
Data Structures 59

Hierarchical Data Structures and
Algorithms for Computer Graphics

Part 11: Applications
n

Hanan Samet
University of Maryland

Robert E. Webber
Rutgers University

.............. p
....I

This is the second part of a two-part overview of the
use of hierarchical data structures and algorithms in
computer graphics. The focus of Part I was on fun-
damentals. Part I1 focuses on advanced applications.
Emphasis is on the octree, and the applications are
primarily display methods. Topics include use of the
quadtree as a basis for hidden-surface algorithms, par-
allel and perspective projection methods to display a
collection of objects represented by an octree, and the
use of octrees to facilitate such image-rendering tech-
niques as ray tracing and radiosity.

H ierarchical data structures such as the quadtree
and octree are frequently used in applications in com-
puter graphics. In Part I,' we concentrated on fun-
damentaI properties and operations. In Part I1 we
describe some more advanced applications in which
they find use. Emphasis is on the octree and on display
methods. More references and details on hierarchical
data structures are available el~ewhere. ' .~

Our presentation is organized as follows: The first sec-
tion below describes the use of the quadtree as the basis
of hidden-surface algorithms. The remaining sections
focus on the octree. A review of the execution of a num-

July 1988 0272-1716/88/0700-0059$01.U0 1988 IEEE 59

A
Figure 1. The viewing pyramid associated with the
black pixel (shown shaded) in the viewplane.

ber of basic operations using an octree, including its con-
struction, is followed by a section on how to apply the
parallel and perspective projection methods to display
the collection of objects that are represented by an octree.
Implicit in this task is the solution of the hidden-surface
problem to resolve the interaction between the objects
in the scene modeled by an octree. Then we discuss how
octrees-by use of ray tracing and radiosity-can facili-
tate image rendering (i.e., the problem of calculating
what light falls on the viewplane). We conclude with
some general comments and a brief discussion of the use
of hierarchical methods in hardware.

Ray tracing models light as particles moving in the
scene. The octree speeds up the determination of the
objects that are intersected by rays emanating from the
viewpoint. In contrast, radiosity models light as energy
and seeks to determine a point at which its distribution
is at equilibrium, a process requiring the derivation of
a large set of linear equations. Octrees can simplify the
calculation of the coefficients of these equations. This
is especially true if rendering is to be done with respect
to more than one viewpoint. The efficient solution of
these equations is aided by heuristics, one of which is the
adaptive recursive decomposition of the scene’s surface
analogous to that used in the algorithms of Warnock and
Catmull, described in the section on displaying curved
surfaces.

Quadtree hiddensurface algorithms
Probably one of the most basic graphics operations is

the conversion of an internal model of a 3D scene into
a 2D scene that lies on the viewplane. The purpose is to
generate an image of the scene as it would appear from
a given viewpoint and to display it on a 2D screen. This
is known as the hidden-surface operation (also discussed

as the visible-subset problem in the section on object-
space hierarchies in Part 1’). Although many mappings
are abstractly possible between a 3D space and a 2D
space, we are interested in a mapping that closely models
geometric optics. Such mappings are called projections
(see the section below on parallel and perspective projec-
tions for more details).

Conceptually, understanding the image generation
process is easiest when we examine how the color of a
single pixel of the viewplane is calculated. In our presen-
tation, each pixel of the viewplane determines a pyramid
formed by the set of all rays originating at the viewpoint
and intersecting the viewplane within the boundary of
the pixel (see Figure 1). We clip away the objects or their
parts that are outside the viewing pyramid to reduce the
number of objects that need to be considered. A color is
assigned to each pixel which, in the simplest case, is the
color of the object closest to the viewpoint, while also
lying within the pixel’s pyramid.

The hidden-surface task5 can be conceptualized as a
two-stage sorting process. The first stage sorts the sur-
faces into the different viewing pyramids (this is also
known as a bucket sort). The second stage sorts the sur-
faces within a given viewing pyramid to determine the
one closest to the viewpoint.

Four approaches to this task are relevant to our discus-
sion. First, the 3D scene can be viewed as a sequence of
overlays of 2D scenes, each of which is represented by
a quadtree. Second, quadtrees can be used to model the
viewplane even when the 3D scene consists of polygons
of arbitrary orientation and placement in the 3D space.
This solution, first proposed by Warnock6a7 and known
as Warnock’s algorithm, is an image-space method. War-
nock was actually interested in two versions of the
hidden-surface task: the basic hidden-surface task and
the hidden-line task. The hidden-line task is an adapta-
tion of the hidden-surface task to a wireframe represen-
tation of a solid. In the process of developing a solution
to the hidden-surface task, Warnock also made contribu-
tions to light modeling’ beyond the scope of this survey.
For expository purposes, we shall first describe the
hidden-line operation in our discussion of Warnock’s
method and then its adaptation to the hidden-surface
operation.

The third approach that we present is Weiler and
Atherton’s object-space hidden-surface a l g ~ r i t h m , ~
which is analogous to Warnock’s image-space algorithm.
Weiler and Atherton also point out how image-space
heuristics can be used to speed up object-space methods.

The three approaches above assume a vector data
representation’ of a 3D scene. In the fourth approach, a
quadtree can be built for the representation of the sur-
face of a 3D object in parametric space.

2.5-dimensional hidden-surface elimination
The technique of 2.5-dimensional hidden-surface

elimination was devised to handle the display of 3D

60 IEEE Computer Graphics & Applications

scenes represented by a forest of quadtrees. It arises most
commonly in applications in cel-based animation. A cel
is a piece of transparent plastic on which a figure has
been painted. A scene can be created by overlaying cels
(see Figure 2). A given view of the scene can be con-
structed by first laying down the cel representing the
background. On top of the background, cels are placed
that represent objects in the foreground. When each cel
is represented by a quadtree, scenes can be constructed
easily. The nodes that correspond to the objects painted
on the cel are marked as opaque and the remaining
nodes are marked as transparent.

Cel-based scene construction is a simplification of the
hidden-surface task and is described in greater detail
below. It is simpler than the general 3D task because each
object is restricted to be in just one cel. Thus, in our
domain, occlusion is acyclic, whereas it need not be so
in an unrestricted 3D domain (see Figure 3). As a result,
xire need not be concerned with problems resulting from
situations such as object A occluding object B, object B
occluding object C, and object C occluding object A.

Equivalent to a sequence of set-union operations,
2.5-dimensional hidden-surface elimination can be
implemented in a manner analogous to quadtree inter-
section as described in the section on aligned quadtrees
in Part I. ' In particular, starting with the quadtree cor-
responding to the backmost cel, while moving toward the
front cel, perform successive overlays of the quadtrees
of the cels encountered along the path.'" Hunter and
Steiglitz" '' have shown that the total cost of this process
is proportional to the sum of the number of nodes in all
the quadtrees of the cels.

While the algorithm given above is an optimal worst-
case method, it can be modified to yield a better average-
case performance as follows. Process the cels from
"front-to-back" and mark the blocks in the intermediate
quadtree as transparent, thereby indicating that up to
now nothing in the sequence of quadtree nodes cor-
responding to that location has been opaque. Also mark
the internal nodes as opaque if all of their subtrees are
opaque, although their subtrees need not be the same
color (i.e., they need not correspond to the same object).
Thus, when traversing the intermediate quadtree and the
next cel, say C, if the intermediate quadtree has an inter-
nal node that is marked opaque, then nothing in the cor-
responding subtree of cel C, say T, is visible. Hence T
need not be traversed. Furthermore, when the root of the
intermediate quadtree is marked opaque, then no more
cels need be visited.

Such actions have a potential of reducing the execution
time of the 2.5-dimensional hidden-surface elimination
task because subtrees corresponding to invisible regions
need not be traversed. Of course, in a more flexible ani-
mation system, it is often desirable to overlay unaligned
cels (i.e., unaligned quadtrees). This can be handled by
using the techniques described in Part I for computing
set operations on unaligned quadtrees.'

Figure 3. A 3D image where occlusion is not tran-
sitive.

Warnock's algorithm
The use of the quadtree for modeling the viewplane

during the hidden-surface operation was first described
by Warnock.' A variant of the quadtree is used to repre-
sent the parts of the scene currently believed to be visi-
ble. Thus it is an image-space method. The hidden-line
operation is a derivative task of the hidden-surface oper-
ation. They differ in how the result of the visibility cal-
culation is displayed.

We will now describe the hidden-line operation in
greater detail. The viewplane's quadtree consists of poly-
gons formed by the visible edges of the objects in the 3D
scene. At most one edge is associated with each pixel.
The edge, if any, that is associated with a pixel cor-
responds to the one that passes through the pixel's region
as part of the border of a polygon that is not occluded by
another polygon closer to the viewpoint. We will use the
term color to distinguish between pixels that correspond
to edges of a polygon and those that do not. In other
words, a pixel is output [i.e., colored) if a visible edge

July 1988 61

passes through it.
The quadtree is used in the display process to rapidly

select the pixels that need to be colored (these are the
pixels through which visible edges of the scene pass).
The quadtree is not built explicitly. Instead, the view-
plane is recursively decomposed (traversed as if it were
a quadtree) using an appropriate decomposition rule to
yield a collection of disjoint square regions (i.e., leaf
nodes). At each such region, drawing (i.e., coloring) com-
mands for driving a display are output.

