises the issue of whether or not nearest neighbor searching is

even meaningful in such an environment. In particular, it has

been shown that for data and queries drawn from a uniform

distribution, the distance to the nearest neighbor and the

distance to the farthest neighbor tend to converge as the

dimension increases [20]. This is why dimension reduction is

an important issue in classification.

Assuming that the distance d is a distance metric (which is

the case for the commonly used Minkowski metric Lp), and

hence that the triangle inequality holds, an alternative way of

understanding the ramifications of the curse of dimensionality

is to observe that when dealing with high-dimensional data,

the probability density function (analogous to a histogram) of

the distances of the various elements is more concentrated and

has a larger mean value. This means that similarity searching

algorithms will have to perform more work. In the worst case,

for an arbitrary object x, there is the situation where d(x,x)=0

and d(x,y)=1 for all y ≠ x, which means that a similarity query

must compare the query object with every object of the set.

One way to see why more concentrated probability densities

lead to more complex similarity searching is to observe that

this means that the triangle inequality cannot be used so often

to eliminate objects from consideration. In particular, the

triangle inequality implies that every element x such that

|d(q,p)-d(p,x)|>ε cannot be at a distance of ε or less from q

(i.e., from d(q,p) ≤ d(p,x)+d(q,x)). For the probability density

function of d(p,x), when ε is small while the probability

density function is large at d(p,q), then the probability of

eliminating an element from consideration via the use of the

triangle inequality is the remaining area under the curve,

which is quite small (see Figure 1a in contrast to Figure 1b

where the density function of the distances is more uniform).

The high dimensionality of the data also has an effect on

the search process which is aided by the presence of indexes.

In particular, for uniformly distributed high-dimensional data,

This work was supported in part by the U.S. National Science Foundation under Grants EIA-00-91474, CCF-05-15241, and IIS-0713501, as well as

NVIDIA Corporation and Microsoft Research.

most of the data lies near the boundary of the underlying

space (e.g., [4]) and thus most indexes result in visiting all of

the index blocks. This has led to the use of methods based on

a sequential scan (e.g., [5, 11, 29]). However, these methods

also make use of a variant of an index in the sense that they

resort to the use a compressed index on the data to speed up

the sequential scan.

A number of methods have been proposed to overcome the

curse of dimensionality. One approach is to observe that the

data is rarely uniformly distributed which leads to pointing out

that some dimensions are more significant than others thereby

focusing on them (e.g., [16, 19, 20]). Such methods are also

known as dimension-reduction techniques and some examples

include SVD [18] and the Discrete Fourier Transform (DFT)

[15]. The traditional and the state-of-the-art dimensionality

reduction methods can be generally classified into feature

extraction [22, 23, 26] and feature selection [6, 9, 33]

approaches. In general, feature extraction approaches are more

effective than the feature selection techniques [27, 28, 32] and

they have shown to be very effective for real-world

dimensionality reduction problems [10, 13, 22, 23]. Many

scalable online FE algorithms have been proposed.

Incremental PCA (IPCA) [2, 24] is a well-studied incremental

learning algorithm. The latest version of IPCA is called

Candid Covariance-free Incremental Principal Component

Analysis (CCIPCA) [30]. However, IPCA ignores the

valuable label information of data and is not optimal for

general classification tasks. The Incremental Linear

Discriminant Analysis (ILDA) [12] algorithm has also been

proposed recently. Another feature extraction algorithm is

called Incremental Maximum Margin Criterion (IMMC) [31].

These methods utilize the information in the data and

adjust the process to choose the best dimensions, but do not

choose the best dimensions for each individual query point in

order to improve the performance. Part of this paper explores

the effectiveness of adjusting the retrieval process in response

to the query point. Making use of the dimensions where the

query point is near to a boundary instead of near the middle of

the range provides a higher probability of pruning with that

dimension. This method is significantly improved when

distance functions with a higher order are used because the

large contributions of a few dimensions are more relevant in

that case. We also try to guarantee to not be worse than

sequential search.

