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Abstract 

 
There are several pieces of information that can be 

utilized in order to improve the efficiency of similarity 

searches on high-dimensional data.  The most commonly used 

information is the distribution of the data itself, but the use of 

dimensional choice based on the information in the query as 

well as the parameters of the distribution can provide an 

effective improvement in the query processing speed and 

storage.  The use of this method can produce dimension 

reduction by as much as a factor of n, the number of data 

points in the database, over sequential search.  We 

demonstrate that the curse of dimensionality is not based on 

the dimension of the data itself, but primarily upon the 

effective dimension of the distance function.  We also 

introduce a new distance function that utilizes fewer 

dimensions of the higher dimensional space to produce a 

maximal lower bound distance in order to approximate the 

full distance function. This work has demonstrated significant 

dimension reduction, up to 70% reduction with an 

improvement in accuracy or over 99% with only a 6% loss in 

accuracy on a prostate cancer data set.      

1. Introduction 

 In order to create an effective classification technique for 

bioinformatics data, methods are needed to efficiently retrieve 

data based on similarity to a given exemplar or set of 

exemplars.  This type of query is referred to as similarity 

retrieval.  Of these queries, the nearest neighbor query is 

particularly important, and it is the one that is emphasized in 

this paper.  An apparently straightforward solution to finding 

the nearest neighbor is to compute a Voronoi diagram for the 

data points (i.e., a partition of the space into regions where all 

points in the region are closer to the region's associated data 

point than to any other data point), and then locate the 

Voronoi region corresponding to the query point.  The 

problem with this solution is that the combinatorial 

complexity of the search process in high dimensions, 

expressed in terms of the number of objects, is prohibitive 

thereby making it virtually impossible to store the Voronoi 

diagram which renders its applicability moot. 

The problem described above is typical of the issues that 

must be faced when dealing with high-dimensional data.  

Multidimensional problems such as these queries become 

increasingly more difficult to solve as the dimensionality 

increases.  The difficulties that are encountered are attributed 

to the curse of dimensionality which surfaces in a number of 

different forms.  In essence, the term was coined by Bellman 

[3] to indicate that the number of samples needed to estimate 

an arbitrary function with a given level of accuracy grows 

exponentially with the number of variables (i.e., dimensions) 

that comprise it.  For similarity searching (i.e., finding nearest 

neighbors), this means that the number of objects (i.e., points) 

in the data set that need to be examined in deriving the 

estimate (i.e., the nearest neighbor) grows exponentially with 

the underlying dimension. 

The curse of dimensionality has a direct bearing on 

similarity retrieval in high dimensions in the sense that it 

raises the issue of whether or not nearest neighbor searching is 

even meaningful in such an environment.  In particular, it has 

been shown that for data and queries drawn from a uniform 

distribution, the distance to the nearest neighbor and the 

distance to the farthest neighbor tend to converge as the 

dimension increases [20].  This is why dimension reduction is 

an important issue in classification.  

Assuming that the distance d is a distance metric (which is 

the case for the commonly used Minkowski metric Lp), and 

hence that the triangle inequality holds, an alternative way of 

understanding the ramifications of the curse of dimensionality 

is to observe that when dealing with high-dimensional data, 

the probability density function (analogous to a histogram) of 

the distances of the various elements is more concentrated and 

has a larger mean value.  This means that similarity searching 

algorithms will have to perform more work.  In the worst case, 

for an arbitrary object x, there is the situation where d(x,x)=0 

and d(x,y)=1 for all y ≠ x, which means that a similarity query 

must compare the query object with every object of the set.  

One way to see why more concentrated probability densities 

lead to more complex similarity searching is to observe that 

this means that the triangle inequality cannot be used so often 

to eliminate objects from consideration.  In particular, the 

triangle inequality implies that every element x such that 

|d(q,p)-d(p,x)|>ε cannot be at a distance of ε or less from q 

(i.e., from d(q,p) ≤ d(p,x)+d(q,x)).  For the probability density 

function of d(p,x), when ε is small while the probability 

density function is large at d(p,q), then the probability of 

eliminating an element from consideration via the use of the 

triangle inequality is the remaining area under the curve, 

which is quite small (see Figure 1a in contrast to Figure 1b 

where the density function of the distances is more uniform). 

