
Data Structures I 
Hierarchical Data Structures 

Hanan Samet 
University of Maryland 

Robert E. Webber 
Rutgers University 

This is the first part of a two-part overview of the use 
of hierarchical data structures and algorithms in com- 
puter graphics. In Part I, the focus is on fundamentals. 
Part II focuses on more advanced applications. 
Methods based on hierarchical data structures and 
algorithms have found many uses in image rendering 
and solid modeling. While such data structures are not 
necessary for the processing of simple scenes, they are 
central to the efficient processing of large-scale realis- 
tic scenes. Object-space hierarchies are discussed 
briefly, but the main emphasis is on hierarchies con- 
structed in the image space, such as quadtrees and 
oc t rees. 

C omputer graphics applications require the manip- 
ulation of two distinct data formats: vector and raster (see 
Figure 1). The raster format enables the modeling of a 
graphics image as a collection of square cells of uniform 
size (called pixels]. A color is associated with each pixel. 
To attain maximum flexibility, an attempt is made to 
model directly the addressability of the phosphors on the 
display screen so that each pixel corresponds to a phos- 
phor. This format has also proven useful in computer 
vision, since it corresponds to the digitized output of a 
television camera. In contrast, instead of modeling the 
display screen directly, the vector format models the 
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Figure I. Example image represented in (a) a vector data format and (b) a raster data format. 

Figure 2. Linked list of records representing, by pairs 
of their endpoints, the line segments of Figure l a .  

ideal geometric space to be represented on the display 
screen. Vector data consists of points, line segments, 
filled polygons, and polyhedral solids. In addition to pro- 
cessing these two formats of data directly, computer 
graphics also involves conversion between these two for- 
mats. Closely related to the distinction between the raster 
format and the vector format is the distinction between 
image space and object space presented in an early clas- 
sification of hidden-surface algorithms.' 

Both data formats have obvious representations, which 
are minimal in the sense of providing structure just suffi- 
cient to allow updating. For the raster format, the obvi- 
ous representation is as a two-dimensional array of color 
values. As an example, in Figure Ib, all elements of the 
array through which a line passes or that contain a point 
(shown shaded) are black. For the vector format, the obvi- 
ous representation is as a linked list of line segments (see 
Figure 2). Early work on the vector format extended the 
structure of this list by ordering the line segments around 
common vertices. For example, consider the winged- 
edge polyhedral representation' illustrated in Figure 3. 
While these representations are suitable for medium- 
range applications, once the scene being modeled 
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Figure 3. Winged-edge representation of the line seg- 
ments and their endpoints of Figure la .  The result is 
a graph with two types of nodes shown as squares and 
narrow solid rectangles. The squares correspond to 
endpoints of line segments while the rectangles cor- 
respond to the actual line segments. Each arrow 
denotes a n  edge in the graph between two nodes. 
Edges can exist between two line segments and also 
from line segments to their endpoints. 
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Figure 4. An example of the use of bounding objects: (a) unbounded objects for use in Figures 4b through 4c, 
(b) bounding boxes, (c) hierarchical bounding boxes. 

becomes significantly larger than the display grid, major 
logistic problems arise. 

There are two ways' to handle the logistics problems. 
One approach, based on object-space hierarchies3 is 
discussed only briefly in this article. The other approach, 
based on image-space hierarchies, is typified by hierar- 
chical data structures such as the quadtree and octree, 
and is the subject of Parts I and 114 of this article. 

The two parts are organized as follows. In Part I we 
review the basic fundamentals of hierarchical data struc- 
tures and show how they are used in the implementation 
of some basic operations in computer graphics. The sec- 
ond section of Part I contains a general discussion of 
properties of the structures. The third section describes 
how some basic operations are performed using quad- 
trees. The performance of basic operations using octrees, 
where it differs from quadtrees, is discussed in Part I1 
of the article (to appear in the July 1988 CG&A). Part I1 
focuses on more advanced applications with a heavy 
emphasis on quadtree hidden-surface algorithms and 
such display methods as ray tracing and radiosity. More 
references and details on hierarchical data structures 
appear el~ewhere.~.' 

Properties of quadtrees and 
octrees 

In this section we discuss some fundamental proper- 
ties of quadtrees and octrees. First, however, we elaborate 
on the motivation for their development. As mentioned 
earlier, hierarchical data structures such as the quadtree 
and octree have their roots in attempts to overcome prob- 
lems that arise when the scene being modeled is more 
complex than the display grid (in size, precision, num- 

ber of elements, etc.). The problems are solved with 
object-space hierarchies and image-space hierarchies, 
which are described in greater detail below. Next, we 
present a definition of the quadtree and octree, an exami- 
nation of some of the more common ways in which they 
are implemented, and an explanation of the quad- 
tree/octree complexity theorem. We conclude with a dis- 
cussion of vector quadtrees and vector octrees. 

Object-space hierarchies 
Two kinds of logistic problems present themselves in 

scene modeling. First, communication between the user 
software and the graphics package-i.e., the number of 
procedure calls (or commands transmitted on a graphics 
channel)-can become a bottleneck for the system. The 
second problem is in determining what subset of the 
scene is actually visible. For example, in a 512 x 512 x 512 
scene, only about 512 x 512 of it is actually visible at any 
given time. When the scene extends horizontally and ver- 
tically past the bounds of the viewing surface, the prob- 
lem is further aggravated. The first problem has been 
addressed, in part, by observing that the universe can be 
hierarchically organized into objects composed of 
subobjects, which are in turn composed of other objects, 
and so forth.' This observation has been used as the 
basis for the organization of the user's interface to the 
data from the earliest graphics systemsQ~'O to the most 
recent graphics package designs."*" 

Since the object hierarchy must be kept to solve the 
communication problem, it is tempting to use this hier- 
archy to solve the visible-subset problem. One way to 
adapt the object hierarchy to the visible-subset problem 
is through the notion of bounding objects. When deter- 
mining whether or not an object is visible, it is 
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~ o m m o n ’ ~  to surround the object (see Figure 4a) with a 
bounding box (see Figure 4b) or even a sphere. If the 
bounding object is not visible, then clearly the object 
being bounded is also not visible. This technique 
produces a major computational savings, since it is 
usually much easier to test for visibility of the bounding 
object than the visibility of the bounded object. However, 
the approach cannot deal with the visible-subset prob- 
lem when the  number of objects is  large. 
 researcher^^^'^^'^ have noted that the objects being 
bounded need not be limited to the primitive objects of 
the scene; instead, bounding objects can also be placed 
around the complex objects formed by the different levels 
of the object hierarchy (see Figure 4c). 

This approach is easy to implement and can greatly 
improve execution time. But its efficiency is based on the 
notion that the object hierarchy is a structural approxi- 
mation of a balanced binary tree, in the sense that objects 
in the hierarchy are expected to be locatable in time 
roughly proportional to the logarithm of the number of 
objects in the hierarchy. Of course, this is often not the 
case, because there are two kinds of levels in a natural 
hierarchy: those formed by a few unique objects and 
those formed by a large number of nearly identical 
objects.’ Levels formed in the second manner can be 
very flat and of little computational benefit. Even when 
the branching factor is reasonable, there is no guaran- 
tee that the natural hierarchy will be balanced in the 
algorithmic sense. Some attempts have been made to 
structure the object-space artificially to avoid these prob- 
lems,I6 but such attempts have problems handling 
dynamically changing scenes (due to preprocessing 
costs) as well as often producing worst-case results. 

A related artificial object hierarchy is the strip tree.” 
Here we are dealing with an object consisting of a sin- 
gle curve. The curve is surrounded by a bounding rec- 
tangle, two of whose sides are parallel to the line joining 
the endpoints of the curve. The curve is then partitioned 
in two at one of the locations where it touches the bound- 
ing rectangle. Each subcurve is then surrounded by a 
bounding rectangle and the partitioning process is 
applied recursively. The process stops when the width 
of each strip is less than a predetermined value. This 
approach to subdivision can be viewed as heuristically 
subdividing a curve near its points of maximum curva- 
ture and halting when the curve is essentially linear. The 
worst-case situations illustrated by this data structure are 
typical of the problems with computations on object 
hierarchies. 

