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1. INTRODUCTION 
There are a number  of methods of representing images [15] 
among which are borders, arrays, and skeletons. We are inter- 
ested in the quadtree [9]. It is interchangeable with borders, 
arrays, and runs [4, 17, 20-22]. Methods for the computation 
of geometrical properties such as connectivity, perimeter, ge- 
nus, and distance exist for quadtrees [3, 18, 19, 23, 26]. In this 
paper, we demonstrate the usefulness of the chessboard dis- 
tance transform in computing the skeleton [23] and medial 
axis transform [1, 2, 14, 15] of an image represented by a 
quadtree. 

The quadtree is a member  of a class of region representa- 
tions that involves various types of "maximal blocks" that are 
contained in a given region. For example, we can represent a 
region R as a l inked list of the runs (of pixels) in which R 
meets the successive rows of the army [16]. Here each "block" 
is a 1-by-m rectangle, where  m is the run  length; the runs are 
the largest such blocks that R contains, and R is determined 
by specifying the initial points (or centers) and lengths of the 
runs. The two-dimensional analog of the run  length represen- 
tation is called the medial axis transformation [1, 14]. In this 
representation, R is represented by a set of maximal  blocks 
(square or any other shape) that it contains; R is determined 
by specifying the centers and radii of those blocks. 

The quadtree approach to image representation is an at- 
tempt to exploit the maximal  block concept in a more sys- 
tematic manner.  Given a 2 n x 2 n array of uni t  pixels, we 
repeatedly subdivide the array into quadrants, subquadrants,  
etc., until  we obtain blocks (possibly single pixels) which con- 
sist entirely of single values (e.g., gray level). This process is 
represented by a tree of out-degree 4 in which the root node 
represents the entire array, the four sons of the root node 
represent the quadrants, and the terminal  nodes correspond 
to those blocks of the array for which no further subdivision 
is necessary. The nodes at level K (if any) represent blocks of 
size 2 ~ x 2 ~ and are often referred to as nodes of size 2 K. Thus 
a node at level 0 corresponds to a single pixel in the image, 
while a node at level n is the root of the quadtree. For 
example, Figure l b  is a block decomposition of the region in 
Figure l a  while Figure l c  is the corresponding quadtree. In 
general, we will be dealing with two values, I and O, where  
BLACK and WHITE square nodes in the tree represent blocks 
consisting entirely of l ' s  and O's respectively. Circular nodes, 
also termed GRAY nodes, denote nonterminal  nodes. 
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FIGURE 1• An image, its maximal blocks, the corresponding quadtree, the chessboard distance transform, the block decomposition of the QMAT, and 
the GMAT. Blocks in the image and in the QMAT are shaded. (a) Sample image• (b) Block decomposition of the ima9e in (a). (c) Ouadtree 
representation of the blocks in (b). (d) Chessboard distance transform of (b). (e) Block decomposition of the QMAT of (b). Radius values are within 
parentheses. (f) OMAT representation of the blocks in (b). Radius values are within parentheses. 
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The quadtree finds a number of uses in computer graphics 
and image processing. In particular, Warnock's algorithm [13, 
28, 29] for hidden surface elimination is based on such a 
principle--i.e., it successively subdivides the picture into 
smaller and smaller squares in the process of searching for 
areas to be displayed. It is relatively compact [10] and well- 
suited to operations such as union and intersection [5, 6, 27]. 
It has been used to develop a variety of algorithms for manip- 
ulation of objects in two dimensions [7] as well as three 
dimensions [8, 11, 30]. 

The main result of this paper is the definition of a new data 
structure termed the QMAT which is a quadtree skeleton 
with a set of distance values. It yields a partition of the image 
into a set of nondisjoint squares having sides whose lengths 
are sums of powers of 2. This is in contrast with the quadtree 
which is a partition of an image into a set of disjoint squares 
having sides of lengths which are powers of 2. Our motivation 
is not to study skeletons for the usual purpose of obtaining an 
approximation to an image. Thus, our decisions with respect 
to the type of distance metric [2, 15] that we employ (i.e., a 
chessboard distance metric rather than a Euclidean distance 
metric) are not influenced by customary considerations such 
as sensitivity to relative orientation, etc. Instead, the quadtree 
skeleton is shown to yield an exact representation of the 
image. It is used because it is observed to yield space effi- 
ciency and a decreased sensitivity to shifts in contrast with 
the quadtree. We also observe that the QMAT can be used to 
solve most problems which can be solved using the quadtree 
representation. Furthermore, the QMAT may be useful in 
performing operations such as propagation, shrinking, and 
matching [15]. 

Section 2 contains a discussion of skeletons and medial axis 
transforms and their adaptation to the quadtree. In Section 3, 
we discuss a number of algorithms for the computation of the 
QMAT and prove their equivalence. Sections 4 and 5 contain 
a formal description of the best of these algorithms and an 
analysis of its execution time. The chosen algorithm is moti- 
vated by a close inspection of the geometrical properties of the 
quadtree method of representation. We use a variant of 
ALGOL 60 [12] in the formal presentation of the algorithm. 
Reconstruction of quadtree from its QMAT is straightforward 
and is not treated here. 

2. MEDIAL AXIS TRANSFORMS, QUADTREES, AND 
SKELETONS 
We are given an image where the set of points in a certain 
region is labeled S and the sets of points outside of the region 
is labeled S (analogous to BLACK and WHITE respectively). 
We say that for a point x and a set V, the distance (according 
to a suitably defined distance metric, d) fl'om x to the nearest 
point of V is d(x, V) = min{d(x, Y) IY ~ V}. Two points, x and 
y, are said to be neighbors if d(x, y) = 1. We are interested in 
a subset of S, T, such that all elements of T have a distance 

f rom Swhich  is a local maximum. In other words, for each 
point in T, no neighboring point in S but not in T has a 
greater distance from S. The set of points comprising T is said 
to constitute a skeletal description of S. As an example, con- 
sider the rectangle in Figure 2 whose skeleton consists of line 
segments labeled a, b, c, d, and e. If we know the points of the 
skeleton and their associated distance values, then we can 
reconstruct S exactly. The set of points comprising the skele- 
ton and their associated values is termed the medial axis 
transform (MAT). The MAT of S provides a concise method of 
defining and representing S. For example, using a Euclidean 
distance metric [2, 15], the MAT corresponding to a circle is a 

c 

FIGURE 2. A rectangle and its skeleton using de. 

point at its center having a distance value equal to the circle's 
radius. 

Clearly, the definition of the distance metric plays an im- 
portant role in determining the form of the MAT. The most 
commonly known distance metric is the Euclidean distance: 

d~(p, q) = 4(px - qx) 2 + (py - qy)2 

whose maximal blocks are discs. Two other metrics which 
are more commonly known in digital picture processing are 
the Absolute Value distance (also known as the city block 
distance): 

dA(p, q) = [px -- q~[ + [Py -- qy[ 

whose maximal blocks are diamonds, and the Maximum 
Value distance (also known as the chessboard distance): 

dM(p, q) = max  {Ipx - qx[, IPy - qyl} 
whose maximal blocks are squares. Note that in any case, the 
MAT determines the entire image although it is true that a 
point in the image may lie in more than one maximal block. 
Figures 3c and 3d show the MATs of the rectangle of Figure 
3a using dA and dM respectively. Figure 3b shows dA and dM 
for the rectangle, which in this example, are identical. Note 
that the MATs in Figures 2c and 2d have distance values that 
are one less than the values in Figure 2b. This is due to the 
MAT being defined as extending to the last pixel within the 
image rather than to the first pixel outside the image [15]. 

