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Region representation is an important issue in trage processing, cartography,
and computer graphics. A wide number of representations is currently in use.
Recently, there has been much interest in a hierarchical data structure termed
the quadtree. It is compact and depending on-the nature of the region saves
space as well as time and also facilitates operations such as search. In
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lated research results. . :

‘15.1 Introduction

In our discussion we assume that a reoion {s a subset of a 2" by mﬁ.msﬁmz.
which is viewed as being composed of unit-square pixels. The most common
region representations used in image processing are the binary array and the
run length representation [15.1]. The binary array represents region pixels
by 1s and nonregion pixels by 0s. The run length representation represents

each row of the binary array as a sequence of runs of 1s alternating with
runs of QOs.

Baundaries of reaions are often specified as a sequence of unit vectors
in the principal directions. This representation is termed a chain code
[15.2]. For example, letting i represent 90° * § {i=0,1,2,2), we have the
following sequence as the chain code for the region in Fig.15.1a:

03023°2%122%032%180101030101 .
Note that this is a ¢lockwise code zzwn:,mﬂmwﬁm at the leftmost of the

uppermost border points. Chain codes yield a compact representation; how-
ever, they are somewhat inconvenient for performing operations such as set

union and intersection. For an alternative boundary representation, see
the strip trees of BALLARD [15.3].

Regions can atso be represented by a coltection of maximal blocks that
are contained in the given region. One such trivial representation is the
run iength where the blocks are 1 by m rectangles. A more general repre-
sentation treats the region as a union of maximal blocks (of 1s) of a
given shape, The medial axis transform (MAT) 115.4,5] is the set of points
serving as centers of these blocks and their corresponding radii.

The quadtree is a maximal block representation in which the blocks have
standard sizes and positions (i.e., powers of two). It is an approach to
region representation which is based on the successive subdivision of an
image array into quadrants. If the array does not consist entirely of 1s
or entirely of Os, then we subdivide it into quadrants, subquadrants,,.. -
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i1 we obtain blocks (possibly single pixels) that consist of s or of 0s,

ﬂqu, they are entirely wosﬂmﬁzma in the region or entirely admmcazﬁ from

it. This process is represented by a tree of out-degree 4 (i.e.; mmn: non-
1eaf node has four sons) in which the root node represents the maﬁdwm array.
“The four sons of the root node represent the guadrants (labeled in order NW,
NE, SW, SE), and the leaf nodes correspond to these blocks of the mﬁxmm for .
which no further subdivision is necessary. Leaf nodes are said to be "black"
or "white" depending on whether their corresponding blocks are entirely with-
in or outside of the region respectively. AI1 nonleaf :onmm are said to be
“gray." Since the array was assumed to be 20 by 20, the tree heignt is at
most n. As an example, Fig.15.1b is a black decompositien of the region in.
Fig.15.%1a while Fig.15.7c is the corresponding gcmaﬁdmm. mmn@ gcm@ﬂxmm node
is implemented, storage-wise, as a record with six fields. m4<m *Amﬁaw con-
tain pointers to the four sons and the father of a node. The sixth field con-
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|ocating neighbors- in-a-given direction is quite straightforward: . Given-
riode -corresponding to a specific block in the Asmmm..ﬂﬁm::mduzc@q in'a par-
ular direction (horizontal or vertical) is determined by locating a com-

1 ancestor. For:example, if we want to find ‘an eastern neighbor; the com-
niancestor 15 the first ancestor node which is-reached via its NW or SW
son. ‘Next, we retrace the path from the common ancestor, but making mirror
mage moves about-the appropriate axis; e.g., to *mnawmz.mmwﬁm1q or western
neighbor, ‘the mirror images -of NE-and SE are NW and Sk respectively. For
xample, the eastern neighbor of node 32 in Fig.15.1c is node 33. It is
cated by ascending the tree-until -the common ancestor ‘H s found. .a:;n
.Féquires going through a-SE Tink to reach L and a NW- Tink to reach H. zoam
33-is now reached by backtracking along the previous path with the appropriate
mirror image moves (i.e., going through a NE 1ink to reach M and a SW 1ink