The high dimensionality of the data also has an effect on 

the search process which is aided by the presence of indexes.  

In particular, for uniformly distributed high-dimensional data, 
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most of the data lies near the boundary of the underlying 

space (e.g., [4]) and thus most indexes result in visiting all of 

the index blocks.  This has led to the use of methods based on 

a sequential scan (e.g., [5, 11, 29]).  However, these methods 

also make use of a variant of an index in the sense that they 

resort to the use a compressed index on the data to speed up 

the sequential scan. 

A number of methods have been proposed to overcome the 

curse of dimensionality.  One approach is to observe that the 

data is rarely uniformly distributed which leads to pointing out 

that some dimensions are more significant than others thereby 

focusing on them (e.g., [16, 19, 20]).  Such methods are also 

known as dimension-reduction techniques and some examples 

include SVD [18] and the Discrete Fourier Transform (DFT) 

[15].  The traditional and the state-of-the-art dimensionality 

reduction methods can be generally classified into feature 

extraction [22, 23, 26] and feature selection [6, 9, 33] 

approaches. In general, feature extraction approaches are more 

effective than the feature selection techniques [27, 28, 32] and 

they have shown to be very effective for real-world 

dimensionality reduction problems [10, 13, 22, 23].  Many 

scalable online FE algorithms have been proposed.  

Incremental PCA (IPCA) [2, 24] is a well-studied incremental 

learning algorithm. The latest version of IPCA is called 

Candid Covariance-free Incremental Principal Component 

Analysis (CCIPCA) [30]. However, IPCA ignores the 

valuable label information of data and is not optimal for 

general classification tasks. The Incremental Linear 

Discriminant Analysis (ILDA) [12] algorithm has also been 

proposed recently. Another feature extraction algorithm is 

called Incremental Maximum Margin Criterion (IMMC) [31].   

These methods utilize the information in the data and 

adjust the process to choose the best dimensions, but do not 

choose the best dimensions for each individual query point in 

order to improve the performance.  Part of this paper explores 

the effectiveness of adjusting the retrieval process in response 

to the query point.   Making use of the dimensions where the 

query point is near to a boundary instead of near the middle of 

the range provides a higher probability of pruning with that 

dimension.  This method is significantly improved when 

distance functions with a higher order are used because the 

large contributions of a few dimensions are more relevant in 

that case.  We also try to guarantee to not be worse than 

sequential search.  

Nearest neighbor retrieval is a basic method used for 

classification.  However, because of the curse of 

dimensionality, the difference in the distance to one class or 

the other becomes minimal and the accuracy suffers, 

prompting the use of methods like support vector machines 

(SVM) [14].  In this paper we compare nearest and farthest 

neighbor classifications that have been modified with our 

high-dimension techniques with SVM classifications to 

determine whether the curse of dimensionality has been 

reduced.   

Nearest neighbor techniques often use the Minkowski 

metrics to measure similarity between data points.  However, 

the L2-norm is not necessarily relevant to many emerging 

applications involving high-dimensional data [1].  Often these 

are used after dimension-reduction techniques like SVD.  We 

experiment with a new reduced-dimension distance function 

that is designed to rapidly determine the maximum lower 

bound on the high-dimensional distance.   

In high-dimensional nearest neighbor there are both 

indexed methods like the GESS method [8] and grid structures 

[21], and then there are the unindexed methods like the 

Epsilon Grid Order or EGO [7].  The method in this paper is 

an unindexed approach.   

The rest of this paper is organized as follows.  Section 2 

discusses the two techniques advanced in this paper, a lower-

dimensional approximation to a distance function and an 

improved method for choosing the best dimensions to use to 

determine similarity.  Section 3 discusses and experiment in 

colon cancer data retrieval and classification.  Section 4 

reveals the results and Section 5 discusses the conclusions.  