The quadtree decomposition rule used is analogous to
the one devised by Hunter and Steiglitz.””* There are
two types of nodes: boundary and empty. A pixel is rep-
resented by a boundary node if an edge of a polygon
passes through it; otherwise it is represented by an
empty node. Empty nodes are merged to yield larger
nodes, while boundary nodes are not merged. This rule
enables us to formulate the actions taken by Warnock’s
algorithm in terms of the following leaf node types and
corresponding actions:

At an empty leaf node, draw nothing since no lines
pass through this region.

At a leaf node corresponding to a pixel, draw a point
representing the border of the polygon that occludes
the upper left-hand corner of the pixel (if no such
polygon exists, then draw nothing).

At a leaf node corresponding to a collection of poly-
gons, draw nothing since the existence of such a node
means that one of the polygons occludes all the other
polygons over this region.

At this point we should briefly explain the relationship
between the hidden-surface and hidden-line tasks. The
hidden-line task is closely identified with the use of vec-
tor displays and plotters. This caused Warnock to inves-
tigate edge quadtreelike decompositions.’ On the other
hand, the hidden-surface task is closely identified with
the use of raster devices. Although our treatment of the
hidden-line task assumes vector data, it results in the out-
put of line-drawing commands at a raster/pixel level. By
doing a bit more calculation, we can often recognize that
a line will be visible without having to subdivide all the
way down to the pixel level.

The algorithm given above for the hidden-line task can
be modified to handle the hidden-surface task as well.
The only modification needed is that empty nodes
representing regions completely spanned by a polygon
must now be colored with the color of that polygon,
instead of being ignored (as happens in the hidden-line
display process). Of course, the boundary nodes must be
assigned one of the colors of their shared polygons.

One problem with building quadtree decompositions
of data presented as arbitrary collections of polygons in
3D space is how to determine when there is no need for
further subdivision. For example, this situation arises

when a node contains a collection of polygons where one
polygon completely occludes the other polygons. This
requires a sort of all the polygons in the node. Since
occlusion generally is not transitive, sorting does not
always work (recall Figure 3). If sorting fails because of
nontransitivity or because the nearest polygon does not
occlude the entire region, then further subdivision is
needed to determine what is visible in the region cor-
responding to the node.

Note that we have been assuming that the closest poly-
gon’s color was the most appropriate color for a pixel.
Clearly, however, a pixel could contain small features that
this approach would represent falsely. This general prob-
lem is referred to as aliasingT3-attempts to resolve it are
referred to as antialiasing. Warnock handled the situa-
tion of a pixel that contained complicated features by
pretending that the viewing pyramid for the pixel was
a single ray passing through the pixel’s upper left-hand
corner. If this produces an approximation of the image
that is too rough for a particular application, then clas-
sical antialiasing techniquesT3 (such as computing a
weighted average of the visible intensities within a pixel)
can be applied without altering the basic algorithm.

Weiler-Atherton’s algorithm
Warnock’s algorithm is an image-space hidden-surface

algorithm. Weiler and Athertong developed an analo-
gous object-space hidden-surface algorithm. The object
space consists of a collection of polygons. Note that
Weiler and Atherton use image-space heuristics to speed
up their object-space algorithm. Their object-space algo-
rithm has the following structure:

1.

2.

3.

4.

5.

6.

Order all the polygons by their smallest z value
(where the viewer is located at a z value of minus
infinity).

Find the closest polygon, say P, to the viewer.

Form two collections of polygons. The first collec-
tion contains those polygons whose projection
overlaps (partially or totally) the projection of P on
the viewplane (which we will call the inner set). The
second collection contains those polygons whose
projection is not entirely covered by the projection
of P (which we will call the outer set). Where a poly-
gon is in both the inner and outer sets, clipping that
polygon against P and storing the resulting poly-
gons in the appropriate sets is often convenient.

Remove all polygons from the inner set that do not
occlude part of P.

If no polygons occlude P (i.e., the inner set is
empty), then the hidden-surface task has now been
solved for P. Proceed to solve the hidden-surface
task for the outer set.

If there exist polygons that occlude P (i.e., the inner
set is nonempty), then recursively go to step 2 and

62 IEEE Computer Graphics & Applications

choose a “nearest” polygon from the occluding
polygons in the inner set of P. Upon return, process
the outer set of P.

To reduce the number of polygons that have to be com-
pared in step 4, Weiler and Atherton propose two
preprocessing methods relevant to our study. The first
method recursively subdivides the image space (in the
x and y directions) until the number of polygons in a
given region, say R, drops below a specified threshold.
Within region R, the basic algorithm described above is
used. Note that at step 4, only the polygons in region R
need to be considered.

The second method is based on the observation that
besides preprocessing by subdividing in the x and y
directions, subdividing in the z direction might also be
useful. In particular, after subdividing in the z direction,
they propose to solve the hidden-surface task for the
backmost volume elements first, and then to use this
solution as part of the polygon list for the volume ele-
ments in the front. This “back-to-front” approach is also
discussed above in the context of 2.5-dimensional
hidden-surface elimination. The last heuristic could be
viewed as an octree method (see the section on parallel
and perspective projections for more details).

Displaying curved surfaces
In this article, vector data is usually viewed as consist-

ing of straight line segments and polygons. However, the
quadtree paradigm also has proved useful to researchers
interested in the manipulation of curved features such
as surfaces. Curved surfaces are often represented by a
collection of parametric bicubic surface patches.I4
Curved surface representations are important in com-
puter graphics applications, because they are often more
compact than polygonal representations. They also ena-
ble the stipulation of continuity in the derivative of piece-
wise surface representations. This is important for
ray-tracing calculations (see the section on ray tracing
below).

One early approach to displaying such surfaces was
developed by Catmull.” The idea is to decompose the
patch into subpatches recursively until the subpatches
that are generated are so small that they span only the
center of one pixel (or can be shown to lie outside the dis-
play region). The test for how many pixel centers are
spanned by the patch (or whether or not the patch lies
outside the display area) is based on the approximation
of the patch by a polygon connecting the patch’s corners.
In our examples, patches are denoted by solid lines, and
their approximating polygons are denoted by broken
lines.

As an example of the recursive decomposition of
patches, consider Figure 4. Figure 4a shows a single
patch with corners A, B, C, and D on a grid of pixel
centers. We observe that quadrilateral ABCD, which

. c c . . .
a b

C

e

. c i

Figure 4. Example of the use of recursive decomposi-
tion into patches for the display of curved surfaces (in
Figures 4a and 4b patches are denoted by solid lines;
their approximating polygons, by broken lines): (a) a
single patch, (b) decomposition of Figure 4a into four
patches, (c) decomposition of Figure 4b into sixteen
patches, (d) final decomposition such that each patch
contains no more than one pixel center, (e) the raster
image corresponding to the decomposition.

approximates the patch ABCD, contains more than one
pixel center. Thus the patch must be decomposed. Fig-
ure 4b shows the decomposition of patch ABCD into
quadrilateral patches AFIE, BGIF, CHIG, and DEIH.
Since the quadrilateral approximations of each of these
patches again span more than one pixel center, they must
each be subdivided further, as shown in Figure 4c. This
time there is not enough detail in the figure to show the
difference between the patch and its quadrilateral
approximation. Note that in Figure 4c the quadrilateral
approximation for patch JFKN contains only one pixel
center and hence will not need to be subdivided further.
Also, the quadrilateral approximation of patch MNLG
contains no pixel centers, and thus it too will not need
to be subdivided further. However, the quadrilateral

Ju ly 1988 63

a b

C d

Figure 5. (a) The 3D view of the resulting subdivision
of a surface using a quadtreelike decomposition rule
in parameter space. Some of the cracks are shown
shaded. (b) The quadtree of Figure 5a in parameter
space. (c) The restricted quadtree corresponding to
Figure 5b. (d) The triangulation of Figure 5c.

approximation of patch IJNM contains two pixel centers
and therefore will need to be subdivided further. The
final decomposition of the original patch is shown in Fig-
ure 4d, and the raster image yielded by this decomposi-
tion is shown in Figure 4e.

As was observed by Catmull, the recursive decompo-
sition approach to approximating the location of a patch
can be generalized and thereby applied to other patch
representations. Patch representations based on charac-
teristic polyhedrons (e.g., Bezier and B-spline patches)
allow these test decisions to be based on an approxima-
tion of each patch by the convex hull enclosing its con-
trol points (which is guaranteed to enclose the entire
p a t ~ h) . ' ~ This yields a more accurate result than Cat-
mull's approximation, which is based only on four
corners of a patch.

As with Warnock's algorithm, Catmull's algorithm is
oriented toward the generation of display commands.
Thus it does not explicitly generate the quadtree struc-
ture, although its processing follows the quadtree decom-
position paradigm in the parametric space. Since the
patches exist in 3D space, more than one patch can span
the same pixel center. Thus the Catmull algorithm makes
use of a z-buffer to keep track of the intensity/color of the

patch that has most recently been found to be closest to
the viewpoint. Basically, a z-buffer is a 2D array that
represents the displayed image. Each entry of the array
contains a color and a depth. Initially, each pixel in the
displayed image is black and at an infinite depth. When-
ever a new color is to be assigned to a pixel, the depth of
the location to which the pixel corresponds is checked.
If it is greater than the current depth in the z-buffer, then
the assignment is ignored; otherwise, the color and
depth values in the z-buffer are updated. Although tra-
ditionally the z-buffer has aliasing problems (i.e., it
produces jagged borders between neighboring regions),
these can be mitigated with the rgb-a-z approach.'6

Warnock's algorithm requires that the scene be com-
pletely specified at the time the algorithm is initiated. In
contrast, the z-buffer enables elements of the scene to be
processed in an arbitrary order. This permits elements
to be added to the scene without having to reprocess ele-
ments of the scene that have been previously processed.
In other words, at any time during its processing, the z-
buffer represents what would be displayed if there were
no further elements in the scene.