“to reach 33).-

- 'In general, adjacent nmeighbors need not be of the same mmwm‘ If they are
Targer, then only a part of the path to the common ancestor is retraced. .Hﬁ

- they are smaller, thén the retraced path ends at-a "gray' node of equal. size.
Thus a "neighbor" is correctly defined as the mamddmmﬁ adjacent leaf ssomm
corresponding block is of greater than or equal size. Hﬂ no such :oam exists,
theri-a ‘gray node of equal size is returned. HNote that similar techniques can
:be used to locate diagonal neighbors (i.e., nodes corresponding to blocks -
that touch the given node's block at a corner)}. For example, node 20 in
“Fig.15.1¢c is the NW neighbor of node 22. For more details, see [15.44],

tains type information such as color, etc. MNote that
tation discussed here should not be confused with the quadtree representat
of two-dimensional point space data introduced by FINKEL and BENTLEY.[15.6:
and also discussed in [15.7,8] and improved upon in [15.9]. -

The quadtree method of region representation is based on a requtar decon
position. It has been employed in the domains of computer graphics, sceng
analysis, architectural design [I5.1C], and pattern recognition, In particu
Tar, WARNOCK's [15.11-13] algorithm for hidden surface elimination is.ba
on such a principie--1.e., it successively subdivides the picture into:sm
and smaller-sguares in the process ¢f searching for areas to be displaye
Application of the guadiree to image representation was proposed by KLINGER
[15.14] and further elaborated upon in [15.15-20]. It is relatively compact
[35.15] and is wellsuited to operations such as union and intersection [15.2
and detecting various region properties [15.15,21,22,241. HUNTER's Ph.D. thes
[15.21,22,24], in the domain of computer graphics, develaps a variety of a
rithms (including linear transformations) for the manmipulation of a quadt
region representation. In [156.25-27] varfations of the quadtree are applied
three dimensions to represent solid objects and in [15.28] to more dimension

There has been much work recently on the interchangeability between the
quadtree and other traditional methods of region representation. Algorithms
have been developed for converting a binary array to a quadtree. [15.297], run
lengths to a quadtreé [15.30] and a. quadtree to run Tengths [15.31], as well
as boundary codes to a quadtree [15.32] and a quadtree to boundary codes ;-
[15.33]. Work has also been done on computing geometric properties such a
connected component labeling [15.343, perimeter [15.35], Euler number [15.36
areas and moments [15.23], as well as a distance transform [15.37,38]. In
addition, the quadtree has been used in image processing applications such
as shape approximation [15.39], edge enhancement [15.40], image segmenta’
[15.41], threshold selection [15.42], and smoothing [15.43].

In contrast with our neighbor-finding methods is the use of explicit
1inks from a node to its adjacent neighbors in the horizontal and vertical
directions reported in [15.21,22,24]. This is mn=¢m<ma.ﬁsxa=ms the use of
~adjacency trees, "ropes,” and "nets." . An adjacency tree exists whenever

a leaf node, say X, has a GRAY neighbor, say Y, of equal size. 1In such a
case, the adjacency tree of X is a binary tree rooted at Y whose nodes con-
sist of all sons of Y (BLACK, WHITE, and.GRAY) that are adjacent to X. .mo1
example, for node 16-in Fig.15.1, the western neighbor. is GRAY node 'F with
an’adjaceéncy tree as shown in Fig.15.2. A rope is a link between adjacent
nodes of equal size at least one of which s a leaf node.  For example, in
Fig.15.1, there exists a rope between node 16 and nodes G, 17, H, and F.
Similarly, there exists a rope between nodé 37 and nodes M.and N; however,
there does not exist a rope between node L and nodes M and N, -