2. Algorithms 

Several new approaches are discussed in this paper, 

including choosing the dimensions to analyze based on the 

 

 
Figure 1: A probability density function (analogous to a histogram) of the distances d(p,x) with the shaded area corresponding to |d(q,p)-

d(p,x)| < ε.  (a) indicates a density function where the distance values have a small variation, while (b) indicates a more uniform distribution 

of distance values thereby resulting in a more effective use of the triangle inequality to prune objects from consideration as satisfying the 

range search query. 



dimensions that are relevant to both the data and the query 

point, called dimensional choice, and a new distance function 

that measures the maximum lower bound on the high-

dimensional distance, called the UL-Distance.  The 

combination of improved dimensional ranking and a distance 

function that uses fewer dimensions is shown to be an 

effective combination.   

2.1 UL-Distance 

Normal nearest neighbor approaches break up the feature 

space well, but are susceptible to bad data points.  A typical 

distance metric that is used is a Minkowski metric of order U 

as in Equation 1.   
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where d is the number of dimensions in the feature space.  

Here xi – qi indicates the difference in the data point x and the 

point to be classified q in the ith dimension.  The Euclidean 

distance function uses a value of U=2, while the Manhattan 

distance function uses U=1.  We define a new non-metric 

distance function called the UL-Distance which is defined to 

be a maximum lower limit on a high-dimensional Minkowski 

distance metric in Equation 2.   
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The max function here picks out the ith maximum from the set.  

The number of dimensions used in the distance is expressly 

limited to L, which will speed up retrieval, but the 

contributions are from the dimensions that will maximize the 

distance in order to maintain as much accuracy as possible.  

The factor L is the number of dimensions used in the distance, 

and the U is the order of the distance function.  Though this 

technique provides an approximation to the high-dimensional 

distance that can be used for pruning, it can also be an 

effective distance function on its own.  Note that it is not a 

distance metric because the triangle inequality is not 

guaranteed to work.  This distance function is sensitive to the 

few dimensions that are different, instead of being 

overwhelmed by the number of dimensions that are similar.  A 

second non-metric distance function called the LL-Distance is 

nearly identical to the UL-Distance except it calculates the 

minimum lower limit and is Equation 3. 
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In order to provide an example of why using a distance 

function that uses all of the dimensions but only calculates 

with a few could be significantly faster than a Euclidean 

distance, we use a chessboard distance and calculate the 

farthest neighbor as shown in Figure 2.  Though this may not 

be the most useful calculation, it is the simplest example.  

When doing a farthest-neighbor search, using the diameter of 

the data can be an effective technique.  Since the chessboard 

distance metric requires finding the point with the maximum 

difference in only one dimension, storing the points that are 

on the diameter of the data set allows the lookup of the 

farthest neighbor in each dimension.  The point (or points if 

multiple points with the same value are stored) on the 

diameter of each dimension is compared with the query point, 

the dimension with the maximum is determined, and the 

farthest neighbor is looked up.   This would allow the 

calculation of the farthest neighbor under this distance metric 

in O(d) time with O(d) storage.  This is the same amount of 

work necessary to calculate one distance, and is a factor of n 

better than sequential search.  This example demonstrates that 

the dimensionality of the distance function is very important 

for the performance of retrievals. 

 Since the number of dimensions used by the UL-

Distance function is limited to L, this distance function is 

effectively a dimension reduction technique that operates on 

all of the dimensions.  An additional technique is required to 

make the retrieval faster.   

These distance functions do fulfill the properties of 

positiveness, where D(a,b) >= 0 for all a and b, symmetry, 

where D(a,b) = D(b,a), and identity, where D(a,a) = 0.  

However, it is not guaranteed to fulfill the triangle inequality 

because different dimensions are used.   

An alternative approach to limiting the number of 

dimensions is to only take dimensions that contribute more 

than a certain threshold.  However, that makes comparisons 

with other techniques difficult.  Note that these distance 

functions are not normalized so that comparing the distances 

with different values of L can be misleading, which makes the 

threshold approach more difficult.  Normalization is feasible 

for particular values of U. 
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Figure 2: Worst-Case 2D Search. The data in this example are the small 

squares, while the query point is the diamond at (0,0).  The points on the 

diameter are stored in the data structure, or a single point can be used if 

space is an issue.  All of the data points are equidistant from the query point, 

requiring all four surfaces to be accessed to find all farthest neighbors in the 

chessboard distance function.   
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2.2 Search using Dimensional Choice 
 

In low-dimensional search, the choice of which dimension 

to incorporate into the search first is not that important.  