Nearest neighbor retrieval is a basic method used for

classification. However, because of the curse of

dimensionality, the difference in the distance to one class or

the other becomes minimal and the accuracy suffers,

prompting the use of methods like support vector machines

(SVM) [14]. In this paper we compare nearest and farthest

neighbor classifications that have been modified with our

high-dimension techniques with SVM classifications to

determine whether the curse of dimensionality has been

reduced.

Nearest neighbor techniques often use the Minkowski

metrics to measure similarity between data points. However,

the L2-norm is not necessarily relevant to many emerging

applications involving high-dimensional data [1]. Often these

are used after dimension-reduction techniques like SVD. We

experiment with a new reduced-dimension distance function

that is designed to rapidly determine the maximum lower

bound on the high-dimensional distance.

In high-dimensional nearest neighbor there are both

indexed methods like the GESS method [8] and grid structures

[21], and then there are the unindexed methods like the

Epsilon Grid Order or EGO [7]. The method in this paper is

an unindexed approach.

The rest of this paper is organized as follows. Section 2

discusses the two techniques advanced in this paper, a lower-

dimensional approximation to a distance function and an

improved method for choosing the best dimensions to use to

determine similarity. Section 3 discusses and experiment in

colon cancer data retrieval and classification. Section 4

reveals the results and Section 5 discusses the conclusions.

2. Algorithms

Several new approaches are discussed in this paper,

including choosing the dimensions to analyze based on the

Figure 1: A probability density function (analogous to a histogram) of the distances d(p,x) with the shaded area corresponding to |d(q,p)-

d(p,x)| < ε. (a) indicates a density function where the distance values have a small variation, while (b) indicates a more uniform distribution

of distance values thereby resulting in a more effective use of the triangle inequality to prune objects from consideration as satisfying the

range search query.

dimensions that are relevant to both the data and the query

point, called dimensional choice, and a new distance function

that measures the maximum lower bound on the high-

dimensional distance, called the UL-Distance. The

combination of improved dimensional ranking and a distance

function that uses fewer dimensions is shown to be an

effective combination.

2.1 UL-Distance

Normal nearest neighbor approaches break up the feature

space well, but are susceptible to bad data points. A typical

distance metric that is used is a Minkowski metric of order U

as in Equation 1.

1)

where d is the number of dimensions in the feature space.

Here xi – qi indicates the difference in the data point x and the

point to be classified q in the ith dimension. The Euclidean

distance function uses a value of U=2, while the Manhattan

distance function uses U=1. We define a new non-metric

distance function called the UL-Distance which is defined to

be a maximum lower limit on a high-dimensional Minkowski

distance metric in Equation 2.

2)

The max function here picks out the ith maximum from the set.

The number of dimensions used in the distance is expressly

limited to L, which will speed up retrieval, but the

contributions are from the dimensions that will maximize the

distance in order to maintain as much accuracy as possible.

The factor L is the number of dimensions used in the distance,

and the U is the order of the distance function. Though this

technique provides an approximation to the high-dimensional

distance that can be used for pruning, it can also be an

effective distance function on its own. Note that it is not a

distance metric because the triangle inequality is not

guaranteed to work. This distance function is sensitive to the

few dimensions that are different, instead of being

overwhelmed by the number of dimensions that are similar. A

second non-metric distance function called the LL-Distance is

nearly identical to the UL-Distance except it calculates the

minimum lower limit and is Equation 3.

3)

In order to provide an example of why using a distance

function that uses all of the dimensions but only calculates

with a few could be significantly faster than a Euclidean

distance, we use a chessboard distance and calculate the

farthest neighbor as shown in Figure 2. Though this may not

be the most useful calculation, it is the simplest example.

