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Abstract

An overview, with an emphasis on recent results, is presented of the use of
‘hierarchical data structures such as the quadtree for spatial reasoning. They are based
‘on the principle of recursive decomposition. The focus is on the representation of -data
‘used in image databases. There is a greater emphasis on region data (ie., |2-dimensio’na.l
shapes) and to a lesser extent on point, curvilinear, and 3-dimensional data. '
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1. INTRODUCTION

The successful implementation of applications in spatial reasoning requires
paying attention to the representation of spatial data. In particular, an integrated and
uniform treatment of different spatial features is necessary in order to enable the
reasoning to proceed quickly. Currently, the most prevalent features are points,
rectangles, lines, regions, surfaces, and volumes. As an example of a reasoning task
consider a query of the form “find all cities with population in excess of 5,000 in wheat
growing regions within 10 miles of the Mississippi River.” Note that this query is quite
complex. It requires processing a line map (for the river), creating a corridor or buffer
(to find the area within 10 miles of the river), a region map (for the wheat), and a point
map (for the cities).

Spatial reasoning is eased by spatially sorting the data (.e., a spatial index). In
this paper we show how hierarchical data structures can be used to facilitate this
process. They are based on the principle of recursive decomposition (similar to divide
and conguer methods). In essence, they are used primarily as devices to sort data of
more than one dimension and different spatial types. The term quadiree is often used to
describe this class of data structures. In this paper, we focus on recent developments in
the use of quadtree methods. We concentrate primarily on region data. For a more
extensive treatment of this subject, see [Same84a, SameS8a, Same88b, SameSSc,
Same89a, Same89b). > :

Our presentation is organized as follows. Section 2 briefly reviews the historical
background of the origins of hierarchical data ‘structures. Section 3 discusses
improvements in the performance of some key operations on region data. Sections 4 and
5 describe hierarchical representations for point and line data, respectively, as well as
give examples of their utility. Section 6 contains concluding remarks in the context of a
geographic information system that makes use of these concepts.

2. HISTORICAL BACKGROUND

The term gquadiree is used to describe a class of hierarchical data structures
whose common property is that they are based on the principle of recursive
decomposition of space. They can be differentiated on the following bases: {1) the type
of data that they are used to represent, (2) the principle guiding the decomposition
process, and (3) the resolution (variable or not). Currently, they are used for points,
rectangles, regions, curves, surfaces, and volumes. The decomposition may be into equal
parts on each level (termed a regular decomposition), or it may be governed by the
input. The resolution of the decomposition (i.e., the number of times that the
decomposition process is applied) may be fixed beforehand or it may be governed by
properties. of the input data.

The most common quadtree representation of data is the region quadtree. It is
based on the successive subdivision of the image array into four equal-size quadrants. If
the array does not consist entirely of 1s or entirely of 0s (i.e., the region does not cover
the entire array), it is then subdivided into quadrants, subquadrants, etc., until blocks
are obtained (possibly single pixels) that consist entirely of 1s or entirely of 0s. Thus, the
region quadtree can be characterized as a variable resolution data structure.
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As an example of the region quadtree, consider the region shown in Figure la
which is represented by the 28% 23 binary array in Figure 1b. Observe that the ls
correspond to picture elements (termed pizels) that are in the region and the Os
correspond to picture elements that are outside the region. The resulting blocks for the
array of Figure 1b are shown in Figure 1c. This process is representéd by a tree of
degree 4.

‘In the tree representation, the root node corresponds to the entire array. Each
son of a node represents a quadrant (labeled in order NW, NE, SW, SE) of the region
represented by that node. The leaf nodes of the tree correspond to those blocks for
which no further subdivision is necessary. A leaf node is said to be BLACK or WHITE,
depending on whether its corresponding block is entirely inside or entirely outside of the.
represented region. All non-leaf nodes are said to be GRAY. The quadtree

_ representation for Figure 1c is shown in Figure 1d. '
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" Figure 1. A region, its binary array, its maximal blocks, and the corresponding
quadtree. (a) Region. (b) Binary array. (¢} Block decomposition. of the region in (a).
Blocks in the region are shaded. {d) Quadtree representation of the blocks in {c).
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Quadtrees can also be used to represent non-binary images. In this case, we apply
the same merging criteria to each color. For example, in the case of a landuse map, we
simply merge all wheat growing regions, and likewise for corn, rice, etc. This is the
approach taken by Samet et al. [Same84b).