Image-space hierarchies 
A natural alternative to processing graphics com- 

mands in the object-space hierarchy is to organize the 
data around an image-space hierarchy. One problem 
with traditional image-space representations (i.e., 2D and 
3D arrays) is that they require the user to fix the maxi- 
mum resolution in advance. However, a hierarchical 
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Figure 5. Examples of nonsquare partitionings of the 
plane: (a) equilateral triangles, (b) hexagons. 

organization of the image space allows the resolution to 
vary with the complexity of the objects in various 
regions. Of course, there are many ways to partition the 
image space (when it is viewed as a continuous 
p l a n e / s p a ~ e ] , ’ ~ - ~ ~  but to interface easily with a Carte- 
sian coordinate system and with the typical display 
device controller, a decomposition of the plane into 
square regions (and a space into cubical regions) is sim- 
plest. Two examples of nonsquare partitionings of the 
plane are given in Figure 5. In the following, we discuss 
the organization of a planar image space (leaving consid- 
eration of the 3D image space for a later section). 

When justifying the use of object-space hierarchies for 
image-space processing, we often refer to the property 
of area coherence, which means that objects tend to rep- 
resent compact regions in the image space. Similarly, we 
might speak of object coherence as being a factor in 
image-space hierarchies, since regions that are close to 
each other tend to be parts of the same object. Thus, both 
types of hierarchies tend to approximate each other. 

For large-scale applications, however, the costs 
associated with the imprecision of these approximations 
can easily overshadow any benefits accrued from the 
explicit maintenance of just one of the hierarchies. Thus, 
when possible, both hierarchies should be maintained. 
A definitive analysis of the merits of image-space and 
object-space hierarchies awaits a universally accepted 
model of “typical graphic data.” 

Quadtree/octree definition 
One commonly used 2D image-space hierarchy is typi- 

fied by the quadtree data ~ t ruc tu re .~ . ’~  It is constructed 
in the following manner. We start with an image (whose 
binary array representation is given in Figure sa) and 
check to see if it has a simple description and thus does 
not require any further hierarchical structuring. If this 
is not the case, then the image space is partitioned into 
four disjoint congruent square regions (called quadrants) 
whose union covers the original image space (see Figure 
6b). Each of these new image spaces is treated as if it 
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Figure 6. Illustration of the quadtree decomposition 
process: (a) original image, (b) first level of decompo- 
sition, (c) second and final level of decomposition, (d) 
an example of an irregular decomposition. 

Figure 7. The edge quadtree for the vector data of Fig- 
ure la .  The maximum level of decomposition is 4. 

were isolated, and each one is examined to determine 
whether or not it has a simple description (resulting in 
Figure 6c). Of course, in this example, the stopping rule 
for the decomposition process is homogeneity (i.e., each 
square region is of one color]. 

This decomposition technique is referred to as a regu- 
lar decomposition, to distinguish it from decomposition 
approaches that vary the size of the subregions formed 
from the original regions (see Figure 6d). While it is plau- 
sible to attempt to move the boundaries of the subregions 
to distribute the complexity of the image more evenly, 
how to do this effectively is not clear. The inherent sim- 
plicity of regular decomposition facilitates both its 
implementation and the analysis of its performance. 

The test for determining whether or not an image 
space has a simple description is called the leaf criterion, 
because the spaces that satisfy it form the leaf nodes of 
the tree that represents the hierarchical structure. There 
are many variants on the quadtree data structure that dif- 
fer only in what constitutes a satisfactory leaf criterion 
for the data structure. This is useful because it allows the 
construction of integrated graphic databases that han- 
dle a wide variety of data a n a l o g ~ u s l y . ~ ~ ~ ~ ~  

There are many plausible leaf criteria. When looking 
for a leaf criterion, we are really looking for a subset of 
the possible image spaces where the graphics tasks we 
want to process can be solved easily. It is also necessary 
that any arbitrary image space can eventually be decom- 
posed into regions that satisfy the criterion. Thus, for 
example, if we were to store the vector data in the image 
space, we might hypothesize a criterion stipulating that 
at most one line segment could appear in any leaf. How- 
ever, this in itself would be unsatisfactory, because there 
are images (for example, any image containing a vertex 
where at least two line segments meet) that cannot in 
general be partitioned (in a finite amount of time) into 
square regions where no region contains more than one 
line segment. 

Although the above criterion is inadequate as a pure 
vector representation, a slight modification of it has been 
~ s e d . ~ ~ l ~ ~ ' ~ ~  The modification is to establish a maximum 
quadtree depth. Once the maximum depth is reached in 
the construction process, if the criterion is still not satis- 
fied, then the region is simply represented by a pixel. The 
result is a mixed raster and vector representation in 
which some information about the image can be lost. 
This representation is known as the edge q ~ a d t r e e . ' ~ . ' ~  
For example, Figure 7 is the edge quadtree correspond- 
ing to the vector data of Figure la. In this case, trunca- 
tion at the maximum tree depth (4) has occurred at the 
nodes containing vertices A, B, C, D, E, F, and G, but not H. 

The octree data ~ t r u c t u r e ~ ~ ' ~ ~  is the 3D analog of the 
quadtree. It is constructed as follows: We start with an 
image in the form of a cubical volume and determine if 
its description is sufficiently complex, in which case the 
volume is recursively subdivided into eight congruent 
disjoint cubes (called octants), until the complexity is 
sufficiently reduced. Of course, the leaf criteria differ 
depending on whether the data is of a raster format (con- 
sisting of 3D voxels having a single color, instead of 2D 
pixels] or vector format (consisting of solids and planar 
or curved surfaces, instead of polygons and edges). Fig- 
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ure 8a is an example of a simple 3D object whose raster 
octree block decomposition is given in Figure 8b and tree 
representation in Figure 8c. 

In this article, we consider quadtrees and octrees con- 
structed from two different leaf criteria (one for handling 
raster data and the other for handling vector data). For 
raster data we use the quadtree/octree built from the 
criterion that no space can contain data having more 
than one color. This works for raster data because the 
raster grid is built of singly colored regions, and hence 
the hierarchy need never decompose to a level lower than 
that of these pixels. The structure has many interesting 
mathematical properties, some of which are reviewed 
briefly below after the discussion of implementation 
techniques. 

Quadtree/octree data structure 
implementations 

Besides consideration of the leaf criteria, the investi- 
gation of hierarchical data structures has also been con- 
cerned with how to encode the tree representing the 
hierarchy. In his treatise on data structures, Knuth3' 
mentions three general approaches to representing trees. 
Each of these approaches has been investigated by others 
with regard to the specific representation of quadtrees. 
In the following, we describe these three approaches and 
discuss their relative advantages and disadvantages in 
the context of a quadtree; however, the extension to 
octrees is straightforward. 

The first and most obvious quadtree encoding is as a 
tree structure that uses pointers. Figure 9 is the 
tree/pointer representation of the quadtree of Figure 6. 
Each internal node (often referred to as a gray node) 
requires four pointers (one for each of its subtrees). 
Clearly the leaf nodes do not need pointer fields. The size 
of a pointer field is the base 2 logarithm of the number 
of nodes in the tree. Each node also requires one bit of 
information to indicate whether it is an internal node or 
a leaf. To describe quadtree algorithms, a father link is 
useful in each node; however, this is not necessary for 
implementation, because in most tasks processing starts 
at the root and a stack of father links can be easily main- 
tained. 

Pointers have also been proposed to connect nodes that 
represent neighboring  region^,^^^^^ but these are not 
necessary for the efficient processing of the quadtree. 
Most early implementations of quadtrees used the 
pointer approach, while the next two approaches were 
considered later because of a perceived storage ineffi- 
ciency of the pointer approach. However, the literature 
is often unclear about exactly how the quadtree 
algorithms are coded. 

The second approach makes use of the observation 
that the number of subtrees of a given node in the quad- 
tree node is either four or zero. Thus a quadtree can be 
represented by listing the nodes encountered by a 
preorder traversal of the tree structure. For example, 
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Figure 8. (a) Example 3D object, (b) its octree block 
decomposition, and (c) its tree representation. 