When doing a farthest-neighbor search, using the diameter of

the data can be an effective technique. Since the chessboard

distance metric requires finding the point with the maximum

difference in only one dimension, storing the points that are

on the diameter of the data set allows the lookup of the

farthest neighbor in each dimension. The point (or points if

multiple points with the same value are stored) on the

diameter of each dimension is compared with the query point,

the dimension with the maximum is determined, and the

farthest neighbor is looked up. This would allow the

calculation of the farthest neighbor under this distance metric

in O(d) time with O(d) storage. This is the same amount of

work necessary to calculate one distance, and is a factor of n

better than sequential search. This example demonstrates that

the dimensionality of the distance function is very important

for the performance of retrievals.

 Since the number of dimensions used by the UL-

Distance function is limited to L, this distance function is

effectively a dimension reduction technique that operates on

all of the dimensions. An additional technique is required to

make the retrieval faster.

These distance functions do fulfill the properties of

positiveness, where D(a,b) >= 0 for all a and b, symmetry,

where D(a,b) = D(b,a), and identity, where D(a,a) = 0.

However, it is not guaranteed to fulfill the triangle inequality

because different dimensions are used.

An alternative approach to limiting the number of

dimensions is to only take dimensions that contribute more

than a certain threshold. However, that makes comparisons

with other techniques difficult. Note that these distance

functions are not normalized so that comparing the distances

with different values of L can be misleading, which makes the

threshold approach more difficult. Normalization is feasible

for particular values of U.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 2: Worst-Case 2D Search. The data in this example are the small

squares, while the query point is the diamond at (0,0). The points on the

diameter are stored in the data structure, or a single point can be used if

space is an issue. All of the data points are equidistant from the query point,

requiring all four surfaces to be accessed to find all farthest neighbors in the

chessboard distance function.

()U
U

ii

d

i

qxDist ||
0

−= ∑
=

()U
U

ii

L

i

i qxDistUL ||max
0

−=− ∑
=

()U
U

ii

L

i

i qxDistLL ||min
0

−=− ∑
=

2.2 Search using Dimensional Choice

In low-dimensional search, the choice of which dimension

to incorporate into the search first is not that important.

However, when there are thousands of dimensions in the data

set, the choice is much more important. Choosing the best

dimension to start the search does require additional work to

determine the best dimension, with work of O(d) to O(d log d)

to sort the dimensions, as well as knowledge of the diameters

of the data set. However, this is only a small amount of work

compared to a complete high-dimensional search, which for

sequential search is O(nd) where n is the number of data

points and d is the number of dimensions. Additionally, if one

is using SVD as is highly recommended when using high-

dimensional data, the initial transformation or projection into

the SVD coordinates dominates the work required to

implement dimensional choice.

The underlying data structure must be extremely flexible

in order to utilize dimensional choice, which is why it is not

used in low-dimensional cases. The idea behind this

technique was mentioned by Nene and Nayar [25], where they

suggest ordering the analysis of the dimensions in order to

minimize the total work. However, they were working with

only sixteen dimensions, so we analyze the full effect of this

technique on their projection method. Their technique

determines the points that are within a distance of ε from the

query point by accessing the data in each dimension and

winnowing down the potential nearest neighbors. The

distance ε that should be used is determined to be rather large

when there are sparse data points and a large number of

dimensions.

Dimensional choice can be used to first estimate the

dimensions that have the largest potential to winnow down the

number of potential nearest neighbors without actually

analyzing those dimensions. This choice is distribution

dependent and could be calculated as such. Note that when

the query point is at the edge of the data set, the space that has

to be searched is only ε instead of 2ε (since the range is from

x-ε to x+ε and in this case half of the space will be empty).

So in the case of the uniform distribution (where this

technique works the worst), there are dimensions that can as

much as double the effective winnowing. In the case of

Gaussian distributed data, the effect is even better because the

winnowing is done at the tails of the distribution.

Additionally, the important dimensions can be determined a

priori, so that many dimensions need never be analyzed.

In order to realize the effect of the improved winnowing,

an additional adjustment should be included to the Nene and

Nayar approach. Their approach continues through all of the

dimensions regardless of the number of points remaining in

the hyper-cube. A stopping condition should be included so

that analyzing the dimensions stops when there are a set

number of points left in the hyper-cube. Using dimensional

choice reduces the work by at least a factor of two for a

uniform distribution in high dimensions, and a significantly

better factor for a Gaussian distribution.

