
RESEARCH
C O N T R I ~ S

i i i i ? ¸¸ ! i ¸̧

i! ~ ~iii i ~i ~ ~ ~: ~ iiii~ ~ ~ ~! ~i ~ ~i ~:~ ~i ~

~ ~i ~i~ ~i ~ ~i ~ A Quadtree Medial Axis
Transform
H ~ [~ S , ~ ' ~ University of Maryland

Hanan Samet's research
interests are data structures,

image processing,
programming languages,

artificial intelligence, and
database management

systems.
Arpa Network Address:

his @ cvl
The support of the Defense

Advanced Research Projects
Agency and the U.S. Army

Night Vision Laboratory
under Contract DAAG-53-

76C-0138 (DARPA Order
3206) is gratefully

acknowledged.
Author's Present Address:

Hanan Samet.
Computer Science

Department,
University of Maryland,

College Park,
Maryland 20742

Permission to copy without
fee all or part of this material

is granted provided that the
copies are not made or

distributed for direct
commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying

is by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001-0782/83/0900-0680 75¢

1. INTRODUCTION
There are a number of methods of representing images [15]
among which are borders, arrays, and skeletons. We are inter-
ested in the quadtree [9]. It is interchangeable with borders,
arrays, and runs [4, 17, 20-22]. Methods for the computation
of geometrical properties such as connectivity, perimeter, ge-
nus, and distance exist for quadtrees [3, 18, 19, 23, 26]. In this
paper, we demonstrate the usefulness of the chessboard dis-
tance transform in computing the skeleton [23] and medial
axis transform [1, 2, 14, 15] of an image represented by a
quadtree.

The quadtree is a member of a class of region representa-
tions that involves various types of "maximal blocks" that are
contained in a given region. For example, we can represent a
region R as a l inked list of the runs (of pixels) in which R
meets the successive rows of the army [16]. Here each "block"
is a 1-by-m rectangle, where m is the run length; the runs are
the largest such blocks that R contains, and R is determined
by specifying the initial points (or centers) and lengths of the
runs. The two-dimensional analog of the run length represen-
tation is called the medial axis transformation [1, 14]. In this
representation, R is represented by a set of maximal blocks
(square or any other shape) that it contains; R is determined
by specifying the centers and radii of those blocks.

The quadtree approach to image representation is an at-
tempt to exploit the maximal block concept in a more sys-
tematic manner. Given a 2 n x 2 n array of uni t pixels, we
repeatedly subdivide the array into quadrants, subquadrants,
etc., until we obtain blocks (possibly single pixels) which con-
sist entirely of single values (e.g., gray level). This process is
represented by a tree of out-degree 4 in which the root node
represents the entire array, the four sons of the root node
represent the quadrants, and the terminal nodes correspond
to those blocks of the array for which no further subdivision
is necessary. The nodes at level K (if any) represent blocks of
size 2 ~ x 2 ~ and are often referred to as nodes of size 2 K. Thus
a node at level 0 corresponds to a single pixel in the image,
while a node at level n is the root of the quadtree. For
example, Figure l b is a block decomposition of the region in
Figure l a while Figure l c is the corresponding quadtree. In
general, we will be dealing with two values, I and O, where
BLACK and WHITE square nodes in the tree represent blocks
consisting entirely of l ' s and O's respectively. Circular nodes,
also termed GRAY nodes, denote nonterminal nodes.

ABSTRACT: Quadtree skeletons are
exact representations of the image
and are used because they are
observed to yield space efficiently
and a decreased sensitivity to shifts
in contrast wi th the quadtree. The
QMAT can be used as the
underlying representation when
solving most problems that can be
solved by using a quadtree. An
algorithm is presented for the
computation of the QMAT of a
given quadtree by only examining
each BLACK node's adjacent and
abutting neighbors.

680 Communications of the ACM September 1983 Volume 26 Number 9

RESEARCH CONTRIBUTIONS

(a)

L]

~i'ii~ii~i i ¸ !i ~i! iiiii i̧̧ ~̧̧!̧ '̧!i̧]ii̧!̧¸̧i~̧~̧ ~̧] ~
21

i;ii~i!;~i/i i 22

•/]•••••••••••••]••••••••••••••••]••••••••••••••••••••••••••]•••]•••••••••••]•• 'i~i~4~]~'/~ 24 25 26

27

i6 37

30 12 38
28 29 31 32

34 41
33

35 36 39 40 42 43 A
(b)

1 D

2 21 3 22 4 24 6 25 26 7 27 8 9 28 29 1 0 1 Z ~ 3 34 14 35 36 16 37 17 38 18 19 39 40 20 41 42 43

6d
(c) 30 12 31 32

A

H / ~ X 3 3 J 15(4) K L M

(f)
10 11(2) 11 13

(d)

1 I 1 2

o o

0 1

0 0

1 0
0

1 0

1 0 0

1 1 1
i = • i

. , , , .

1

4 ~

1 i

0 0 0

I I I

10

N
• 15(4) K

I

33 J L M

(e)

FIGURE 1• An image, its maximal blocks, the corresponding quadtree, the chessboard distance transform, the block decomposition of the QMAT, and
the GMAT. Blocks in the image and in the QMAT are shaded. (a) Sample image• (b) Block decomposition of the ima9e in (a). (c) Ouadtree
representation of the blocks in (b). (d) Chessboard distance transform of (b). (e) Block decomposition of the QMAT of (b). Radius values are within
parentheses. (f) OMAT representation of the blocks in (b). Radius values are within parentheses.

September 1983 Volume 26 Number 9 Communications of the A C M 681

RESEARCH cOKrR/B~T/ONS

The quadtree finds a number of uses in computer graphics
and image processing. In particular, Warnock's algorithm [13,
28, 29] for hidden surface elimination is based on such a
principle--i.e., it successively subdivides the picture into
smaller and smaller squares in the process of searching for
areas to be displayed. It is relatively compact [10] and well-
suited to operations such as union and intersection [5, 6, 27].
It has been used to develop a variety of algorithms for manip-
ulation of objects in two dimensions [7] as well as three
dimensions [8, 11, 30].

The main result of this paper is the definition of a new data
structure termed the QMAT which is a quadtree skeleton
with a set of distance values. It yields a partition of the image
into a set of nondisjoint squares having sides whose lengths
are sums of powers of 2. This is in contrast with the quadtree
which is a partition of an image into a set of disjoint squares
having sides of lengths which are powers of 2. Our motivation
is not to study skeletons for the usual purpose of obtaining an
approximation to an image. Thus, our decisions with respect
to the type of distance metric [2, 15] that we employ (i.e., a
chessboard distance metric rather than a Euclidean distance
metric) are not influenced by customary considerations such
as sensitivity to relative orientation, etc. Instead, the quadtree
skeleton is shown to yield an exact representation of the
image. It is used because it is observed to yield space effi-
ciency and a decreased sensitivity to shifts in contrast with
the quadtree. We also observe that the QMAT can be used to
solve most problems which can be solved using the quadtree
representation. Furthermore, the QMAT may be useful in
performing operations such as propagation, shrinking, and
matching [15].

Section 2 contains a discussion of skeletons and medial axis
transforms and their adaptation to the quadtree. In Section 3,
we discuss a number of algorithms for the computation of the
QMAT and prove their equivalence. Sections 4 and 5 contain
a formal description of the best of these algorithms and an
analysis of its execution time. The chosen algorithm is moti-
vated by a close inspection of the geometrical properties of the
quadtree method of representation. We use a variant of
ALGOL 60 [12] in the formal presentation of the algorithm.
Reconstruction of quadtree from its QMAT is straightforward
and is not treated here.

2. MEDIAL AXIS TRANSFORMS, QUADTREES, AND
SKELETONS
We are given an image where the set of points in a certain
region is labeled S and the sets of points outside of the region
is labeled S (analogous to BLACK and WHITE respectively).
We say that for a point x and a set V, the distance (according
to a suitably defined distance metric, d) fl'om x to the nearest
point of V is d(x, V) = min{d(x, Y) IY ~ V}. Two points, x and
y, are said to be neighbors if d(x, y) = 1. We are interested in
a subset of S, T, such that all elements of T have a distance

f rom Swhich is a local maximum. In other words, for each
point in T, no neighboring point in S but not in T has a
greater distance from S. The set of points comprising T is said
to constitute a skeletal description of S. As an example, con-
sider the rectangle in Figure 2 whose skeleton consists of line
segments labeled a, b, c, d, and e. If we know the points of the
skeleton and their associated distance values, then we can
reconstruct S exactly. The set of points comprising the skele-
ton and their associated values is termed the medial axis
transform (MAT). The MAT of S provides a concise method of
defining and representing S. For example, using a Euclidean
distance metric [2, 15], the MAT corresponding to a circle is a

c

FIGURE 2. A rectangle and its skeleton using de.

point at its center having a distance value equal to the circle's
radius.