I 

d 

Figure 9. Pointer encoding of the quadtree of Figure 
6. Internal nodes are represented by circular nodes. 
Terminal nodes are represented by square nodes 
whose contents correspond to the blocks in Figure 6. 

traversing the quadtree of Figure 9 in the order NW, NE, 
SW, and SE and letting G, B, and W denote nonterminal, 
solid, and empty nodes, respectively, results in the list 
GWGWWBBGWBWBB. The approach requires exactly 
one bit of overhead per node, which is used to distin- 
guish between leaf nodes and internal nodes. 

Many simple algorithms-for example, intersec- 
tion/union and area calculation-are performed by 
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preorder traversals of the quadtree, and they can be effi- 
ciently implemented with this encoding. However, other 
algorithms cannot be so efficiently implemented. For 
example, to visit the second subtree of a node, it is neces- 
sary to visit each node of the first subtree so that the loca- 
tion of the root of the second subtree can be determined. 
Nevertheless, this encoding is usable for some 
applications-for example, archiving and facsimile 
transmission. Algorithms specific to this representation 
have been investigated by Kawaguchi et a1.,33-35 who call 
it a DF-expression (because of the similarity between a 
preorder traversal and a depth-first expansion of the 
tree), and Oliver and W i ~ e m a n , ~ ~ . ~ ~  who refer to it as a 
treecode. 

The third approach is based on the use of locational 
codes (referred to as a Dewey decimal encoding by 
Knuth3'). It was first proposed by Morton3' as an index 
to a geographical database. In the variant that we 
describe, each node is represented by a pair of numbers. 
The first number, termed a locational code, is composed 
of a concatenation of base 4 digits corresponding to 
directional codes that locate the node along a path from 
the root of the quadtree. The directional codes take on 
the values 0 , 1 , 2 ,  and 3 corresponding to quadrants NW, 
NE, SW, and SE, respectively. The second number is the 
level of the tree at which the node is located. Assume that 
the root is at level 0. For example, the pair of numbers 
(312,3) are decoded as follows: 312 is the base 4 locational 
code and denotes a node at level 3 reached by a sequence 
of transitions-SE, NE, and SW-starting at the root. The 
overhead per node is two bits per level of depth of the 
node, plus the base 2 logarithm of the depth of the node 
to specify the level at which the node is found. 
Gargantini39-42 has investigated algorithms specific to 
this representation, which she calls a linear quadtree, 
because the addresses are keys in a linear list of nodes. 
Oliver and W i ~ e m a n ~ " ~ '  call it a leafcode. 

When using the linear quadtree encoding, further 
reduction of the storage requirements is possible with- 
out substantially increasing the runtime requirements 
of the algorithms. In particular, there is no need to retain 
the internal nodes as the general quadtree structure 
stores only data in the tree's leaf nodes. Since the num- 
ber of internal nodes is equal to one third of the number 
of leaf nodes minus one, this results in a significant space 
savings. Moreover, it is often remarked that the nodes 
representing a background color3' (or empty nodes) can 
also be eliminated from the node list. While this does not 
excessively complicate the processing of the quadtree, its 
usefulness is unclear. With a binary raster image, the 
result is a reduction in the size of the quadtree to one half 
of its former size (assuming that, on the average, one half 
of the pixels are background]. However, for multicolored 
raster data, the notion of a background color becomes 
less relevant and this compaction becomes, in turn, less 
useful. This approach can also be applied to vector data 

quadtrees. A related method draws an analogy to run 
encoding,43 where the locational codes of the leaf nodes 
are sorted and only the first element of each subsequence 
of blocks of the same color is retained.44 This method 
cannot be easily applied to vector quadtrees. 

The relative compactness of the pointer and the linear 
quadtree representations depends on the complexity of 
the scene being represented and on the application in 
which they are used. The attractiveness of the linear 
quadtree representation increases with the complexity 
of the scene. However, the choice is not clear cut, and is 
further complicated by the necessity for the various 
fields to land on byte boundaries. For 3D data (and data 
of even higher dimensions], the overhead of the internal 
nodes is less of a factor and hence the pointer represen- 
tation is more compact for an even larger fraction of pos- 
sible scenes.45 

The amount of storage required by quadtrees and 
octrees is directly proportional to the number of leaf 
nodes. One approach to reducing the number of leaf 
nodes in these data structures is the bintree.46-48 Rather 
than splitting a region with respect to all the principal 
planes simultaneously, the bintree splits a region against 
only one plane at each level. For example, instead of split- 
ting an octree node into eight subnodes, the bintree first 
splits the node into two subnodes along the x-y plane. 
Each of these subnodes is checked to see if it could be 
a valid leaf (i.e., if it represents a region of just one color). 
Each subnode that does not correspond to a leaf is then 
subdivided along the y-z plane. Finally, nodes that 
require further subdivision are subdivided along the x- 
z plane. This process is repeated in a cyclical manner 
until the appropriate maximum level of subdivision is 
attained. 

In the best case, a region requiring one internal node 
and eight octree leaf nodes is represented by one inter- 
nal node and two bintree leaf nodes. For the example 
described, in the worst case, a bintree of seven internal 
nodes and eight leaf nodes might be required. The aver- 
age case is more difficult to define, so a pointer-based 
bintree representation may or may not be more compact 
than the corresponding pointer-based octree represen- 
tation. However, with a linear bintree representation, the 
extra internal nodes become irrelevant and the need for 
two additional bits (for a 3D image) to represent the 
deepest level of the bintree is often overshadowed by the 
reduction in the number of leaf nodes. Another advan- 
tage of the bintree is that algorithms using it can be 
designed to work for data of arbitrary dimensionality. 

The quadtree/octree complexity theorem 
Most quadtree algorithms are simply preorder traver- 

sals of the quadtree and hence their execution time is 
generally a linear function of the number of nodes in the 
quadtree. Thus we are interested in the asymptotic anal- 
ysis of the size of a quadtree more for its relevance to the 
execution-time analysis of quadtree algorithms than for 

54 IEEE Computer Graphics & Applications 



Figure 10. Example quadtree where the perimeter 
does not exceed the base 2 logarithm of the width of 
the image. The region in the image is assumed to con- 
sist of four pixels, each of unit width. 

the amount of storage actually required. Our discussion 
assumes a tree representation in the sense that the num- 
ber of nodes in the quadtree includes the internal nodes. 
A key to the analysis of the execution time of quadtree 
algorithms is the following result on the size of quadtrees 
(henceforth referred to as the quadtree complexity 
the~rem’~,~’) ,  which states that 

For a quadtree of depth q representing an image 
space of 2q x pixels where these pixels represent 
a region whose perimeter measured in pixel-widths 
is p, the number of nodes in the quadtree cannot 
exceed 16-p-11+ 16.q. 

In all but the most pathological cases (see Figure 10 for 
an example) the region perimeter exceeds the base 2 log- 
arithm of the width of the image space in which the 
region is presented. Therefore, the quadtree complexity 
theorem holds that the size of the quadtree representa- 
tion of a region is linear in the perimeter of the region. 
An alternative interpretation of this result is that for a 
given image, if the resolution doubles and hence the 
perimeter doubles (ignoring fractal effects), then the 
number of nodes will double. On the other hand, for the 
2D array representation, when the resolution doubles, 
the size of the array quadruples. Therefore, asymptoti- 
cally, quadtrees are arbitrarily more compact than 2D 
arrays; however, for moderate-size applications, constant 
factors need to be scrutinized more carefully. Figure 11 
illustrates the relative growth of the two representations 
for a simple triangular region. 

a d 

b e 
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Figure 11. An illustration of the relative growth of the 
array and quadtree representations at different levels 
of resolution for a simple triangular region. Figures 
l l a  through l l c  are the array representations of the 
triangle at resolutions 1,2, and 3. Figures l l d  through 
l l f  are the corresponding quadtree representations at 
the same resolutions. Whenever any part of a square 
or node partially overlaps the interior of the triangle, 
the node or square is treated as being in the region 
(and is shown shaded). Note that the quadtree at reso- 
lution 1 (in Figure l l d )  has just one node. The trian- 
gle overlaps each of the four blocks, and thus they 
have been merged. 