PCA analysis utilizes a limited number of the eigenvectors

V with the largest eigenvalues λ of the diagonalized

covariance matrix D to limit the dimensions. However, this

neglects the importance of the query point itself. The

difficulty with this is demonstrated by comparing Figures 3

and 4, where the query point determines whether the

dimension can be neglected. Dimensional choice can be built

as an extension of PCA in the following way. While PCA

selects the eigenvectors with the largest variance λ, the query

point can be included by selecting the dimensions with the

largest value of the difference from the mean (qi - µi) and the

largest variance λ. We use a combination factor C to balance

these two factors to give us a priority value P

4)

Figure 3: An example 2D data set where choosing to search using the x-

dimension is preferred. The red square q is the query point, and the blue

circles are the data. In this case the x-dimension is very significant for

determining the nearest neighbor, while the contributions from the y-

dimension are not as significant and the y-dimension could be neglected.

Dimensional Choice would let us choose the x-dimension and ignore the y-

dimension unless it is needed.

Figure 4: An example 2D data set where choosing to search using the y-

dimension is valuable in determining the nearest neighbor to the query point

q, even though the data set would indicate that a x-dimension is preferred.

The red square q is the query point, and the blue circles are the data. In both

the x and y dimensions, the contributions to the total distance can be

significant. The difference between this case and the case in Figure 3 is the

position of the query point.

)(iii qCValueP µλ −+=−

where i is the appropriate dimension, q is the query point, µ is

the mean. Selecting the dimensions based on P-Value instead

of λ gives the dimension prioritization a sensitivity to the

query point.

Combining the UL-Distance and dimensional choice

methods for nearest and farthest neighbor searches can

provide significant improvement in speed. In order to

determine the farthest neighbor in the UL-Distance, the

dimensions of the query point are compared with the mean

and variance of that dimension. Then the dimension which

has the highest possible contribution is analyzed first to get a

distance. The remaining dimensions are checked until the

current distance difference cannot be exceeded because the

potential contributions from the remaining dimensions are too

small. An additional level of approximation can be included

by estimating an earlier stopping point. This method operates

in O(d log d + na)) where a is the number of dimensions that

had to be analyzed at the worst case and is dominated by the

initial sort, but can be reduced to O(d + n) ~ O(d) if only a

partial sort is done initially. This compares favorably with the

O(nd) of sequential scans.

In the case of the Euclidean or Manhattan distance metrics,

the gains from adapting to the query point are not as profound

as under the UL-distance because all of the dimensions have

to be analyzed. However, we have demonstrated that the

dimension of the distance function is what drives the difficulty

in retrieval. This motivates the creation of new distance

metrics like the UL-Distance that emulate Minkowski distance

metrics but use a lower dimensionality.

Using Dimensional Choice differs from using PCA in

several important ways. First, PCA uses the same dimensions

for every classification distance, while Dimensional Choice is

adaptive and use a different set of dimensions for each

classification distance depending on the dimensions that are

important for that particular point as well as those that are

important for the data overall. Dimensional Choice works

better with distance functions that are inherently lower

dimensional like the UL-Distance and the chessboard distance

functions because the combination of a limited number of

dimensions and an effective choice of those dimensions

complement each other.

2.3 Search using Similar Neighbor

Many nearest neighbor applications require the exact

nearest neighbor. However, when looking for similarity, often

the approximate nearest neighbor is sufficient. Judging

whether approximate nearest neighbor is good enough

requires an understanding of the underlying structure of

similarity that is embedded into the space. The amount of

approximation allowed depends on the tolerance of the system

for mis-classification of points as similar. A better approach

is finding a similar neighbor instead of the nearest neighbor.

This avoids the discussion of how much approximation is

tolerable by going directly to the question of similarity.