15.2 Preliminaries

In the quadtree representation, by virtue of its tree-]1ike nature, most .
operations are carried out by techniques which traverse the tree. In fact,:
many of the operations that we describe can be characterized as having two

basic steps. The first step either traverses the guadtree in a specified
order or censtructs a quadtree. The second step performs a computation at
each node which often makes use of its neighbering nodes, i.e., nodes rep:-
resenting image blocks that are adjacent to the given node's block. .For.,
mestmw, see [15.30-38]. Frequently, these two steps are performied i1

parallel. . :
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In general, it is preferable to avoid having to use position {i.e., co<"
ordinates} and size information when making relative transitions {i.e., Vo=
cating neighboring nodes) in . the quadtree since they involve computation . .
{rather than simply chasing 1inks) and are clumsy when adjacent blocks ar
of different sizes (e.g., when a neighboring block is larger). Similarly,
we do not assume that there are Tinks from a node to its neighbors becay
we do not want to use links in excess of four 1inks from a nonleaf node to
its sons and the Tink from a nonroot node to its father.  Such techniques
described in [15.44], are used in [15,30-38] and result in algorithms that
only make use of the existing structure of the tree. This is in contrdst
with the methods of KLINGER and RHODES [I5 -18] which make use of size and
position information, and those of HUNTER and STEIGLITZ [15.21,22,24] which
Tocate neighbors through the use of explicit links (termed nets and ropes)

Fig. 15.2. Adjacency tree for the zmmﬁqu‘:mmmrvo«
of node 16 in Fig. 15.1.

is 21

~ The algorithm for finding a neighbor using a roped quadtree is quite sim-
-ple. We want a neighbor, say Y, on a given side, say D, of a block, say
=X. " If there i5s a rope from X on side D, then it leads to the desired neigh-
bor. If no such rope exists, then the desired neighbor must be larger. In
such '@ case, we ascend the tree until encountering a node having a rope on
‘side D that leads to the desired nejghbor. In effect, we have ascended the
‘ddjécency tree of Y. For example, to find the eastern neighbor of node 21
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izmAD.dm.ﬁ.zmmwnmzaﬁ:ﬁocm::oamgﬁo=oam st:*n::mmw 1oummdo=mﬂﬁm
eastern side teading to node 15. . :

At times 7% is not convenfent to ascend nodes searching for ropes. A data
structure named a net is used [15.21,22,24] to obviate this step by linking
#11 leaf nodes to their neighbors regardless of their size. Thus in the
previcus example, there would be a direct Tink between nodes 21 and 16 along
the eastern side of node 21. The advantage of ropes and nets is that the
number of tinks that must be traversed is reduced. However, the disadvantage
is that the storage requirements are considerably increased since many addi-
tional Tinks are necessary. In contrast, our methods are implemented by al-
gorithms that make use of the existing structure of the tree--i.e., four

_¢=Wm+1oam=o=qmmﬁ=oamﬂoﬁﬂmmczm,m:amgﬁzr ﬁwos.mso:1con:onmﬁoﬂ&w
father. : .

15.3 Conversion

15. 3. 1 Quadtrees and Arrays

The definition 6f a quadtree leads naturally to a "top down" quadtree con-
struction process. This may lead to excessive computation because the pro-
cess of examining whether a quadrant contains all 1s or all 0Os may cause
certain parts of the region to be examined repeatedly by virtue of being
composed of a mixture of 1s and Os. Alternatively, a “bottom-up" method
may be employed which scans the picture in the sequence :

1 2 6 6 17 18 21 22
34 7 8 19 20 23 24
9101314 25 26 29 30
11121516 27 28 31 32
a3 ...

where the numbers indicate the sequence in which the pixels are examined.
As maximal blocks of 0s or 1s are discovered, corresponding leaf nodes are
added along with the necessary ancestor nodes. This is done in such a way
that Teaf nodes are never created until they are known to-be maximal. Thus
there is pever a need to merge four leaves of the same color-and change the
cotor of their common parent from gray to white or black as is appropriate.
See [15.29] for the details of such an algorithm whose execution time is
proportional to the number of pixels in the image. ’

If it is necessary to scan the picture row by row {e.g., when the input
is a run length coding) the guadtree construction process is somewhat more
complex. MWe scan the picture a row at a time. For odd-numbered rows, nodes
corresoonding to the pixel or run values are added for the pixels and at-
tempts are made to discover maximal blocks of Os or 1s whose size depends
on the row number {e.q., when processing the fourth row, maximal blocks of
maximum size 4 by 4 can be discovered}. In such a case merging is said to
take place. See [15.30] for the details of an algorithm that constructs
a quadtree from a row by row scan such that at any instant. of time a valid

quadtree exists. This algorithm has an execution time that is proportional -
to the number of pixels. in the image.
Simitarly, for a given quadtree we can output the corresponding binary
picture by traversing the tree in such a way that for each row the appropri-
ate blocks are visited and a row of Os or 15 is output. In essence, we
visit each quadtree node once for each row that intersects it {i.e., a node
corresponding to a block of size 2K by 2K is visited 2K times). For the
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ai i i ibed whose execution time de-
details see [15.31] where an algorithm is describe : ; e
pends only on the number of blocks of each size that comprise the image
not on their particular ‘configuration.