The z-buffer is represented explicitly as a 2D array.
Such an array could be represented by a quadtree. This
quadtree z-buffer representation might prove useful for
generating line representations of the borders between
surfaces, but not for generating shaded surfaces.17 Note
that raster quadtrees are seldom efficient for represent-
ing scenes including shaded surfaces, since each pixel
location on a shaded surface will have a slightly differ-
ent color. However, if only the borders of the surfaces are
represented, then the interior portions of the surfaces
can be efficiently merged.

Catmull's display algorithm has been adapted to han-
dle a constructive solid geometry" representation of
objects (i.e., objects composed as Boolean combinations
of primitive objects) for the case where the initial primi-
tives are solids bordered by bicubic surface^.'^ Instead
of subdividing down to the pixel level everywhere, the
subdivision is performed only until it has generated sub-
patches that are mutually disjoint. Two subpatches can
be viewed as disjoint when the interiors of the convex
hulls of their respective control points are disjoint. While
this approach helps to determine the actual intersection
between two subpatches, it does not address the prob-
lem of choosing which patches should be compared to
determine the possible existence of an intersection. A
vector octree approach to this problem'' is mentioned
in the section on vector octrees in Part I.'

While quadtrees are a natural way to organize the para-
metric representation of bicubic patches defined by four
corner points plus auxiliary information (e.g., tangents
and twist vectors in the case of B-~plines'~), the result-
ing set of quadrilaterals may be difficult to display. For
example, it is difficult to ensure that the resulting four
corners of the patches will actually be coplanar. Further-
more, when one patch is subdivided further than its

64 IEEE Computer Graphics & Applications

neighbor, it is almost always the case that the patches will
be misaligned (i.e., cracks will arise, as shown in Figure
5a).

The coplanarity problem can be resolved by triangulat-
ing the quadrilaterals determined by the corner values
of the leaf nodes. One way to regain alignment is to adjust
the vertices of adjacent blocks of unequal size so that the
vertex of the smaller block is on the edge between the ver-
tices of its adjacent block of larger size. This method is
used by Tamminen and Jansen." For example, the ver-
tex at the NW corner of the SW son of the NE quadrant
in Figure 5a would be replaced by the midpoint of the
eastern boundary of the NW son. The adjacent block can
be determined using quadtree neighbor-finding tech-
niques as discussed in Part I. ' Tamminen and Jansen
perform the adjustment process by traversing the quad-
tree of the patch, using an active border data structure."

The alignment problem can also be overcome by using
a nonstandard decomposition rule. Von Herzen and
Barrz3 propose a modification of the quadtree data
structure, which they term a restricted quadtree. Given
an arbitrary quadtree decomposition rule, to form a
restricted quadtree, nodes that have a neighbor whose
level in the tree is more than one level deeper are sub-
divided further until the condition holds. (This method
of subdivision is also used in finite element analysis as
part of a technique called h-refinementz4 to adaptively
refine a mesh that has already been analyzed, as well as
to achieve element compatibility.) In contrast to the more
traditional representation shown in Figure 5b, the result
is the quadtreelike decomposition shown in Figure 5c.
Note that the SE quadrant of Figure 5b had to be decom-
posed once. A combined solution to these two problems
triangulates the quadtree leaves of Figure 5c in the man-
ner shown in Figure 5d. The rule is that every square is
decomposed into no less than four and no more than
eight triangles. Generally, for each block there are two tri-
angles per side unless the side is shared by a larger block,
in which case only one triangle is formed. Observe that
there are no cracks.

Algorithms using octrees
The algorithms for performing basic computer

graphics operations such as translation, rotation, scal-
ing, and clipping on both raster and vector octrees are
direct extensions of the algorithms presented in Part I
for quadtrees.' The techniques used in performing
some of these operations (e.g., preorder traversal, rec-
tilinear unaligned traversal, general unaligned traversal,
bottom-up neighbor finding, and top-down neighbor
passing) can all be extended to deal with octrees once
some additional bookkeeping information is main-
tained.

With the sheer amount of data that must be examined,
constructing a raster octree from a 3D array represen-
tation of an image is quite costly. Because of the large

number of primitive elements that must be inspected, the
conventional raster-scanning approach used to build
quadtrees spends much time detecting the mergibility
of nodes. The time and cost can be reduced, in part, by
using the predictive techniques discussed in the section
on constructing quadtrees in Part I.'~2".2h The method
uses an auxiliary array whose storage requirements are
as large as a cross section of the image, which may ren-
der the algorithm impractical. However, since this array
is often quite sparse, the problem can be overcome by
representing it with a linked list of blocks in a manner
similar to one used for connected component labeling
for images of arbitrary dimension." Alternatively, we
can initially represent the data by using one of the more
compact 3D representations, such as the boundary
model or the CSG tree."

The boundary model represents a 3D object by its
faces. The winged-edge representation mentioned in the
beginning of Part when applied to polyhedrons, is
one such representation. To create a boundary model, we
must first decompose the surface of the object into a col-
lection of faces. The result is a graph whose edges cor-
respond to the interconnections between the faces of the
object. For example, the object in Figure 6a can be
decomposed into the set of faces and interconnections
shown in Figure 6b.

Variations in the boundary model arise from the use
of different methods for representing individual faces
(which could be either polygons or curved surfaces), and
different approaches to specifying the interconnection
between adjacent faces. For example, we can view faces
as meeting at either their borders or corners. Thus,
instead of a graph where the vertices represent faces and
the edges represent their interconnection, we also have
boundary models where the vertices of the graph repre-
sent borders of a face or even the corners of a face. A
method for building a raster octree from a boundary
model by the use of connectivity labeling has been
described elsewhere." Kunii, Satoh, and Yamaguchi
address the opposite task of generating a valid boundary
model from a raster octree.2g A related task is the output
of a line drawing of an object represented by a raster
octree."

Constructive solid geometry (CSG) methods represent
rigid solids by decomposing them into primitive objects
that are subsequently combined using variants of
Boolean set operations such as union, intersection, and
set-difference, and possibly geometric transformations
(e.g., translation and rotation). These primitives are often
in the form of such basic solids as cubes, parallelepipeds,
cylinders, and spheres. A more fundamental primitive
is a half-space whose border can be either linear or non-
linear. For example, a linear half-space in three dimen-
sions is given by the following inequality:

a . x + b . y + c . z r d

July 1988 65

a

U

/

C

Figure 6. (a) A 3D object, (b) its boundary model, and (c) its CSG tree.

CSG methods are usually implemented by a CSG
tree-a binary tree in which internal nodes correspond
to geometric transformations and Boolean set opera-
tions, while leaves correspond to the primitive objects

(e.g., half-spaces). For example, the object in Figure 6a can
be decomposed into three primitive solids whose CSG
tree is shown in Figure 6c. A bintree representation of
a raster octree can be built from a CSG tree.31*32 These

66 IEEE Computer Graphics & Applications

techniques are useful for conversion as well as
display.33,34

In some applications, a problem even more fundamen-
tal than building the octree is acquiring the initial bound-
ary data to form the boundary of the object being
represented. One approach is to use a 3D pointing device
to create a collection of samples from the surface of the
object. Once the point data are collected, a reasonable
surface must be interpolated to join them.

Interpolation can be achieved by triangulation. A sur-
face triangulation in 3D space is a connected set of dis-
joint triangles that forms a surface whose vertices are
points in the original data set. There are many triangu-
lation methods currently in use, both in 2D spaces35
and 3D spaces.36 They differ in how they determine
which points are to be joined. For example, often we
want to form compact triangles instead of long narrow
ones. However, the problems of minimizing total edge
length or maximizing the minimum angle pose difficult
combinatorial problems. Posdamer" has suggested use
of the ordering imposed by an octree on a set of points
as the basis for determining which points should be con-
nected to form the triangles.

Posdamer's algorithm uses an octree whose leaf
criterion is that no leaf can contain more than three
points. The initial set of triangles is formed by connect-
ing the points in the leaves that contain exactly three
points. Whenever a leaf node contains exactly two points,
these points are connected to form a line segment
associated with the leaf node. This is the starting point
for a bottom-up triangulation of the points by merging
disjoint triangulations to form larger triangulations. The
isolated points (i.e., leaf nodes that contain just one point)
and isolated line segments are viewed as degenerate tri-
angulations. The triangulation associated with a gray
node is the result of merging the triangulations
associated with each of its sons. By merging or joining
two triangulations, we mean that a sufficient number of
line segments are drawn between vertices of the two tri-
angulations so that we get a new triangulation contain-
ing the original two triangulations as subtriangulations.

When merging the triangulations of the eight sibling
octants, we can use a number of heuristics to choose
which triangulations are joined first. The order in which
we choose the pair of triangulations to be joined is deter-
mined, in part, by the following factors. First and fore-
most, merging triangulations in siblings whose
corresponding octree blocks have a common face is pre-
ferred. If this is impossible, then triangulations in nodes
that have a common edge are merged. Again, if this is not
feasible, then triangulations in nodes that have a com-
mon vertex are merged. For each preference, the trian-
gulations that are closest according to some distance
measure are merged first.

There are many other methods of building an octree
for an object. The simplest is to take quadtrees of cross-
sectional images of the object and merge them in

sequence. This technique is used in medical applications
in which the cross sections are obtained by computed
tomography methods. Yau and Srihari"' discuss this
technique in its full generality by showing how to con-
struct a k-dimensional octreelike representation from
multiple (k-1)-dimensional cross-sectional images. Their
algorithm processes the cross sections in sequence. Each
pair of consecutive cross sections is merged into a sin-
gle cross section. This pairwise merging process is
applied recursively until there is one cross section left
for the entire image.