However, when there are thousands of dimensions in the data 

set, the choice is much more important.  Choosing the best 

dimension to start the search does require additional work to 

determine the best dimension, with work of O(d) to O(d log d) 

to sort the dimensions, as well as knowledge of the diameters 

of the data set.  However, this is only a small amount of work 

compared to a complete high-dimensional search, which for 

sequential search is O(nd) where n is the number of data 

points and d is the number of dimensions.  Additionally, if one 

is using SVD as is highly recommended when using high-

dimensional data, the initial transformation or projection into 

the SVD coordinates dominates the work required to 

implement dimensional choice.   

The underlying data structure must be extremely flexible 

in order to utilize dimensional choice, which is why it is not 

used in low-dimensional cases.  The idea behind this 

technique was mentioned by Nene and Nayar [25], where they 

suggest ordering the analysis of the dimensions in order to 

minimize the total work.  However, they were working with 

only sixteen dimensions, so we analyze the full effect of this 

technique on their projection method.  Their technique 

determines the points that are within a distance of ε from the 

query point by accessing the data in each dimension and 

winnowing down the potential nearest neighbors.  The 

distance ε that should be used is determined to be rather large 

when there are sparse data points and a large number of 

dimensions.   

Dimensional choice can be used to first estimate the 

dimensions that have the largest potential to winnow down the 

number of potential nearest neighbors without actually 

analyzing those dimensions.  This choice is distribution 

dependent and could be calculated as such.  Note that when 

the query point is at the edge of the data set, the space that has 

to be searched is only ε instead of 2ε (since the range is from 

x-ε to x+ε and in this case half of the space will be empty).  

So in the case of the uniform distribution (where this 

technique works the worst), there are dimensions that can as 

much as double the effective winnowing.  In the case of 

Gaussian distributed data, the effect is even better because the 

winnowing is done at the tails of the distribution.  

Additionally, the important dimensions can be determined a 

priori, so that many dimensions need never be analyzed. 

In order to realize the effect of the improved winnowing, 

an additional adjustment should be included to the Nene and 

Nayar approach.  Their approach continues through all of the 

dimensions regardless of the number of points remaining in 

the hyper-cube.  A stopping condition should be included so 

that analyzing the dimensions stops when there are a set 

number of points left in the hyper-cube.  Using dimensional 

choice reduces the work by at least a factor of two for a 

uniform distribution in high dimensions, and a significantly 

better factor for a Gaussian distribution. 

PCA analysis utilizes a limited number of the eigenvectors 

V with the largest eigenvalues λ of the diagonalized 

covariance matrix D to limit the dimensions.  However, this 

neglects the importance of the query point itself.  The 

difficulty with this is demonstrated by comparing Figures 3 

and 4, where the query point determines whether the 

dimension can be neglected.  Dimensional choice can be built 

as an extension of PCA in the following way.  While PCA 

selects the eigenvectors with the largest variance λ, the query 

point can be included by selecting the dimensions with the 

largest value of the difference from the mean (qi - µi ) and the 

largest variance λ.  We use a combination factor C to balance 

these two factors to give us a priority value P 
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Figure 3: An example 2D data set where choosing to search using the x-

dimension is preferred.  The red square q is the query point, and the blue 

circles are the data.  In this case the x-dimension is very significant for 

determining the nearest neighbor, while the contributions from the y-

dimension are not as significant and the y-dimension could be neglected.  

Dimensional Choice would let us choose the x-dimension and ignore the y-

dimension unless it is needed.   

 
Figure 4: An example 2D data set where choosing to search using the y-

dimension is valuable in determining the nearest neighbor to the query point 

q, even though the data set would indicate that a x-dimension is preferred.  

The red square q is the query point, and the blue circles are the data.  In both 

the x and y dimensions, the contributions to the total distance can be 

significant.  The difference between this case and the case in Figure 3 is the 

position of the query point.  
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where i is the appropriate dimension, q is the query point, µ is 

the mean.   Selecting the dimensions based on P-Value instead 

of λ gives the dimension prioritization a sensitivity to the 

query point. 