i5. 3.2 Quadtrees and Borders

: termine, for a given leaf node M of a quadtree, whether the
Mm1wmmmmzmwammcdonx is on ﬁ:mmuu1am1- we must visit the leaf nodes that nm1w
1mmno=a.ﬂo 4-adjacent blocks and check whether they are black or zsdwmm. or
example, to find M's right-hand neighbor in Fig.15.3, we use the :mﬂm omm
finding techniques outlined in Sect.15.2.2, If the neighbor is a AmmA no .,:-
then its block is at least as large as that of M and so it is M's sole neig

bor to the right. Otherwise, the neighbor is the root of a subtree whose

leftmost leaf nodes correspond to M's right-hand neighbors. These nodes are
found by traversing that subtree.

w_m._m.u.mmsvdmumﬁ10ﬁvgonwwi#dcmﬁ1mﬁﬁ=mvo1am1
following : ;

or
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!
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|
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| Fig. 15.4. Blocks M and N ending at a common
| corner . :

i ig.15.3 be black and white leaf nodes whose associated blocks
mﬂmrmmmumunwmﬁwqu:cm the pair M,N defines a common border segment.of length
2K (2K is the minimum of the side lengths of M and N) which ends at a corner
of the smaller of the two blocks {they may both end at a cammon point as in
Fig.15.4). In order to produce a boundary code representation for a region
in the image we must determine the hext mwaamzﬁ.mqosm the woﬁ@mﬂ.s:omm pre-
vious segment Tay between M and N. This is achieved by Tocating the other
leaf P whose block touches the end of the segment between M m:a N. If the
M.N segment ends at a corner of both M and N, then we must find the other
leaf R or leaves P,( whose blocks.touch that corner Ammm.mdm.dm.av. Again,
this can be accomplished by using neighbor-finding techniques as outlined-
in Sect.15.2. ’ :

For the noncommon corner case, the next border segment is the common

. . . . £ q
border defined by M and P if P is white, or the common w01nm1 defined by
and P if P is black. In the common corner case, the pair of blocks defin-
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ing the next border segment is determined exactly as in the standard "crack
following" algorithm {15..45] for traversing region borders. This process
is repeated untii we re-encounter the block pair M,N. At this point the
entire border has been traversed. The successive border segments consti-
tute a 4-direction chain code, broken up into segments whose Tengths are
sums of powers of two. The time required for this process is on the order
of the number of border nodes times the tree height. For more details see
{15,33].

Using the methods described in the Tast two paragraphs, we can traverse
the quadtree, find all borders, and generate their codes. During this pro-
cess, we mark each border as we follow it, so that it will not be followed
again from a different starting point. Note that the marking process is
complicated by the fact that a node's block may be on many different bor-
ders.

In order to generate a quadtree from a set of 4-direction chain codes we
use a two-step process. First, we trace the boundary in a clockwise direc-
tion and construct a quadiree whose black leaf nodes are of a size equal to
the unit code Tength. A1l the black nodes correspond to blocks on the in-
terior side of the boundary. A1l remaining nodes are left uncolored, Se-
cond, all uncolored nodes are set to black or white as appropriate. This is
achieved by traversing the tree, and for each uncolored leaf node, examining
its neighbors. The node is colored black unless any of its neighbors is
white or is black with a border along the shared boundary. At any stage,
merging occurs if the four sons of a nonieaf node are Teaves having the
same coler.  The details of the algorithm are given in [15.32]. The time
required is proportional to the product of the perimeter (i.e., the 4-direc-
tion chain code length) and the tree height.