Maximal blocks can be of any size and at any position. 
Thus, they are somewhat unwieldy as primitive elements for 
representation purposes since the process of determining 
them may be complex. The quadtree approach to image rep- 
resentation is an attempt to exploit the maximal block con- 
cept in a more systematic manner by constraining the sizes of 
the blocks and the positions of their centers. 

In [23, 26], the concept of distance is applied to a quadtree. 
In particular, it was shown in [23] that the chessboard dis- 
tance metric is especially suitable for a quadtree since it has 
the property that given a point p, the set of points {q} such 
that d(p, q) _< t is a square. The chessboard distance transform 
for a quadtree, D/ST, was defined as a function that yields for 
each BLACK block in the quadtree the chessboard distance 
from the center of the block to the nearest point which is on a 
BLACK-WH/TE border. More formally, letting x be the center 
of a BLACK block b, z be a point on the border of the WHITE 
block W (say B(W)), we have: 

F(b, W) = minzee(wj d(x, z) 

DIST(b) = minwF(b, W) 

We also say that D/ST of a WHITE block is zero and that the 
border is BLACK for the purpose of the computation of F and 
DIST. 

We are now ready to define the Quadtree Medial Axis 
Transform (QMAT). We first define the quadtree skeleton. Let 
the set of BLACK blocks in the image be denoted by B. For 
each BLACK block, b,  let S(b~) be the part of the image 
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FIGURE 3. A binary array representation of an image, its distance 
transform, and its MAT. (a) Image. (b) d, and d~ for the image in (a). 
(c) MAT of the image in (a) usi,g d,. (d) MAT of the image in (a) using 
d,,. 

spanned by a square with side width 2*DIST(bi) centered 
about b~. The quadtree skeleton consists of the set, T, of 
BLACK blocks satisfying the following properties: 

(1) area(B) = UNION(S(ti)) 
(2) for any ti E T ]bk E B(bk ¢ tj) ~ S (ti) - S(bk) 
(3) Vb~ E B 3tj E T ~ S(b~) _ S(t~) 

Property (1) insures that the entire image is spanned by the 
skeleton. Property (2) is termed the subsumption property and 
we say that bj is subsumed by bk when S(b~) _ S(bk). Property 
(2) means that the elements of the quadtree skeleton are the 
blocks with the largest distance transform values. This is a 
stronger requirement than the stipulation that given tj E T ~]tk 
E T(k ~ j) ~ S(ti) __G S(tk) as will be seen below. Such a 
stipulation only insures that there are no extraneous elements 
with respect to subsumption of the image in a given quadtree 
skeleton. Property (3) insures that no block in B and not in T 
requires more than one element of T for its subsumption-- 
e.g., one half of the block is subsumed by one element of T 
and the other half is subsumed by another element of T. 

TtmOg~.M 1: The quadtree skeleton of an image is unique. 

PROOF: Assume that the quadtree skeleton is not unique. Let 
T1 and T2 both be quadtree skeletons of the same image, i.e., B 
= UNION(S(h~)) t~ E "/'1 and B = UNION(S(taj)) tzj E T2. Assume, 
without loss of generality, that 3t~k E "/'1 ~ hk ~ T2. Therefore, 
by Property (3) 3 t 2 / E  T2(t2/  ~= t~k) ~ S(t~k) _ S(t2/) .  However, 
this contradicts Property (2) which stipulates that for any tl~ 
"£1 ]bi ~ B(b~ ~ h~) ~ S(t,) _ S(b~). Hence, the quadtree 
skeleton of an image is unique. Q.E.D. 

The QMAT of an image is the quadtree whose BLACK nodes 
correspond to the BLACK blocks comprising the quadtree skele- 
ton and their associated chessboard distance transform va/ues. 
All remaining nodes in the QMAT are WH1TE and GRAY 
with distance value zero. For example, Figure ld  contains the 
chessboard distance transform corresponding to the region 
given in Figure la. Figures le and If  contain the block and 
tree representations respectively of the QMAT of Figure la. 

We now make the following observations with the aid of 
Figure 1. The squares spanned by the chessboard distance 
transform of the blocks of the QMAT have sides whose 

lengths are sums of powers of 2 and are not necessarily dis- 
joint. This is in contrast with the quadtree which is a parti- 
tion of an image into a set of disjoint squares having sides 

1 whose lengths are powers of 2. For example, Block 11 is 
1 
1 subsumed by both Blocks I and 15. 

Recall that the subsumption property, i.e., Property (2), 
means that the elements of the QMAT are the blocks with 
the largest distance transform values. For example, for Figure 
1, the quadtree skeleton consists of Blocks 1, 11, and 15 rather 
than Blocks 1, 12, and 15 since Block 12 is subsumed by 
Block 11. The latter result would have been legal had we 
defined the quadtree skeleton as the set, T, of BLACK blocks 
such that area (B) -- UNION(S(ti)) ti E T and for any tj E T ~]tk 
E T(k ¢ j) ~ S(tj) _ S(tk). Such a definition has several unde- 
sirable implications. First, it means that the quadtree skeleton 
of an image is no longer unique, e.g., for Figure 1 both [1, 11, 
15} and {1, 12, 151 would be legal quadtree skeletons. Second, 
it leads to a QMAT which contains more nodes, e.g., WHITE 
node N in Figure If  would be replaced by a GRAY node 
having BLACK son 12 and WHITE sons 30, 31, and 32. 

The fact that the border of the image is assumed to be 
BLACK results in minimizing the number of nodes in the 
QMAT. Without this assumption, Block 1 would be of radius 
4 and would not lead to the subsumption of Blocks 2, 3, 4, 8, 
9, and 10. Note that Blocks 5 and 11 are subsumed by Block 
15 anyway so that their subsumption is not dependent on our 
assumption. 

Before proceeding any further it is appropriate to make a 
few additional comments about Property (3) of the quadtree 
skeleton definition. This property does not yield a minimal set 
of blocks. For example, in the image of Figure 4a, Property (3) 
requires that the quadtree skeleton contain Blocks 5, 14, and 
15 while in actuality Blocks 5 and 15 are sufficient since 
together they subsume Block 14. Thus, if we were interested 
in a minimal set of blocks we would modify Property (3) as in 
(3') below: 

(3') 2It; E T B S(tj) C UNION(S(tk)) tk #= ti 

The reason we do not use the definition of a quadtree 
skeleton which yields the minimal set of blocks is twofold. 
First, by virtue of the definition of the QMAT, the tree size of 
the QMAT would be unaffected by using Property (3') instead 
of Property (3) since the only difference is that the additional 
blocks are represented by BLACK nodes rather than WH1TE 
nodes, e.g., node 14 in Figures 4b and 4c. That this is always 
true can be seen easily by observing that for a node to be 
extraneous by virtue of Property (3'), it must be subsumed by 
its neighbors which must themselves be BLACK. Thus the 
extraneous node when represented by a WHITE node cannot 
be merged with its neighbors to yield a larger node and must 
remain a part of the QMAT. Second, as will be seen in 
Section 3, the QMAT creation algorithm is considerably sim- 
pler when Property (3) is used. 