Clearly, the definition of the distance metric plays an im-
portant role in determining the form of the MAT. The most
commonly known distance metric is the Euclidean distance:

d~(p, q) = 4(px - qx) 2 + (py - qy)2

whose maximal blocks are discs. Two other metrics which
are more commonly known in digital picture processing are
the Absolute Value distance (also known as the city block
distance):

dA(p, q) = [px -- q~[+ [Py -- qy[

whose maximal blocks are diamonds, and the Maximum
Value distance (also known as the chessboard distance):

dM(p, q) = max {Ipx - qx[, IPy - qyl}
whose maximal blocks are squares. Note that in any case, the
MAT determines the entire image although it is true that a
point in the image may lie in more than one maximal block.
Figures 3c and 3d show the MATs of the rectangle of Figure
3a using dA and dM respectively. Figure 3b shows dA and dM
for the rectangle, which in this example, are identical. Note
that the MATs in Figures 2c and 2d have distance values that
are one less than the values in Figure 2b. This is due to the
MAT being defined as extending to the last pixel within the
image rather than to the first pixel outside the image [15].

Maximal blocks can be of any size and at any position.
Thus, they are somewhat unwieldy as primitive elements for
representation purposes since the process of determining
them may be complex. The quadtree approach to image rep-
resentation is an attempt to exploit the maximal block con-
cept in a more systematic manner by constraining the sizes of
the blocks and the positions of their centers.

In [23, 26], the concept of distance is applied to a quadtree.
In particular, it was shown in [23] that the chessboard dis-
tance metric is especially suitable for a quadtree since it has
the property that given a point p, the set of points {q} such
that d(p, q) _< t is a square. The chessboard distance transform
for a quadtree, D/ST, was defined as a function that yields for
each BLACK block in the quadtree the chessboard distance
from the center of the block to the nearest point which is on a
BLACK-WH/TE border. More formally, letting x be the center
of a BLACK block b, z be a point on the border of the WHITE
block W (say B(W)), we have:

F(b, W) = minzee(wj d(x, z)

DIST(b) = minwF(b, W)

We also say that D/ST of a WHITE block is zero and that the
border is BLACK for the purpose of the computation of F and
DIST.

We are now ready to define the Quadtree Medial Axis
Transform (QMAT). We first define the quadtree skeleton. Let
the set of BLACK blocks in the image be denoted by B. For
each BLACK block, b, let S(b~) be the part of the image

082 Communications of the ACM September 1983 Volume 26 Number 9

RESEARCH CONTRIBUTIONS

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 2 1
1 1 1 1 1 1 1 1 1 1 1 2 3 4 4 4 4 3 2 1
1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 2
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a) (b)

0 0
1 1

2 2
3 3 3 3

2 2
1 1

0 0

(c) (d)

3 3 3 3

FIGURE 3. A binary array representation of an image, its distance
transform, and its MAT. (a) Image. (b) d, and d~ for the image in (a).
(c) MAT of the image in (a) usi,g d,. (d) MAT of the image in (a) using
d,,.

spanned by a square with side width 2*DIST(bi) centered
about b~. The quadtree skeleton consists of the set, T, of
BLACK blocks satisfying the following properties:

(1) area(B) = UNION(S(ti))
(2) for any ti E T]bk E B(bk ¢ tj) ~ S (ti) - S(bk)
(3) Vb~ E B 3tj E T ~ S(b~) _ S(t~)

Property (1) insures that the entire image is spanned by the
skeleton. Property (2) is termed the subsumption property and
we say that bj is subsumed by bk when S(b~) _ S(bk). Property
(2) means that the elements of the quadtree skeleton are the
blocks with the largest distance transform values. This is a
stronger requirement than the stipulation that given tj E T ~]tk
E T(k ~ j) ~ S(ti) __G S(tk) as will be seen below. Such a
stipulation only insures that there are no extraneous elements
with respect to subsumption of the image in a given quadtree
skeleton. Property (3) insures that no block in B and not in T
requires more than one element of T for its subsumption--
e.g., one half of the block is subsumed by one element of T
and the other half is subsumed by another element of T.

TtmOg~.M 1: The quadtree skeleton of an image is unique.

PROOF: Assume that the quadtree skeleton is not unique. Let
T1 and T2 both be quadtree skeletons of the same image, i.e., B
= UNION(S(h~)) t~ E "/'1 and B = UNION(S(taj)) tzj E T2. Assume,
without loss of generality, that 3t~k E "/'1 ~ hk ~ T2. Therefore,
by Property (3) 3 t 2 / E T2(t2/ ~= t~k) ~ S(t~k) _ S(t2/) . However,
this contradicts Property (2) which stipulates that for any tl~
"£1]bi ~ B(b~ ~ h~) ~ S(t,) _ S(b~). Hence, the quadtree
skeleton of an image is unique. Q.E.D.

The QMAT of an image is the quadtree whose BLACK nodes
correspond to the BLACK blocks comprising the quadtree skele-
ton and their associated chessboard distance transform va/ues.
All remaining nodes in the QMAT are WH1TE and GRAY
with distance value zero. For example, Figure ld contains the
chessboard distance transform corresponding to the region
given in Figure la. Figures le and If contain the block and
tree representations respectively of the QMAT of Figure la.

We now make the following observations with the aid of
Figure 1. The squares spanned by the chessboard distance
transform of the blocks of the QMAT have sides whose

lengths are sums of powers of 2 and are not necessarily dis-
joint. This is in contrast with the quadtree which is a parti-
tion of an image into a set of disjoint squares having sides

1 whose lengths are powers of 2. For example, Block 11 is
1
1 subsumed by both Blocks I and 15.

Recall that the subsumption property, i.e., Property (2),
means that the elements of the QMAT are the blocks with
the largest distance transform values. For example, for Figure
1, the quadtree skeleton consists of Blocks 1, 11, and 15 rather
than Blocks 1, 12, and 15 since Block 12 is subsumed by
Block 11. The latter result would have been legal had we
defined the quadtree skeleton as the set, T, of BLACK blocks
such that area (B) -- UNION(S(ti)) ti E T and for any tj E T ~]tk
E T(k ¢ j) ~ S(tj) _ S(tk). Such a definition has several unde-
sirable implications. First, it means that the quadtree skeleton
of an image is no longer unique, e.g., for Figure 1 both [1, 11,
15} and {1, 12, 151 would be legal quadtree skeletons. Second,
it leads to a QMAT which contains more nodes, e.g., WHITE
node N in Figure If would be replaced by a GRAY node
having BLACK son 12 and WHITE sons 30, 31, and 32.

The fact that the border of the image is assumed to be
BLACK results in minimizing the number of nodes in the
QMAT. Without this assumption, Block 1 would be of radius
4 and would not lead to the subsumption of Blocks 2, 3, 4, 8,
9, and 10. Note that Blocks 5 and 11 are subsumed by Block
15 anyway so that their subsumption is not dependent on our
assumption.

Before proceeding any further it is appropriate to make a
few additional comments about Property (3) of the quadtree
skeleton definition. This property does not yield a minimal set
of blocks. For example, in the image of Figure 4a, Property (3)
requires that the quadtree skeleton contain Blocks 5, 14, and
15 while in actuality Blocks 5 and 15 are sufficient since
together they subsume Block 14. Thus, if we were interested
in a minimal set of blocks we would modify Property (3) as in
(3') below:

(3') 2It; E T B S(tj) C UNION(S(tk)) tk #= ti

The reason we do not use the definition of a quadtree
skeleton which yields the minimal set of blocks is twofold.
First, by virtue of the definition of the QMAT, the tree size of
the QMAT would be unaffected by using Property (3') instead
of Property (3) since the only difference is that the additional
blocks are represented by BLACK nodes rather than WH1TE
nodes, e.g., node 14 in Figures 4b and 4c. That this is always
true can be seen easily by observing that for a node to be
extraneous by virtue of Property (3'), it must be subsumed by
its neighbors which must themselves be BLACK. Thus the
extraneous node when represented by a WHITE node cannot
be merged with its neighbors to yield a larger node and must
remain a part of the QMAT. Second, as will be seen in
Section 3, the QMAT creation algorithm is considerably sim-
pler when Property (3) is used.