For example, assuming a k-dimensional image of side
length 2", once the initial 2" cross sections have been
merged, the resulting 2" ~ cross sections are merged
into 2"-* cross sections. In general, when merging 2"'
cross sections into z"'-' cross sections, only nongray
nodes at levels rn to n are tested for merging. Thus a cross
section at level rn corresponds to a stack of 2" -I1' volume
elements of side length 2"' and is represented by a
(k ~ 1)-dimensional quadtree whose nodes are at levels rn
through n.

In most applications the volume of the available data
is much smaller and thus a small number of 2D images
are used to reconstruct an octree representation of a 3D
object or a scene of 3D objects. In this case, projection
images (termed silhouettes) are taken from different
viewpoints. These silhouettes are subsequently swept
along the viewing direction, thereby creating a bound-
ing volume, represented by an octree, that serves as an
approximation of the object. The octrees of the bound-
ing volumes, corresponding to views from different
directions, are intersected to yield successively finer
approximations of the object.

Martin and A g g a r ~ a l ~ ~ use this method with volume
segments that are parallelepipeds stored in a structure
that is not an octree. Chien and Aggarwal 39 show how
to use this method to construct an octree from the quad-
trees of the three orthogonal views. Hong and Shneier""
point out that the task of intersecting the octree and the
bounding volume can be made more efficient by first
projecting the octree onto the image plane of the sil-
houette and then performing the intersection in the
image plane (see also an article by Potmesil"). In the
rest of this section we assume that the silhouettes result
from parallel views, although perspective views have also
been

Generally, three orthogonal views often are insuffi-
cient to obtain an accurate approximation of the object,
and thus more views are needed. Chien and A g g a r ~ a l ~ ~
overcome this problem by constructing what they term
a generalized octree from three arbitrary views whose
only requirement is that they are not coplanar. The
generalized octree differs from the conventional raster
octree in that each node represents a parallelepiped
whose faces are parallel to the viewing planes. The
approximation is refined by intersecting the projection
of each object node, say P, in the generalized octree with

Ju ly 1988 67

a b I
Figure 7. (a) Perspective projection of a cube, (b) par-
allel projection of a cube.

the image plane of the additional view. Unless its projec-
tion lies entirely within the object region in the addi-
tional view, Pis relabeled as a non-object node or a gray
node. Note the similarity of this method with that of
Hong and S h n e i e ~ ~ '

A problem with using additional views from arbitrary
viewpoints is that intersection operations must be
explicitly performed to determine the relationship
between the projections of the octants in the octree space
and the quadrants in the image space of the new view.
In the general case, the silhouette is approximated by a
polygon. The intersection of the polygonal projection of
an octant with the polygon approximation of a silhouette
is a special case of the polygon clipping p r ~ b l e m . ' ~

point out that sweeping the
silhouette image of an orthographic parallel projection
and restricting the views enable the exploitation of a
regular relation between octants in the octree space and
quadrants in the image space. (An orthographic parallel
projection is a parallel projection in which the direction
of the projection and the normal to the projection plane
are the same, while in an oblique parallel projection they
are not.46) As a result, the intersection operation can be
replaced by a table-lookup operation. The key idea is to
represent the image array by a quadtree, and to make use
of mappings between the quadrants and the octants so
that the octree can be constructed directly from the sil-
houettes of the digitized image. We thereby avoid the
need to perform the sweep operation explicitly.

The image array corresponding to the silhouette is pro-
cessed as if we are constructing its quadtree. Veenstra
and Ahuja use 13 views (rather than 26 views, since the
front and back views contain the same information in
the case of a silhouette). There are three face views, six
edge views, and four vertex views. The face views are
taken with the line of sight perpendicular to a different
face of the octree space; the faces must be mutually
orthogonal. The edge views are taken with the line of
sight passing through the center of an edge and the cen-
ter of the octree space. The vertex views are taken with

Veenstra and

the line of sight passing through a vertex and the center
of the octree space. The vertex views are also known as
isometric projections.

At this point, we explain why these 13 views are used.
Assume the existence of an octree representation of the
scene, and consider which projections of the octree are
the most natural. The face views enable us to maintain
a quadtree representation of the octree's projection. With
rectangular-shaped quadtree blocks (with an aspect ratio
of fl:l), the edge views also enable the projection of the
octree to be maintained as a quadtree. Finally, the projec-
tion of the octree as seen from the vertex views can be
maintained by a quadtree decomposition based on
equilateral triangle^.^^'^'

In some situations even 13 views are inadequate to
obtain a sufficiently accurate approximation of the
object, particularly when the object has a number of con-
cave regions. Here it is best to use a ranging device to
obtain range data. The range data can be viewed as par-
titioning the scene into three parts: the visible surface of
the scene, the empty space in front of this surface, and
the unknown space behind the surface. Conn01ly~~ con-
structs an octree representation of the scene that cor-
responds to the series of such range images. This octree
represents a piecewise linear approximation of the sur-
faces of the scene. A quadtree is used as an intermedi-
ate representation of a piecewise linear surface
approximating the data constituting a single range image
before its incorporation into the octree. Connollyso has
derived an octree-based heuristic for selecting the posi-
tions from which to take subsequent range images.

Parallel and perspective projections
Once an octree has been constructed, it is natural to

want to display it. The two display techniques used most
commonly are the perspective projection and the parallel
projection. The perspective projection is formed with
respect to a viewpoint and a viewplane. In this case, all
points lying on a given line through the viewpoint proj-
ect onto the same point on the viewplane (see Figure 7a).
A parallel projection can be defined as a special case of
the perspective projection such that the viewpoint is at
infinity (see Figure 7b).

For scenes represented by raster octrees, the most com-
mon display technique is the parallel pr~jection.~'.~'
The parallel projection of a raster octree is at its simplest
when the viewplane is parallel to one of the faces of a
node in the tree. This situation is equivalent to the
2.5-dimensional hidden-surface task discussed earlier.
A special case of the parallel projection technique of
interest to engineers is the isometric projection. It has the
property that the silhouette of a cube corresponding to
the space spanned by the root of an octree projects onto
a regular hexagon, which can be decomposed into six
equilateral triangles. These triangles are decomposed
further into triangular quadtrees to determine what por-

68 IEEE Computer Graphics & Applications

tions of the leaf nodes are visible for display. A display
algorithm based on this approach is reported by
Yamaguchi et al.48

Implicit in the task of displaying an octree is the solu-
tion of the hidden-surface task for the interaction among
the objects represented by the octree. Not surprisingly,
since the octree imposes a spatial ordering on objects,
the hidden-surface task for scenes represented by octrees
can be solved more efficiently than the general hidden-
surface task for arbitrary polygons.

Note that any opaque object in the four front octants
of an octree will occlude any opaque object in the back
four octants. This property holds recursively within each
of the suboctants. Display of the scene is facilitated by
constructing a display quadtree that corresponds to a
partial 2D view of the scene. The display quadtree is
updated as the nodes of the octree are traversed from
back-to-front. Each opaque node, say P, encountered in
this traversal “paints out” [i.e., overwrites) the previous
view contained in a portion of the display quadtree that
coincides with the projection of F! Of course, as indicated
in the discussion of the 2.5-dimensional hidden-surface
task, the nodes could also be processed from front-to-
back, thereby allowing for the possibility of visiting fewer
nodes.

Generalizations of the parallel projection to planes at
arbitrary positions and orientations are described by
M e a g h e ~ - ~ ~ and Y ~ u . ~ ~ Straightforward generalizations
can also be made to compute perspective projections
onto arbitrary planes. Another approach to the perspec-
tive projection task is first to transform the 3D scene into
a new 3D scene whose parallel projection is the same as
the corresponding perspective projection of the original
scene. This approach has been used on CSG trees, which
were then transformed into a bintree for display by one
of the parallel projection methods discussed above.34

A drawback to displaying scenes represented by a
raster octree is that there is little potential for using light-
ing models for the shading of the scene, since adjacent
faces of octree nodes meet at 90” angles. One approach
for overcoming this drawback is described by Doctor and
Torborg.” They suggest that the amount for shading a
face of a node can be calculated as a function of the num-
ber of the node’s transparent neighbors. Thus, since a
node on the corner of an object surrounded by empty
space has fewer transparent neighbors, it will be brighter
than another node on the interior of a face of the object.
An interesting highlighting effect results. In his octree
machine,55 Meagher overcame this problem for octrees
that are formed by conversion from other kinds of geo-
metric models by storing surface normals in the voxels
intersecting the surface of the object being viewed. This
problem has been investigated more recently, too.56-58

Another solution to the problem of shading raster
octree images is to use vector octrees to store the polyg-
onal faces of the scene (from such faces, more accurate
information about shading can be derived, as discussed

in the next section). An interesting alternative to the vec-
tor octree is the binary space-partitioning (BSP) tree,59
in which the planes that partition the scene are copla-
nar with some of the polygons in the scene. A hierarchi-
cal representation of the scene is formed by choosing a
distinguished polygon from the scene. The scene is then
decomposed into two half-spaces by the plane in which
the distinguished polygon lies. Polygons intersected by
this plane are split into two separate polygons. This par-
titioning process is recursively applied to these half-
spaces. The choice of the partitioning polygons requires
care. The BSP tree structure was originally proposed as
a preprocessing step for a hidden-surface algorithm, but
has since been applied to other computer graphics
tasks. 5‘3-62

Ray tracing
Although the parallel and perspective projection dis-

play techniques are suitable for computer-aided design,
realistic modeling of lighting effects generally requires
using some variant of ray t r a ~ i n g . ’ ~ Ray tracing is an
approximate simulation of how the light propagated
through a scene lands on the image plane. This simula-
tion is based on classical optical notions of refraction
and diffuse and specular r e f l e ~ t i o n . ~ ~ Although the
geometry of the reflection and refraction of “beams” of
light from surfaces is straightforward, the formulation
of equations to model the intensity of the light as it leaves
these surfaces is a recent development. The quality of the
displayed image is a function of the appropriateness of
the model represented by these equations and the pre-
cision with which the scene is represented.