The QMAT representation can be used as an alternative 
data structure for the representation of an image. In particu- 
lar, it has the property that for any image it requires, at most, 
as many nodes as the quadtree. This is obvious when we 
recall that each node in the QMAT corresponds to one or 
more nodes of the quadtree and that each member of the 
quadtree skeleton is a node in the quadtree. Of course, the 
QMAT does require that the DIST value be stored with each 
node. As an example of the savings in storage, consider the 
image in Figure la. The QMAT, shown in Figure lf, requires 
17 nodes while the quadtree, shown in Figure lc, requires 57 
nodes. 
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FIGURE 4. An image and its corresponding QMATs using Properties (3) 
and (3') for the quadtree skeleton definitions. Blocks in the QMAT are 
shaded. (a) Image. The value of the chessboard distance transform is 
within parentheses. (b) QMAT of the image in (a) using Property (3). 
Radius values are within parentheses. (c) QMAT of the image in (a) 
using Property (3"). Radius values are within parentheses. 

An interesting property of the QMAT is that there is a class 
of images for which it requires a minimum number of nodes 
regardless of the image resolution. Clearly, if the image is all 
WH1TE or all BLACK, then both the quadtree and the QMAT 
require a single node. However, when a 2 n x 2 n image con- 
sists of a BLACK square of side length 2" - 1, then the 
advantage of the QMAT over the quadtree in terms of space 
utilization is at a maximum. For example, consider the image 
in Figure 5a and its quadtree and QMAT in Figures 5b and 
5c, respectively. The quadtree requires 45 nodes while the 
QMAT requires only 5 nodes. 

In fact, for any image of such a shape the QMAT requires 
only 5 nodes while the quadtree requires a number of nodes 
which depends on the maximum level of the tree. The exact 
number of nodes required for such a quadtree of level n can 
be obtained by use of the following recurrence relations. As- 
sume, without loss of generality, an image similar to that of 
Figure 5a, i.e., the largest block is in the NW quadrant. Let ti 
denote the number of nodes in a quadtree of level i and rH 
be the contribution made by the NE and SW quadrants of a 
quadtree of level i. 

{I ,_-0 
tt = + 1 + 2 . r i _ z  + t i -1  i ~-- 1 

~ 1  i = 0  
r , = - / 1  + 2  +2 . r i_ l  i > 1 

It can easily be shown that these relations have the following 
solutions: 

r, = 2 ` + 2  - 3 

ti = 2 `+3 - -  4 . i  - -  7 

To see this, we observe that 

r, = 3. Y~I--% 2J - 2'+1 

= 3-(2' - 1) + 2 i = 2 `+2 - -  3 

and substituting into t, we have 

t, = 2 + 2. (2 '+1 - 3) + t,-i = 4. ( 2 ' -  1) + ti-1 

Solving for t, we get 

t,=4-~..i=1 (2 j -  1) + 1 = 4 . ( 2  ' + 1 - 2 - i )  + 1 

---- 2 i + 3  - -  4 - i  - -  7 

Thus, for a quadtree of level n, the number of nodes that can 
be saved by using the QMAT representation is 2 n÷a - 4. n - 
12. For example, for n = 3, the difference is 40 nodes, i.e., a 
reduction by a factor of 15. 

The QMAT representation also has the property that the 
number of nodes necessary to represent an image is not as 
shift-sensitive as is the quadtree. This is a direct result of the 
fact that the QMAT always requires a number of nodes less 
than or equal to the quadtree. It is also quite apparent when 
we realize that the QMAT is most economical storage-wise 
vis-&vis the quadtree when large blocks are surrounded by 
smaller blocks which is normally ~he situation when a shift 
operation takes place. For example, when the image of Figure 
6a is shifted by one unit to the right yielding Figure 6d, its 
quadtree gets considerably larger. In particular, Figure 6b con- 
tains 17 nodes while Figure 6e, the quadtree corresponding to 
the shifted image, contains 49 nodes. However, the QMAT is 
not as sensitive to shifts since it always requires a number of 
nodes less than or equal to those contained in the quadtree. In 
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FIGURE 5. An image and its corresponding quadtree and OMAT 
illustrating the maximum compactness that can be achieved as a 
result of using the QMAT as a data structure. Blocks in the image 
are shaded. (a) Image. The value of the chessboard distance trans- 
form is within parentheses. (b) Quadtree representation of the im- 
age in (a). (c) OMAT representation of the image in (a). Radius 
values are written within parentheses. 

22 

17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 

Figure 6, the QMAT of Figure 6a, given in Figure 6c, is 
identical to the quadtree. However, the QMAT of the shifted 
image, given in Figure 6f, is considerably smaller than its 
corresponding quadtree as well as the QMAT of the image 
prior to the shift, i.e., 9 nodes versus 17 nodes. As another 
example, consider the image of Figure 7a which has a mini- 
mal nontrivial QMAT in terms of the number of nodes, i.e., 5 
nodes. Figure 7d is the result of shifting the image of Figure 
7a one unit to the right. Note that the new QMAT given in 
Figure 7f requires more nodes than the one corresponding to 
the unshifted image given in Figure 7c, i.e., 21 nodes versus 5 

nodes. However, this number is less than the number of 
nodes in the shifted quadtree as shown in Figure 7e, i.e., 21 
nodes for the QMAT versus 41 nodes for the shifted quadtree. 
Thus, we see that the compactness of the QMAT is also 
preserved when the image is subjected to shifts. 

3. ALGORITHMS FOR THE COMPUTATION OF THE 
QMAT 
Properties (2) and (3) of the quadtree skeleton definition of 
Section 2 suggest the following simple two-step algorithm 
(termed "A") for determining the QMAT. At the end of the 
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FIGURE 6. An image and its corresponding quadtree and QMAT, and the result of shifting it by one unit to the right. Blocks in the image are shaded. 
(a) Image. The value of the chessboard distance transform is within parentheses. (b) Ouadtree representation of the image in (a). (c) QMAT 
representation of the image in (a). Radius values are within parentheses. (d) The image in (a) shifted by one unit to the right. The value of the 
chessboard distance transform is within parentheses. (e) Ouadtree representation of the image in (d). (f) QMAT representation of the image in (d). 
Radius values are within parentheses. 

algorithm, the set T contains the BLACK blocks comprising 
the QMAT. 

Algorithm A 
1. Sort the BLACK blocks in increasing order by value of 

their chessboard distance transform forming the set T, 
i.e., DIST(t~) _< DJST(t~÷~) t~ E T 

2. Starting with i = 1: For each t~ E T ~ 3tj(i < j) and S(tf 
_ S(ti), remove t~ from T. 

From a computation complexity standpoint, Algorithm A is 
quite costly since it involves sorting the BLACK blocks as well 
as examining whether or not a block is subsumed by the 
remaining blocks. Instead, we use the following algorithm 
(termed "B") which traverses the quadtree in postorder, i.e., 
the sons of a node are visited first, and determines for each 
node corresponding to a BLACK block, P, whether S(P) C S(Q) 

where Q is one of P's eight neighbors in the N, NE, E, SE, S, 
SW, W, and NW directions. 