An example of success in similar neighbor would be

finding a point that is not the nearest neighbor, but is similar

to the query point. An example of failure would be finding

any point that is not similar, even if it is the nearest neighbor.

This measure of success is less strict in terms of actual

distances to the objects that are retrieved but more strict in

terms of the similarity of the objects to the query.

3 Experiments

The main questions for these techniques are what the speed

improvement is, and what the change in accuracy is. In order

to determine the change in accuracy, we look at a nearest

neighbor application in recognizing prostate cancer. Here the

loss in accuracy is judged by whether the classification loses

accuracy, sensitivity, or specificity, instead of determining

whether the particular nearest neighbor is exactly the same.

This looser definition of accuracy is more of a functional

definition as large high-dimensional data sets are increasingly

used for classification. The accuracy will be compared with

other nearest neighbor and SVM approaches.

We used a data set obtained from Clinical Proteomic

Program Databank. The experimental data is a set of prostate

cancer samples. The experiment analyzed serum proteomic

mass spectra generated by SELDI-TOF to discriminate the

sera of men with histopathologic diagnosis of prostate cancer

(serum prostate-specific antigen [PSA] ≥ 4 ng/mL) from those

men without prostate cancer (serum PSA < 1 ng/mL). In this

data set, there are 63 normal (non-cancer) samples, and 69

cancer samples.

A SVM was used to compare the accuracy loss for the

serum proteomic pattern analysis. A SVM is a blend of linear

modeling and instance-based learning. A SVM selects a small

number of critical boundary samples, called support vectors,

from each category and builds a linear discriminate function

that separates them as widely as possible. A kernel is used to

automatically inject the training samples into a higher-

dimensional space, and to learn a separator in that space [14].

In linearly separable cases, SVM constructs a hyper-plane,

which separates the two different categories of feature vectors

with a maximum margin, i.e., the distance between the

separating hyper-plane and the nearest training vector. The

training instances that lie closest to the hyper-plane are

support vectors [14]. Linear and polynomial kernels were used.

The feature selection method was MIT correlation, which is

also known as signal-to-noise statistic [17].

The speed and accuracy improvement was measured on the

same computer with the competing algorithms of the PCA

nearest neighbor with a Euclidean distance metric versus the

UL-Distance of order 2 with Dimensional Choice. The

accuracy was also compared with two SVM approaches.

Because of the limited supply of data, we used one sample as

the test case and the remainder as the training cases and did

this for each case. The drawback to this approach is that the

result of each individual test is not independent of the results

of the other tests.

4 Results

The results were interesting overall as the nearest neighbor

classification performed better overall than both of the SVM

techniques. This is shown in Figures 5, 6, and 7. The use of

the UL-Distance significantly increased the accuracy of the

nearest-neighbors technique at low levels of features, as is

shown in Figure 8, but performed at a similar level to the PCA

choice of dimensions at high levels of features, as is shown in

Figures 5, 6, and 7.

The accuracy of the classification is maintained with the

reduction of the number of features from 12600 to 800 with

the UL-Distance, while the PCA choice of dimensions shows

slight degradation as is shown in Figure 5. This reduction in

the dimensionality of the data by almost 70% without a loss of

accuracy is encouraging. However, the accuracy is degraded

below 100 dimensions as shown in Figure 8, but only by 6%

in order to achieve a dimension reduction of 99%. Note that

using the UL-Distance instead of the PCA technique improved

the accuracy by up to 12% at low numbers of dimensions, as

is shown in Figure 8. Of course, these results are dependent

on the data set used.

The specificity of the classification is surprisingly stable

with dimension reduction under the UL-Distance, as is shown

in Figure 7. The other methods did not fare as well. The

sensitivity of the classification with the UL-Distance and

nearest neighbor was surprisingly good, as is shown in Figure

6.

The improvement in the amount of time necessary to run

the algorithms is shown in Figure 9. The cost savings is

significant but only at the levels of dimension reduction that

cause a loss of accuracy. The trade-off between accuracy and

time savings is shown in Figure 10.