Unfortunately, the term quadiree has taken on more than one meaning. The
region quadtree, as shown above, is a partition of space into a set of squares whose sides
are all a power of two long. This formulation is due to Klinger [Klin71] who used the
term- Q-tree {K1in76}, whereas Hunter [Hunt78] was the first to use the term quadtree in
such a context. A similar partition of space into rectangular quadrants, also termed a
quadtree, was used by Finkel and Bentley [Fink74]. It is an adaptation of the binary -
search tree to two dimensions (which can be easily extended to an arbitrary number of
dimensions). It is primarily used to represent multidimensional point data.

The origin of the principle of recursive decomposition is difficult to ascertain.
Below, in order to give some indication of the uses of the quadtree, we briefly trace some
of its applications to image data. Morton [Mort66] used it as a means of indexing into a
geographic database. Warnock [Warn69] implemented a hidden surface elimination
algorithm using a recursive decomposition of the picture area. The picture area is
repeatedly subdivided into successively smaller rectangles while searching for areas
sufliciently simple to be displayed. Horowitz and Pavlidis [Horo76] used the quadtree as
an initial step in a “split and merge” image segmentation algorithm. .

The pyramid of Tanimoto and Pavlidis [Tani75] is a close relative of the region
quadtree. It is a multiresolution representation which is is an  exponentially tapering
stack of arrays, each one-quarter the size of the previous array. It has been applied to
the problems of feature detection and segmentation. In contrast, the region quadtree is
a variable resolution data structure.

Quadtree-like data structures can also be used to represent images in three
dimensions and higher. The octree [Hunt78, Jack80, Meag82, Redd78] data structure is
the three-dimensional analog of the quadtree. It is constructed in the following manner,
We start with an image in the form of a cubical volume and recursively subdivide it into
eight congruent disjoint cubes (called octants) until blocks are obtained of a uniform
color or a predetermined level of decomposition is reached. Figure 2a is an example of a .
simple three-dimensional object whose raster octree block decomposition is given in
" Figure 2b and whose tree representation is given in Figure 2c.

One of the motivations for the development of hierarchical data structures such
as the quadtree is = desire to save space. The original formulation of the quadtree
encodes it as a tree structure that uses pointers. This requires additional overhead to
encode the internal nodes of the tree. In order to further reduce the space requirements,
two other approaches have been proposed. The first treats the image as a collection of
leal nodes where each leaf is encoded by a base 4 number termed a locational code,
corresponding to a sequence of directional codes that locate the leaf along a path from
the root of the quadtree. It is analogous to taking the binary representation of the x
and y coordinates of a designated pixel in the block (e.g., the one at the lower left
corner) and interleaving them (ie., alternating the bits for each coordinate). It is
difficult to determine the origin of this method (e.g., [Abel83, Garg82, Klin79, Mort66]).
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Figure 2. (a) Example three-dimensional object; (b) its octree block decomposition;
and (c} its tree representation.

The second, termed a DF-expression, represents the image in the form of a
traversal of the nodes of its quadtree {Kawa80]. It is very compact as each node type can
be encoded with two bits. However, it is not easy to use when random access to nodes is
-desired. Recently, Samet and Webber [Same89d| showed that for a static collection of
nodes, an efficient implementation of the pointer-based representation is often more

: economical spacewise than a locational code representation. This is especially true for
images of higher dimension. '

Nevertheless, depending on the particular implementation of the quadtree we
may not necessarily save space (e.g., in many cases a binary array representation may
still be more economical than a quadtree). However, the effects of the underlying
hierarchical aggregation on the execution time of the algorithms are more important.
Most quadtree algorithms are simply preorder traversals of the quadtree and, thus, their
execution time is generally a linear function of the number of nodes in the quadtree. A
key to the analysis of the execution time of quadtree algorithms is the Quadtree
Complezity Theorem [Hunt78, Hunt79] which states that:

For a quadtree of depth g representing an image space of 279 X 2% pixels where these

pixels represent a region whose perimeter measured in pixel-widths is p, then the
number of nodes in the quadtree cannot exceed 16-¢—-11+16-p.