Algorithm B 
1. Sort the BLACK nodes in postorder, forming the set T. 
2. Starting with i = 1: For each t~ E T determine if 3ti(i 

j) E T ~ tj is a neighbor of ti in one of the directions {N, 
NE, E, SE, S, SW, W, NWI and S(ti) C S(tj), then remove ti 
from T. 

The remainder of the discussion elaborates on properties of 
Algorithm B. In general, whenever a BLACK block is sub- 
sumed by one of its neighbors, then it appears in the QMAT 
as a WHITE block. Once all the sons of a GRAY node have 
been processed, and if in the QMAT they all correspond to 
WHITE blocks, then the GRAY node is changed to correspond 
to a WHITE block (e.g., GRAY node N of Figure lc having 
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sons 30, 12, 31, and 32 is changed to correspond to a WHITE 
block in Figure lf). 

At this point, it is appropriate to examine the notion of 
subsumption in a more rigorous manner. Given adjacent 
nodes P and Q corresponding to BLACK blocks appearing at 
levels Lp and LQ respectively in the quadtree such that Lq > 
Lp, and letting D(P, Q) = DIST(Q) - 2 1' (Lq - 1) - 2 1' (Lp - 1), 
then P is said to be subsumed by Q if D(P, Q) = DIST(P). It 
should be clear that for P to be subsumed by Q, D(P, Q) 
cannot be greater than DIST(P) since this would contradict the 
definition of the chessboard distance transform, i.e., P would 
have a closer BLACK-WHITE border point than does Q al- 

though P is constrained by the value of D(P, Q) to be entirely 
contained in the square of side width 2*DIST(Q) centered at 
Q. Clearly, when D(P, Q) < DIST(P), P is not subsumed by Q. 

When D(P, Q) = DIST(P), there are two cases to consider. If 
DIST(P) = 2 T (Lp - 1), then P is adjacent to the outer border 
of S(Q) and thus no BLACK blocks can be subsumed by P 
(e.g., BLACK Block 9 in Figure lb  is adjacent to the outer 
border of the square spanned by Block 1). Thus, changing 
Block P from BLACK to WHITE will not affect the detection 
of subsumption of other nodes. 

However, if DIST(P) > 2 T (Lp - 1), i.e., the second case to 
be considered when D(P, Q) = DIST(P), then P is not adjacent 
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1(3) B C D 

FIGURE 7. An image having a minimal GMAT and its corresponding 
quadtree and QMAT, and the result of shifting it by one unit to the 
right Blocks in the image are shaded. (a) Image. The value of the 
chessboard distance transform is within parentheses. (b) Quedtree 
representation of the image in (a). (c) QMAT representation of the 
image in (a). Radius values are within parentheses. (d) The image in 
(a) shifted by one unit to the right. The value of the chessboard dis- 23(0) 
tance transform is within parentheses. (e) Quadtree representation of 
the image in (d). (f) QMAT representation of the image in (d). Radius (d) 
values are within p a ~  ~ ~ ~  
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to the outer border of S(Q). This means that some blocks 
which are subsumed by Q can only be detected by virtue of 
being subsumed by P since they are not adjacent to Q. Denote 
these blocks by U(P, Q). It can be shown that all elements of 
U(P, Q) satisfy the following properties: 

1. Q is larger than P. 
2. Each element of U(P, Q) is smaller than P. 
3. If Q is adjacent to P along side R of the BLACK block 

corresponding to P, then U(P, Q) is equal to the blocks 
subsumed by the opposite side, denoted by OPSIDE(R), 
of P's block. 

4. If Q abuts the corner formed by sides R and T of the 
BLACK block corresponding to P, then U(P, Q) is equal 
to the blocks subsumed by sides OPSIDE(R) and OP- 
SIDE(T) of P's block as well as the blocks subsumed by 
the corner formed by these sides of P's block. 

Properties (1)-(4) imply that all elements of U(P, Q) are in the 
space spanned by FATHER(P), i.e., they are in the region 
spanned by the brothers of P. This means that an algorithm 
that processes a GRAY son prior to its BLACK or WHITE 
brothers insures that the QMAT is formed by examining 
blocks for subsumption according to increasing size, i.e., 
smaller size first. As soon as a BLACK block is determined to 
be subsumed by its neighbor, its DIST and NODETYPE fields 
are changed to zero and WHITE respectively. This leads to 
the following result. 

LEMMA 1: Both Algorithms A and B result in a computation 
satisfying the definition of a quadtree skeleton, given in 
Section 2 and the QMAT of an image. 

PROOF: Algorithm A clearly satisfies Properties (1)-(3) of the 
definition since its steps are equivalent to the definition. To 
show that Algorithm B meets our requirements is slightly 
more complex. Properties (1) and (3) are satisfied since Algo- 
rithm B starts with the QMAT and the quadtree being identi- 
cal and then systematically removes nodes whose correspond- 
ing blocks are subsumed by others. Satisfaction of Property (2) 
is shown as follows. Algorithm B is based on the principle 
that each block is subsumed by a neighboring block. It exam- 
ines each adjacency and removes a BLACK block from the 
skeleton if it is subsumed by an adjacent block in the skele- 
ton, i.e., one that has not yet been removed by virtue of being 
subsumed by yet another larger adjacent block. Properties (1)- 
(4) of the case when D(P, Q) = DIST(P) and DIST(P) > 2 T (Lv - 
1) plus the fact that a GRAY son is processed before its 
BLACK and WHITE brothers insure that no block is removed 
from the skeleton before blocks that are subsumed by it. 
Thus, we see that no block in the QMAT is subsumed by 
another block in the quadtree. Recall from Section 2 that this 
is a stronger statement than not being subsumed by another 
node in the QMAT. Q.E.D. 

THEOREM 2.: Algorithms A and B are equivalent. 

PROOF: By Lemma 1, both Algorithms A and B compute the 
quadtree skeleton. Theorem I indicates that the quadtree 
skeleton of an image is unique and our result follows. Q.E.D. 

The equivalence of Algorithms A and B can also be seen by 
observing that they both start with the smallest BLACK 
blocks and attempt to determine if they are subsumed by 
other BLACK blocks. The key to the superiority of Algorithm 
B is that no formal sorting is required and also that blocks 
that cannot possibly subsume one another are not checked for 

subsumption, i.e., Algorithm B only examines a maximum of 
eight neighboring blocks while Algorithm A examines all pos- 
sible larger sized BLACK blocks. Also note the simplicity of 
Algorithm B that results from using Property (3) rather than 
(3') in the definition of a quadtree skeleton, since each block 
in the original image can only be subsumed in its entirety. 
Thus, there is no need to examine whether a node is sub- 
sumed by a set of other nodes, e.g., node 14 of Figure la is 
subsumed by nodes 5 and 15. 