The QMAT representation can be used as an alternative
data structure for the representation of an image. In particu-
lar, it has the property that for any image it requires, at most,
as many nodes as the quadtree. This is obvious when we
recall that each node in the QMAT corresponds to one or
more nodes of the quadtree and that each member of the
quadtree skeleton is a node in the quadtree. Of course, the
QMAT does require that the DIST value be stored with each
node. As an example of the savings in storage, consider the
image in Figure la. The QMAT, shown in Figure lf, requires
17 nodes while the quadtree, shown in Figure lc, requires 57
nodes.

September 1983 Volume 26 Number 9 Communications of the ACM 683

RESEARCH CONTRIBUTIONS

I ̧̧ i]

, ,,, ! i ,

8(0) 9(0) 12(0) 13(0) 18(0) 19(0) 22(0) 23(0)

24(0) 25(0)

(a)

A

(b) B ~ 25

D 5(2) E F 14(2) 15(2) G H

A

(c) B ~ 25

O 5(2) E F 14 15(2) H

FIGURE 4. An image and its corresponding QMATs using Properties (3)
and (3') for the quadtree skeleton definitions. Blocks in the QMAT are
shaded. (a) Image. The value of the chessboard distance transform is
within parentheses. (b) QMAT of the image in (a) using Property (3).
Radius values are within parentheses. (c) QMAT of the image in (a)
using Property (3"). Radius values are within parentheses.

An interesting property of the QMAT is that there is a class
of images for which it requires a minimum number of nodes
regardless of the image resolution. Clearly, if the image is all
WH1TE or all BLACK, then both the quadtree and the QMAT
require a single node. However, when a 2 n x 2 n image con-
sists of a BLACK square of side length 2" - 1, then the
advantage of the QMAT over the quadtree in terms of space
utilization is at a maximum. For example, consider the image
in Figure 5a and its quadtree and QMAT in Figures 5b and
5c, respectively. The quadtree requires 45 nodes while the
QMAT requires only 5 nodes.

In fact, for any image of such a shape the QMAT requires
only 5 nodes while the quadtree requires a number of nodes
which depends on the maximum level of the tree. The exact
number of nodes required for such a quadtree of level n can
be obtained by use of the following recurrence relations. As-
sume, without loss of generality, an image similar to that of
Figure 5a, i.e., the largest block is in the NW quadrant. Let ti
denote the number of nodes in a quadtree of level i and rH
be the contribution made by the NE and SW quadrants of a
quadtree of level i.

{I ,_-0
tt = + 1 + 2 . r i _ z + t i -1 i ~-- 1

~ 1 i = 0
r , = - / 1 + 2 +2 . r i_ l i > 1

It can easily be shown that these relations have the following
solutions:

r, = 2 ` + 2 - 3

ti = 2 `+3 - - 4 . i - - 7

To see this, we observe that

r, = 3. Y~I--% 2J - 2'+1

= 3-(2' - 1) + 2 i = 2 `+2 - - 3

and substituting into t, we have

t, = 2 + 2. (2 '+1 - 3) + t,-i = 4. (2 ' - 1) + ti-1

Solving for t, we get

t,=4-~..i=1 (2 j - 1) + 1 = 4 . (2 ' + 1 - 2 - i) + 1

---- 2 i + 3 - - 4 - i - - 7

Thus, for a quadtree of level n, the number of nodes that can
be saved by using the QMAT representation is 2 n÷a - 4. n -
12. For example, for n = 3, the difference is 40 nodes, i.e., a
reduction by a factor of 15.

The QMAT representation also has the property that the
number of nodes necessary to represent an image is not as
shift-sensitive as is the quadtree. This is a direct result of the
fact that the QMAT always requires a number of nodes less
than or equal to the quadtree. It is also quite apparent when
we realize that the QMAT is most economical storage-wise
vis-&vis the quadtree when large blocks are surrounded by
smaller blocks which is normally ~he situation when a shift
operation takes place. For example, when the image of Figure
6a is shifted by one unit to the right yielding Figure 6d, its
quadtree gets considerably larger. In particular, Figure 6b con-
tains 17 nodes while Figure 6e, the quadtree corresponding to
the shifted image, contains 49 nodes. However, the QMAT is
not as sensitive to shifts since it always requires a number of
nodes less than or equal to those contained in the quadtree. In

684 Communications of the ACM September 1983 Volume 26 Number 9

16(0)

(a)

(b)

17(0) 20(0) 21(0) 29(0) 30(0) 33(0)

B ~ C

2 I l l \ 7 / 1 | ~ 12 13

4(0)

6(0)

9(0)

11(0)

24(0)

26(0)

32(0)

34(0)

A

3 4 5 6 8 9 10 11 14 15 16

Cc)

A

1(5) B(O) C(O) D(O)

FIGURE 5. An image and its corresponding quadtree and OMAT
illustrating the maximum compactness that can be achieved as a
result of using the QMAT as a data structure. Blocks in the image
are shaded. (a) Image. The value of the chessboard distance trans-
form is within parentheses. (b) Quadtree representation of the im-
age in (a). (c) OMAT representation of the image in (a). Radius
values are written within parentheses.

22

17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34

Figure 6, the QMAT of Figure 6a, given in Figure 6c, is
identical to the quadtree. However, the QMAT of the shifted
image, given in Figure 6f, is considerably smaller than its
corresponding quadtree as well as the QMAT of the image
prior to the shift, i.e., 9 nodes versus 17 nodes. As another
example, consider the image of Figure 7a which has a mini-
mal nontrivial QMAT in terms of the number of nodes, i.e., 5
nodes. Figure 7d is the result of shifting the image of Figure
7a one unit to the right. Note that the new QMAT given in
Figure 7f requires more nodes than the one corresponding to
the unshifted image given in Figure 7c, i.e., 21 nodes versus 5

nodes. However, this number is less than the number of
nodes in the shifted quadtree as shown in Figure 7e, i.e., 21
nodes for the QMAT versus 41 nodes for the shifted quadtree.
Thus, we see that the compactness of the QMAT is also
preserved when the image is subjected to shifts.

3. ALGORITHMS FOR THE COMPUTATION OF THE
QMAT
Properties (2) and (3) of the quadtree skeleton definition of
Section 2 suggest the following simple two-step algorithm
(termed "A") for determining the QMAT. At the end of the

September 1983 Volume 26 Number 9 Communications of the ACM 685

(a)

5(0) 6(0)

(d)

9(0) 10(0)

2(0)

11(0)

13(0)

12(0)

15(0)

i

1(o) 2(0.5)
! 5(2)

3(0) 4(0.5)

6(0) 7(0,5)
, - 10(2)

8(0) 9(0,5) I:

' 'I
21(0) 22(0,5)i 25(0.5) 26(0.5)

23(0) 24(0) 27(0) 28(0)

29(0) 30(0)

tt(0.5) 12(0)

1310,5) 14(0)

18(o:5) 17(o)

18t0:s) 19(o)

31(0.5) 32(0)

33(0) 34(0)

36(0)

20(0) 6 7 8 9]1 12 13 14 16 17 18 19 21 22 23 24 25 26 27 28 31 32 33 34

35(0)

37(0)

1 2 3 4
(e)

A

1 ~ 1 ~ 1 2 1 3

3 4 5 6 7 8 9 1 0
(b)

A

1(2) C ~

310.5) 4(0,5) 5 6 7(0.5)810.5)
(c)

1 12

lo

RESEARCH CONTNBLrr/oN$

A

F 5(2) 1~2)

(f)

FIGURE 6. An image and its corresponding quadtree and QMAT, and the result of shifting it by one unit to the right. Blocks in the image are shaded.
(a) Image. The value of the chessboard distance transform is within parentheses. (b) Ouadtree representation of the image in (a). (c) QMAT
representation of the image in (a). Radius values are within parentheses. (d) The image in (a) shifted by one unit to the right. The value of the
chessboard distance transform is within parentheses. (e) Ouadtree representation of the image in (d). (f) QMAT representation of the image in (d).
Radius values are within parentheses.

algorithm, the set T contains the BLACK blocks comprising
the QMAT.