15. 3. 3 Quadtrees of Derived Sets

Let S'be the set of 15 in a given binary array, and let S be the complement
of 5. The quadiree of the complement of S is the same as that of S, with
black leaf nodes changed te white and vice versa. - To get the quadtree of-
the union of $ and T from those of S and T, we traverse the two trees simul-
taneously. Where they agree, the new tree is the same and if the two nodes
are gray, then their subtrees are traversed, If S has a gray (=ncnleaf) node
‘where T has a black node, the naw tree gets a black node; if T has a white
node there, we copy the subtree of § at that gray node into the.new tree. If
S has a white node, we copy the subtree of T at the corresponding node. The
algorithm for the intersection of S and T is exactly analogous with the roles
of black and white reversed. The time required for these algorithms is pro-
portional to the number of nodes in the smaller of the two trees [15.23].

15.3. 4 mxm\mﬁ..ozm Q.UQ Medial Axis Hﬁn.:mwow.ﬂm

The medial axis of a region s a subset of ts points each of which has a
distance from the complement of the region {using a suitably defined distance
metric) which is a local maximum. The medial axis transform (MAT) consists
of the set of medial axis or "skeleton" paints and their associated distance
values. The quadtree representaticn may be rendered even more compact by the
use of a skeleton-1ike representation. Recall that a quadtree is a set of
disjoint maximal square blocks having sides whose Tengths are powers of 2.
We define a quadiree skeleton to be a set of maximal square blocks having
-sides whose lengths are sums of powers of two. The maximum value (j.e.,
"chesshoard") distance metric [15.45] is the most appropriate for an image
represented by a quadtree. See [15.37] for the details of its computation .
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- for-a quadtree; see also [15.38] for a different ncmnﬁwmm distance trans-

form. A quadtree medial axis transform (QMAT} is a gquadtree whose black
nodes correspond to members of the quadtree skeleton while all remaining
leaf nodes are white. The QMAT has several important properties. First,

it results in a-partition of the image into a set of possibly nondisjoint
squares having sides whose Tengths are sums of powers of two rather than,

as is the case with quadtrees, a set of disjoint squares having sides of
Tengths which are powers of two. Second, the QMAT s more compact than the
quadtyee and has a decreased shift sensitivity. See [15.46] for the details
of a quadtree-to-QMAT conversion algorithm whose execution time is on the
order of the number of nodes in the tree.

15.4 Property Measurement

15.4.1 Connected Component Labeling

qﬁmamdﬁo:m_i«. connected component labeling is achieved by scanning a binary
array row by row from left te right and labeling adjacencies that are dis-

- covered to the right and downward. During this process equivalences will be

generated. -A subsequent pass merges these equivalences and updates the iabels
of the affected pixels. In the case of the quadtree representation, we z1so
scan the image in a sequential manner. However, the sequence's order is dic-
tated by the tree structure --1i.e., we traverse thé tree in postorder. When-
ever a black Teaf node is encountered all black nodes that are adjacent to

its south and east sides are also visited and are labeled accordingly.: Again,
equivalences generated during this traversal are subsequently merged and a
tree traversal is used to update the labels.” The interesting result is that
the algorithin's execution time is proportional to. the number of pixels. An
analogous result is described in the next section. See [15.34] for the de-
tails of an-algorithm that labels .connected components in time on the order
of the number of nodes in the tree plus the product B log Bywhere B is the
number of black leaf nodes. : i

15. 4, 2 Component Counting and Genus Computation

Once the connected components have been labeled, it is trivial to count them,
since their number is the same as the number of inequivalent labals. We will
next describe a method of determining the number of compenents minus the
number of holes by counting certain types of local patterns in the array;
this number g 1is known as the genus or Euler number of the array.

Let V be the number of 15, E the :camm1 of horizontally waumnm:ﬁ pairs
of 1s (i.e., 11) and vertically adjacent pairs of 1s, and F the number of
two-by-two arrays of 1s in the array; it is well known [15.45] that g=V-E+F.

ar

‘Fig. 15.5, Possible configurations of blocks that meet at and surround a
common point
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This result can be generalized to the case where the array is represented

by a quadtree [35.36].. In fact, Tet V be the number of black leaf nodes; E
the number of pairs of such nodes whose blocks are horizontally or verti-
cally adjacent; and F the number of triples or quadruples of such nodes whose
blocks meet at and surround a common point (see Fig.15.5). Then g=Y-E+F.
These adjacencies can be found (see Sect,15.3.2) ~ by traversing the tree;
the time required is on the order of the number of nodes in the tree.