The amount of time required to display a scene is heav-
ily influenced by the cost of tracing the path of the light
rays as they move backward from the viewer’s eye,
through the pixels of the image plane, and out through
the scene. For example, Whitted63 reports that as much
as 95 percent of the total picture-generation time may be
required to calculate points of intersection between light
rays and objects in a complex scene. Thus the motivation
for using the octree in ray tracing is to enable the calcu-
lation of more rays with greater accuracy.

Since light-modeling equations rely on the availability
of accurate information about the location of the normal
to the surface at the point of its intersection with the ray,
vector octrees are generally more appropriate than raster
octrees. This is especially true for vector octrees that can
represent curved rather than planar surfaces using either
curved patches” or curved primitive^.^^

Octrees have been used to speed up intersection cal-
culations for ray t r a ~ i n g . ~ ~ . ~ ’ The basic speedup can be
seen by examining the 22-sided polygon in Figure 8a. We
use a quadtree instead of an octree to simplify the
presentation. A naive ray-tracing algorithm would have
to test the ray emanating from the viewpoint against each
of these sides, sort the resulting intersections, calculate

July 1988 69

"\ / /

a

b

Figure 8. (a) Example polygon and (b) its correspond-
ing quadtree with a ray shown to emanate from the
viewpoint and reflect from the object.

the reflected ray, and finally test the reflected ray to see
if it intersects any other portion of the polygon. Figure
8b shows that an algorithm based on a quadtree or an
octree would perform the same calculation by visiting
only six leaf nodes (nodes 1, 2, 14, 6, 3, and 4).

Ray tracing in an octree is a two-step process. First, we
must determine the identity of the neighboring node to
be visited next. Several techniques can be used.
G l a ~ s n e r ~ ~ uses a simplification of the Cyrus-Beck clip-
ping a l g ~ r i t h m . ' ~ ' ~ ~ Fujimoto, Tanaka, and Iwata66 dis-
cuss how a fast 2D line-drawing algorithm can be
adapted to perform 3D ray tracing in an octree. This
results in an algorithm that can determine the direction
of the neighbor relative to the node whose neighbor is
being sought, using just a few integer addition, subtrac-
tion, and shift operations.

Second, we must locate the neighboring node. A
reasonable approach is to use the neighbor-finding tech-
niques discussed in Part I.' Jansen6' discusses both top-
down and bottom-up neighbor-finding for ray tracing in
an octree. G l a ~ s n e r ~ ~ represents the octree as a linear
octree but stores the octree nodes in a hash table rather
than a list7' or a B-tree.71372 Instead of using standard
neighbor-finding techniques (either top-down or bottom-
up] to move between the nodes that lie sequentially along
a given ray, the identity of the neighboring node is deter-
mined by calculating a point that would lie in the neigh-
bor and then searching the octree for that point. This
approach has also been applied to the pointer-based rep-
resentation of o c t r e e ~ . ~ ~ * ~ ~ An analogous approach uses
the bintree representation of ~ c t r e e s . ~ ~

The advantage of using the octree in ray tracing is a
reduction in the number of ray-object intersection tests.
The key is to choose an appropriate octree decomposi-

tion rule and to decide on the maximum level of decom-
position. When the cells of the octree decomposition are
large, the number of tests is reduced, but the tests become
more complex. On the other hand, when the cells are
small, there are many tests but their complexity is
reduced. In particular, there are many empty cells.
Fujimoto, Tanaka, and Iwata66 suggest that the space be
subdivided into a regular grid and have found situations
where this is preferable to the decomposition induced
by an octree. Generally these are scenes where the num-
ber of distinct objects is large in comparison with the
level of decomposition.

Snyder and Barr74 suggest an approach similar in
spirit to that of Fujimoto, Tanaka, and Iwata. They pro-
pose a general structure that forms a hierarchy of 3D
arrays (grids] and linked lists. A scene is decomposed
into a list of bounding objects in a somewhat ad hoc man-
ner. These bounding objects are in turn decomposed into
a grid of cells. Each of these cells can contain a list of
objects. In many ways, this method merges object-space
and image-space techniques. The method has been used
for scenes as large as 400 billion triangles.

A different approach to ray tracing has been proposed
by Arvo and Kirk.75 They observe that neighboring rays
tend to intersect the same objects. This property moti-
vates them to represent the rays as points in a five-
dimensional space (called a ray space]. A ray is defined
by the x, y, and z coordinate values of its origin, and the
8 and 4 parameters of its direction as it leaves the origin.
An object is inserted into this five-dimensional ray space
by marking all the points representing rays that would
intersect the object before any others. The mechanics of
this insertion process are presented by Arvo and Kirk.75
The five-dimensional ray-tracing process is represented
by a five-dimensional hyperoctree. Once a scene is built,
ray tracing consists of performing point location oper-
ations in the five-dimensional space.

Nevertheless, the octree approach to ray tracing does
seem promising. For example, G l a ~ s n e r ~ ~ reports that
tracing 597,245 rays in a scene of 1,536 objects required
42 hours and 12 minutes using nonoctree ray-tracing
techniques, while only 2 hours and 57 minutes were
required using octrees. Another scene estimated to
require 141 hours using nonoctree methods was ana-
lyzed in 5 hours and 5 minutes using octrees.

Radiosity
While for many years ray tracing was the dominant

approach to the realistic rendering of images, newer and
different techniques have recently emerged. One such
method is the radiosity approach.76 Instead of modeling
light as particles bouncing around in a scene (as is done
in ray tracing], the radiosity approach models light as
energy whose distribution tends toward a stable
equilibrium. In other words, the radiosity approach
treats light as if it were heat: Light sources behave as

70 IEEE Computer Graphics & Applications

sources of heat, and surfaces that reflect light behave as
surfaces that reflect heat. Below we use the terms reflect,
radiate, and emit interchangeably to denote the light leav-
ing a patch where a patch is a portion of a surface of an
object in the scene. Although energy in the form of light
and heat is normally viewed as a continuous flow, the
radiosity method uses a discrete simulation of the flow
so that an approximate rendering can be computed. In
this section we give only a brief general description of
the method, and point out how and where hierarchical
data structures can be used to improve its performance.

A scene is viewed as a collection of patches where the
light emitted by the surface of a given patch, say Q, is
either constant (e.g., for a light source) or is a linear com-
bination of the light falling on Q from all the other
patches. The simplifying assumption is made that the
surfaces are Lambertian diffuse reflectors and light is
reflected uniformly from the surface in all directions.
This restriction can be lifted77 at the expense of greatly
increasing the size of the problem. Of course, many
patches do not contribute light to a particular patch,
because they are occluded by closer patches. In essence,
radiosity converts the image-rendering problem to one
of solving a set of simultaneous linear equations. Each
equation represents a portion of the discrete simulation
of the light flow, that is, the portion of the light from the
rest of the scene eventually reflected by the patch. Fur-
thermore, the equation for patch Q depends on which
patches are visible from Q.

The process of deriving the equations (i.e., determin-
ing the values of their coefficients) that describe the
interactions among the patches was the computational
bottleneck in the initial presentation of r a d i o ~ i t y . ~ ~ . ~ '
Deriving the equations is straightforward, although the
exact m e c h a n i c ~ ~ ~ . ~ ' are beyond the scope of this survey.
However, this process can be facilitated, in part, by
observing that if two patches, say Q and R, are mutually
invisible, then the coefficient of the term in the equation
of Q (or R) associated with R (or Q) will be zero. The phys-
ical interpretation of the concept of mutual invisibility
is that light emitted by one of the patches cannot reach
the other patch without first being reflected by yet a third
patch. A geometric interpretation of this concept is that
two patches, say Q and R, are mutually invisible only if
there does not exist a pair of points pQ on Q and pR on
R such that a straight line can be drawn between them
without intersecting a third patch or passing through the
interior of an object in the scene.

The determination of which terms in the equations
have zero coefficients corresponds to a hidden-surface
task among the patches. It must be solved separately for
each patch. If we have M patches, then we must solve the
hidden-surface interactions among each of the O(M2)
combinations of patches. Worse, we need to solve these
problems not just for a point on a patch, but for every
point on the surface of the patch. Solving these problems
could be made easier with a data structure such as the

octree to organize the elements of the scene, i.e., the 3D
space occupied by the patches. This simplifies the deter-
mination of which patches are hidden with respect to the
other patches, thereby yielding the zero coefficients.