Algorithm A
1. Sort the BLACK blocks in increasing order by value of

their chessboard distance transform forming the set T,
i.e., DIST(t~) _< DJST(t~÷~) t~ E T

2. Starting with i = 1: For each t~ E T ~ 3tj(i < j) and S(tf
_ S(ti), remove t~ from T.

From a computation complexity standpoint, Algorithm A is
quite costly since it involves sorting the BLACK blocks as well
as examining whether or not a block is subsumed by the
remaining blocks. Instead, we use the following algorithm
(termed "B") which traverses the quadtree in postorder, i.e.,
the sons of a node are visited first, and determines for each
node corresponding to a BLACK block, P, whether S(P) C S(Q)

where Q is one of P's eight neighbors in the N, NE, E, SE, S,
SW, W, and NW directions.

Algorithm B
1. Sort the BLACK nodes in postorder, forming the set T.
2. Starting with i = 1: For each t~ E T determine if 3ti(i

j) E T ~ tj is a neighbor of ti in one of the directions {N,
NE, E, SE, S, SW, W, NWI and S(ti) C S(tj), then remove ti
from T.

The remainder of the discussion elaborates on properties of
Algorithm B. In general, whenever a BLACK block is sub-
sumed by one of its neighbors, then it appears in the QMAT
as a WHITE block. Once all the sons of a GRAY node have
been processed, and if in the QMAT they all correspond to
WHITE blocks, then the GRAY node is changed to correspond
to a WHITE block (e.g., GRAY node N of Figure lc having

6B6 Communications of the ACM September 1983 Volume 26 Number 9

/ESF .A~H CONTRIBUTIONS

sons 30, 12, 31, and 32 is changed to correspond to a WHITE
block in Figure lf).

At this point, it is appropriate to examine the notion of
subsumption in a more rigorous manner. Given adjacent
nodes P and Q corresponding to BLACK blocks appearing at
levels Lp and LQ respectively in the quadtree such that Lq >
Lp, and letting D(P, Q) = DIST(Q) - 2 1' (Lq - 1) - 2 1' (Lp - 1),
then P is said to be subsumed by Q if D(P, Q) = DIST(P). It
should be clear that for P to be subsumed by Q, D(P, Q)
cannot be greater than DIST(P) since this would contradict the
definition of the chessboard distance transform, i.e., P would
have a closer BLACK-WHITE border point than does Q al-

though P is constrained by the value of D(P, Q) to be entirely
contained in the square of side width 2*DIST(Q) centered at
Q. Clearly, when D(P, Q) < DIST(P), P is not subsumed by Q.

When D(P, Q) = DIST(P), there are two cases to consider. If
DIST(P) = 2 T (Lp - 1), then P is adjacent to the outer border
of S(Q) and thus no BLACK blocks can be subsumed by P
(e.g., BLACK Block 9 in Figure lb is adjacent to the outer
border of the square spanned by Block 1). Thus, changing
Block P from BLACK to WHITE will not affect the detection
of subsumption of other nodes.

However, if DIST(P) > 2 T (Lp - 1), i.e., the second case to
be considered when D(P, Q) = DIST(P), then P is not adjacent

3(o
................... 6(o)

...................... 11(o)

1o,o)

26(0)
14(0) 15(0) 18(0) 19(0) 24(0) 25(0)

(a)

20(0) 21(0) 27(0) 28(0)

A

(c) ~ / ~
1(3) B C D

FIGURE 7. An image having a minimal GMAT and its corresponding
quadtree and QMAT, and the result of shifting it by one unit to the
right Blocks in the image are shaded. (a) Image. The value of the
chessboard distance transform is within parentheses. (b) Quedtree
representation of the image in (a). (c) QMAT representation of the
image in (a). Radius values are within parentheses. (d) The image in
(a) shifted by one unit to the right. The value of the chessboard dis- 23(0)
tance transform is within parentheses. (e) Quadtree representation of
the image in (d). (f) QMAT representation of the image in (d). Radius (d)
values are within p a ~ ~ ~ ~

1 2 3 4 6 l 8 9 15 16 17 18 19 20 21 22 25 26 27 28

A

(b)
2 3 4 5 7 8 g lO . 12 13 14 15 16 17 18 19 22 23 24 25

1,o,

8,0)

8,o, 1,,o,

29(0)
17(0) 18(0) 21(0) 22(0) 27(0) 28(0)

24(0) 30(0) 31(0)

A

B E

(I)
25 26 (0.5) 27 28

September 1983 Volume 26 Number 9 Communications of the ACM 687

iiiiii!il

RESEARCH CONTNBUTR)NS

to the outer border of S(Q). This means that some blocks
which are subsumed by Q can only be detected by virtue of
being subsumed by P since they are not adjacent to Q. Denote
these blocks by U(P, Q). It can be shown that all elements of
U(P, Q) satisfy the following properties:

1. Q is larger than P.
2. Each element of U(P, Q) is smaller than P.
3. If Q is adjacent to P along side R of the BLACK block

corresponding to P, then U(P, Q) is equal to the blocks
subsumed by the opposite side, denoted by OPSIDE(R),
of P's block.

4. If Q abuts the corner formed by sides R and T of the
BLACK block corresponding to P, then U(P, Q) is equal
to the blocks subsumed by sides OPSIDE(R) and OP-
SIDE(T) of P's block as well as the blocks subsumed by
the corner formed by these sides of P's block.

Properties (1)-(4) imply that all elements of U(P, Q) are in the
space spanned by FATHER(P), i.e., they are in the region
spanned by the brothers of P. This means that an algorithm
that processes a GRAY son prior to its BLACK or WHITE
brothers insures that the QMAT is formed by examining
blocks for subsumption according to increasing size, i.e.,
smaller size first. As soon as a BLACK block is determined to
be subsumed by its neighbor, its DIST and NODETYPE fields
are changed to zero and WHITE respectively. This leads to
the following result.

LEMMA 1: Both Algorithms A and B result in a computation
satisfying the definition of a quadtree skeleton, given in
Section 2 and the QMAT of an image.

PROOF: Algorithm A clearly satisfies Properties (1)-(3) of the
definition since its steps are equivalent to the definition. To
show that Algorithm B meets our requirements is slightly
more complex. Properties (1) and (3) are satisfied since Algo-
rithm B starts with the QMAT and the quadtree being identi-
cal and then systematically removes nodes whose correspond-
ing blocks are subsumed by others. Satisfaction of Property (2)
is shown as follows. Algorithm B is based on the principle
that each block is subsumed by a neighboring block. It exam-
ines each adjacency and removes a BLACK block from the
skeleton if it is subsumed by an adjacent block in the skele-
ton, i.e., one that has not yet been removed by virtue of being
subsumed by yet another larger adjacent block. Properties (1)-
(4) of the case when D(P, Q) = DIST(P) and DIST(P) > 2 T (Lv -
1) plus the fact that a GRAY son is processed before its
BLACK and WHITE brothers insure that no block is removed
from the skeleton before blocks that are subsumed by it.
Thus, we see that no block in the QMAT is subsumed by
another block in the quadtree. Recall from Section 2 that this
is a stronger statement than not being subsumed by another
node in the QMAT. Q.E.D.

THEOREM 2.: Algorithms A and B are equivalent.

PROOF: By Lemma 1, both Algorithms A and B compute the
quadtree skeleton. Theorem I indicates that the quadtree
skeleton of an image is unique and our result follows. Q.E.D.

The equivalence of Algorithms A and B can also be seen by
observing that they both start with the smallest BLACK
blocks and attempt to determine if they are subsumed by
other BLACK blocks. The key to the superiority of Algorithm
B is that no formal sorting is required and also that blocks
that cannot possibly subsume one another are not checked for

subsumption, i.e., Algorithm B only examines a maximum of
eight neighboring blocks while Algorithm A examines all pos-
sible larger sized BLACK blocks. Also note the simplicity of
Algorithm B that results from using Property (3) rather than
(3') in the definition of a quadtree skeleton, since each block
in the original image can only be subsumed in its entirety.
Thus, there is no need to examine whether a node is sub-
sumed by a set of other nodes, e.g., node 14 of Figure la is
subsumed by nodes 5 and 15.