Combining the UL-Distance and dimensional choice 

methods for nearest and farthest neighbor searches can 

provide significant improvement in speed.  In order to 

determine the farthest neighbor in the UL-Distance, the 

dimensions of the query point are compared with the mean 

and variance of that dimension.  Then the dimension which 

has the highest possible contribution is analyzed first to get a 

distance.  The remaining dimensions are checked until the 

current distance difference cannot be exceeded because the 

potential contributions from the remaining dimensions are too 

small.  An additional level of approximation can be included 

by estimating an earlier stopping point.  This method operates 

in O(d log d + na)) where a is the number of dimensions that 

had to be analyzed at the worst case and is dominated by the 

initial sort, but can be reduced to O(d + n) ~ O(d) if only a 

partial sort is done initially.  This compares favorably with the 

O(nd) of sequential scans. 

In the case of the Euclidean or Manhattan distance metrics, 

the gains from adapting to the query point are not as profound 

as under the UL-distance because all of the dimensions have 

to be analyzed.  However, we have demonstrated that the 

dimension of the distance function is what drives the difficulty 

in retrieval.  This motivates the creation of new distance 

metrics like the UL-Distance that emulate Minkowski distance 

metrics but use a lower dimensionality.   

Using Dimensional Choice differs from using PCA in 

several important ways.  First, PCA uses the same dimensions 

for every classification distance, while Dimensional Choice is 

adaptive and use a different set of dimensions for each 

classification distance depending on the dimensions that are 

important for that particular point as well as those that are 

important for the data overall.  Dimensional Choice works 

better with distance functions that are inherently lower 

dimensional like the UL-Distance and the chessboard distance 

functions because the combination of a limited number of 

dimensions and an effective choice of those dimensions 

complement each other. 

2.3 Search using Similar Neighbor 

 

Many nearest neighbor applications require the exact 

nearest neighbor.  However, when looking for similarity, often 

the approximate nearest neighbor is sufficient.  Judging 

whether approximate nearest neighbor is good enough 

requires an understanding of the underlying structure of 

similarity that is embedded into the space.  The amount of 

approximation allowed depends on the tolerance of the system 

for mis-classification of points as similar.  A better approach 

is finding a similar neighbor instead of the nearest neighbor.  

This avoids the discussion of how much approximation is 

tolerable by going directly to the question of similarity.   

An example of success in similar neighbor would be 

finding a point that is not the nearest neighbor, but is similar 

to the query point.  An example of failure would be finding 

any point that is not similar, even if it is the nearest neighbor.  

This measure of success is less strict in terms of actual 

distances to the objects that are retrieved but more strict in 

terms of the similarity of the objects to the query.   

 

3 Experiments 
 

The main questions for these techniques are what the speed 

improvement is, and what the change in accuracy is.  In order 

to determine the change in accuracy, we look at a nearest 

neighbor application in recognizing prostate cancer.  Here the 

loss in accuracy is judged by whether the classification loses 

accuracy, sensitivity, or specificity, instead of determining 

whether the particular nearest neighbor is exactly the same.  

This looser definition of accuracy is more of a functional 

definition as large high-dimensional data sets are increasingly 

used for classification.  The accuracy will be compared with 

other nearest neighbor and SVM approaches.    

We used a data set obtained from Clinical Proteomic 

Program Databank.  The experimental data is a set of prostate 

cancer samples. The experiment analyzed serum proteomic 

mass spectra generated by SELDI-TOF to discriminate the 

sera of men with histopathologic diagnosis of prostate cancer 

(serum prostate-specific antigen [PSA] ≥ 4 ng/mL) from those 

men without prostate cancer (serum PSA < 1 ng/mL). In this 

data set, there are 63 normal (non-cancer) samples, and 69 

cancer samples.   

A SVM was used to compare the accuracy loss for the 

serum proteomic pattern analysis.  A SVM is a blend of linear 

modeling and instance-based learning. A SVM selects a small 

number of critical boundary samples, called support vectors, 

from each category and builds a linear discriminate function 

that separates them as widely as possible. A kernel is used to 

automatically inject the training samples into a higher-

dimensional space, and to learn a separator in that space [14]. 