In most tree structures, the number of nodes in the tree 
is dominated by the number of nodes at the deepest 
levels (assuming that the root is at the top). This is also 
true for quadtrees (see Figure 9). The quadtree complex- 
ity theorem follows from the realization that all nodes in 
the quadtree are either adjacent (including diagonal 
adjacencies) to the border between two regions or have 
a sibling with a subtree that contains a portion of the bor- 
der. Thus at the deeper levels of a quadtree, the only 
nodes present are those that are very close to the border. 

From elementary geometry we know that the number 
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Figure 12. A vector data quadtree corresponding to the 
image of Figure la. 

of disjoint regions of a bounded size that can be within 
a bounded region of the perimeter is a linear function 
of the length of the perimeter. Although we might expect 
a typical image to have a lower constant of proportion- 
ality than the 16 of the quadtree complexity theorem, we 
should expect it to have a size that is linear in its perim- 
eter. Dyer4' has verified such expectations for randomly 
placed rectangles where a factor of 4 rather than 16 was 
found. 

The quadtree complexity theorem applies to 3D 
data5' where perimeter is replaced by surface area, as 
well as to higher dimensions for which, in all but patho- 
logical cases, it holds that 

The size of the k-dimensional quadtree of a set of k- 
dimensional objects is proportional to the sum of the 
resolution and the size of the (k - 1)-dimensional 
interfaces between these objects. 

Aside from its implications on the storage requirements, 
the quadtree complexity theorem also has a direct 
impact on the analysis of the execution time of 
algorithms. In particular, most algorithms that execute 
on a quadtree representation of an image instead of an 
array representation have an execution time that is 
proportional to the number of blocks in the image rather 
than the number of pixels. In its most general case, this 
means that the application of a quadtree algorithm to a 
problem in d-dimensional space executes in time propor- 
tional to the analogous array-based algorithm in the 
(d - 1)-dimensional space of the surface of the original d- 
dimensional image. 

Vector quadtree definition 
The other type of data that we want to represent is vec- 

tor data. There are a number of useful leaf criteria5' for 
representing vector data using quadtrees. These criteria 
differ in the degree of the complexity of the image-space 
description versus the size of the hierarchy (i.e., the num- 
ber of nodes in the quadtree). Choosing between the 
criteria is a matter of analyzing constants on specific 
computers to determine whether we prefer a large num- 
ber of simple leaf nodes or a smaller number of more 
complicated leaf nodes (where it is understood that the 
expense of processing a leaf is proportional to the com- 
plexity of the information stored in the leaf). In the fol- 
lowing, we present a leaf criterion that results in many 
simple leaf nodes, but which minimizes the complexity 
of the description of algorithms; however, other leaf 
criteria may prove more useful for specific implementa- 
tions. The criterion that we shall use for vector data is 
termed a PM, quadtree and is defined as follows: 

0 There can be at most one vertex in an image space. 

0 If there is a vertex in the image space, then all line seg- 
ments in the image space must share that vertex. 

0 If there are no vertices in the image space, then there 
can be at most one line segment passing through the 
image space. 

For our purposes, vertices occur at the endpoints of line 
segments and at any location where two line segments 
intersect. A line segment consists of a set of q-edges 
where a q-edge is the maximal portion of a line segment 
that is contained within a given image space. Using such 
criteria, the image of Figure la  is represented by the 
quadtree of Figure 12. 

When a line segment passes through an image space, 
resulting in a q-edge, only its presence in the space is 
explicitly re~orded .~ '  The intercepts of the q-edge with 
the border of the image space can be derived from the 
descriptor of the line segment that is associated with the 
q-edge. Thus all q-edges are specified with the same pre- 
cision as the vertices of their corresponding line seg- 
ments. The descriptor of the line segment is retained as 
long as at least one of its q-edges is still present. Thus 
fragments of line segments can be represented. This is 
important for it means that the representation is consis- 
tent; that is, removal of a q-edge from an image space and 
its subsequent reinsertion into the same image space will 
result in the same line segment. 

The quadtree complexity theorem is also applicable to 
vector data. In this case, a suitable pixel width would be 
the size of the deepest leaf node needed to represent the 
structure. This maximum depth is a function of the 
closest approach between vertices and line segments that 
are not adjacent to the vertices. Alternatively, an upper 
bound on the depth can be constructed based on the pre- 
cision with which the location of the vertices is speci- 
fied.53 In either case, the bound on the number of nodes 
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given by the quadtree complexity theorem is excessively 
pessimistic for vector data. 

It would be nice if the number of nodes of the quad- 
tree were a function of the number of line segments in 
the image space (thus making the size of the image-space 
hierarchy comparable with the size of the object-space 
hierarchy for the same data). However, this is not the case 
because as the image space is subdivided, line segments 
are also subdivided. Thus information about a given line 
segment can exist in many nodes of the structure. In the 
worst case, the number of nodes in which information 
about a particular line segment can occur is proportional 
to the length of that line segment. 

This worst case is the one that is analyzed by the above 
adaptation of the quadtree complexity theorem. How- 
ever, it is not typical. In fact, usually the smallest leaf 
nodes that contain a given line segment occur near the 
endpoints of the line segment. Furthermore, as we exam- 
ine parts of the line segment that are successively farther 
from both endpoints, the sizes of the leaf nodes contain- 
ing these parts of the line segment get larger. In other 
words, we expect the number of nodes contributed by a 
given line segment to be proportional to the base 2 loga- 
rithm of the length of the line segment. 

Vector octree 
Just as the raster quadtree leaf criterion could be gener- 

alized to a raster octree leaf criterion, the vector quad- 
tree leaf criteria can also be generalized to form vector 
octree leaf criteria to represent polyhedrons. Octree data 
structures have been used where the octree decomposi- 
tion was performed as long as the number of primitives 
in a leaf node exceeded a predefined b o ~ n d . ~ ~ . ~ ~  This 
approach has also been used in the context of the bintree 
representation of the ~ c t r e e . ~ ’  However, it has the same 
problems as the analogous quadtree approach; that is, 
there are some features that cannot be represented 
exactly (thus they require a maximum-depth truncation 
similar to the edge q ~ a d t r e e ~ ’ ~ ‘ ~ ~ ’ ~ ) .  

One way to avoid the information loss from a 
maximum-depth cutoff is to permit a variable number 
of primitives to be associated with each octree leaf node. 
The vector octree ana10g25~58-61 of the vector quadtree 
consists of leaf nodes of type face, edge, and vertex, 
defined as follows. A face node is an octree leaf node that 
is intersected by exactly one face of the polyhedron. An 
edge node is an octree leaf node that is intersected by 
exactly one edge of the polyhedron. For our purposes, 
having more than two faces meet at a common edge is 
permissible, although the situation cannot arise when 
modeling solids with Eulerian operators.‘ Nevertheless, 
it is plausible when 3D objects are represented by their 
surfaces. A vertex node is an octree leaf node that is inter- 
sected by exactly one vertex of the polyhedron. 

The space requirements of the vector octree are con- 
siderably harder to analyze than those of the raster 
octree.6’ However, it should be clear that the vector 
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Figure 13. (a) Example 3D object and (b) its cor- 
responding vector octree. 

octree for a given image is much more compact than the 
corresponding raster octree. For example, a vector octree 
decomposition of the object in Figure 13a is shown in 
Figure 13b. 

Vector octree techniques have also been extended to 
handle curvilinear surfaces. Primitives including 
cylinders and spheres have been used with a decompo- 
sition rule that limits the number of distinct primitives 
that can be associated with a leaf n ~ d e . ~ ’ . ~ ~  Another 
approach64 extends the concepts of face node, edge 
node, and vertex node to handle faces represented by 
biquadratic patches. Biquadratic patches enable a bet- 
ter fit with fewer primitives than can be obtained with 
polygonal faces, thus reducing the size of the octree. The 
difficulty in organizing curved surface patches by using 
octrees lies in devising efficient methods of calculating 
the intersection between a patch and an octree node. 
Observe that in this approach we are organizing a col- 
lection of patches in the image space, in contrast to 
decomposing a single patch in the parametric space by 
use of quadtree  technique^.^ 

Algorithms using quadtrees 
Now we describe how a number of basic graphics 
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algorithms can be implemented using quadtrees. In par- 
ticular, we discuss point location, object location, set 
operations, image transformations, scaling, transmis- 
sion, quadtree construction, and polygon coloring. We 
also explain the concept of neighbor finding, which 
serves as a basis for many algorithms using quadtrees 
and octrees. 