4. FORMAL IMPLEMENTATION OF THE ALGORITHM
Prior to describing our algorithm, it is useful to define our
representation as well as some elementary operations. Let
each node in a quadtree be stored as a record containing
seven fields. The first five fields contain pointers to the node's
father and its four sons, labeled NW, NE, SE, and SW. Given a
node P and a son I, these fields are referenced as FATHER(P)
AND SON(P,/) respectively. We can determine the specific
quadrant in which a node, P, lies relative to its father by use
of the function SONTYPE(P) which has a value of I if
SON(FATHER(P),/) = P. The sixth field, NODETYPE, de-
scribes the contents of the block of the image which the node
represents, i.e., BLACK, WHrI'E, or GRAY. The seventh field,
DIST, indicates the value of the chessboard distance transform
for the node. This field is only meaningful for BLACK nodes.
WHITE and GRAY nodes are said to have a DIST value of
zero. Note that this is different from the concept of node
distance, i.e., for a node at level i, n-i FATHER links must be
ascended to reach the root of the tree.

The four sides of a node's block are called its N, E, S, and W
sides. They are also termed its boundaries and at times we
speak of them as if they are directions. Figure 8 shows the
relationship between the quadrants of a node's block and its
boundaries. Given blocks P and Q, we say that Q is a neigh-
bor of P when both of the following conditions are satisfied:

1. P and Q share a common border, even if only a corner.
2. If Q is a BLACK or WHITE block, then its size is greater

than or equal to that of P, while if it is a GRAY block,
then it and P are of equal size.

For example, in Figure 1, BLACK nade 15 is the neighbor
of BLACK node 11 in the eastern direction; similarly, GRAY
node K is the eastern neighbor of node 15. Neighbors in the
direction of a corner of a block are determined analogously,
e.g., node 15 is a neighbor of BLACK node 14 in the NE
direction and GRAY node M is a neighbor of node 15 in the
SE direction.

The expression of operations involving a block's quadrants
and boundaries is facilitated by the following predicates and
functions. ADJ(B,/) is true if and only if quadrant I is adjacent
to boundary B of the node's block, e.g., ADJ(W, SW) is true.
REFLECT(B,/) yields the SONTYPE value of the block of
equal size that is adjacent to side B of a blockhaving SON-

N

NW NE

W E

SW SE

S
FIGURE 8. Relationship between a block's four quadrants and its
boundaries.

688 Communications of the ACM September 1983 Volume 26 Number 9

~$F.ARCH ~'fI~Bff/IONS

TYPE value I, e.g., REFLECT(N, SW) = NW, REFLECT(E, SW)
= SE, REFLECT(S, SW) = NW, and REFLECT(W, SW) = SE.
CSIDE(B) is the side that is adjacent to side B in the clockwise
direction, e.g., CSIDE(N) = E. COMMONSIDE(Q1, Q2) indi-
cates the boundary of the block containing quadrants Q1 and
Q2 that is common to them (if Q1 and Q2 are not adjacent
quadrants, then the value of COMMONSIDE(Q1, Q2) is unde-
fined), e.g., COMMONSIDE(NW, SW) = W. QUAD(S1, $2) is
the quadrant bounded by boundaries $1 and $2 (if $1 and $2
are not adjacent boundaries, then QUAD(S1, $2) is undefined),
e.g., QUAD(N, W) = NW. Similarly, OPQUAD(Q) is a quad-
rant which is diagonally facing quadrant Q, e.g.,
OPQUAD(NW) = SE, OPQUAD(NE) = SW.

The algorithm that is described is different from Algorithm
B in that it has been modified to avoid having to process
GRAY sons before processing their BLACK and WHITE broth-
ers. Instead, whenever a BLACK block, P, has been found to
be subsumed by an adjacent BLACK block, Q, then P's
NODETYPE field is changed to WHITE but its DIST field is
left alone. This ensures that application of the QMAT algo-
rithm to any of P's yet unprocessed GRAY brothers will result
in their subsumption by P if appropriate. Note that when Q is
a genuine WHITE block, D(P, Q) is negative since DIST(Q) is
zero, and thus P cannot be subsumed by Q, i.e., D(P, Q) <
DIST(P). Once all of a GRAY node's sons have been processed,
a check is made if they all correspond to WHITE blocks. If
yes, then they and their father are replaced by a node having
NODETYPE and DIST field values of WHITE and zero respec-
tively. Otherwise, the DIST field of any son corresponding to a
WHITE block is set to zero.

The main procedure is termed QMAT and is invoked with
a pointer to the root of the quadtree representing the image
and an integer corresponding to the log of the diameter of the
image (e.g., n for a 2 n × 2" image array). We assume that each
block's distance has already been computed by a method
such as that described in [23]. QMAT traverses the tree and
controls the examination of the eight neighbors of each
BLACK node. Note that our algorithm results in transforming
the original quadtree to a QMAT by overwriting the original
quadtree. This is not necessary. An alternative algorithm
would create copies of the nodes while forming the QMAT. In
fact, the only modification to our algorithm is to create a copy
of each node prior to examining its neighbors.

Procedure GTEQUAL_ADJ_NEIGHBOR locates a neighbor-
ing node of greater or equal size along a specified side (e.g., N,
E, S, or W). If the node is on the edge of the image, then no
neighbor exists in the specified direction and NULL is re-
turned (e.g., the western neighbor of node 1 in Figure lb). If
the node is not on the edge of the image and no neighboring
BLACK or WHITE node exists satisfying our size criteria, then
a pointer to a GRAY node of equal size is returned (e.g., the
eastern neighbor of node 1 in Figure lb yields a pointer to
GRAY node B). Procedure GTEQUAL_CORNER_NEIGHBOR
is analogous to GTEQUAL_ADJ_NEIGHBOR and locates a
neighboring node of greater or equal size along a comer (e.g.,
NW, NE, SE, or SW).

As an example of the application of the algorithm, consider
the region given in Figure la. Figure lb is the corresponding
block decomposition while Figure lc is its quadtree represen-
tation. All of the BLACK nodes have labels ranging from 1 to
20 while the WHITE nodes have labels ranging from 21 to 43.
The GRAY nodes have labels ranging between A and N. The
BLACK nodes have been labeled in the order in which their
subsuming adjacencies were explored by procedure QMAT.

Figure ld contains the chessboard distance transform corre-
sponding to Figure lb. Figures le and If contain the block
decomposition of the QMAT and the quadtree representation
of the QMAT corresponding to Figure lb respectively.

procedure QMAT(P, LEVEL);
/* Given a quadtree rooted at node P spanning a 2 T LEVEL

x 2 1' LEVEL space, find its corresponding quadtree medial
axis transform */

value node P;
value integer LEVEL;
integer L;
quadrant I;
direction D;
if BLACK(P) then

begin
for D in {'N', 'E', 'S', 'W'I do

begin
L *- LEVEL;
GTEQUAL_ADJ_NEIGHBOR(P, D, Q, L);
if not NULL(Q) and

DIST(Q) - 2 1' (L - 1) - 2 T (LEVEL -1) =
DIST(P) then
begin/* P is subsumed by its neighbor Q */

NODETYPE(P) ~-- 'WHITE';
return;

end;
L ~-- LEVEL;
GTEQUAL_CORNER_NEIGHBOR(

P, QUAD(D,CSIDE(D)), Q, L);
if not NULL(Q) and

DIST(Q) - 2 1' (L - 1) - 2 T (LEVEL - 1)
=DIST(P) then
begin/* P is subsumed by its neighbor Q */

NODETYPE(P) ,-- 'WHITE';
return;

end;
end;

end
else if GRAY(P) then

begin
for I in {'NW', 'NE', 'SE', 'SW'} do

QMAT(SON(P,/), LEVEL - 1);
if WHITE(SON(P, 'NW')) and WHITE(SON(P, 'NE')) and

WHITE(SON(P, 'SE')) and WHITE(SON(P, 'SW')) then
begin/* Merge the four sons */

NODETYPE(P) ,--'WHITE';
for I in {'NW', 'NE', 'SE', 'SW'I do

begin
RETURNTOAVAIL (SON(P,/));
SON(P, I) ~-- NULL;

end;
end

e lse /* All four sons are not WHITE or subsumed */
begin

for I in {'NW', 'NE', 'SE', 'SW'I do
begin

if WHITE(SON(P,/)) then
DIST(SON(P,/) ,-- Q;

end;
end;

end;
end;/* WHITE nodes are left alone */

September 1983 Volume 26 Number 9 Communications of the ACM 689

RESEARCH CONTNBUTIONS

procedure GTEQUAL_ADJ_NEIGHBOR(P, D, Q, L);
/* Return in Q the neighbor of node P in horizontal or verti-

cal direction D which is greater than or equal in size
to P. If such a node does not exist, then a GRAY node of
equal size is returned. If this is also impossible, then the
node is adjacent to the border of the image and NULL is
returned. L denotes the level of the tree at which node P is
initially found and the level of the tree at which Q is
finally found * /

value node P;
reference node Q;
value direction D;
reference integer L;
L ~---L + 1;
if not NULL(FATHER(P)) and ADJ(D, SONTYPE(P)) then