In linearly separable cases, SVM constructs a hyper-plane, 

which separates the two different categories of feature vectors 

with a maximum margin, i.e., the distance between the 

separating hyper-plane and the nearest training vector. The 

training instances that lie closest to the hyper-plane are 

support vectors [14]. Linear and polynomial kernels were used.  

The feature selection method was MIT correlation, which is 

also known as signal-to-noise statistic [17].  

The speed and accuracy improvement was measured on the 

same computer with the competing algorithms of the PCA 

nearest neighbor with a Euclidean distance metric versus the 

UL-Distance of order 2 with Dimensional Choice.  The 

accuracy was also compared with two SVM approaches. 

Because of the limited supply of data, we used one sample as 

the test case and the remainder as the training cases and did 

this for each case.  The drawback to this approach is that the 

result of each individual test is not independent of the results 

of the other tests.  

4 Results 

 



The results were interesting overall as the nearest neighbor 

classification performed better overall than both of the SVM 

techniques.  This is shown in Figures 5, 6, and 7.  The use of 

the UL-Distance significantly increased the accuracy of the 

nearest-neighbors technique at low levels of features, as is 

shown in Figure 8, but performed at a similar level to the PCA 

choice of dimensions at high levels of features, as is shown in 

Figures 5, 6, and 7.   

The accuracy of the classification is maintained with the 

reduction of the number of features from 12600 to 800 with 

the UL-Distance, while the PCA choice of dimensions shows 

slight degradation as is shown in Figure 5.  This reduction in 

the dimensionality of the data by almost 70% without a loss of 

accuracy is encouraging.  However, the accuracy is degraded 

below 100 dimensions as shown in Figure 8, but only by 6% 

in order to achieve a dimension reduction of 99%.  Note that 

using the UL-Distance instead of the PCA technique improved 

the accuracy by up to 12% at low numbers of dimensions, as 

is shown in Figure 8.  Of course, these results are dependent 

on the data set used.   

The specificity of the classification is surprisingly stable 

with dimension reduction under the UL-Distance, as is shown 

in Figure 7.  The other methods did not fare as well.  The 

sensitivity of the classification with the UL-Distance and 

nearest neighbor was surprisingly good, as is shown in Figure 

6.   

The improvement in the amount of time necessary to run 

the algorithms is shown in Figure 9.  The cost savings is 

significant but only at the levels of dimension reduction that 

cause a loss of accuracy.  The trade-off between accuracy and 

time savings is shown in Figure 10.       

Farthest neighbor classification did not perform well.  

However, the farthest neighbor and nearest neighbor 

classifications did not tend to misclassify the same data points, 
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Figure 5: The accuracy of the methods versus the number of features (or 

dimensions).  The nearest neighbor methods performed surprisingly well 

against the SVM.  The nn PCA method is the nearest neighbor with PCA 

dimensions included, while the nn max uses the UL-Distance.  The general 

flatness of the nearest neighbor methods is encouraging for using nearest 

neighbor with dimension reduction methods.  The nn max does outperform 

all other methods.  The general flatness of the nearest neighbor methods is 

encouraging for using nearest neighbor with dimension reduction methods.  
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Figure 6: The sensitivity of the methods versus the number of features.  The 

nn PCA method is the nearest neighbor with PCA dimensions included, while 

the nn max uses the UL-Distance.  The similarity of the sensitivity of the two 

methods suggests that it is the specificity and not the sensitivity that makes 

the nn max the better technique.  Both outperform SVM.   
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specificity.   
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of features at a small number of features.  The nn PCA method is the nearest 

neighbor with PCA dimensions included, while the nn max uses the UL-
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significant, but not terrible.  The performance of the UL-Distance does 

improve the performance by 3-12% over the PCA features technique.   



which implies that the combination of the two might produce 

a better overall classifier.    

5 Conclusion 

 

This work has demonstrated significant dimension 

reduction, up to 70% reduction in the number of dimensions 

in the data set with no loss in accuracy or over 99% reduction 

with only a 6% loss in accuracy.  The method can actually 

perform better with fewer dimensions than the nearest 

neighbor with all of the dimensions.  The data set may be part 

of the reason, though it is a typical prostate cancer data set.     