Point location 
Probably the simplest task to perform on raster data 

is determining the color of a given pixel. In the tradi- 
tional raster representation, this task is accomplished by 
exactly one array access. In the raster quadtree, it 
requires searching the quadtree structure. The algorithm 
starts at the root of the quadtree and uses the values of 
the x and y coordinates of the center of its block to deter- 
mine which of the four subtrees contains the pixel. For 
example, if both the x and y coordinates of the pixel are 
less than the x and y coordinates of the center of the 
root's block, then the pixel belongs in the southwest sub- 
tree of the root. 

This process is performed recursively until a leaf is 
reached. It requires the transmission of parameters so 
that the center of the block corresponding to the root of 
the subtree currently being processed can be calculated. 
The color of that leaf is the color of the pixel. The exe- 
cution time for the algorithm is proportional to the level 
of the leaf node containing the desired pixel. 

Point location can also be performed without explicitly 
calculating the center of the block corresponding to each 
node encountered along the path. This calculation can 
be avoided by using the depth n of the pixel relative to 
that of the root and assuming that the southwestern-most 
pixel is at (0,O). 

This approach to pixel location is easiest to contem- 
plate with respect to a quadtree representation that 
makes use of locational codes, although it is equally 
applicable to the pointer representation of quadtrees. 
The locational code for a leaf is formed by a process 
(described in the section on quadtree/octree data struc- 
ture implementations) that is equivalent to interleaving 
the binary coordinates of the lower left-hand corner of 
the leaf. Here coordinates are integer values ranging 
from 0 to 2" - 1 for a 2" x 2" grid. When the leaf nodes 
are sorted by their locational codes (as for a preorder 
traversal of the quadtree), the addresses of all descen- 
dants of a node, say P, lie between the address of P and 
the address of its immediate successor at the same level. 
A pixel is located by first interleaving the binary 
representations of its coordinates to construct an 
address, say K, for a hypothetical leaf node correspond- 
ing to the pixel. This hypothetical leaf is located by per- 
forming a binary search on the sorted list of locational 
codes for the leaf nodes of the quadtree and returning 
the leaf node with the largest locational code value that 
is less than or equal to K. The execution time for this algo- 
rithm is proportional to the log of the number of leaf 

nodes in the tree (assuming key comparisons can be 
made in constant time). 

When a pointer representation is used, the pixel- 
location algorithm is slightly different. In particular, we 
locate the appropriate leaf by descending the tree. The 
execution time is proportional to the level of the leaf node 
containing the desired pixel. 

Neighboring object location 
The vector analog of the pixel-location task is the 

object-location operation, where the x and y coordinates 
of the location of a pointing device (e.g., mouse, tablet, 
lightpen) must be translated into the name of the appro- 
priate object. To handle this task, we must first determine 
the leaf that contains the indicated location. The first 
approach discussed in the section above can be adapted 
in a straightforward manner. The second approach, 
using the interleaved bits, is not immediately applicable, 
since there is no underlying pixel level. 

Let us assume that the block corresponding to the root 
of the quadtree is the unit square, and represent the 
values of the x and y coordinates of the pointing device 
as fixed-length binary fractions. Now the bits of the 
binary fraction can alsc be viewed as representing the 
unsigned integer coordinates of a grid where the sepa- 
ration between neighboring grid points is the minimum 
resolution of the binary fraction. The equivalence to 
integer coordinates is straightforward. 

For vector data quadtrees, the leaf corresponding to the 
location of the pointing device serves as the starting 
point of the object-location algorithm. In essence, we 
wish to report the nearest primitive of the object descrip- 
tion stored in the quadtree. If the leaf is empty, then we 
must investigate other leaf nodes. In fact, even if the leaf 
node is not empty, unless the location of the pointing 
device coincides with a primitive, it is possible that a 
nearer primitive might exist in another leaf. Such an 
algorithm has been developed for quadtree representa- 
tions that use locational c o d e P  as well as pointers.66 
The latter is reported only for point data; however, the 
treatment of vector data differs from point data only in 
the formula used to calculate the distance from a point. 

Using a pointer quadtree representation, the nearest 
primitive is found by a top-down recursive algorithm (the 
operation is also known as the nearest neighbor problem). 
Initially, at each level of the recursion, we explore the 
subtree that contains the location of the pointing device, 
say P. Once the leaf containing P has been found, the dis- 
tance from P to the nearest primitive in the leaf is calcu- 
lated (empty leaf nodes have a value of infinity). Next, we 
unwind the recursion. As we do so, at each level we 
search the subtrees that represent regions overlapping 
a circle centered at P whose radius is the distance to the 
closest primitive that has been found so far. When more 
than one subtree must be searched, the subtrees 
representing regions nearer to Pare searched before the 
subtrees farther away (since it is possible that a primitive 
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in them might make it unnecessary to search the subtrees 
that are farther away). 

Consider, for example, Figure 14 and the task of find- 
ing the nearest neighbor of P in node 1. If we visit nodes 
in the order NW, NE, SW, and SE, then as we unwind for 
the first time, we visit nodes 2 and 3 and the subtrees of 
the eastern brother of 1. Once we visit node 4, there is 
no need to visit node 5 since node 4 contained A. 
Nevertheless, we still visit node 6, containing point B, 
which is closer than A, but now there is no need to visit 
node 7. Unwinding one more level reveals that because 
ofthe distance between P and B, there is no need to visit 
nodes 8, 9, 10, 11, and 12. However, node 13 must be 
visited, as it could contain a point that is closer to P than B. 

Sometimes calculating the nearest neighbor is not 
necessary, as long as a “close” neighbor is found. For 
example, in a plotting application we want to reduce the 
wasted pen motions (motions of the pen that do not 
involve drawing). In particular, we require a real-time 
algorithm, in the sense that we want to minimize the total 
time required both to preprocess the drawing and actu- 
ally plot it. In such a case, a quadtree heuristic for cal- 
culating the nearest neighbor has been found useful.66 
For example, in Figure 14 such a heuristic might return 
A as the nearest neighbor of P even though B is closer. 
In this application, the only relevant data are the end- 
points of the line segments. The heuristic is to use the 
primitive in the leaf containing the location of the point- 
ing device (unless that leaf is empty, in which case one 
of the neighboring nonempty leaf nodes is used). 

Set-theoretic operations and image 
transformations 

The basic set-theoretic operations on quadtrees were 
first described by Hunter and S t e i g l i t ~ ’ ~ , ~ ~  (see also 
ShneieP8) for pointer-based quadtrees. Gargantini4’ 
raises the issue of performing these operations on lin- 
ear quadtrees that are not aligned. Hunter and 
Steiglit~”,~’ and Peters6’ consider the related problem 
of performing an arbitrary linear transformation on an 
object represented by a quadtree. 

In this section we show how to perform set-theoretic 
operations on both aligned and unaligned quadtrees. We 
conclude with a demonstration that linear transforma- 
tions on a quadtree are special cases of set-theoretic 
operations applied to quadtrees that are not aligned. Our 
implementation of the transformations uses the same 
technique as that of Meagher3O for shifting and rotating 
images represented by octrees (see Jackins and 
TanimotoZ8 for a related approach), although he does 
not use the analogy with the set-theoretic operations. 

Alternative implementations compute the trans- 
formed location of each black node in the original quad- 
tree (octree) and insert it in the new quadtree 
( o ~ t r e e ) . ~ ~ - ’ ~  The worst-case analysis of their execution 
time is not as good as that of the methods that we discuss, 
although, in practice, the actual execution times seem to 

Figure 14. Example illustrating the neighboring 
object problem: P is the location of the pointing 
device. The nearest object is represented by point B in 
node 6. 

be dominated by implementation-dependent constant 
factors. Van L i e r ~ p ~ ~  and W a l ~ h ~ ~  discuss algorithms for 
linear quadtrees that have aspects of both of these alter- 
natives, while Yamaguchi et al.75 do the same for linear 
octrees. 