Unfortunately, the application of radiosity to the ren-
dering of more complicated scenes results in a marked
increase in the number of equations necessary to model
the scene. This has led to a shift of the computational bot-
tleneck to the problem of solving the simultaneous equa-
tions. Nevertheless, recursive subdivision can still be
used. Instead of recursively subdividing the 3D space
occupied by the patches, Cohen et al.79 recursively sub-
divide the surfaces of the patches. This subdivision takes
place in the parametric space of the patch in a manner
similar to that in Catmull's algorithm (see the earlier sec-
tion on displaying curved surfaces]. As with Catmull's
algorithm, recursive subdivision of a patch (described
below) does not actually require the construction of a
quadtree. Instead, the data is simply aggregated in a man-
ner equivalent to applying a particular leaf criterion to
the organization of the surface of a scene.

Observe that to determine the rough flow of light
through a scene, the number of patches needed to model
the objects in the scene is considerably smaller than the
number of patches needed to depict features of the scene
caused by the actual flow of light through the scene (e.g.,
shadow boundaries). For example, suppose we are
modeling a scene that corresponds to a room containing
boxes. Here a rather coarse grid can be used to represent
the surface of the room. However, the accurate represen-
tation of the shadows that the boxes cast on the walls will
usually require a much finer grid. This is especially true
for area light sources that cause varying shadow inten-
sities (e.g., fluorescent tubes that cannot be modeled
accurately as point light sources). Of course, the more
patches used to represent a scene, the more expensive
the solution required to solve the corresponding set of
equations, since there are more equations with a con-
comitant increase in terms. In particular, the number of
equatioiis is proportional to the number of patches,
which can potentially lead to a quadratic number of
interpatch relations.

Note that we don't know how many patches will be
needed to represent the results of the radiosity calcula-
tion until after it has been performed. Early work on
radiosity simply guessed the maximum number. How-
ever, with more complicated scenes, the guesses are
overly pessimistic, thereby resulting in needlessly ineffi-
cient algorithms. Recursive subdivision performed in an
adaptive manner avoids the problem.

Cohen et al.79 propose a two-step algorithm to reduce
the number of equations that must be solved simultane-
ously. The basic approach is first to solve the set of simul-
taneous equations corresponding to the light flow among
the patches used to model the surfaces of the scene. In
the second step, patches whose intensity value computed
by the first step differs greatly from that of their neigh-

July 1988 71

bors are subsequently decomposed into smaller sub-
patches, termed elements, via a regular recursive
decomposition (i.e., equal surface area). The rationale for
further subdivision is the assumption that the intensity
variance in the scene is a continuous function, meaning
that sharp discontinuities are an artifact of undersam-
pling the intensity function (i.e., the grid was too coarse).
The result is that the scene consists of a collection of
patches [each corresponding to a small portion of the
surface of the scene), where each patch is represented
by a quadtree whose leaves are elements. The leaf
criterion used to construct the quadtree is based on the
absolute intensity difference, across the portion of the
surface approximated by the leaf, being below a given
threshold.

Now, instead of deriving a new set of equations to rep-
resent the interactions between all the elements of each
of the patches, the new set of equations assumes that
only one patch has been decomposed, and the remain-
ing patches are treated as if they have a constant inten-
sity value, that is, the one computed in the first step. This
is equivalent to an assumption that the cumulative effect
of elements of patch Q on other patches is approximately
the same as that of Q. In other words, for each collection
of elements corresponding to a particular patch, a set of
simultaneous equations is derived on the basis of the
individual variable intensity values of the elements in the
collection and the treatment of other patches in the scene
as though they have constant intensity. This greatly
reduces the number of equations that need to be solved,
with only a modest reduction in the accuracy of the
solution.

The approach of Cohen et al. described above has
several advantages. First of all, by applying adaptive
decomposition to the individual patches, it prevents the
size of the set of linear equations (i.e., the number of
terms) from growing quadratically. Second, it assumes
that the decomposition of a particular patch, say Q, into
elements does not change the total amount of light that
is reflected by Q and is therefore incident on the other
patches. This means that after determining the light flow
with the initial set of patches, the individual behavior of
the light flow within a patch can be solved independently
of the individual behavior within the other patches. In
fact, the result is an asymmetric relation between the
effects of patches and elements of patches. For each ele-
ment in a patch, we compute the effect of the light from
the remaining patches. However, the effect of individual
elements of patch Q on patch R is taken collectively; that
is, the fact that Q has been decomposed into elements
has no effect on the amount of light reflected by R.

As an example, Cohen et al.79 reported on the applica-
tion of these techniques to a scene whose objects
required 58 patches and whose optical features (e.g.,
those caused by shadow boundaries) required 1,135 ele-
ments. Deriving its radiosity equations took 22.49
minutes, and solving them took 1.10 minutes. However,

a simple decomposition of the same scene into 829
patches-instead of using the adaptive approach-
required 90.10 minutes to derive the equations and 6.36
minutes to solve them.

Of course, even though the solution of the radiosity
equations is a major part of the image-rendering process,
other issues remain. For example, once the radiosity
equations have been solved, we must still render the
scene from a particular viewpoint. The scene described
in the previous example required 14.67 minutes to ren-
der 1,135 elements and 14.16 minutes to render the 829
patches. To improve the rendering time, data structures
that facilitate the solution of the standard hidden-surface
task are necessary. In the section on parallel and perspec-
tive projections we suggested that the octree is an appro-
priate data structure for this task.

Concluding remarks
An overview of the use of such hierarchical data struc-

tures as the quadtree and the octree in computer
graphics applications has been presented here and in
Part I.’ This rapidly moving area of research can be
expected to yield further improvements in the perfor-
mance of traditional graphics algorithms. In many cases,
aside from a potential savings in space requirements,
methods that incorporate these techniques also produce
significant savings in the execution time of the
algorithms. Of course, these data structures are used in
applications other than computer graphics, some of
which are described below. In addition, we briefly men-
tion some hardware implications of their use.

Variants of quadtrees are used to represent points,
lines, and areas in a geographic information
permitting the handling of data in an integrated manner
and the answering of queries that involve combinations
of the different data types. For example, it is easy to
answer a query of the form “find all roads passing
through swampland in Florida that pass through cities
with over 10,000 inhabitants.” Variants have also been
applied in finite element mesh generation.82

An important advantage of quadtrees and octrees is
that they can easily be updated to reflect changes in the
scene they represent. Thus they would naturally prove
useful in the representation of scenes that change over
time because of the motion of objects within the scene.
Ahuja and N a ~ h ~ ~ represent motion by updating an
octree structure as the object is moved. Alternatively, a
changing 3D scene can be viewed as a four-dimensional
object, and a four-dimensional bintree can be used to

72 lEEE Computer Graphics & Applications

represent the space-time object.31 Besides representing
motion, octrees can also be used to plan motion. Kamb-
hampati and Davise4 have developed a multiresolution
path-planning heuristic for 2D motion using quadtrees
that could easily be extended to 3D motion using octrees.
A similar approach can be used to do path planning in
the presence of moving obstacles.85

Many graphics displays accept filled rectangles as a
display primitive,"' making the speed of displaying the
quadtree proportional to the number of nodes in the dis-
played region. On the other hand, pure raster displays
would require the user to decompose the rectangle into
pixels. A central goal in designing graphics display
primitives is to minimize the number of bits that need
to be transferred while representing a given primitive.
A general fill-rectangle primitive requires the specifica-
tion of location, height, and width information in addi-
tion to color information. In contrast, a special-purpose
quadtree processor that can handle a series of quadtree
leaf nodes requires only the specification of the width
and color of the leaf nodes; the location can be derived
from the position of the leaf in the list. Such an approach
has been taken with at least one MC68000-based
graphics display." "' A more aggressive approach to
quadtree hardware is to design a parallel computer
where individual processors are connected like nodes in
a quadtree." *' '' One such device that has proved useful
in image processing is the pyramid machine."
Meagher" describes an octree machine. Dew, Dods-
worth, and Morrisg3 discuss mapping an octree
approach to CSG evaluation onto a systolic array com-
puter. Note that much of this work takes advantage of the
interconnections within the hierarchy, but does not
attempt to balance the workload efficiently among a
restricted number of processors.

Open questions remain about recursive hierarchical
data structures for tasks in computer graphics. For exam-
ple, the use of quadtrees and octrees is often motivated
by intuitive notions about the behavior of typical
graphics data. However, this intuition still requires for-
malization. Furthermore, although much attention has
been devoted to the development of hierarchical data
structures, there has been relatively little work done in
comparing them. Comparisons based on more than a
few "typical" examples would be a welcome contribu-
tion to this domain.

Acknowledgments
The support of the National Science Foundation

under grant DCR-86-05557 is gratefully acknowledged.

References
1. H. Samet and R.E. Webber, "Hierarchical Data Structures and

Algorithms for Computer Graphics, Part I: Fundamentals," CGe.4,
May 1988, pp. 48-68.

2. H. Samet. "The Quadtree and Kelated Hierarc1iic:al Data Struc-
tures," ACM Computing Surveys, June 1984, pp. 187-260.

3. H. Samet, "Bibliography on Quadtrees and Related Hierarchical
Data Structures," in Data Structures for Raster Graphics, F.J. Peters.
L.R.A. Kessener. and M.L.P. van Lierop, eds., Springer-Verlag. Ber-
lin, 1986, pp. 181-201.

4. H. Samet. Spatial Doto Structures: Quadtrees, Octrces, and Other
Hierarchicul Methods, to appear. 1989.

5. I.E. Sutherland, R.F. Sproull, and K.A. Schumacker, "A Characteri-
zation of Ten Hidden-Surface Algorithms," ACM Computing Sur-
veys: Mar. 1974, pp. 1-55.

6. J.E. Warnock, "A Hidden Line Algorithm for Halftone Picture Kep-
resentation," Tech. Report TR 4-5, Computer Science Dept., Univ
of Utah, Salt Lake City, 1968.