4. FORMAL IMPLEMENTATION OF THE ALGORITHM 
Prior to describing our algorithm, it is useful to define our 
representation as well as some elementary operations. Let 
each node in a quadtree be stored as a record containing 
seven fields. The first five fields contain pointers to the node's 
father and its four sons, labeled NW, NE, SE, and SW. Given a 
node P and a son I, these fields are referenced as FATHER(P) 
AND SON(P,/) respectively. We can determine the specific 
quadrant in which a node, P, lies relative to its father by use 
of the function SONTYPE(P) which has a value of I if 
SON(FATHER(P),/) = P. The sixth field, NODETYPE, de- 
scribes the contents of the block of the image which the node 
represents, i.e., BLACK, WHrI'E, or GRAY. The seventh field, 
DIST, indicates the value of the chessboard distance transform 
for the node. This field is only meaningful for BLACK nodes. 
WHITE and GRAY nodes are said to have a DIST value of 
zero. Note that this is different from the concept of node 
distance, i.e., for a node at level i, n-i FATHER links must be 
ascended to reach the root of the tree. 

The four sides of a node's block are called its N, E, S, and W 
sides. They are also termed its boundaries and at times we 
speak of them as if they are directions. Figure 8 shows the 
relationship between the quadrants of a node's block and its 
boundaries. Given blocks P and Q, we say that Q is a neigh- 
bor of P when both of the following conditions are satisfied: 

1. P and Q share a common border, even if only a corner. 
2. If Q is a BLACK or WHITE block, then its size is greater 

than or equal to that of P, while if it is a GRAY block, 
then it and P are of equal size. 

For example, in Figure 1, BLACK nade 15 is the neighbor 
of BLACK node 11 in the eastern direction; similarly, GRAY 
node K is the eastern neighbor of node 15. Neighbors in the 
direction of a corner of a block are determined analogously, 
e.g., node 15 is a neighbor of BLACK node 14 in the NE 
direction and GRAY node M is a neighbor of node 15 in the 
SE direction. 

The expression of operations involving a block's quadrants 
and boundaries is facilitated by the following predicates and 
functions. ADJ(B,/) is true if and only if quadrant I is adjacent 
to boundary B of the node's block, e.g., ADJ(W, SW) is true. 
REFLECT(B,/) yields the SONTYPE value of the block of 
equal size that is adjacent to side B of a blockhaving SON- 

N 

NW NE 

W E 

SW SE 

S 
FIGURE 8. Relationship between a block's four quadrants and its 
boundaries. 
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TYPE value I, e.g., REFLECT(N, SW) = NW,  REFLECT(E, SW) 
= SE, REFLECT(S, SW) = NW,  and REFLECT(W, SW) = SE. 
CSIDE(B) is the side that is adjacent to side B in the clockwise 
direction, e.g., CSIDE(N) = E. COMMONSIDE(Q1, Q2) indi- 
cates the boundary of the block containing quadrants Q1 and 
Q2 that is common to them (if Q1 and Q2 are not adjacent 
quadrants, then the value of COMMONSIDE(Q1, Q2) is unde- 
fined), e.g., COMMONSIDE(NW, SW) = W. QUAD(S1, $2) is 
the quadrant bounded by boundaries $1 and $2 (if $1 and $2 
are not adjacent boundaries, then QUAD(S1, $2) is undefined), 
e.g., QUAD(N, W) = NW.  Similarly, OPQUAD(Q) is a quad- 
rant which is diagonally facing quadrant Q, e.g., 
OPQUAD(NW) = SE, OPQUAD(NE) = SW. 

The algorithm that is described is different from Algorithm 
B in that it has been modified to avoid having to process 
GRAY sons before processing their BLACK and WHITE broth- 
ers. Instead, whenever a BLACK block, P, has been found to 
be subsumed by an adjacent BLACK block, Q, then P's 
NODETYPE field is changed to WHITE but its DIST field is 
left alone. This ensures that application of the QMAT algo- 
rithm to any of P's yet unprocessed GRAY brothers will result 
in their subsumption by P if appropriate. Note that when Q is 
a genuine WHITE block, D(P, Q) is negative since DIST(Q) is 
zero, and thus P cannot be subsumed by Q, i.e., D(P, Q) < 
DIST(P). Once all of a GRAY node's sons have been processed, 
a check is made if they all correspond to WHITE blocks. If 
yes, then they and their father are replaced by a node having 
NODETYPE and DIST field values of WHITE and zero respec- 
tively. Otherwise, the DIST field of any son corresponding to a 
WHITE block is set to zero. 

The main procedure is termed QMAT and is invoked with 
a pointer to the root of the quadtree representing the image 
and an integer corresponding to the log of the diameter of the 
image (e.g., n for a 2 n × 2" image array). We assume that each 
block's distance has already been computed by a method 
such as that described in [23]. QMAT traverses the tree and 
controls the examination of the eight neighbors of each 
BLACK node. Note that our algorithm results in transforming 
the original quadtree to a QMAT by overwriting the original 
quadtree. This is not necessary. An alternative algorithm 
would create copies of the nodes while forming the QMAT. In 
fact, the only modification to our algorithm is to create a copy 
of each node prior to examining its neighbors. 

Procedure GTEQUAL_ADJ_NEIGHBOR locates a neighbor- 
ing node of greater or equal size along a specified side (e.g., N, 
E, S, or W). If the node is on the edge of the image, then no 
neighbor exists in the specified direction and NULL is re- 
turned (e.g., the western neighbor of node 1 in Figure lb). If 
the node is not on the edge of the image and no neighboring 
BLACK or WHITE node exists satisfying our size criteria, then 
a pointer to a GRAY node of equal size is returned (e.g., the 
eastern neighbor of node 1 in Figure lb yields a pointer to 
GRAY node B). Procedure GTEQUAL_CORNER_NEIGHBOR 
is analogous to GTEQUAL_ADJ_NEIGHBOR and locates a 
neighboring node of greater or equal size along a comer (e.g., 
NW, NE, SE, or SW). 

As an example of the application of the algorithm, consider 
the region given in Figure la. Figure lb is the corresponding 
block decomposition while Figure lc is its quadtree represen- 
tation. All of the BLACK nodes have labels ranging from 1 to 
20 while the WHITE nodes have labels ranging from 21 to 43. 
The GRAY nodes have labels ranging between A and N. The 
BLACK nodes have been labeled in the order in which their 
subsuming adjacencies were explored by procedure QMAT. 

Figure ld contains the chessboard distance transform corre- 
sponding to Figure lb. Figures le and If  contain the block 
decomposition of the QMAT and the quadtree representation 
of the QMAT corresponding to Figure lb respectively. 

procedure QMAT(P, LEVEL); 
/* Given a quadtree rooted at node P spanning a 2 T LEVEL 

x 2 1' LEVEL space, find its corresponding quadtree medial 
axis transform */  

value node P; 
value integer LEVEL; 
integer L; 
quadrant I; 
direction D; 
if BLACK(P) then 

begin 
for D in {'N', 'E', 'S', 'W'I do 

begin 
L *-  LEVEL; 
GTEQUAL_ADJ_NEIGHBOR(P, D, Q, L); 
if not NULL(Q) and 

DIST(Q) - 2 1' (L - 1) - 2 T (LEVEL -1) = 
DIST(P) then 
begin/* P is subsumed by its neighbor Q */ 

NODETYPE(P) ~-- 'WHITE'; 
return; 

end; 
L ~-- LEVEL; 
GTEQUAL_CORNER_NEIGHBOR( 

P, QUAD(D,CSIDE(D)), Q, L); 
if not NULL(Q) and 

DIST(Q) - 2 1' (L - 1) - 2 T (LEVEL - 1) 
=DIST(P) then 
begin/* P is subsumed by its neighbor Q */ 