Since under all but the most pathological cases {e.g., a small square of unit width
centered in a large image), the region perimeter exceeds the base 2 logarithm of. the
width of the image containing the region, the Quadtree Complexity Theorem means
that the size of the quadtree representation of a region is linear in the perimeter of the
region.

The Quadtree Complexity Theorem holds for three-dimensional data [Meag80)
where perimeter is replaced by surface area, as well as higher dimensions for which it is
stated as [ollows. : i ;

The size of the k-dimensional quadiree of a set of k-dimensional objects is proportional

to the sum of the resolution and the size of the {k—1)-dimensional interfaces between

these objects.

The‘Quadtree Complexity Theorem also directly impacts the analysis of the execution
time of . algorithms. In particular, most algorithms that execute on a quadtree
representation of an image instead of an array representation have an execution time
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pixels: In its most general case, this means that the application of a quadtree algorithm
to a problem in d-dimensional space executes in time proportional to the analogous
array-based algorithm in the {d-1)-dimensional space of the surface of the original d-
dimensional image. Therefore, quadtrees act like dimension-reducing devices.

3. ALGORITHMS USING QUADTREES

In this section, we describe how a number of basic image processing algorithms
can be implemented using region quadtrees. In particular, we discuss point and object
location, set operations, and quadtree construction.

3.1. POINT AND OBJECT LOCATION

The simplest task to perform on region data is to determine the color of a given
"pixel. In the traditional array representation, this is achieved by exactly one array
access. In theé region quadtree, this requires searching the quadtree structure. The
algorithm starts at the root of the quadtree and uses the values of the z and y
coordinates of the center of its block to determine which of the four subtrees contains
the pixel. For example, if both the z and y coordinates of the pixel are less than the z
and y -coordinates of the center of the root’s block, then the pixel belongs in the -
southwest subtree of the root. This process is performed recursively until a leaf is
reached. It requires the transmission of parameters so that the center of the block
corresponding to the root of the subtree currently being processed can be calculated.
The color of that leaf is the color of the pixel. The execution time for the algorithm is
proportional to the level of the leaf node containing the desired pixel.

The object-location operation is closely related to the point-location task. In this
case; the x and y coordinates of the location of a pointing device (e.g., representing a
mouse, tablet, lightpen, etc.}) must be translated into the name of a nearby appropriate
object’ {e.g., the nearest region corresponding to a specified feature). The leaf
correspending to the point is located as described above. If the leaf does not contain the
feature, then we must investigate other leal nodes. :

~ Finding the nearest leal node containing a specific feature (also known as the
‘nearest neighbor problem) is achieved by a top-down recursive algorithm. Initially, at
each level of the recursion, we explore the subtree that contains the location of the
~ pointing device, say P. Once the leaf<containing P has been found, the distance from P
to the nearest feature in the leafl is calculated {empty leaf nodes have a value of infinity).
Next, we unwind the recursion and, as we do so, at each level we search the subtrees
_ that represent regions that overlap a circle centered at P whose radius is the distance to
the closest feature that has been found so far. When more than one subtree must be
searched, the subtrees representing regions nearer to P are searched before the subtrees
that are further away (since it is possible that one of them may contain the desired
{eature thereby making it unnecessary to search the subtrees that are further away).

For example, suppose that the features are points. Consider Figure 3 and the
task of finding the nearest neighber of P in node 1. If we visit nodes in the order NW,.
NE, SW, SE, then as we unwind for the first time, we visit nodes 2 and 3 and the
subtrees of the eastern brother of 1. Once we visit node 4, there is no need to visit node
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Figure 8. Example illustrating the neighboring object problem. P is the location
of the pointing device. The nearest object is represented by point B in node 8.