Aligned quadtrees 
Two quadtrees are said to be aligned when their root 

nodes correspond to the same region. Set-theoretic oper- 
ations on aligned quadtrees are generally simpler than 
the equivalent operation on unaligned quadtrees. Of 
course, the complement operation, which is a unary 
operation, is trivially an aligned-quadtree algorithm 
(since every quadtree is aligned with itself). The comple- 
ment operation makes sense only as a set-theoretic oper- 
ation when the quadtree in question represents a binary 
image (i.e., leaf nodes are either black or white). In the 
more general case of a quadtree with multicolored leaf 
nodes, the analogous operation is to uniformly replace 
the color of each of the leaf nodes by another color. When 
the color-to-color mapping is specified by an array 
indexed by the first color, then the cost of the transfor- 
mation is simply the cost of visiting each node of the 
quadtree and creating a copy with the appropriate new 
data. Assuming that the color mapping is “one-to-one” 
and “onto,” then the quadtree’s structure does not 
change. The simplest method is to traverse the input 
quadtree in preorder, simultaneously building the resul- 
tant quadtree. If the mapping between colors is not 
invertible, then merging some nodes in the resulting 
quadtree may be necessary. However, this can be done 
naturally during the preorder traversal of the input tree. 
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Figure 15. Example of set-theoretic operations. 
Figures 15a and 15b show sample images and their 
quadtrees. Figure 15c shows the intersection of the 
images in Figures 15a and 15b; Figure 15d shows their 
union. 

Thus, under either condition, the quadtree recoloring 
algorithm executes in time proportional to the size of the 
input quadtree. 

For a binary image, set-theoretic operations such as 
union and intersection are quite simple to implement. 
For example, the intersection of two quadtrees yields a 
black node only when the corresponding regions in both 
quadtrees are black. The intersection of the quadtrees of 
Figures 15a and 15b results in Figure 15c. This operation 
is performed by simultaneously traversing three quad- 
trees. The first two trees correspond to the trees being 
intersected and the third tree represents the result of the 
operation. At each step in the traversal one of the follow- 
ing actions is taken: 

0 If either input quadtree node is white, then the out- 
put quadtree node is white. 

0 If both input quadtree nodes are black, then the out- 
put quadtree node is black. 

0 If one input quadtree node is black and the other 
input quadtree node is gray (i.e., an internal node), 
then the gray node’s subtree is copied into the output 
quadtree. 

0 If both input quadtree nodes are gray, then the out- 
put quadtree node is gray, and these four actions are 
recursively applied to each pair of corresponding 
sons. Once the sons have been processed, we must 
check to see if they are all leaf nodes of the same color, 
in which case a merge takes place (e.g., the sons of 
nodes B and E in Figures 15a and 15b respectively). 
Note that for the intersection operation, a merge of 
four black leaf nodes is impossible, and thus we must 
check only for the mergibility of white leaf nodes. 

The worst-case execution time of this algorithm is 
proportional to the sum of the number of nodes in the 
two input quadtrees. Note that as a result of the first and 
third actions, it is possible for the intersection algorithm 
to visit fewer nodes than the sum of the nodes in the two 
input quadtrees. 

The union operation is implemented easily by apply- 
ing DeMorgan’s law to the above intersection algorithm. 
For example, Figure 15d is the result of the union of the 
quadtrees of Figures 15a and 15b. When the set-theoretic 
operations are interpreted as Boolean operations, union 
and intersection become “or” and “and” operations, 
respectively. Other operations, such as “xor” and set- 
difference, are coded in an analogous manner with 
linear-time algorithms. Since all of these algorithms are 
based on preorder traversals, they will execute efficiently 
regardless of the way the quadtree is represented (e.g., 
pointers, locational codes, DF-expressions). 

Note also that clipping is a special case of the intersec- 
tion operation. In this case, one of the input quadtrees 
corresponds to a black region that represents the display 
screen’s location and size, thereby making clipping easy 
to implement using quadtrees. 
Rectilinear unaligned quadtrees and shift operations 

Implicit in the intersection algorithm given above is the 
assumption that both input quadtrees correspond to the 
same region (although the individual pixels can have 
different values). In this section we are interested in the 
situation where the quadtrees correspond to regions of 
the same size but their lower left-hand corners cor- 
respond to different positions. For example, consider the 
4 x 4 quadtrees shown in Figures 16a and 16b, whose 
lower left-hand corners are at locations (0,Z) and (2,O) 
respectively. This alignment information is stored 
separately from the quadtree. Thus, to translate or rotate 
a quadtree, we need only to update the alignment infor- 
mation. However, when two quadtrees of differing align- 
ment must be operated upon simultaneously (e.g., 
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Figure 16. Example of rectilinear unaligned-quadtree 
intersection: (a) a 4 x 4 quadtree with a lower left-hand 
corner at (0,2), (b) a 4 x 4  quadtree with a lower left- 
hand corner at (2,0), (c) the intersection of Figures 16a 
and 16b with Figure 16a as the aligned quadtree, (d) 
the intersection of Figures 16a and 16b with Figure 
16b as the aligned quadtree. 

intersected), then the algorithm must take the differing 
alignments into consideration as it traverses the two 
quadtrees. Such quadtrees are termed unaligned 
quadtrees. 

Processing unaligned quadtrees is simplified by the 
observation that if a square of size w x w (parallel to the 
x- and y-axes) is overlaid on a grid of squares such that 
each square is of size w x w, then it can overlap, at most, 
four of those squares (see Figure 17a) and those four 
squares will be neighbors (i.e., they form a 2 ~ x 2 ~  
square). We refer to this as the rectilinear unaligned- 
quadtree problem. When the w x w square is not paral- 
lel to the x- and y-axes, we have the general unaligned- 
quadtree problem. In that case, we observe that when an 
arbitrary square of size w x w is overlaid at an arbitrary 
orientation upon a grid of squares such that each square 
is of size w x w, it can cover at most six grid squares (see 
Figure 17b). These six or fewer grid squares will lie 
within a 3w x 3w square, where the center square of the 
3w x 3w square is always one of the intersected squares. 

To handle the rectilinear unaligned-quadtree intersec- 
tion problem, we adopt the convention that the output 
quadtree will be aligned with the first quadtree. We refer 
to the first quadtree as the aligned quadtree and to the 
second quadtree as the unaligned quadtree. For exam- 
ple, intersecting the quadtrees in Figures 16a and 16b so 
that the quadtree of Figure 16a is the aligned quadtree 

a 

b 

Figure 17. Examples showing how many squares can 
be overlapped when a square of size w x w is overlaid 
on a grid of squares such that each square is of size 
w x w, so that the square and the grid are (a) rec- 
tilinearly unaligned and (b) generally unaligned. 

yields the quadtree of Figure 16c. On the other hand, if 
the quadtree of Figure 16b is the aligned quadtree, then 
the result is represented by the quadtree of Figure 16d. 

When intersecting aligned quadtrees (see section on 
aligned quadtrees above), we examined pairs of nodes 
that overlaid identical regions. In contrast, when inter- 
secting rectilinear unaligned quadtrees, upon process- 
ing a node in the aligned quadtree, say A, we must 
inspect at most four nodes (say U1, U2, U3,  U,) from the 
unaligned quadtree that overlap the corresponding 
region. Note that A corresponds to one of the shaded 
squares in Figure 17a while U1, Uz, U3, U4 correspond 
to the overlapped grid cells. When A is not white, we may 
have to process the sons of A further. In this case, the four 
nodes from the unaligned quadtree that overlap a given 
son of A are chosen from the sons of U1, U p ,  U3,  and U,. 
Thus an efficient recursive top-down algorithm for this 
version of the quadtree intersection problem can be eas- 
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ily implemented. The execution time of this algorithm 
is proportional to the sum of the sizes of the two input 
quadtrees and the size of the output quadtree. Note that 
this bound is slightly different from the bound obtained 
for the aligned intersection algorithm, as in this case the 
size of the output quadtree is not bounded from above 
by the sum of the sizes of the two input quadtrees. 