NODETYPE(P) ,-- 'WHITE'; 
return; 

end; 
end; 

end 
else if GRAY(P) then 

begin 
for I in {'NW', 'NE', 'SE', 'SW'} do 

QMAT(SON(P,/), LEVEL - 1); 
if WHITE(SON(P, 'NW')) and WHITE(SON(P, 'NE')) and 

WHITE(SON(P, 'SE')) and WHITE(SON(P, 'SW')) then 
begin/* Merge the four sons */ 

NODETYPE(P) ,--'WHITE'; 
for I in {'NW', 'NE', 'SE', 'SW'I do 

begin 
RETURNTOAVAIL (SON(P,/)); 
SON(P, I) ~-- NULL; 

end; 
end 

e lse /*  All four sons are not WHITE or subsumed */ 
begin 

for I in {'NW', 'NE', 'SE', 'SW'I do 
begin 

if WHITE(SON(P,/)) then 
DIST(SON(P,/) ,-- Q; 

end; 
end; 

end; 
end;/* WHITE nodes are left alone */ 
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procedure GTEQUAL_ADJ_NEIGHBOR(P, D, Q, L); 
/* Return in Q the neighbor of node P in horizontal or verti- 

cal direction D which is greater than or equal in size 
to P. If such a node does not exist, then a GRAY node of 
equal size is returned. If this is also impossible, then the 
node is adjacent to the border of the image and NULL is 
returned. L denotes the level of the tree at which node P is 
initially found and the level of the tree at which Q is 
finally found * /  

value node P; 
reference node Q; 
value direction D; 
reference integer L; 
L ~---L + 1; 
if not NULL(FATHER(P)) and ADJ(D, SONTYPE(P)) then 

/*  Find a common ancestor */  
GTEQUAL_ADJ_NEIGHBOR(FATHER(P), D, Q, L/ 

else Q ~-- FATHERIP); 
/* Follow the reflected path to locate the neighbor * /  
if not NULL(Q) and GRAY(Q) then 

be~n 
Q ~ SON(Q, REFLECT(D, SONTYPE(P))); 
L ~--L - 1; 

end; 
end; 

proo~lure GTEQUAL_CORNER_NEIGHBOR(P, C, Q, L); 
./* Return in Q the neighbor of node P in the direction of 

corner C of P which is greater than or equal in size to P. If 
such a node does not exist, then a GRAY node of equal 
size is returned. If this is also impossible, then the node is 
adjacent to the border of the image and NULL is returned. 
L denotes the level of the tree at which node P is initially 
found and the level of the tree at which Q is finally found 
, /  

value node P; 
reference node Q; 
value quadrant  C; 
reference integer L; 
L~--L + 1; 
if not NULL(FATHER(P)) and SONTYPE(P) # OPQUAD(C) 

then 
if SONTYPE(P) = C then 

GTEQUAL_ CORNER_NEIGHBOR 
(FATHER(P), C, Q, L) 

else GTEQUAL_ADJ_NEIGHBOR 
(FATHER(P), 
COMMONSIDE(SONYTYPE(P), C), Q, L) 

else Q *-- FATHER(P); 
/*  Follow the opposite path to locate the neighbor * /  
if not NULL(Q) and GRAY(Q) then 

Q ,,-- SON(Q, O P Q U A D ( S O ~ E ( P ) ) ) ;  
L ~ - - L  - 1; 

end; 
end; 

5. ANALYSIS 
The running time of the QMAT computation algorithm is 
measured by the number of nodes that are visited and by the 
size of the quadtree. For each BLACK node, we must visit a 
minimum of one and a maximum of eight neighbors of 
greater than or equal size in order to determine whether the 

block corresponding to the node is subsumed, i.e., contained 
in a square centered at its neighbor (e.g., Block 14 is sub- 
sumed by Block 15 in Figure lb). Clearly, for each BLACK 
node, the worst case in terms of the number of nodes that 
must be visited arises when the neighbor that is being sought 
is of equal size (e.g., the NE neighbor of Block 11 in Figure lb,  
i.e., Block 5). Thus we only need to analyze the amount of 
work performed by procedures GTEQUAL_ADJ_NEIGHBOR, 
GTEQUAL_CORNER_NEIGHBOR, and QMAT. 

Our analysis assumes a 2 n × 2 n random image i.e., a 
BLACK node is equally likely to appear in any position and 
level in a quadtree. This means that all configurations of 
adjacent nodes of varying sizes are assumed to have equal 
probability. This is different from the more conventional no- 
tion of a random image which implies that every block at 
level 0 (i.e., pixel) has an equal probability of being BLACK or 
WHITE. Such an assumption would lead to a very low proba- 
bility of any node corresponding to blocks of sizes larger than 
1. Clearly, for such an image the quadtree is the wrong repre- 
sentation. The analysis closely parallels that performed in [23] 
for the chessboard distance transform. 

I~MMA 2: The average of  the m a x i m u m  number of nodes 
visited by each invocation of  GTEQUAL_ADJ_NEIGHBOR is 
less than 4. 

PROOF: Given a node P at level i and a horizontal or vertical 
direction D, there are 2 ~-' • (2 "-~ -1)  possible positions for 
node P and a neighbor at level i and direction D. Of these 2"-' 
• (2"-' -1)  neighbor pairs, 2 n-' • 2 ° have their nearest common 
ancestor at level n, 2"-' • 21 at level n - 1 . . . . .  and 2"-' • 
2 "-'-1 at level i + 1. For each node at level i having a common 
ancestor at level j, the maximum number of nodes that will 
be visited by GTEQUAL_ADJ_NEIGHBOR is (j - i) + (j - i) 
= 2 • (j - i). Assuming that node P is equally likely to occur 
at any level i and at any of the 2"-' • (2"-' -1)  positions at 
level i, then the average of the maximum number of nodes 
visited by GTEQUAL_ADJ_NEIGHBOR is 

E~=7o 1 E?=,+, 2"-' - 2 "-j - 2 ( / -  i) (1) 
E~.7o 1 2"-' - ( 2 " - ' -  1) 

Making use of the following identities in the numerator of (1) 
leads to (4): 

j n + l - i  
~-' ~ - 2 2~_I_ , (2) 

Ep~l_, 1 ( 1 )  
2- 3---2 - 1 - ~  (3) 

4/a • 22n+2- (n + 1) • 2 "÷2- 4/3 (4) 

The denominator of (1) can be 
ner to yield 

1/3 . (22-*2 _ 

manipulated in a similar man- 

3 • 2 "+1 + 2 )  (5) 

Substituting (4) and (5) into (1) results in 

3 • (n - 1) • 2 n+2 + 12 
4 -  

2 2n+2 - -  3 • 2 "+1 + 2 

4 as n gets large 

< 4  

Q.E.D. 
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I~MMA 3: The average of the maximum number  of nodes 
visited by each invocation of GTEQUAL_CORNER_NEIGH- 
BOR is less than 1%. 