- 5.since node 4 contained A. Nevertheless, we still visit node 6 which contains point B
which is closer than A, but now there is no need to visit node 7. Unwinding one more
level finds that due to the distance between P and B, there is no need to visit nodes 8, 9,
10, 11, and 12. However, node 13 must be visited as it could contain a point that is
closer to P than B. :

3.2. SET OPERATIONS

For a binary image, set-theoretic operations such as union and intersection are
quite simple to implement [Hunt78, Hunt79, Shne81]. For example, the intersection of
two quadtrees yields a BLACK node only when the corresponding regions in both
quadtrees are BLACK. This operation is performed by simultaneously traversing three
quadtrees. The first two trees correspond to the trees being intersected and the third
tree represents the result of the operation. If any of the input nodes are WHITE, then
the result is WHITE. When corresponding nodes in the input trees are GRAY, then their
sons are recursively processed and a check is made for the mergibility of WHITE leaf
nodes. The worst-case execution time of this algorithm is proportional to the sum of the
number of nodes in the two input quadtrees. Note that as a result of actions (1) and (3),
1t is possible for the intersection algorithm to visit fewer nodes than the sum of the
nodes in the two input quadtrees. _ :

The above implementation assumes that the images are in registration (i.e., they

are with respect to the same origin). However, at times, being able to perform set .

operations on images that are not in registration is very convenient as it enables the

execution of many other operations [Same85a). For example, windowing can be achieved

by treating the image and the window as two distinct images, say I, and I,, that are not

in registration and performing a set intersection dperation. In this case, Iy is the image

- from which the window is being extracted and I, is a BLACK image with the same size

and origin as the window to be extracted. The quadtree.corresponding to the result of

the windowing operation has the size and position of Iy, where each pixel of I, has the
value of the corresponding pixel of ;. : -
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Using the same analogy, we can also shift an image. Specifically, shifting an
image is equivalent to extracting a window that is larger than the input image and
having a different origin than that of the input image. If the image to be shifted has an
origin at (z,y), then shifting it by Ax and Ay means that the window is a BLACK block
with an origin at (z~Az,y-Ay). Similar paradigms can also be applied to rotations of
images by arbitrary amounts (not just multiples of 90°) [Same88b).

3.3. CONSTRUCTING QUADTREES

There are many algorithms for building a region quadtree. They differ in part on
the representation of the input data. When the data is presented in raster scan order
(ie., the image is processed row by row), one algorithm [Same81] uses neighbor-finding
[Same82, Same89c] to move through the quadtree in the order in which the data is
encountered. Such an algorithm takes time proportional to the number of pixels in the
image. Its execution time is dominated by the time necessary to check if nodes should
be merged. This can be avoided by using a recently developed predictive technique
[Shaf87] which assumes the existence of a homogeneous node of maximum size whenever
-a pixel that can serve as an upper left corner of a node is scanned (assuming a raster
scan from left to right and top to bottom). In such a case, the need for merging is
reduced and the algorithm’s execution time is dominated by the number of blocks in the
image rather than by the number of pixels. However, this algorithm does require the use
of an auxiliary one-dimensional array of size equal to the width of the image.

In order to see how the predictive algorithm works, we briefly examine the
construction of the quadtree corresponding to Figure 1. We say that a node is active if
at least one pixel (but not all of the pixels) covered by the node has been processed and
it differs in color from a node containing it. Assume the existence of a data structure to
keep track of the active nodes. For each pixel in the raster scan traversal (starting at the
first row), do the following. If the pixel is the same color as the appropriate active node,
then do nothing. Otherwise, insert the largest possible node for which this is the first
(i.e., upper leftmost) pixel, and (if it is not 2 1X1 pixel node) add it to the set of active

nodes. Remove any active nodes for which this is the last (lower right) pixel.