Shifting a quadtree can be viewed as a special case of 
the rectilinear unaligned-quadtree algorithm. In partic- 
ular, suppose it is desired to shift a quadtree, say A,  to 
the right by n units and up by rn units. In such a case, a 
quadtree, say B, is created representing a black square 
whose width is the same as that of A and whose origin 
is n units to the left and rn units below the origin of A. 
We now use B as the aligned quadtree and A as the 
unaligned quadtree in our rectilinear unaligned- 
quadtree algorithm. The resulting output quadtree will 
be a shifted version of quadtree A. This technique is the 
same as that used by Meagher3’ for shifting images rep- 
resented by octrees. See, for example, Figure 18, where 
the 4 x 4 quadtree of Figure 18a is shifted to the right by 
two units and up by one unit. The position of the aligned 
quadtree relative to the unaligned quadtree is shown in 
Figure 18b using broken lines, while Figure 18c is the 
resulting shifted quadtree. Following the analysis of the 
previous paragraph, a quadtree can be shifted an integer 
number of pixel widths in time linear with respect to the 
sizes of the original and resulting quadtrees. 

General unaligned quadtrees and rotations 
The general unaligned-quadtree algorithm is analo- 

gous to the algorithm discussed above for rectilinear 
unaligned quadtrees. The only difference is that each 
node in the aligned quadtree can be overlapped by as 
many as six nodes in the unaligned quadtree (see Figure 
17b). Just as shifting was a special case of the rectilinear 
unaligned-quadtree intersection algorithm, rotation is a 
special case of the general unaligned-quadtree intersec- 
tion algorithm. The method we describe is the same as 

that used by Meaghe?’ for rotating images represented 
by octrees, although he does not draw the analogy with 
the unaligned set intersection algorithm. In particular, 
suppose we wish to rotate a quadtree, say A, counter- 
clockwise by rn degrees. In such a case, a quadtree, say 
B, is created representing a black square whose width 
is the same as that of A, but one that has been rotated by 
m degrees in the clockwise direction about the appropri- 
ate center. We now use B as the aligned quadtree and A 
as the unaligned quadtree in our general unaligned- 
quadtree algorithm. The resulting output quadtree will 
be a rotated version of quadtree A. 

In the following we describe the rotation of the quad- 
tree of Figure 19a, termed A, by 16 degrees in a counter- 
clockwise direction about its origin. Black block B has 
been rotated by 16 degrees in the clockwise direction 
about the origin of A (see Figure 19b). We use broken 
lines to depict the decomposition of A and solid lines to 
depict the decomposition of B. 

The rotation algorithm first determines whether B is 
a terminal node by checking whether the maximum of 
six nodes of equal size in A that cover it are of the same 
color. If they are, then we are done. Otherwise, B is sub- 
divided (it is a gray node), as are the relevant nodes in A. 
This process is repeated until either all nodes in B’s trees 
are terminal or we have reached a maximum level of 
decomposition. In our example, the first subdivision is 
illustrated in Figure 19c, and its result is given in Figure 
19d. Notice the “?” symbol that indicates the block will 
be subdivided further. The NE quadrant in Figure 19d 
(corresponding to the block labeled B2 in Figure 19c) is 
white because the blocks in A that overlap it (just the two 
blocks labeled A2 and A4 in Figure 1%) are white. Before 
proceeding further, we should check to see if any of the 
subdivided blocks of B have four identically colored 
sons, in which case a merge must occur. 

Next, we subdivide the blocks labeled I‘?’’  in Figure 19d 
as well as blocks Al, A2, A3, and A4 in Figure 19c to 
obtain Figure We. Again, we now check each of the 
newly obtained subblocks of B to see if they are covered 
by subblocks of A of the same color. In this case we find 
that this is true for blocks B5 and B6 in Figure 19e (i.e., 
they are covered by black subblocks AS, A6, A7, A8, and 
A9), as well as blocks B7 and B8. The result is given in 
Figure 19f, with I ‘?”  denoting that the block will be 
decomposed further. One more level of decomposition 
is depicted in Figure 19g and the resulting rotated quad- 
tree is shown in Figure 19h. Checking to determine 
whether any of the subdivided blocks in B have identi- 
cally colored sons reveals that the four blocks of the NW 
son of the NW quadrant in Figure 19h should be merged 
as they are all white. At this point, the resulting quadtree 
is at the same level as the original unrotated quadtree. 
Nodes labeled with a “?” can be assigned either black or 
white as is desired. This may cause more merging. 

Since we are usually working in a digitized space, the 
rotation operation is not generally invertible. In partic- 
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Figure 19. Example of rota- 
tion. Broken lines depict the 
decomposition of the un- 
aligned quadtree and solid 
lines depict the decomposi- 
tion of the aligned quadtree: 
(a) sample quadtree, (b) rota- 
tion of Figure 19a by 16 
degrees in a counterclock- 
wise direction about its ori- 
gin, (c) decomposition after 
the first level of subdivision, 
(d) rotated quadtree with one 
level of subdivis ion,  (e) 
decomposition after the sec- 
ond level of subdivision, (f) 
rotated quadtree with two 
levels of subdivision, (g) 
decomposition after the third 
level of subdivis ion,  (h) 
rotated quadtree with three 
levels of subdivision. 
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ular, a rotated square usually cannot be represented 
accurately by a collection of rectilinear squares. How- 
ever, when we rotate by 90 degrees, then the rotation is 
invertible. In such a case, the algorithm traverses the tree 
in preorder and rotates the pointers at each node. For a 
counterclockwise rotation by 90 degrees, the NW, NE, 
SE, and SW sons become SW, NW, NE, and SE sons, 
respectively, at each level of the quadtree. 

Although the operations discussed in this and the 
previous subsections are presented for binary raster 
quadtrees, they can be extended in a straightforward 
manner to raster quadtrees that have multiple colors and 
to vector quadtrees. However, vector quadtree algorithms 
generally require more bookkeeping operations than the 
corresponding raster quadtree algorithms and conse- 
quently are more difficult to analyze. 

Scaling quadtrees and multiresolution 
representations 

Besides the traditional graphics operations of transla- 
tion (shifting) and rotation, which are discussed above, 
there is also the scaling operation. To make an image rep- 
resented by a quadtree half the size that it was originally, 
we need only create a new root and give that root three 
white [or empty, in the case of vector quadtrees) sons and 
one son that was the original quadtree. To make the quad- 
tree twice as big, we choose one of the subtrees to serve 
as the new root (e.g., the SW subtree), thus eliminating 
the remaining three subtrees. If a particular portion of 
the quadtree is to be doubled or halved in size, then a 
shift operation may have to be performed for the purpose 
of alignment. 

The above techniques can be applied to scaling by any 
power of two. Scaling by an arbitrary factor, sayf, is han- 
dled by using the property that when a square, say S, of 
size f .  w x f a  w (0 ~ f s  1) is placed on a grid of squares so 
that each square is of size w, then S can overlap no more 
than four grid squares. Note that arbitrary scaling is 
implemented in a manner similar to that used for the rec- 
tilinear unaligned-intersection problem. 

Progressive transmission of images represented by 
quadtrees can be achieved by taking advantage of the 
above techniques for scaling by powers of two. Progres- 
sive transmission of an image enables the receiver to pre- 
view a reduced-resolution version of the image before 
seeing it in its entirety. For example, using such a scheme 
for the triangle of Figure 11, we would first see Figure 
Ild,  then Figure l le,  and finally Figure l l f .  The scheme 
facilitates browsing a database of images. One success- 
ful a p p r o a ~ h ~ ~ , ' ~ - ' '  is to transmit the nodes of a raster 
quadtree in breadth-first order, so that large leaf nodes 
are seen first. 