PROOF: Given a node P at level i and a diagonal direction C, 
there are (2 ~-~- 1) 2 possible positions for node P and a neigh- 
bor at level i in direction C. Of these (2 "-1 - 1) 2 neighbor 
pairs, 4 o • (2 • (2 "-~- 1) - 1) have their nearest common 
ancestor at level n, 41 - (2 • (2 ~-H -1)  - 1) at level n - 1 ; . . .  
and 4 ~-~-1 • (2 • (2 "-~-{"- j - l1-1) - 1) at level i + 1. In order to 
see this, consider Figure 9 where a grid is shown for n = 3. If 
all BLACK and WHITE nodes are at level 0, then for a neigh- 
bor in the NE direction we see that nodes along the fifth row 
and fourth column have their nearest common ancestor at 
level 3 (i.e., 13 nodes labeled 1-13). Continuing the process for 
the NW, NE, SW, and SE quadrants of Figure 9, we find that 
all neighbor pairs contained exclusively within these quad- 
rants have their nearest common ancestor at a level ~ 2. In 
particular, for the NW quadrant,  nodes along the third row 
and second co lumn have their nearest common ancestor at 
level 2 (i.e., 5 nodes labeled 14-18). The NE, SW, and SE 
quadrants are analyzed in a similar manner.  This process is 
applied to the four subquadrants of the quadrants to obtain 
the neighbor pairs whose nearest common ancestor is at level 
1. Note that we had to consider every row in the image when  
analyzing diagonal neighbor pairs whereas we only needed to 
consider one row or column when  analyzing neighbor pairs 
in the N, E, S, and W directions. This is necessary because for 
diagonal neighbors, each row in the image has a different 
number  of neighbor pairs with a common ancestor at a given 
level while this number  is constant for each row or column 
when  considering neighbor pairs in the horizontal and verti- 
cal directions. 

For each node P at level i having a common ancestor at 
level j, the max imum number  of nodes that will be visited by 
GTEQUAL_CORNER_NEIGH.BOR is (j - i) + (j - i) = 2 • (j 
- i). Assuming that node P is equally likely to occur at any 

17 8 22 

14 15 16 9 19 20 

18 10 23 

1 2 3 4 5 6 

27 11 32 

24 25 26 12 29 30 

28 13 33 

21 

FIGURE 9. Sample grid illustrating blocks whose nodes are at level 0 
and whose nearest common ancestor is at level < 2  when attempting 
to locate a NE neighbor. 
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level i and at any of the (2 ~-i-  1)  2 p o s i t i o n s  at level i, then the 
average of the m a x i m u m  n u m b e r  of nodes visited by 
GTEQUAL_CORNER_ NEIGHBOR is 

EP~ 1 E~i+l 4 ~-i • (2. (2 ~-+-t~-j) - 1) - 1 )  • 2 • (j - i) 
Xp~o 1 (2n_ , _ 1) 2 (6) 

Making use of the following identities in addition to those of 
(2) and (3) in the numerator  of (6) leads to (9) (for further 
details, see [24]): 

~ l - J  J 1 (4  3 • ( n - l - i ) + 4 )  
2~- 3 = ~ .  _ ~-:~_~ 

E~:o 1-'1 4 ( 1  ~ )  
2 2i 3 

(7) 

(8) 

1A • 2 2 " ~ -  (n + 1) - 2n+3+ n2 + 11A • n + a / 9  (9) 

The denominator  of (6) can be manipulated in a similar man-  
ner  to yield 

z/3 • (2  2n+2 - -  3 • 2 n+2 q- 3 • n + 8) (10) 

Substituting (9) and (10) into (6) results in 

16 ( 6  • n - 1 0 )  • 2 n+2 - 3 • n 2 + 5 • n + 40 
3 22n+2 -- 3 • 2 n+2 + 3 • n + 8 

16 < - -  
3 

Q.E.D. 

It is also useful to obtain the number  of nodes in the quad- 
tree. Letting B and W correspond to the number  of BLACK 
and WHITE, respectively, leaf nodes in the quadtree we have 

LEMMA 4: The number  of nodes in a quadtree having B and W 
leaf nodes is bounded by 4/3 • (B + W). 

PROOF: See Lemma 1 in [18]. 
We can now prove our main  result. 

THEOREM 3: The average execution t ime of the QMAT com- 
putation algorithm is O(B). 

PROOF: From Lemmas 2 and 3 we have that for each side and 
corner of a BLACK node, GTEQUAL_ADJ_NEIGHBOR and 
GTEQUAL_CORNER_NEIGHBOR result in an average of 4 
+ 1% = 91/3 nodes being visited. There are four sides and 
corners for each BLACK node. Thus the four invocations of 
these procedures contribute 4B • 91/3. From Lemma 4, we 
have that the number  of nodes in the quadtree is bounded by 
% • (B + W). This quantity correlates with the work per- 
formed by procedure QMAT since each node in the quadtree 
is visited by the traversal. Summing  up these values we have 
4 .  B • 91/3 + 4/3 • (B + W) = 4/3 • (29 • B + 14/) which is of 
order B. Q.E.D. 

The algorithm has an execution time complexity of the 
same order of magnitude as the one developed in [23] for the 
computation of the chessboard distance transform, i.e., 4/3 • 
(43 • B + W). Observe that a direct implementat ion of Algo- 
r i thm A of Section 3 would require, at worse, work propor- 
tional to B T 2 since sorting is required (a B • log B operation) 
as well as checking every BLACK block against every other 
BLACK block for subsumption. Actually, it is conceivable that 
a B • log B procedure for subsumption exists which would 
render Algorithm A to be O(B . log B) which would still be 
inferior to Algorithm A. 

l 
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6. CONCLUDING REMARKS 
The concept of a skeleton and medial axis transform have 
been adapted to images represented by quadtrees and have 
resulted in the definition of a new data structure termed the 
QMAT. The QMAT results in a partition of the image into a 
set of nondisjoint squares having sides whose lengths are 
sums of powers of 2 rather than, as is the case with quadtrees, 
a set of disjoint squares having sides of lengths which are 
powers of 2. An algorithm for the computation of the QMAT 
given a quadtree representation has been presented and 
shown to have an average execution time of O(B) where B 
corresponds to the number of BLACK blocks comprising the 
objects of the image. 

The algorithm and its analysis are somewhat similar to 
those used in the computation of the chessboard distance 
transform [23]. The difference is that for each BLACK node 
only its neighbors of greater or equal size needed to be exam- 
ined and not their progeny as was the case in [23]. A new 
result of our analysis is that finding a corner neighbor is 
approximately 4/3 as complex as finding an adjacent neighbor. 
The algorithm in its present form could not be combined with 
the computation of the chessboard distance transform and 
done in one pass, i.e., it requires a separate traversal of the 
tree, since computation of the QMAT relies on knowledge of 
the distance transform values of a node's neighbors. 

The algorithm can be varied in several ways. First, in its 
present state, procedure QMAT overwrites the existing quad- 
tree. It may be desirable to have an algorithm which con- 
structs the QMAT while retaining the original quadtree. This 
is quite simple and can be accomplished by modifying proce- 
dure QMAT to allocate a node each time it visits one in the 
original quadtree. Note that our analysis assumed that all 
eight neighbors of a node are visited while attempting to 
ascertain if it is subsumed by one of its neighbors. In fact, we 
cease processing as soon as subsumption is found to occur. 
Another observation is that when overlap exists (e.g., in Fig- 
ure lb, block 10 is the N W  neighbor of block 12 and is also its 
northern neighbor) we need not invoke GTEQUAL_ADJ_ 
NEIGHBOR or GTEQUAL_CORNER_NEIGHBOR for the 
neighbor which overlaps the two directions. However, such a 
variation is of little value since the number of neighbors can 
be shown to range between 5 and 8. 