7. J.E. Warnock, "The Hidden Line Problem and the Use of Halftone
Displays," in Pertinent Concepts in Computer Graphics-Proc. Sec-
ond Univ. of Illinois Conf. Computer Graphics, M. Faiman and J .
Nievergelt. eds., Univ. of Illinois Press, Urbana, I l l . , 1969, pp.
154-163.

8. J.E. Warnock, "A Hidden Surface Algorithm for Computer Gener-
ated Half Tone Pictures," Tech. Report TR 4-15, Computer Science
Dept., Univ. of Utah, Salt Lake City, 1969.

9. K. Weiler and P. Atherton, "Hidden Surface Removal Using Poly-
gon Area Sorting," Computer Graphics (Proc. SIGGRAPH). July
1977, pp. 214-222.

10. A. Kaufman, D. Forgash, and Y, Ginsburg, "Hidden Surface
Removal Using a Forest of Quadtrees," Proc. First IPA Conf. Image
Processing, Computer Graphics, und Pattern Recognition, A. Kauf-
man, ed., Information Processing Assoc. of Israel, Jerusalem, 1983.
pp. 85-89.

11. G.M. Hunter, Efficient Computation and Data Structures for
Graphics, doctoral dissertation, Princeton Univ., Princeton, N.J.,
1978.

12. G.M. Hunter and K. Steiglitz, "Operationson Images Using Quad
Trees," IEEE Trans. Pattern Analysis and Machine Intelligence, Apr.
1979, pp. 145-153.

13. D.R. Rogers, Procedural Elements for Computer Graphics, McCraw-
Hill, New York, 1985.

14. M.E. Mortenson, Geometric Modeling, John Wiley and Sons, New
York, 1985.

15. E. Catmull. "Computer Display of Curved Surfaces," Proc. Conf.
Computer Graphics, Pattern Recognition, and Data Structure, CS
Press, Los Alamitos, Calif., 1975, pp. 11-17.

16. T. Duff, "Compositing 3-D Rendered Images," Cornputer Graphics
(Proc. SIGGRAPH), July 1985, pp. 41-44.

17. J.L. Posdarner, "Spatial Sorting for Sampled Surface Geometries."
Proc:. SPIE-Uiostereometrics 82 361, San Diego, Calif., Aug. 1982.

18. A.A.G. Requicha, "Representations of Rigid Solids: Theory,
Methods, and Systems," ACM Computing Surveys, Dec. 1980. pp.
437-464.

19. W.E. Carlson, "An Algorithm and Data Structure for 3D Object
Synthesis Using Surface Patch Intersections," Computer Graphics
(Proc. SIGGRAPH), July 1982, pp. 255-264.

20. I. Navazo. D. Ayala. and P. Brunet, A Geometric Modeller Rased on
the Exact Octree Rcpresentation of Polyhedra, Escola Tecnica
Superior d'Enginyers Industrials, Universitat Politechnica de
Barcelona, Barcelona, Spain, 1986.

21. M. Tamminen and F.W. Jansen, "An Integrity Filter for Recursive
Subdivision Meshes," Computers and Graphics, Vol. 9, No. 4,1985,
pp. 351-363.

22. H. Samet and M. Tamminen, "Efficient Component Labeling of
Images of Arbitrary Dimension," Tech. Report TR-1480, Computer

July 1988 73

Science Dept., Univ. of Maryland, College Park, Md., 1985. Also
to be published in IEEE Trans. Pattern Analysis and Machine Intel-
ligence.

23. B. Von Herzen and A.H. Barr, “Accurate Triangulations of
Deformed, Intersecting Surfaces,” Computer Graphics (Proc. SIG-

24. A. Kela, R. Perucchio, and H. Voelcker, “Toward Automatic Finite
Element Analysis,” Computers in Mechanical Engineering, July

25. C.A. Shaffer, Application of Alternative Quadtree Representations,
doctoral dissertation and Tech. Report TR-1672, Computer Science
Dept., Univ. of Maryland, College Park, Md., 1986.

26. C.A. Shaffer and H. Samet, “Optimal Quadtree Construction
Algorithms,” Computer Vision, Graphics, and Image Processing,
Mar. 1987, pp. 402-419.

27. B.G. Baumgart, “Winged-Edge Polyhedron Representation,” Tech.
Report STAN-CS-320, Computer Science Dept., Stanford Univ.,
Stanford, Calif., 1972.

28. M. Tamminen and H. Samet, “Efficient Octree Conversion by Can-
nectivity Labeling,” Computer Graphics (Proc. SIGGRAPH), July

29. T.L. Kunii. T. Satoh, and K. Yamaguchi, “Generation of Topologi-
cal Boundary Representations from Octree Encoding,” CGGA,
Mar. 1985, pp. 29-38.

30. J. Veenstra and N. Ahuja, “Line Drawings of Octree-Represented
Objects,” ACM Trans. Graphics, Jan. 1988, pp. 61-75.

31. H. Samet and M. Tamminen, “Bintrees, CSG Trees, and Time,”
Computer Graphics (Proc. SIGGRAPH), July 1985, pp. 121-130.

32. J.R. Woodwark and K.M. Quinlan, “Reducing the Effect of Com-
plexity on Volume Model Evaluation,” Computer-Aided Design,

33. l? Koistinen, M. Tamminen, and H. Samet, “Viewing Solid Models
by Bintree Conversion,” Proc. Eurographics 85 Conf.. C.E. Vandoni,
ed., North-Holland, Amsterdam, 1985, pp. 147-157.

34. D.T. Morris and P. Quarendon, “An Algorithm for Direct Display
of CSG Objects by Spatial Subdivision,” Fundamental Algorithms
for Computer Graphics, R.A. Earnshaw, ed., Springer-Verlag, Berlin,

35. D.F. Watson and G.M. Philip, “Systematic Triangulations,” Com-
puter Vision, Graphics, and Image Processing, May 1984, pp.

36. O.D. Faugeras, M. Hebert, l? Mussi, and J.D. Boissonnat, “Poly-
hedral Approximation of 3-D Objects Without Holes,” Computer
Vision, Graphics, and Image Processing, Feb. 1984, pp. 169-183.

37. M. Yau and S.N. Srihari, “A Hierarchical Data Structure for Mul-
tidimensional Digital Images,” CACM, July 1983, pp. 504-515.

38. W.N. Martin and J.K. Aggarwal, “Volumetric Descriptions of
Objects from Multiple Views,” IEEE Trans. Pattern Analysis and
Machine Intelligence, Mar. 1983, pp. 150-158.

39. C.H. Chien and J.K. Aggarwal, ”Volume/Surface Octrees for the
Representation of Three-Dimensional Objects,” Computer Vision,
Graphics, and Image Processing, Oct. 1986, pp. 100-113.

40. T.H. Hong and M. Shneier, “Describing a Robot’s Workspace
Using a Sequence of Views from a Moving Camera,” IEEE Trans.
Pattern Analysis and Machine Intelligence, Nov. 1985, pp. 721-726.

41. M. Rotmesil, “Generating Octree Models of 3D Objects from Their
Silhouettes in a Sequence of Images,” Computer Vision, Graphics,
and Image Processing, Oct. 1987, pp. 1-29.

42. S.K. Srivastava and N. Ahuja, “An Algorithm for Generating
Octrees from Object Silhouettes in Perspective Views,” Proc. IEEE
Computer Soc. Workshop on Computer Vision, CS Press, Los
Alamitos, Calif., 1987, pp. 363-365.

43. C.H. Chien and J.K. Aggarwal, “Identification of 3-D Objects from
Multiple Silhouettes Using Quadtrees/Octrees,” Computer Vision,
Graphics, and Image Processing, Nov./Dec. 1986, pp. 256-273.

44. J. Veenstra and N. Ahuja, “Octree Generation from Silhouette
Views of an Object,’’ Proc. Int’l Conf. Robotics and Automation,
CS Press, Los Alamitos, Calif., 1985, pp. 843-848.

GRAPH), July 1987, pp. 103-110.

1986, pp. 57-71.

1984, pp. 43-51.

Vol. 14, NO. 2, 1982, pp. 89-95.

1985, pp. 725-736.

217-223.

45. J. Veenstra and N. Ahuja, “Efficient Octree Generation from Sil-
houettes,” Proc. Computer Vision and Pattern Recognition, CS
Press, Los Alamitos, Calif., 1986, pp. 537-542.

46. J.D. Foley and A. van Dam, Fundamentals ofInteractive Computer
Graphics, Addison-Wesley, Reading, Mass., 1982.

47. N. Ahuja, “On Approaches to Polygonal Decomposition for Hier-
archical Image Representation,” Computer Vision, Graphics, and
Image Processing, Nov. 1983, pp. 200-214.

48. K. Yamaguchi, T.L. Kunii, K. Fujimura, and H. Toriya, “Octree-
Related Data Structures and Algorithms,” CGGA, Jan. 1984, pp.
53-59.

49. C.I. Connolly, “Cumulative Generation of Octree Models from
Range Data,” Proc. Int’l Conf. Robotics, CS Press, Los Alamitos,
Calif., 1984, pp. 25-32.

50. C.I. Connolly, “The Determination of Next Best Views,” Proc. Int’l
Conf. Robotics and Automation, CS Press, Los Alamitos, Calif.,
1985, pp. 432-435.