Bottom-up neighbor finding 
Many quadtree algorithms involve more work than just 

traversing the tree. In particular, in several applications 
we must perform a computation at each node that 

depends on the values of its adjacent neighbors. Thus we 
must be able to locate these neighbors. There are several 
techniques for achieving this result. One approach" 
uses the coordinates and the size of the node whose 
neighbor is being sought, in order to compute the loca- 
tion of a point in the neighbor, and then performs an 
algorithm similar to that described in the section on 
point location. For a 2"xZ"  image, this can require n 
steps corresponding to the path from the root of the 
quadtree to the desired neighbor. An alternative 
approach, and the one we describe below, makes use of 
only father links and computes a direct path to the neigh- 
bor by following links in the tree. This method is called 
bottom-up neighbor finding and has been shown to 
require an average of four links to be followed for each 
neighbor 

Here we limit ourselves to neighbors in the horizon- 
tal and vertical direction that are of a size equal to or 
greater than the node whose neighbor is being sought. 
Neighbors in the diagonal direction have been handled 
elsewhere." Finding a node's neighbor in a specified 
horizontal or vertical direction requires us to follow 
father links until a common ancestor of the two nodes 
is found. Once it has been located, we descend along a 
path that retraces the previous path with the modifica- 
tion that each step is a reflection of the corresponding 
prior step about the axis formed by the common bound- 
ary between the two nodes. The general flow of such an 
algorithm is given in Figure 20. For example, when 
attempting in Figure 20 to locate the eastern neighbor of 
node A (the neighbor is node G), node D is the common 
ancestor of nodes A and G, and the eastern edge of the 
block corresponding to node A is the common bound- 
ary between node A and its neighbor. 

The main idea behind bottom-up neighbor finding can 
be understood by examining more closely how the 
nearest common ancestor of a node, say A in Figure 20, 
and its eastern neighbor of greater or equal size, G, is 
located. In particular, the nearest common ancestor has 
A as one of the eastern-most nodes of one of its western 
subtrees, and G as one of the western-most nodes of one 
of its eastern subtrees. Thus, as long as an ancestor X is 
in a subtree that is not an eastern son (i.e., NE or SE), we 
must ascend the tree at least one more level before locat- 
ing the nearest common ancestor. Similar techniques are 
used to find neighbors in octrees." The difference is 
that there are 26 different directions. 

Constructing quadtrees 
Before we can operate on images represented by quad- 

trees, we must first build the quadtrees. The process 
requires conversion between a number of different data 
formats and the quadtree. Here we briefly describe the 
construction of raster quadtrees from raster data and 
vector data. The construction of vector quadtrees from 
either type of data can be performed in an analogous 
manner. 
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Figure 20. The process of locating 
the eastern neighbor of node A (i.e., 
node G):  (a) block decomposition, 
(b) tree representation. 

The algorithm for building a raster quadtree from a 2D 
array can be derived directly from the definition of the 
raster q~adtree.’~ When building a quadtree from raster 
data presented in raster scan order (i.e., the array is pro- 
cessed row by we use the bottom-up neighbor- 
finding algorithm to move through the quadtree in the 
order in which the data is encountered. For example, 
considering the quadtree of Figure 6 as a 4 x 4 image 
means that its image elements are examined in the order 
indicated in Figure 21. Such an algorithm takes time 
proportional to the number of pixels in the image. Its exe- 
cution time is dominated by the time necessary to check 
whether nodes should be merged. This can be avoided 
by predictive techniques that assume the existence of a 
homogeneous node of maximum size whenever a pixel 
that can serve as an upper left corner of a node is 
scanned (assuming a raster scan from left to right and 
top to bottom). In such a case, merging is reduced and 
the algorithm’s execution time is dominated by the num- 
ber of blocks in the image85*86 rather than by the number 
of pixels. However, this algorithm does require an aux- 
iliary data structure (which can be implemented by a 
fixed-size array85386) of a size on the order of the width 
of the image, to keep track of all active quadtree blocks 
(i.e., blocks containing pixels that have not yet been 
encountered by the raster scanning process). 

Building a raster quadtree from vector data is more 
complicated than from raster data. This is because a list 
of line segments has no inherent spatial ordering. Atop- 
down algorithm for producing a raster quadtree from 
vector data takes as input a list of line segments. This list 
is recursively clipped against the region, say R,  repre- 
sented by the root of the current subtree of the quadtree. 
If no line segments fall within R, then a white leaf node 
is created. If R is of pixel size and contains at least one 
line segment, then a black leaf node is created. Other- 
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Figure 21. Raster scanning order for the image of Fig- 
ure 6. 

wise, a gray node corresponding to R is created and the 
algorithm is recursively applied to each of its four chil- 
dren using the list that has been clipped. 

As an alternative we could use a bottom-up approach 
to building the raster quadtree from vector data. First, we 
must convert the line segments into a list of pixel-to-pixel 
steps (also known as chain codes8’) using a traditional 
line-drawing algorithm.88 Next, we follow the path 
formed by the chain codes of the line segments creating 
black pixel-size leaf nodes.” This is done with the 
bottom-up neighbor-finding algorithm. 

Average-case analysis for the execution time of the 
chain-code-to-raster-quadtree algorithm is linear in the 
length of the chain code, as shown by analysis” in con- 
junction with the quadtree complexity theorem. More- 
over, preprocessing the chain code shows that the 
worst-case analysis of this algorithm is also linear in the 
length of the chain code.g0 Neighbor-finding methods 
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have also been used to construct chain codes from quad- 
trees,g1 as well as 2D arrays in a row-by-row manner.” 

Polygon coloring 
Another raster operation that can be efficiently imple- 

mented in quadtrees using neighbor finding is the seed- 
filling approach to polygon coloring. The classic seed- 
filling algorithm13 has as its input a starting pixel loca- 
tion and a new color. The algorithm propagates the new 
color throughout the polygon containing the starting 
pixel location. When using arrays, this algorithm is 
coded by a recursive routine that checks whether the 
color of the current pixel is equal to that of the original 
color of the start pixel. If it is, then its color is set to the 
new color and the algorithm is applied to each of the cur- 
rent pixel’s four neighboring pixels (for a +connected 
region). The array implementation of this algorithm can 
be adapted to quadtrees by using bottom-up neighbor 
finding. Another approach to coloring a region is to color 
the border of the region and then move inward from 
smaller to larger quadtree This algorithm 
could also be implemented using bottom-up neighbor 
finding. 

A more general version of polygon coloring is 
connected-component analysis. Here the task is to take 
a binary image and recolor each of the distinct black 
regions so that each region has a unique color. The 
general approach is to traverse the quadtree in preorder 
and attempt to propagate different colors across the 
different regions. We discuss three techniques for 
propagating the colors. 

The first technique is to perform the quadtree-based, 
seed-filling, polygon-coloring algorithm described above 
whenever a new region is encountered during the 
traversal. 

The second technique consists of a three-stage algo- 
~-ithm.’~ The first stage propagates the color of a node to 
its southern and eastern neighbors. This may result in 
coloring a single connected component with more than 
one color, in which case the equivalence of the two colors 
is noted. Such equivalences are merged in the second 
stage. The third stage updates the colors of all nodes of 
the quadtree to reflect the result of the second stage. 
Often, the first and second stages can be combined into 
one ~ t a g e . ~ ~ , ’ ~  

The third techniqueg0 is a modification of the second 
technique and avoids the second stage of merging 
equivalences. Each time the border of a new region is 
encountered, the preorder traversal is interrupted and 
the border of the region is traced and colored using 
bottom-up neighbor finding. At the end of the trace, the 
preorder traversal is resumed. 

Both the second and third techniques use a special 
kind of neighbor finding; that is, they perform a preorder 
traversal of a quadtree and require the examination of 
some of the neighbors of each node in the traversal. For 
this approach top-down neighbor finding can be used to 

produce improved worst-case results.90395‘97 Top-down 
neighbor finding is based the observation that the 
neighbor of a node is either a sibling of the node or a 
child of a neighbor of the node’s father. Thus, the neigh- 
bors of a node can be transmitted as parameters to the 
function performing the preorder traversal of the quad- 
tree. The same idea can be used for efficiently calculat- 
ing the perimeter of a region represented by a 
q~adt ree . ’~  

Concluding remarks 
We have presented an overview of the fundamentals 

behind the use in computer graphics of such hierarchi- 
cal data structures as the quadtree and the octree. More 
advanced applications with an emphasis on the octree 
and display methods will be discussed in a companion 

I article to appear in the July issue of CG&A.4 
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