Table 1 is a trace of the values of the active nodes as the pixels that lead to the
creation of nodes (or their removal from the active list of nodes) are processed. Each row
in the table indicates the node that has become active (as well as its size), or the nodes
that have been removed from the set of active nodes. In addition, the active nodes are
tabulated according to their level. The pixel identifier (a,b) means that the pixel is in
row a and column & relative to an origin at the upper left corner of the image. Figure 4
illustrates some of the nodes created during the building process by using their names.to
label the pixel that caused their creation. Figures ba-d indicate in greater detail some of -
the steps in the construction of the quadtree.

- When the first pixel of the array is processed, the entire quadtree is represented
by a single WHITE. node (node A in Figure 5a). No other insertions occur while
processing rows 0 and 1. When the first BLACK pixel (2,4) is processed, node B of
- Figure 5a becomes active. The insertion of node B causes node A to be split and its NE
son is split again. When BLACK pixel (2,5} is processed, node B will be located in the
active node table since it is the smallest active node containing that pixel.



Figure 4. Correlation between some of the nodes of the quadt.ree corresponding to
Figure ! and the pixels that led to their creation.

Figure 5. Intermediate states of the quadtree as the predictive algorithm is used to
build the quadtree corresponding to Figure 1. (a) State after processing pixel (2,4);
(b) state after processing pixel (2,8); {c) state after processing pixel (4,4); {d) state
after processing pixel (6,6). :
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‘When BLACK pixel (2,6) is processed, node C of Figure 5b becomes active, since
only -active WHITE node A contains it at that point. As row 3 is processéd, nodes B
and C are deactivated when their lower right pixels are processed {i.e., pixels (3,5) and
(3,7) respectively). Pixel (4,3) causes the insertion of node D which resulted in two node
splitting operations. When pixel (4,4) is processed, node E is inserted as shown in Figure
5¢. The nodes previously labeled B and C are not active. Similarly, pixel-sized node D at

(4,3) is not active since it contains no unprocessed pixels. Therefore, nodes A and E are
the only active nodes.

Table 1. Trace of the active nodes as the quadtree for Figure 1a is built.
Pixel Action Size Ac;"’e N°d;s by Le‘;e]
(0,0) insert WHITE node A 8X8 A .
(2,4) insert BLACK node B 1 o2x2 | A B
(2,6) | insert BLACK node C | 2x2 | A BC
(3,5) remove B from active A C
(3,7 remove C from active _ A

(4,3) insert BLACK node D o 1x1 A

(4,4) insert BLACK node E - | 4x4 | A E

(5,2) insert BLACK node F 1x1 A E

{6,3) insert BLACK node G IX1 | A E

(6,2) insert BLACK node H 2x2 | A E H
(6,6) insert WHITE node I 2x2 | A E HI
(7,3) remove H from active ) A E1

(7,5) insert WHITE node J ' 1X1 A El

(7,7) remove I, E, A from active

Pixels {5,2) and (5,3) cause the insertion of nodes F' and G. Node H becomes
active after processing pixel (6,2). Pixel (6,6) is WHITE and since the smallest node
containing it had been BLACK, a WHITE node, [, has been inserted as well as made
active (see Figure 5d). When processing pixel (6,7) we find that three active nodes (i.e.,
A, E, and I) contain it, with the smallest being node I. Pixel (7,3) causes node H to be
removed from the set of active nodes. Pixel (7,5) results in the insertion of node J. Since
pixel (7,7) is the lower rightmost pixel in the image, it causes the removal of all active
nodes from the active node list (i.e., nodes [, E, and A). The final result of the quadtree
building process is shown in Figure 4. ! ‘

Use of the predictive quadtree construction algorithm for 512X512 images
resulted in execution time speedups of factors as high as 40 and usually at least one’
order of magnitude [Shaf87]. This is a very important result because it means that like
all other quadtree operations, the execution time of building a quadtree is also
- proportional to the complexity of the image. In other words, the building time is
competitive with the time necessary to perform a set operation.
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4. POINT DATA