Our view of the quadtree medial axis transform as an 
alternative image representation serves to reinforce the appro- 
priateness of the chessboard distance metric for quadtrees. In 
particular, the analogy between squares and circles as the 
basis for the medial axis transform of a quadtree is notewor- 
thy. Also, notice the similarity between the process of obtain- 
ing the QMAT and thinning [15] an image. 

The advantage of the QMAT is in its compactness (e.g., 
recall Figures 1 and 5) and in its decreased sensitivity to shift 
(recall Figures 6 and 7). In the worst case, the QMAT is 
identical to the quadtree. The medial axis transform is often 
used as an alternative to a border representation because of its 
amenability to the determination of whether or not a given 
point lies within a particular region [15]. This is not a problem 
when the quadtree representation is used. However, in the 
case of the QMAT this is slightly more complex since a 
WHITE block does not necessarily imply that the entire space 
spanned by the block is WHITE. In such a case the WHITE 
node's surrounding neighbors will have to be examined. 

In Section 2, we saw that there are two ways of defining a 
quadtree skeleton with a small difference in the QMAT al- 
though the QMAT was shown to require the same number of 

nodes in either case. Using Property (3) resulted in a simpler 
QMAT construction algorithm while using Property (3') re- 
suits in obtaining a quadtree skeleton of less than or equal 
size. Since we are primarily interested in storage compactness 
in the form of a tree, the difference was not important. How- 
ever, we also wish to be able to reconstruct the quadtree from 
its QMAT. In such a case, the reconstruction process is con- 
ceivably faster given a quadtree skeleton definition that incor- 
porates Property (3') since the quadtree skeleton is less than 
or equal in size (e.g., 2 nodes versus 3 nodes in Figures 4b and 
4c respectively). In essence, to reconstruct a quadtree from its 
QMAT, we must traverse the QMAT, and for each BLACK 
node ti add all elements of S(t~) to the quadtree. This can be 
done by using the neighbor techniques employed in the con- 
struction of a quadtree from its run length [17] and boundary 
code [20] representations. See [25] for an algorithm to recon- 
struct a quadtree from its QMAT with a QMAT defined using 
Property (3). 

Fruitful subjects for future research include the investiga- 
tion of algorithms for set operations such as intersection and 
union as well as connectivity and perimeter using the QMAT 
representation. A more thorough study of the relationship 
between the amount of space occupied by a quadtree and its 
QMAT would also be welcome. 
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A Quantitative Evaluation of the Feasibility of, and Suitable Hardware 
Architectures for, an Adaptive, Parallel Finite.Element System 
Pamela Zave and George E. Cole, ]r. 

An experimental implementation of a design for an adaptive, parallel 
finite-element system is described. The implementation was used to sim- 
ulate the performance of this design on several microprocessor-based 
multiprocessor architectures. The real-time speedup observed was archi- 
tecture-independent, but limited. Nevertheless, the approach to data seg- 
mentation and management worked well and has interesting applica- 
tions. 
For Correspondence: P. Zave, Bell Laboratories, Room 3D-426, Murray 
Hill, NJ 07974. 

The Numerical Solution of Separably Stiff Systems by Precise 
Partitioning 
David S. Watkins and Ralph W. Hansonsmith 

Most codes for solving stiff systems of ordinary differential equations 
spend most of their time solving systems of linear equations with coeffi- 
cient matrix I - hill, where I is the Jacobian matrix of the system. The 
precise partitioning method solves these systems approximately by parti- 
tioning the Jacobian into stiff and nonstiff parts. The method resembles a 
method proposed by Enright and Kamel [ACM Transactions on Mathe- 
matical Software 5, 4(Dec. 1979), 374-385], but differs in that the partition 
of the Jacobian matrix is more precise. In this paper the method is imple- 
mented by revising a popular code. Numerical results indicate that for 
systems of more than about ten equations with few stiff eigenvalues, the 
precise partitioning method can save CPU time compared to the unmodi- 
fied code. 
For Correspondence: D. S. Watkins, Dept. of Pure and Applied Mathemat- 
ics, Washington State University, Pullman, WA 99164-2930. 

The Multifrcntal Solution of Indefinite Sparse Symmetric Linear 
Equations 
I. S. Duff and ]. K. Reid 

We extend the frontal method for solving linear systems of equations by 
permitting more than one front to occur at the same time. This enables 
us to develop code for general symmetric systems. We discuss the organi- 
zation and implementation of a multifrontal code which uses the mini- 
mum-degree ordering and indicate how we can solve indefinite systems 
in a stable manner. We illustrate the performance of our code both on the 
IBM 3033 and on the CRAY-1. 

For Correspondence: I. S. Duff, Computer Science and Systems Division, 
AERE Harwell, Oxford OXll  ORA, England. 

S e p t e m b e r  Issue  

Spece-Efficient Implementations of Graph Search Methods 
Robert E. Tarjan 

Several space-efficient implementations of the two most common and 
useful kinds of graph search, namely, breadth-first search and depth-first 
search, are discussed. A straightforward implementation of each method 
requires n bits and n + O(1) pointers of auxiliary storage, where n is the 
number of vertices in the graph. We devise methods that need only 2n + 
m bits, of which m are read-only, where m is the number of edges in the 
graph. We save space by folding the queue or stack required by the 
search into the graph representation; two of our methods for depth-first 
search are variants of the Deutsch-Schorr-Waite list-marking algorithm. 
Our algorithms are expressed in a version of Dijkstra's guarded command 
language. 
For Correspondence: R. E. Tarjan, Bell Laboratories, Murray Hill, NJ 
07974. 

A Sparse Matrix PackagemPart I1: Special Cases 
I. M. McNamee 

A set of subroutines is described for combining pairs of sparse matrices in 
special cases in which one of the matrices may be regarded as full, and /  
or a vector, and/or  an elementary matrix. Tests show that in many cases 
the new routines are faster than an earlier set of more general-purpose 
routines. Also, a new (faster) routine is given for multiplying two sparse 
matrices. 
For Correspondence: J. M. McNamee, Dept. of Computer Science and 
Mathematics, Atkinson College, York University, Downsview, Ontario 
M3J 2R7, Canada. 

HURRY: An AcceleraUon Algorithm for Scalar Sequences and Series 
Theodore Fessler, William F. Ford and David A. Smith 

We present a general acceleration algorithm for alternating and mono- 
tone scalar sequences and series. The main components of the algorithm 
are the subroutines WHIZ and HURRY. WHIZ is a recursive implementa- 
tion of Levin's u transform, and HURRY (which calls WHIZ) estimates 
truncation and round-off errors to make a near-optimal stopping decision 
and provide a very good estimate of the accuracy of the computed an- 
swer. 

We also present a test driver program that demonstrates the capabili- 
ties of HURRY when applied to a wide variety of convergent and diver- 
gent sequences and series. 
For Correspondence: T. Fessler, Computer Services Division, NASA 
Lewis Research Center, Cleveland, OH 44135. 
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