15.4.3  Area and Moments

The area of a region represented by a quadtree can be obtained by summing the
areas of the agmnm leaf nodes, i.e., counting 4% for each such node that rep=-
resents a 2D by 2" block. . Similarly, the first x and y moments of the region
relative to a given origin can be computed by summing the first moments of these
blocks; note that we know the position (and size) of each block from the co-
ordinates of its Teaf in the tree. Knowing the area and the first moments
gives us the coordinates of the centroid, and we can then compute central
moments relative to the centroid as the origin. The time required for any

of these computations is proportional to the number of nodes in the tree.
Further details on moment computation from quadtrees -can be found in [15 .23].

15. 4.4 Perimeter

An obvious way of obtaining the perimeter of a region represented by a quad-
tree is simply ‘to traverse its border and sum the number of steps.  However,
there 1s no need to traverse the border segments in order. Instead, we use

a method which traverses the tree in pestorder and for each black leaf node
examines the colors of its neighbors on its four sides. For each white neigh-
bor the length of the corresponding border segment is included in the peri-
meter. See [15.35] for the details of such an algorithm which has execution
" time proportional to the number of nodes in the tree. An even better formus

lation is reported in [15.473 which generalizes the concept of perimeter to
n dimensions. .

15.5 Concluding Remarks

We have briefly sketched algorithms for accomplishing traditional region pro-
cessing operations by use of the quadtree representation. Many of the methods
used on the pixel level carry over to the quadtree domain (e.g., connected
component labeling, genus, etc.). Because of its compactness, the quadtree
permits faster execution of these operations. Often the quadtree algorithms
require time proportional to the number of blocks in the image, independent
of their size. . .

The quadtree data structure requires storage for the various 1inks. How-
ever, use of neighbor-finding techniques rather than ropes & la HUNTER [15.21,
22,247 is a compromise. In fact, experimental results show that the extra
storage cost of ropes is not justified by the resulting minor decrease in
-execution time. This is because the average number of links traversed by
neighbor finding methods is 3.5 in contrast with 1.5 for ropes. Neverthe-
Tess, there is a possibility that the quadtree may not be efficient space-
wise, For example, a checkerboard-1ike region does not lead to economy of
space. The space efficiency of the quadtree is. analyzed in [15.48]. Some
savings can be gbtained by normalizing the quadtree [15.49,50] as is also
possible by constructing a forest of quadtrees [15.51] to avoid large re-
gions of WHiTE. Storage can also be saved by using a locational code for
all BLACK blocks -[15.52]. Gray level quadtrees using a sequence of array
codes to economize on storage are reported in [15.53].
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The quadtree is especially useful for point-in-polygon cperations as well
as. for query cperations invelving image overlays and set operations. Its
hierarchical rature enables cne to use image approximations. In particular,
a breadth-first transmission of an image yields a successively finer image
yet enabling the user to have a partial image. Thus the quadtree could be
used in browsing through a large image database. :

Quadtrees constitute an interesting alternative to the standard methods
of digitally representing regions. Their chief disadvantage is that they
are not shift invariant; .two regions differing only by a translation may
have quite different quadtrees (but see [15.46]). Thus shape matching from
quadtrees is not straightforward. Nevertheless, in other respects, they
have many potential advantages. They provide a compact and easily construct-
ed representation from which standard region properties can be efficiently
computed. In effect; they are "variable-vesolution arrays" in which detail
is represented only when it is available, without requiring excessive stor-
age for parts of the image where detail is missing. Their variable-resolu-
tion property is superior to trees based on a hexagonal decomposition [15.54]
in that a sguare can be repeatedly decomposed into smaller sguares (as can
be done for triangles as well [15.55]), whereas once the smallest hexagon
has- been chasen it cannot be further decomposed- into smaller hexagons.
Note that the variance of resclution only applies to the area. For an appli-
cation of the quadtree concept to borders, as well as area, see the line
quadtree of [15.56]. : .
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