Farthest neighbor classification did not perform well.

However, the farthest neighbor and nearest neighbor

classifications did not tend to misclassify the same data points,

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

12600 7500 3250 800

Number of Features

A
c

c
u

ra
c

y

SVM linear SVM poly nn PCA nn max
Figure 5: The accuracy of the methods versus the number of features (or

dimensions). The nearest neighbor methods performed surprisingly well

against the SVM. The nn PCA method is the nearest neighbor with PCA

dimensions included, while the nn max uses the UL-Distance. The general

flatness of the nearest neighbor methods is encouraging for using nearest

neighbor with dimension reduction methods. The nn max does outperform

all other methods. The general flatness of the nearest neighbor methods is

encouraging for using nearest neighbor with dimension reduction methods.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

12600 7500 3250 800

Number of Features

S
e
n

s
it

iv
it

y

SVM linear SVM poly nn PCA nn max
Figure 6: The sensitivity of the methods versus the number of features. The

nn PCA method is the nearest neighbor with PCA dimensions included, while

the nn max uses the UL-Distance. The similarity of the sensitivity of the two

methods suggests that it is the specificity and not the sensitivity that makes

the nn max the better technique. Both outperform SVM.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

12600 7500 3250 800

Number of Features

S
p

e
c
if

ic
it

y

SVM linear SVM poly nn PCA nn max
Figure 7: The specificity of the methods versus the number of features. The

nn PCA method is the nearest neighbor with PCA dimensions included, while

the nn max uses the UL-Distance. The flatness of the nn max method

demonstrates that the dimension reduction does not adversely affect the

specificity.

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Number of Features

A
c
c
u

ra
c

y

nn PCA nn max
Figure 8: The accuracy of the nearest neighbor methods versus the number

of features at a small number of features. The nn PCA method is the nearest

neighbor with PCA dimensions included, while the nn max uses the UL-

Distance. The loss in accuracy at an extremely small number of features is

significant, but not terrible. The performance of the UL-Distance does

improve the performance by 3-12% over the PCA features technique.

which implies that the combination of the two might produce

a better overall classifier.

5 Conclusion

This work has demonstrated significant dimension

reduction, up to 70% reduction in the number of dimensions

in the data set with no loss in accuracy or over 99% reduction

with only a 6% loss in accuracy. The method can actually

perform better with fewer dimensions than the nearest

neighbor with all of the dimensions. The data set may be part

of the reason, though it is a typical prostate cancer data set.

We have developed a new distance function called the UL-

Distance that can be effectively used to replace Euclidean or

other Minkowski metrics for high-dimensional nearest

neighbor operations. This performed at up to 12% better than

alternate approaches.

Combining this new distance function with a technique of

Dimensional Choice where the best dimensions to analyze are

guessed using information about the underlying data and the

query itself in order to minimize the amount of work required

to perform the nearest neighbor search with the UL-Distance

achieved significant savings in work. The time to perform a

nearest neighbor search is reduced by a factor of five with no

loss of accuracy, but can be improved up to a factor of ten at

some loss of accuracy, as is shown in Figure 10.

We demonstrate that the curse of dimensionality is not

based on the dimension of the data itself, but primarily upon

the effective dimension of the distance function. The effective

dimension of the UL-Distance is set to a factor of L even

though it can act on any of the possible d dimensions. We

also note that the higher the order U of the UL-Distance

function, the better the approximation performs since the

small factors that would be included from neglected

dimensions are effectively reduced when using a higher order

distance function.

We note that this work is preliminary and does require

more extensive analysis. However, the combination of a more

effective ranking of dimensions using dimensional choice and

a dimension-limiting distance function appear to be an

effective combination when using high-dimensional data.

References

[1] C. C. Aggarwal. Towards systematic design of distance functions

for data mining applications. In Proceedings of the 9th ACM

SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 9–18, Washington, D.C., August 2003.