/* Find a common ancestor */
GTEQUAL_ADJ_NEIGHBOR(FATHER(P), D, Q, L/

else Q ~-- FATHERIP);
/* Follow the reflected path to locate the neighbor * /
if not NULL(Q) and GRAY(Q) then

be~n
Q ~ SON(Q, REFLECT(D, SONTYPE(P)));
L ~--L - 1;

end;
end;

proo~lure GTEQUAL_CORNER_NEIGHBOR(P, C, Q, L);
./* Return in Q the neighbor of node P in the direction of

corner C of P which is greater than or equal in size to P. If
such a node does not exist, then a GRAY node of equal
size is returned. If this is also impossible, then the node is
adjacent to the border of the image and NULL is returned.
L denotes the level of the tree at which node P is initially
found and the level of the tree at which Q is finally found
, /

value node P;
reference node Q;
value quadrant C;
reference integer L;
L~--L + 1;
if not NULL(FATHER(P)) and SONTYPE(P) # OPQUAD(C)

then
if SONTYPE(P) = C then

GTEQUAL_ CORNER_NEIGHBOR
(FATHER(P), C, Q, L)

else GTEQUAL_ADJ_NEIGHBOR
(FATHER(P),
COMMONSIDE(SONYTYPE(P), C), Q, L)

else Q *-- FATHER(P);
/* Follow the opposite path to locate the neighbor * /
if not NULL(Q) and GRAY(Q) then

Q ,,-- SON(Q, O P Q U A D (S O ~ E (P))) ;
L ~ - - L - 1;

end;
end;

5. ANALYSIS
The running time of the QMAT computation algorithm is
measured by the number of nodes that are visited and by the
size of the quadtree. For each BLACK node, we must visit a
minimum of one and a maximum of eight neighbors of
greater than or equal size in order to determine whether the

block corresponding to the node is subsumed, i.e., contained
in a square centered at its neighbor (e.g., Block 14 is sub-
sumed by Block 15 in Figure lb). Clearly, for each BLACK
node, the worst case in terms of the number of nodes that
must be visited arises when the neighbor that is being sought
is of equal size (e.g., the NE neighbor of Block 11 in Figure lb,
i.e., Block 5). Thus we only need to analyze the amount of
work performed by procedures GTEQUAL_ADJ_NEIGHBOR,
GTEQUAL_CORNER_NEIGHBOR, and QMAT.

Our analysis assumes a 2 n × 2 n random image i.e., a
BLACK node is equally likely to appear in any position and
level in a quadtree. This means that all configurations of
adjacent nodes of varying sizes are assumed to have equal
probability. This is different from the more conventional no-
tion of a random image which implies that every block at
level 0 (i.e., pixel) has an equal probability of being BLACK or
WHITE. Such an assumption would lead to a very low proba-
bility of any node corresponding to blocks of sizes larger than
1. Clearly, for such an image the quadtree is the wrong repre-
sentation. The analysis closely parallels that performed in [23]
for the chessboard distance transform.

I~MMA 2: The average of the m a x i m u m number of nodes
visited by each invocation of GTEQUAL_ADJ_NEIGHBOR is
less than 4.

PROOF: Given a node P at level i and a horizontal or vertical
direction D, there are 2 ~-' • (2 "-~ -1) possible positions for
node P and a neighbor at level i and direction D. Of these 2"-'
• (2"-' -1) neighbor pairs, 2 n-' • 2 ° have their nearest common
ancestor at level n, 2"-' • 21 at level n - 1 and 2"-' •
2 "-'-1 at level i + 1. For each node at level i having a common
ancestor at level j, the maximum number of nodes that will
be visited by GTEQUAL_ADJ_NEIGHBOR is (j - i) + (j - i)
= 2 • (j - i). Assuming that node P is equally likely to occur
at any level i and at any of the 2"-' • (2"-' -1) positions at
level i, then the average of the maximum number of nodes
visited by GTEQUAL_ADJ_NEIGHBOR is

E~=7o 1 E?=,+, 2"-' - 2 "-j - 2 (/ - i) (1)
E~.7o 1 2"-' - (2 " - ' - 1)

Making use of the following identities in the numerator of (1)
leads to (4):

j n + l - i
~-' ~ - 2 2~_I_ , (2)

Ep~l_, 1 (1)
2- 3---2 - 1 - ~ (3)

4/a • 22n+2- (n + 1) • 2 "÷2- 4/3 (4)

The denominator of (1) can be
ner to yield

1/3 . (22-*2 _

manipulated in a similar man-

3 • 2 "+1 + 2) (5)

Substituting (4) and (5) into (1) results in

3 • (n - 1) • 2 n+2 + 12
4 -

2 2n+2 - - 3 • 2 "+1 + 2

4 as n gets large

< 4

Q.E.D.

690 Communications of the ACM September 1983 Volume 26 Number 9

I~MMA 3: The average of the maximum number of nodes
visited by each invocation of GTEQUAL_CORNER_NEIGH-
BOR is less than 1%.

PROOF: Given a node P at level i and a diagonal direction C,
there are (2 ~-~- 1) 2 possible positions for node P and a neigh-
bor at level i in direction C. Of these (2 "-1 - 1) 2 neighbor
pairs, 4 o • (2 • (2 "-~- 1) - 1) have their nearest common
ancestor at level n, 41 - (2 • (2 ~-H -1) - 1) at level n - 1 ; . . .
and 4 ~-~-1 • (2 • (2 "-~-{"- j - l1-1) - 1) at level i + 1. In order to
see this, consider Figure 9 where a grid is shown for n = 3. If
all BLACK and WHITE nodes are at level 0, then for a neigh-
bor in the NE direction we see that nodes along the fifth row
and fourth column have their nearest common ancestor at
level 3 (i.e., 13 nodes labeled 1-13). Continuing the process for
the NW, NE, SW, and SE quadrants of Figure 9, we find that
all neighbor pairs contained exclusively within these quad-
rants have their nearest common ancestor at a level ~ 2. In
particular, for the NW quadrant, nodes along the third row
and second co lumn have their nearest common ancestor at
level 2 (i.e., 5 nodes labeled 14-18). The NE, SW, and SE
quadrants are analyzed in a similar manner. This process is
applied to the four subquadrants of the quadrants to obtain
the neighbor pairs whose nearest common ancestor is at level
1. Note that we had to consider every row in the image when
analyzing diagonal neighbor pairs whereas we only needed to
consider one row or column when analyzing neighbor pairs
in the N, E, S, and W directions. This is necessary because for
diagonal neighbors, each row in the image has a different
number of neighbor pairs with a common ancestor at a given
level while this number is constant for each row or column
when considering neighbor pairs in the horizontal and verti-
cal directions.

For each node P at level i having a common ancestor at
level j, the max imum number of nodes that will be visited by
GTEQUAL_CORNER_NEIGH.BOR is (j - i) + (j - i) = 2 • (j
- i). Assuming that node P is equally likely to occur at any

17 8 22

14 15 16 9 19 20

18 10 23

1 2 3 4 5 6

27 11 32

24 25 26 12 29 30

28 13 33

21

FIGURE 9. Sample grid illustrating blocks whose nodes are at level 0
and whose nearest common ancestor is at level < 2 when attempting
to locate a NE neighbor.

MSEA~N C O m ' l ~ ~

level i and at any of the (2 ~-i- 1) 2 p o s i t i o n s at level i, then the
average of the m a x i m u m n u m b e r of nodes visited by
GTEQUAL_CORNER_ NEIGHBOR is

EP~ 1 E~i+l 4 ~-i • (2. (2 ~-+-t~-j) - 1) - 1) • 2 • (j - i)
Xp~o 1 (2n_ , _ 1) 2 (6)

Making use of the following identities in addition to those of
(2) and (3) in the numerator of (6) leads to (9) (for further
details, see [24]):

~ l - J J 1 (4 3 • (n - l - i) + 4)
2~- 3 = ~ . _ ~-:~_~

E~:o 1-'1 4 (1 ~)
2 2i 3

(7)

(8)

1A • 2 2 " ~ - (n + 1) - 2n+3+ n2 + 11A • n + a / 9 (9)

The denominator of (6) can be manipulated in a similar man-
ner to yield

z/3 • (2 2n+2 - - 3 • 2 n+2 q- 3 • n + 8) (10)

Substituting (9) and (10) into (6) results in

16 (6 • n - 1 0) • 2 n+2 - 3 • n 2 + 5 • n + 40
3 22n+2 -- 3 • 2 n+2 + 3 • n + 8

16 < - -
3

Q.E.D.