Multidimensional point data can be represented in a variety of ways. The
representation ultimately chosen for a specific task will be heavily influenced by the type
of operations to be performed on the data. Our focus is on dynramic files (i.e., the
number of data can grow and shrink at will) and on applications involving search. In .-

Section 2 we briefly mentioned the point quadtree of Finkel and Bentley [Fink74]. In
this section we discuss the PR quadtree (P for point and R for region) [Oren82,
Same84a). It is an adaptation of the region quadtree to point data which associates data
points (that need not be discrete} with quadrants. The PR quadtree is organized in the
same way as the region quadiree. The difference is that leaf nodes are either empty (ie.,

. WHITE) or contain a data point (i.e., BLACK) and its coordinates. A quadrant contains
at most one data point. For example, Figure 6 is a PR quadtree corresponding to some

point data. ‘ ‘

Data points are inserted into PR quadtrees in a ‘manner analogous to that used
to insert in a point quadtree - 1.e., a search is made for them. Actually, the search is for
the quadrant in which the data point, say A, belongs (i.e., a leaf node). If the quadrant
15 already occupied by another data point with different z and y coordinates, say B,
then the quadrant must repeatedly be subdivided (termed sphitting) until nodes A and B
no longer occupy the same quadrant. This may result in many subdivisions, especially if
the Euclidean distance between A and B is very small. The shape of the resulting PR
quadtree is independent of the order in which data points are inserted into it. Deletion
of nodes is more complex and may require collapsing of nodes - ie., the direct
counterpart of the node splitting process outlined above.
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Figure 8. A PR quadtree (b) and the records it represents (a).
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PR quadtrees, as well as other quadtree-like representations for point data, are
especially attractive in applications that involve search. A typical query is one that
requests the determination of all records within a specified distance of a given record -
i.e., all cities within 100 miles of Washington, DC. The efficiency of the PR quadtree lies
in its role as a pruning device on the amount of search that is required. Thus many
records will not need to be examined. For example, suppose that in the hypothetical
database of Figure 6 we wish to find all cities within 8 -units of a data point with
coordinates (84,10). In such a case, there is no neced to search the NW, NE, and SW
quadrants of the root (i.e., (50,50)). Thus we can restrict our search to the SE quadrant
of the tree rooted at root. Similarly, there is no need to search the NW, NE, and SW
quadrants of the tree rooted at the SE quadrant (ie., (75,25)). Note that the search
ranges are usually orthogonally defined regions such as rectangles, boxes, etc. Other

“shapes are also feasible as the above example demonstrated (i.e., a circle).

5. LINE DATA

Section 3 was devoted to the region quadtree, an approach to region
representation that is based on a description of the region’s interior. In this section, we
focus on a representation that specifies the boundaries of regions. We concentrate on use

_ of the PM quadtree family [Same85b, Nels86] (see also edge-EXCELL [Tamm81)) in the
representation of collections of polygons (termed polygonal maps). There are a number
of variants of the PM quadtree. These variants are either. vertex-based or edge-based.
They are all built by applying the principle of repeatedly breaking up the collection of
vertices and edges (forming the polygonal map) until obtaining a subset that is
sufliciently simple so that it can be organized by some other data structure.

The PM quadtrees of Samet and Webber [Same85b] are vertex-based. We
illustrate the PM; quadtree. It is based on a decomposition rule stipulating that
partitioning occurs as long as a block contains more than one line segment unless the
line segments are all incident at the same vertex which is also in the same block {e.g.,
Figure 7).

Samet, Shaffer, and Webber {Same87) show how to compute the maximum depth
of the PM; quadtree for-a polygonal map in a limited, but typical, environment. They
consider a polygonal map whose vertices are drawn from a grid (say 2" X2"), and do not
permit edges to intersect at points other than the grid points (i.e., vertices). In such a
case, the depth of any leal node is bounded from above by 4n+1. This enables a
determination of the maximum amount of storage that will be necessary for each node.