[2] M. Artae, M. Jogan, and A. Leonardis, “Incremental PCA for On-

Line Visual Learning and Recognition,” Proc. 16th Int’l Conf.

Pattern Recognition, pp. 781-784, 2002.

 [3] R. E. Bellman. Adaptive Control Processes. Princeton University

Press, Princeton, NJ, 1961.

[4] S. Berchtold, C. B¨ohm, and H.-P. Kriegel. Improving the query

performance of high-dimensional index structures by bulk-load

operations. In Advances in Database Technology — EDBT’98,

Proceedings of the 1st International Conference on Extending

Database Technology, H.-J Schek, F. Saltor, I. Ramos, and G.

Alonso, eds., pages 216–230, Valencia, Spain, March 1998.

 [5] S. Berchtold, C. B¨ohm, H.-P. Kriegel, J. Sander, and H. V.

Jagadish. Independent quantization: An index compression technique

for high-dimensional data spaces. In Proceedings of the 16th IEEE

International Conference on Data Engineering, pages 577–588, San

Diego, CA, February 2000.

[6] A.L. Blum and P. Langley, “Selection of Relevant Features and

Examples in Machine Learning,” Artificial Intelligence, vol. 97, nos.

1-2, pp. 245-271, 1997.

[7] C. Bohm, B. Braunmuller, F. Krebs, and H.-P. Kriegel. Epsilon

grid order: an algorithm for the similarity join on massive high-

dimensional data. In Proceedings of the ACM SIGMOD Conference,

pages 379–390, Santa Barbara, CA, May 2001.

[8] J.-P. Dittrich and B. Seeger. GESS: a scalable similarity-join

algorithm for mining large data sets in high dimensional spaces. In

Proceedings of the 7th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 47–56, San Francisco,

California, August 2001.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

Number of Features

R
a

ti
o

 o
f

T
im

e
 S

a
v

e
d

Figure 9: The ratio of the time saved accessing the nearest neighbor using

Dimensional Choice versus the time necessary for the full nearest neighbor.

The amount of time saved is significant up to 800 features, where the

savings start to tail off.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 0.6 0.7 0.8 0.9 1

Ratio of Time Saved

A
c
c
u

ra
c
y

Figure 10: The accuracy of the nearest neighbor methods versus ratio of the

time saved. An optimal point appears to be 800 features out of the original

12600 in order to minimize the lost accuracy while maximizing the savings

in time.

[9] K. Daphne and M. Sahami, “Toward Optimal Feature Selection,”

Proc. 13th Int’l Conf. Machine Learning, pp. 284-292, 1996.

[10] W. Fan, M.D. Gordon, and P. Pathak, “Effective Profiling Of

Consumer Information Retrieval Needs: A Unified Framework And

Empirical Comparison,” Decision Support Systems, vol. 40, pp. 213-

233, 2004.

[11] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi.

Vector approximation based indexing for non-uniform high

dimensional data sets. In Proceedings of the 9th International

Conference on Information and Knowledge Management (CIKM),

pages 202–209, McLean, VA, November 2000.

[12] K. Hiraoka, K. Hidai, M. Hamahira, H. Mizoguchi, T. Mishima,

and S. Yoshizawa, “Successive Learning of Linear Discriminant

Analysis: Sanger-Type Algorithm,” Proc. 14th Int’l Conf. Pattern

Recognition, pp. 2664-2667, 2000.

[13] R. Hoch, “Using IR Techniques for Text Classification in

Document Analysis,” Proc. 17th Ann. Int’l ACM SIGIR Conf.

Research and Development in Information Retrieval, pp. 31-40, 1994.

[14] T. Joachims, “Making large-scale support vector machine

learning practical”, International Conference on Machine Learning

(ICML’99), 200-209 (1999).

[15] N. Gershenfeld. The Nature of Mathematical Modeling.

Cambridge University Press, Cambridge, United Kingdom, 1999.

[16] A. Gionis, P. Indyk, and R. Motwani. “Similarity search in high

dimensions via hashing”. In Proceedings of the 25th International

Conference on Very Large Data Bases (VLDB), M. P. Atkinson, M.