51. L.J. Doctor and J.G. Torborg, “Display Techniques for Octree-
Encoded Objects,” CGGA, July 1981, pp. 29-38.

52. R. Gillespie and W.A. Davis, ‘“he Data Structures for Graphics
and Image Processing,” Proc. Seventh Conf. Canadian Man-
Computer Communications Soc., Canadian Information Process-
ing Soc., Toronto, 1981, pp. 155-161.

53. D. Meagher, “Geometric Modeling Using Octree Encoding,” Com-
puter Graphics and Image Processing, June 1982, pp. 129-147.

54. M. Yau, “Generating Quadtrees of Cross-Sections from Octrees,”
Computer Vision, Graphics, and Image Processing, Aug. 1984, pp.

55. D. Meagher, “The Solids Engine: A Processor for Interactive Solid
Modeling,” Proc. Nicograph 84 Conf., Tokyo, Nov. 1984.

56. D. Gordon and R.A. Reynolds, “Image Space Shading of Three-
Dimensional Objects,” Computer Vision, Graphics, and Image Pro-
cessing, Mar. 1985, pp. 361-376.

57. L.S. Chen, G.T. Herman, R.A. Reynolds, and J.K. Udupa, “Surface
Shading in the Cuberille Environment,” CGGA, Dec. 1985, pp.
33-43.

58. S. Bright and S. Laflin, “Shading of Solid Voxel Models,” Computer
Graphics Forum, Vol. 5, 1986, pp. 131-137.

59. H. Fuchs, Z.M. Kedem, and B.F. Naylor, “On Visible Surface Gener-
ation by a Priori n e e Structures,” Computer Graphics (Proc. SIG-

60. H. Fuchs, G.D. Abram, and E.D. Grant, “Near Real-Time Shaded
Display of Rigid Objects,” Computer Graphics (Proc. SIGGRAPH),

61. N. Dadoun, D.G. Kirkpatrick, and J.P. Walsh, “The Geometry of
Beam ’kacing,” Proc. Symp. Computational Geometry, ACM, New
York, 1985, pp. 55-61.

62. W.C. Thibault and B.F. Naylor, “Set Operations on Pblyhedra Using
Binary Space Partitioning Trees,” Computer Graphics (Proc. SIG-

63. T. Whitted, “An Improved Illumination Model for Shaded Dis-
play,” CACM, June 1980, pp. 343-349.

64. G. Wyvill and T.L. Kunii, “A Functional Model for Constructive
Solid Geometry.” The Visual Computer, July 1985, pp. 3-14.

65. AS. Glassner, “Space Subdivision for Fast Ray Tracing,” CGGA,

66. A. Fujimoto, T. Tanaka, and K. Iwata, “ARTS: Accelerated Ray-
’kacing System,” CGGA, Apr. 1986, pp. 16-26.

67. M.R. Kaplan, “Space-Tracing: A Constant Time Ray-Tracer,” Uses
ofspatial Coherence in Ray-Tracing, tutorial notes, SIGGRAPH 85,
ACM, New York, 1985.

68. F.W. Jansen, “Data Structures for Ray ’Racing,” in Data Structures
for Raster Graphics, F.J. Peters, L.R.A. Kessener, and M.L.P. van
Lierop, eds., Springer-Verlag, Berlin, 1986, pp. 57-73.

69. M. Cyrus and J. Beck, “Generalized Two- and Three-Dimensional
Clipping,” Computers and Graphics, Vol. 3, No. 1,1978, pp. 23-28.

211-238.

GRAPH), July 1980, pp. 124433.

July 1983, pp. 65-72.

GRAPH], July 1987, pp. 153-162.

Oct. 1984, pp. 15-22.

74 IEEE Computer Graphics & Applications

70. I . Gargantini, “Linear Octtrees for Fast Processing of Three-
Dimensional Objects,” Computer Graphics and Image Processing,
Dec:. 1982, pp. 365-374.

71. A. Rosenfeld, H. Samet, C. Shafter. and R.E. Webber, “Application
of Hierarchical Data Structures to Geographical Information Sys-
tems Phase 11,” Tech. Report TK-1327, Computer Science Dept.,
Univ. of Maryland, College Park, Md., 1983.

72. D.J. Abel, “A B ‘-Tree Structure for Large Quadtrees,” Computer
Vision, Graphics, and Imcige Processing, luly 1984, pp. 19-31.

73. M. Kaplan. “The Use of Spatial Coherence in Ray Tracing,” in
Techniques for Computer Graphics, D.F. Rogers and R.A. Earnshaw,
eds.. Springer-Verlag, New York, 1987, pp. 173-193.

74. J.M. Snyder and A.H. Barr, “Ray Tracing Complex Models Con-
taining Surface Tessellations.” Computer Graphics (Proc. SIG-
GRAPH), July 1987, pp. 119.128.

i 5 . J . Arvo and D. Kirk, “Fast Ray Tracing by Ray Classification,” Com-
puter Graphics (Proc. SIGGRAPH). July 1987, pp. 55-64.

76. C.M. Goral, K.E. Torrance, D.I? Greenberg, and B. Battaile, “Model-
ing the Interaction of Light Between Diffuse Surfaces,” Computer
Graphics (Proc. SIGGRAPH), July 1984, pp. 213-222.

77. D.S. Immel. M.F. Cohen, and D.P. Greenberg, “A Radiosity Method
for Non-Diffuse Environments,” Computer Graphics (Proc. SIG-

78. M.F. Cohen and D.P. Greenberg, “The Hemi-Cube,” Computer
Graphics (Proc. SIGGRAPH), July 1985, pp. 31-40.

79. M.F. Cohen, D.P. Greenberg, D.S. Immel, and P.J. Brock, “An Effi-
cient Radiosity Approach for Realistic Image Synthesis,” CGGA,
hlar. 1986, pp. 26-35.

80. H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, “A Geo-
graphic Information System Using Quadtrees,” Pattern Recogni-
tion, Nov./Dec. 1984, pp. 647-656.

81. C.A. Shaffer, H. Samet, and R.C. Nelson, “QUILT A Geographic
Information System Based on Quadtrees,” Tech. Report TR-1885,
Computer Science Dept.. Univ. of Maryland, College Park, Md.,
1987.

GRAPH), Aug. 1986, pp. 133-142.

Hanan Samet is a professor of computer science
at the Universitv of Maryland, where he serves
as the director of the graduate program in com-
puter science He I S also a member of the Com-
puter Vision Laboratory of the Center for
Automation Research and has a n appointment
in the University of Maryland Institute for
Advanced Computer Studies His research
interests are data structures, computer graphics,
geographic information systems, computer

vision, robotics, programming languages, artificial intelligence. and
database management systems

Samet received his BS in engineering from UCLA and his MS in
operations research and MS and PhD in computer science from Stan-
ford University He is a senior member of IEEE and is a member of
AC M

82. M.A. Yerry and M.S. Shepard, “A Modified Quadtree Approach
to Finite Element Mesh Generation,” CGGA, Jan./Feb. 1983, pp.
39-46.

83. N. Ahuja and C. Nash, “Octree Representations of Moving
Objects,” Computer Vision, Graphics, and Image Processing, May
1984, pp. 207-216.

84. S. Kambhampati and L.S. Davis, “Multiresolution Path Planning
for Mobile Robots,” IEEE J. Robotics and Automation, Sept. 1986,
pp. 135-145.

85. K. Fujimura and H. Samet, “Path Planning Among Moving Obsta-
cles Using Spatial Indexing,” Proc. IEEE Int’l Conf. Robotics and
Automation, CS Press, Los Alamitos, Calif., 1988, pp. 1662-1667.

86. D.S. Whelan, “A Rectangular Array Filling Display System Archi-
tecture,” Computer Graphics (Proc. SIGGRAPH), July 1982, pp.

87. U.J. Milford and PC. Willis, “Quad Encoded Display,” IEE Proc.,
May 1984, pp. 70-75.

88. P. Willis and D. Milford, “Browsing High Definition Color Pic-
tures,” Computer Graphics Forum, Vol. 4, 1985, pp. 203-208.

89. J . Linn, “General Methods for Parallel Searching,” Tech. Report
81, Digital Systems Lab, Stanford Univ., Stanford, Calif., 1973.

90. T. Kushner, A. Wu, and A. Rosenfeld, “Image Processing on
ZMOB,” IEEE Trans. Computers, Oct. 1982, pp. 943-951.

91. M. Dippe and J . Swensen, “An Adaptive Subdivision Algorithm
and Parallel Architecture for Realistic Image Synthesis,” Computer
Graphics (Proc. SIGGRAPH), July 1984, pp, 149-158.

92. R. Miller and Q.F. Stout, “Pyramid Computer Algorithms for Deter-
mining Geometric Properties of Images,” Proc. Symp. Computa-
tional Geometry, ACM, New York, 1985, pp. 263-269.

93. P.M. Dew, J . Dodsworth, and D.T. Morris, “Systolic Array Architec-
tures for High Performance CAD/CAM Workstations,” in Fun-
damental Algorithms for Computer Graphics, R.A. Earnshaw, ed..
Springer-Verlag, Berlin, 1985, pp. 659-694.

14 7 -1 5 3,

Robert E. Webber is an assistant professor of
computer science at Rutgers University His
research interests are image synthesis, geo-
graphic information systems, analysis of
algorithms, and discrete geometry

Webber received his BS, MS, and PhD in com-
puter science from the University of Maryland
H e is a member of ACM. IEEE, and NCGA

Samet can be reached at the Computer Science Department, Uni- Webber can be contacted at the Department of Computer Science,
versity of Maryland, College Park, MD 20742. Rutgers University, Busch Campus, New Brunswick, NJ 08903.

J u l y 1988 75