A similar representation has been devised for three-dimensional images {Ayal85,
Carl85, Fuji85, Hunt81, Nava86, Quin8§2, Tamm81, Vand84]. The decomposition criteria
are such that no node contains more than one face, edge, or vertex unless the faces all
meet at the same vertex or are adjacent to the same edge. For example, Figure 8bis a
PM, octree decomposition of the object in Figure 8a. This representation is quite useful -
since its space requirements for polyhedral objects are significantly smaller than those of
a conventional octree. ' ' '

The PMR quadtree [Nels86] is an edge-based variant of the PM quadtree. It
makes use of a probabilistic splitting rule. A node is permitted to contain a vari_able
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Figure 7. Example PM, quadtree.

(a) (b)

Figure 8. (a) Example three-dimensional object; and (b} its corresponding PM; oc-
tree. : SR :

number of line segments. A line segment is stored in a PMR quadtree by inserting it into
the nodes corresponding to all the blocks that it intersects. During this process, the
occupancy of each node that is intersected by the line segment is checked to see if the
insertion causes it to exceed a predetermined splitting threshold. If the splitting
threshold is exceeded, then the node’s block is split once, and only once, into four equal
quadrants.

On the other hand, a line segment is deleted from a PMR quadtree by removing
it from the nodes corresponding to all the blocks that it intersects. During this process,
the occupancy of the node and its siblings is checked to see if the deletion causes the
total number of line segments in them to be less than the predetermined splitting
threshold. If the splitting threshold exceeds the occupancy of the node and its siblings,
then they are merged and the merging process is reapplied to the resulting node and its

siblings. Notice the asymmetry between the splitting and merging rules.

Members of the PM quadtree family can be easily adapted to deal with fragments
that result from set operations such as union and intersection so that there is no data
degradation when fragments of line segments are subsequently recombined. Their use
vields an exact representation of the lines - not an approximation. To see how this is
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achieved, let us define a g-edge to be a segment of an edge of the original polygonal map
that either spans an entire block in the PM quadtree or extends from a boundary of a
block to a vertex within the block (i.e., when the block contains a vertex).

Each g-edge is represented by a pointer to a record containing the endpoints of
the edge of the polygonal map of which the g-edge is a part [Nels86]. The line segment
descriptor stored in a node only implies the presence of the corresponding g-edge - it
does not mean that the entire line segment is present as a lineal feature. The result is a
consistent representation of line fragments since they are stored exactly and, thus, they
can be deleted and reinserted without worrying about errors arising from the roundoffs
induced by approximating their intersection with the borders of the blocks through
which they pass.

6. CONCLUDING REMARKS

The use of hierarchical data structures in spatial reasoning enables the focussing
of computational resources on the interesting subsets of data. Thus, there is no need to
expend work where the payoff is small. Although many of the operations for which they
are used- can often be performed equally as efficiently, or more so, with other data
structures, hierarchical data structures are attractive because of their conceptual clarity
and ease of implementation.

When the hierarchical data structures are based on the principle of regular
decomposition, we have the added benefit of a spatial index. All features, be they
regions, points, rectangles, lines, volumes, etc., can be represented by maps which are in
registration. In fact, such a system has been bullt [Same84b)| for representing geographic
information. In this case, the quadtree is implemented as a collection of leafl nodes where
each leaf node is represented by its locational code. The collection is in turn represented
as a B-tree [Come79]. There are leafl nodes corresponding to region, point, and line data.

The disadvantage of quadtree methods is that they are shift sensitive in the sense
that their space requirements are dependent on the position of the origin. However, for
complicated images the optimal positioning of the origin will usually lead to little
1mprovement in the space requirements. The process of obtaining this optimal
posmomng is computationally expensive and is usually not worth the effort [Lis2].

The fact that we are working in a digitized space may also lead to problems. For
example, the rotation operation is not generally invertible. In particular, a rotated square
usually cannot be represented accurately by a collection of rectilinear squares. However,
when we rotate by 90°, then the rotation is invertible. This problem arises whenever one
uses @ digitized representation. Thus, it is also'common to the array representation.
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