We have developed a new distance function called the UL-

Distance that can be effectively used to replace Euclidean or 

other Minkowski metrics for high-dimensional nearest 

neighbor operations.  This performed at up to 12% better than 

alternate approaches.   

Combining this new distance function with a technique of 

Dimensional Choice where the best dimensions to analyze are 

guessed using information about the underlying data and the 

query itself in order to minimize the amount of work required 

to perform the nearest neighbor search with the UL-Distance 

achieved significant savings in work.  The time to perform a 

nearest neighbor search is reduced by a factor of five with no 

loss of accuracy, but can be improved up to a factor of ten at 

some loss of accuracy, as is shown in Figure 10.  

We demonstrate that the curse of dimensionality is not 

based on the dimension of the data itself, but primarily upon 

the effective dimension of the distance function.  The effective 

dimension of the UL-Distance is set to a factor of L even 

though it can act on any of the possible d dimensions.  We 

also note that the higher the order U of the UL-Distance 

function, the better the approximation performs since the 

small factors that would be included from neglected 

dimensions are effectively reduced when using a higher order 

distance function. 

We note that this work is preliminary and does require 

more extensive analysis.  However, the combination of a more 

effective ranking of dimensions using dimensional choice and 

a dimension-limiting distance function appear to be an 

effective combination when using high-dimensional data.   

References 

 

[1] C. C. Aggarwal. Towards systematic design of distance functions 

for data mining applications.  In Proceedings of the 9th ACM 

SIGKDD International Conference on Knowledge Discovery and 

Data Mining, pages 9–18, Washington, D.C., August 2003. 

[2] M. Artae, M. Jogan, and A. Leonardis, “Incremental PCA for On-

Line Visual Learning and Recognition,” Proc. 16th Int’l Conf. 

Pattern Recognition, pp. 781-784, 2002. 

 [3] R. E. Bellman. Adaptive Control Processes. Princeton University 

Press, Princeton, NJ, 1961. 

[4] S. Berchtold, C. B¨ohm, and H.-P. Kriegel. Improving the query 

performance of high-dimensional index structures by bulk-load 

operations. In Advances in Database Technology — EDBT’98, 

Proceedings of the 1st International Conference on Extending 

Database Technology, H.-J Schek, F. Saltor, I. Ramos, and G. 

Alonso, eds., pages 216–230, Valencia, Spain, March 1998. 

 [5] S. Berchtold, C. B¨ohm, H.-P. Kriegel, J. Sander, and H. V. 

Jagadish. Independent quantization: An index compression technique 

for high-dimensional data spaces. In Proceedings of the 16th IEEE 

International Conference on Data Engineering, pages 577–588, San 

Diego, CA, February 2000. 

[6] A.L. Blum and P. Langley, “Selection of Relevant Features and 

Examples in Machine Learning,” Artificial Intelligence, vol. 97, nos. 

1-2, pp. 245-271, 1997. 

[7] C. Bohm, B. Braunmuller, F. Krebs, and H.-P. Kriegel. Epsilon 

grid order: an algorithm for the similarity join on massive high-

dimensional data. In Proceedings of the ACM SIGMOD Conference, 

pages 379–390, Santa Barbara, CA, May 2001. 

[8] J.-P. Dittrich and B. Seeger. GESS: a scalable similarity-join 

algorithm for mining large data sets in high dimensional spaces. In 

Proceedings of the 7th ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, pages 47–56, San Francisco, 

California, August 2001. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

Number of Features

R
a

ti
o

 o
f 

T
im

e
 S

a
v

e
d

 
Figure 9: The ratio of the time saved accessing the nearest neighbor using 

Dimensional Choice versus the time necessary for the full nearest neighbor.  

The amount of time saved is significant up to 800 features, where the 

savings start to tail off.   
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Figure 10: The accuracy of the nearest neighbor methods versus ratio of the 

time saved.  An optimal point appears to be 800 features out of the original 

12600 in order to minimize the lost accuracy while maximizing the savings 

in time.      
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