E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, eds.,

pages 518–529, Edinburgh, Scotland, September 1999.

[17] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M.

Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M.

A. Caligiuri, C. D. Bloomfield, E. S Lander, Molecular Classification

of Cancer: Class Discovery and Class Prediction by Gene Expression

Monitoring, Science, 286, 531-537 (1999).

[18] G. H. Golub and C. F. van Loan. Matrix Computations. Johns

Hopkins University Press, Baltimore, MD, third edition, 1996.

[19] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the

nearest neighbor in high dimensional spaces. In Proceedings of the

26th International Conference on Very Large Data Bases (VLDB), A.

El Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G.

Schlageter, and K.-Y. Whang, eds., pages 506–515, Cairo, Egypt,

September 2000.

[20] P. Indyk and R. Motwani. Approximate nearest neighbors:

Towards removing the curse of dimensionality. In Proceedings of

the 30th Annual ACM Symposium on the Theory of Computing,

pages 604–613, Dallas, May 1998.

[21] D. Kalashnikov and S. Prabhakar. Similarity joins for low- and

high- dimensional data. In Proceedings of the 8th International

Conference on Database Systems for Advanced Applications

(DASFAA’03), pages 7–16, Kyoto, Japan, March 2003.

[22] D.D. Lewis, “Feature Selection and Feature Extraction for Text

Categorization,” Proc. Workshop Speech and Natural Language, pp.

212-217, 1992.

[23] H. Li, T. Jiang, and K. Zhang, “Efficient and Robust Feature

Extraction by Maximum Margin Criterion,” Proc. Conf. Advances in

Neural Information Processing Systems, pp. 97-104, 2004.

[24] Y. Li, L. Xu, J. Morphett, and R. Jacobs, “An Integrated

Algorithm of Incremental and Robust PCA,” Proc. Int’l Conf. Image

Processing, pp. 245-248, 2003.

[25] S.A. Nene and S.K. Nayar. A Simple Algorithm for Nearest-

Neighbor Search in High Dimensions. PAMI, 19(9):989–1003,

September 1997.

[26] E. Oja, “Subspace Methods of Pattern Recognition,” Pattern

Recognition and Image Processing Series, vol. 6, 1983.

[27] R.O. Duda, P.E. Hart, and D.G Stork, Pattern Classification,

second ed. John Wiley, 2001.

[28] A.R. Webb, Statistical Pattern Recognition, second ed. John

Wiley, 2002.

[29] R. Weber, H.J. Schek, and S. Blott. A quantitative analysis and

performance study for similarity search methods in high-dimensional

spaces. In Proceedings of the 24th International Conference on Very

Large Data Bases (VLDB), A. Gupta, O. Shmueli, and J. Widom,

eds., pages 194–205, New York, August 1998.

[30] J. Weng, Y. Zhang, and W.-S. Hwang, “Candid Covariance-Free

Incremental Principal Component Analysis,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 25, pp. 1034-1040, 2003.

[31] J. Yan, B.Y. Zhang, S.C. Yan, Z. Chen, W.G. Fan, Q. Yang,

W.Y. Ma, and Q.S. Cheng, “IMMC: Incremental Maximum,

Marginal Criterion,” Proc. 10th ACM SIGKDD Int’l Conf.

Knowledge Discovery and Data Mining, pp. 725-730, 2004.

[32] J. Yan, N. Liu, B.Y. Zhang, S.C. Yan, Q.S. Cheng, W.G. Fan, Z.

Chen, W.S. Xi, and W.Y. Ma, “OCFS: Orthogonal Centroid Feature

Selection,” Proc. 28th Ann. Int’l ACM SIGIR Conf. Research and

Development in Information Retrieval, 2005.

 [33] Y. Yang and J.O. Pedersen, “A Comparative Study on Feature

Selection in Text Categorization,” Proc. 14th Int’l Conf. Machine

Learning, pp. 412-420, 1997.