It is also useful to obtain the number of nodes in the quad-
tree. Letting B and W correspond to the number of BLACK
and WHITE, respectively, leaf nodes in the quadtree we have

LEMMA 4: The number of nodes in a quadtree having B and W
leaf nodes is bounded by 4/3 • (B + W).

PROOF: See Lemma 1 in [18].
We can now prove our main result.

THEOREM 3: The average execution t ime of the QMAT com-
putation algorithm is O(B).

PROOF: From Lemmas 2 and 3 we have that for each side and
corner of a BLACK node, GTEQUAL_ADJ_NEIGHBOR and
GTEQUAL_CORNER_NEIGHBOR result in an average of 4
+ 1% = 91/3 nodes being visited. There are four sides and
corners for each BLACK node. Thus the four invocations of
these procedures contribute 4B • 91/3. From Lemma 4, we
have that the number of nodes in the quadtree is bounded by
% • (B + W). This quantity correlates with the work per-
formed by procedure QMAT since each node in the quadtree
is visited by the traversal. Summing up these values we have
4 . B • 91/3 + 4/3 • (B + W) = 4/3 • (29 • B + 14/) which is of
order B. Q.E.D.

The algorithm has an execution time complexity of the
same order of magnitude as the one developed in [23] for the
computation of the chessboard distance transform, i.e., 4/3 •
(43 • B + W). Observe that a direct implementat ion of Algo-
r i thm A of Section 3 would require, at worse, work propor-
tional to B T 2 since sorting is required (a B • log B operation)
as well as checking every BLACK block against every other
BLACK block for subsumption. Actually, it is conceivable that
a B • log B procedure for subsumption exists which would
render Algorithm A to be O(B . log B) which would still be
inferior to Algorithm A.

l

September1983 Volume26 Number9 Communications of the ACM 691

!~!/i
RESF.~CH CONTNBUllONS

6. CONCLUDING REMARKS
The concept of a skeleton and medial axis transform have
been adapted to images represented by quadtrees and have
resulted in the definition of a new data structure termed the
QMAT. The QMAT results in a partition of the image into a
set of nondisjoint squares having sides whose lengths are
sums of powers of 2 rather than, as is the case with quadtrees,
a set of disjoint squares having sides of lengths which are
powers of 2. An algorithm for the computation of the QMAT
given a quadtree representation has been presented and
shown to have an average execution time of O(B) where B
corresponds to the number of BLACK blocks comprising the
objects of the image.

The algorithm and its analysis are somewhat similar to
those used in the computation of the chessboard distance
transform [23]. The difference is that for each BLACK node
only its neighbors of greater or equal size needed to be exam-
ined and not their progeny as was the case in [23]. A new
result of our analysis is that finding a corner neighbor is
approximately 4/3 as complex as finding an adjacent neighbor.
The algorithm in its present form could not be combined with
the computation of the chessboard distance transform and
done in one pass, i.e., it requires a separate traversal of the
tree, since computation of the QMAT relies on knowledge of
the distance transform values of a node's neighbors.

The algorithm can be varied in several ways. First, in its
present state, procedure QMAT overwrites the existing quad-
tree. It may be desirable to have an algorithm which con-
structs the QMAT while retaining the original quadtree. This
is quite simple and can be accomplished by modifying proce-
dure QMAT to allocate a node each time it visits one in the
original quadtree. Note that our analysis assumed that all
eight neighbors of a node are visited while attempting to
ascertain if it is subsumed by one of its neighbors. In fact, we
cease processing as soon as subsumption is found to occur.
Another observation is that when overlap exists (e.g., in Fig-
ure lb, block 10 is the N W neighbor of block 12 and is also its
northern neighbor) we need not invoke GTEQUAL_ADJ_
NEIGHBOR or GTEQUAL_CORNER_NEIGHBOR for the
neighbor which overlaps the two directions. However, such a
variation is of little value since the number of neighbors can
be shown to range between 5 and 8.

Our view of the quadtree medial axis transform as an
alternative image representation serves to reinforce the appro-
priateness of the chessboard distance metric for quadtrees. In
particular, the analogy between squares and circles as the
basis for the medial axis transform of a quadtree is notewor-
thy. Also, notice the similarity between the process of obtain-
ing the QMAT and thinning [15] an image.

The advantage of the QMAT is in its compactness (e.g.,
recall Figures 1 and 5) and in its decreased sensitivity to shift
(recall Figures 6 and 7). In the worst case, the QMAT is
identical to the quadtree. The medial axis transform is often
used as an alternative to a border representation because of its
amenability to the determination of whether or not a given
point lies within a particular region [15]. This is not a problem
when the quadtree representation is used. However, in the
case of the QMAT this is slightly more complex since a
WHITE block does not necessarily imply that the entire space
spanned by the block is WHITE. In such a case the WHITE
node's surrounding neighbors will have to be examined.

In Section 2, we saw that there are two ways of defining a
quadtree skeleton with a small difference in the QMAT al-
though the QMAT was shown to require the same number of

nodes in either case. Using Property (3) resulted in a simpler
QMAT construction algorithm while using Property (3') re-
suits in obtaining a quadtree skeleton of less than or equal
size. Since we are primarily interested in storage compactness
in the form of a tree, the difference was not important. How-
ever, we also wish to be able to reconstruct the quadtree from
its QMAT. In such a case, the reconstruction process is con-
ceivably faster given a quadtree skeleton definition that incor-
porates Property (3') since the quadtree skeleton is less than
or equal in size (e.g., 2 nodes versus 3 nodes in Figures 4b and
4c respectively). In essence, to reconstruct a quadtree from its
QMAT, we must traverse the QMAT, and for each BLACK
node ti add all elements of S(t~) to the quadtree. This can be
done by using the neighbor techniques employed in the con-
struction of a quadtree from its run length [17] and boundary
code [20] representations. See [25] for an algorithm to recon-
struct a quadtree from its QMAT with a QMAT defined using
Property (3).

Fruitful subjects for future research include the investiga-
tion of algorithms for set operations such as intersection and
union as well as connectivity and perimeter using the QMAT
representation. A more thorough study of the relationship
between the amount of space occupied by a quadtree and its
QMAT would also be welcome.

A c k n o w l e d g m e n t s . I would like to thank Kathryn Riley,
Janet Salzman, and Pat Young for help with the preparation of
the manuscript. I have benefited greatly from discussions with
Charles R. Dyer, Shmuel Peleg, and Azriel Rosenfeld.

REFERENCES
1. Blum, H. A transformation for extracting new descriptors of shape. In

Wathen-Dunn. W., ed.. Models for the Perception of Speech and Vis-
ual Form. M.I.T. Press, Cambridge. Massachusetts, 1967. pp. 362-380.

2. Duda, R.O. and Hart, P.E. Pattern Classification and Scene Analysis,
Wiley-lnterscience, New York, 1973.

3. Dyer, C.R. Computing the Euler number of an image from its quad-
tree, Comput. Gr. Image Process. 13, 3 (1981). 270-276.

4. Dyer. C.R. Rosenfeld, A., and Samet, H. Region representation:
Boundary codes from quadtrees, Commun. ACM 23, 3 (March 1980),
171-179.

5. Hunter. G.M. Efficient computation and data structures for graphics,
Ph.D. dissertation, Department of Electrical Engineering and Com-
puter Science, Princeton University. Princeton, New lersey, 1978.

6. Hunter, G.M. and Steiglitz. K. Operations on images using quadtrees,
IEEE Trans. Pattern Anal. Machine lntell. 1, 2 (1979}, 145-153.

7. Hunter, G.M., and Steiglitz, K. Linear transformation of pictures rep-
resented by quadtrees, Comput. Gr. Image Process. 10, 3 (1979), 289-
296.

8. Jackins, C.L. and Tanimoto, S.L. Octrees and their use in representing
three-dimensional objects, Comput. Gr. Image Process. 14, 3 (1980),
249-270. ~'

9. Klinger, A. Patterns and search statistics. In Optimizing Methods in
Statistics, J. S. Rustagi, ed., Academic Press, New York, 1971.

10. Klinger, A. and Dyer, C.R. Experiments in picture representation"
using regular decomposition. Comput. Gr. Image Process. 5, I (1976),
68-105.

11. Meagher, D. Geometric modeling using octree encoding, Comput. Gr.
Image Process. 19, 2 (1982), 129-147.

12. Naur, P. (ed.), Revised report on the algorithmic language ALGOL 60,
Commun. ACM, (May 1960), 299-314.

13. Newman, W.M. and Sproull, R.F. Principles oflnteractive Computer
Graphics, 2nd ed., McGraw-Hill, New York, 1971.

14. Pfaltz. J.L. and Rosenfeld, A. Computer representation of planar re-
gions by their skeletons, Commun. ACM 10, 2 (February 1967), 119-
122.

15. Rosenfeld, A. and Kak, A.C. Digital Picture Processing, Academic
Press, New York, 1976.

16. Rutovitz, D. Data structures for operations on digital images. In Picto-
rial Pattern Recognition. G. C. Cheng et al., eds., Thompson Book Co.,
Washington, DC, 1968, 105-133.

17. Samet, H. Region representation: Quadtrees from boundary codes,
Commun. ACM, 23.2 (March 1980), 163-170.

692 Communications of the ACM September 1983 Volume 26 Number 9

18. Samet, H. Computing perimeters of images represented by quadtrees,
IEEE Trans. Pattern Anal. Machine lntell. 3, 6 1981, 683-687.

19. Samet, H. Connected component labeling using quadtrees, J. ACM 28,
(July 1981), 487-501.

20. Samet, H. An algorithm for converting rasters to quadtrees, IEEE
Trans. Pattern Anal. Machine Intell. 3, (1981), 93-95.

21. Samet, H. Region representation: quadtrees from binary arrays, Corn-
put. Gr. Image Process. 13, 1980.88-93.

22. Samet, H. Algorithms for the conversion of quadtrees to rasters, Com-
puter Science TR 979, University of Maryland, College Park, Mary-
land, November 1980.

23. Samet, H. Distance transform for images represented by quadtrees,
IEEE Trans. Pattern Anal. Machine lntell. 4, 3 (1982), 298-303.

24. Samet, H. A quadtree medial axis transform, Computer Science TR-
803. University of Maryland, College Park, Maryland, August 1979.

25. Samet. H. Reconstruction of quadtrees from quadtree medial axis
transforms, Computer Science TR-1224, University of Maryland Col-
lege Park, Maryland, October 1982.

26. Shneier. M. Path-length distances for quadtrees, Inf. Sci. 23, 1 1981,
49-67.

27. Shneier, M. Calculations of geometricproperties using quadtrees,
Comp. Gr. Image Process. 16, 3 (1981), 296-302.

RESEARCH CONTRIBUTIONS

28. Sutherland, I.E., Sproull, R.F., and Schumaker, R.A. A characteriza-
tion of ten hidden surface algorithms, ACM Comput. Surv. 6, 1 (1974),
1-55.

29. Warnock, J.E. A hidden surface algorithm for computer generated
halftone pictures, Computer Science Department, TR 4-15, University
of Utah, June 1969.

30. Yau, M. and Srihari, S.N. Recursive generation of hierarchical data
structures for multidimensional digital images, Proceedings IEEE PRIP
81, Dallas, Texas, 1981, 42-44.

CR Categories and Subject Descriptors: E.1 [Data Structures]: Trees;
1.3.5 [Computer Graphics]: Computational Geometry and Object Model-
ing--geometric algorithms, object representations; 1.4.2 [Image Process-
ing]: Compression--exact coding: 1.4.7 [Image Processing]: Feature Meas-
u rement -s ize and shape, 1.2.10 [Artificial Intelligence]: Vision and
Scene Understanding--representations, data structures, and transforms,
shape, motion

General Terms: Algorithms
Additional Key Words and Phrases: quadtrees, skeletons, size, shape,

medial axis transforms

Received 7/81: revised 5/82; accepted 9/82

ii~iiiiiil
ii!i!~!!i
iiiiiii!!i~

Abstracts from Other ACM Publications
ACM Transactions on Mathematical Software

A Quantitative Evaluation of the Feasibility of, and Suitable Hardware
Architectures for, an Adaptive, Parallel Finite.Element System
Pamela Zave and George E. Cole,]r.

An experimental implementation of a design for an adaptive, parallel
finite-element system is described. The implementation was used to sim-
ulate the performance of this design on several microprocessor-based
multiprocessor architectures. The real-time speedup observed was archi-
tecture-independent, but limited. Nevertheless, the approach to data seg-
mentation and management worked well and has interesting applica-
tions.
For Correspondence: P. Zave, Bell Laboratories, Room 3D-426, Murray
Hill, NJ 07974.

The Numerical Solution of Separably Stiff Systems by Precise
Partitioning
David S. Watkins and Ralph W. Hansonsmith

Most codes for solving stiff systems of ordinary differential equations
spend most of their time solving systems of linear equations with coeffi-
cient matrix I - hill, where I is the Jacobian matrix of the system. The
precise partitioning method solves these systems approximately by parti-
tioning the Jacobian into stiff and nonstiff parts. The method resembles a
method proposed by Enright and Kamel [ACM Transactions on Mathe-
matical Software 5, 4(Dec. 1979), 374-385], but differs in that the partition
of the Jacobian matrix is more precise. In this paper the method is imple-
mented by revising a popular code. Numerical results indicate that for
systems of more than about ten equations with few stiff eigenvalues, the
precise partitioning method can save CPU time compared to the unmodi-
fied code.
For Correspondence: D. S. Watkins, Dept. of Pure and Applied Mathemat-
ics, Washington State University, Pullman, WA 99164-2930.

The Multifrcntal Solution of Indefinite Sparse Symmetric Linear
Equations
I. S. Duff and]. K. Reid

We extend the frontal method for solving linear systems of equations by
permitting more than one front to occur at the same time. This enables
us to develop code for general symmetric systems. We discuss the organi-
zation and implementation of a multifrontal code which uses the mini-
mum-degree ordering and indicate how we can solve indefinite systems
in a stable manner. We illustrate the performance of our code both on the
IBM 3033 and on the CRAY-1.

For Correspondence: I. S. Duff, Computer Science and Systems Division,
AERE Harwell, Oxford OXll ORA, England.

S e p t e m b e r Issue

Spece-Efficient Implementations of Graph Search Methods
Robert E. Tarjan

Several space-efficient implementations of the two most common and
useful kinds of graph search, namely, breadth-first search and depth-first
search, are discussed. A straightforward implementation of each method
requires n bits and n + O(1) pointers of auxiliary storage, where n is the
number of vertices in the graph. We devise methods that need only 2n +
m bits, of which m are read-only, where m is the number of edges in the
graph. We save space by folding the queue or stack required by the
search into the graph representation; two of our methods for depth-first
search are variants of the Deutsch-Schorr-Waite list-marking algorithm.
Our algorithms are expressed in a version of Dijkstra's guarded command
language.
For Correspondence: R. E. Tarjan, Bell Laboratories, Murray Hill, NJ
07974.

A Sparse Matrix PackagemPart I1: Special Cases
I. M. McNamee

A set of subroutines is described for combining pairs of sparse matrices in
special cases in which one of the matrices may be regarded as full, and /
or a vector, and/or an elementary matrix. Tests show that in many cases
the new routines are faster than an earlier set of more general-purpose
routines. Also, a new (faster) routine is given for multiplying two sparse
matrices.
For Correspondence: J. M. McNamee, Dept. of Computer Science and
Mathematics, Atkinson College, York University, Downsview, Ontario
M3J 2R7, Canada.

HURRY: An AcceleraUon Algorithm for Scalar Sequences and Series
Theodore Fessler, William F. Ford and David A. Smith

We present a general acceleration algorithm for alternating and mono-
tone scalar sequences and series. The main components of the algorithm
are the subroutines WHIZ and HURRY. WHIZ is a recursive implementa-
tion of Levin's u transform, and HURRY (which calls WHIZ) estimates
truncation and round-off errors to make a near-optimal stopping decision
and provide a very good estimate of the accuracy of the computed an-
swer.

We also present a test driver program that demonstrates the capabili-
ties of HURRY when applied to a wide variety of convergent and diver-
gent sequences and series.
For Correspondence: T. Fessler, Computer Services Division, NASA
Lewis Research Center, Cleveland, OH 44135.

September 1983 Volume 26 N u m b e r 9 Communicat ions o f the A C M 693

