
rnTR
. * kam ibmys

HANAN SAMET*

Computer Science Department, iJn&er&y of Maryland, Colkge Park, Marylnru &YE@?

Received July 16, 1979

An algorithm is resented for con8tructing a quadtree from the array repre+@&oa
of a binary u. %h e algorithm examines each pixel in the w once aasd only once.
In addition, aa the tree ie con&u&d, only m&iial &ed nodea are ever cd.
Thua the algorithm never requirea temporary nodes. The execution time of the B@-
rithm is equal to the number of pixel43 in the we. The amount of sp&oe, in 84$&
tion to that necessary for the final quadtree, ia proportional to the log of the image
diameter.

1. INTRODUCTION

Region representation is important in applications such as image processing,
cartography, and computer graphics. Numerous representations are currently
being used (see Cl] for an overview). In this paper we focus our attention on
the binary array and quadtree [2, 31 representations. In particular, we present
an algorithm for constructing a quadtree from a binary image in a manner
that minimizes space requirements during the quadtree construction proocess,
In general, algorithms for transforming one representation into another [I, 5, S]
are important because each representation is well suited for a specific set of
operations on an image. The quadtree is useful because it provides a hierar-
chical representation as well as facilitating operations such as search. For related
algorithms see [2, S] which construct the quadtree for polygonal and raster
representations, respectively.

In the remainder of the paper we briefly review the definitions of the repre-
sentations. This is followed by a description of the algorithm along with mo-
tivating considerations. We conclude with some comments about the e&key
of the algorithm. The actual algorithm is given using a variant of ALGOL. 66 [4].

* The support of the Defense Advaneed Research Projects +ncy and the U.S. Army I@@,
Vision Laboratory under Contract DAAG~~~l~ (DARPA Order 32%) is g&&&y
acknowledged, SB is the help of Kathryn Riley in preparing this paper. The a&or has 8sBo
benefited greatly from d&e&ona with Cbarl@ R. Dyer and Axriel -f&d. We Lao t&&a@
Pat Young for drawing the figures.

88

QUADTREES FROM BINARY ARRAYS 89

b

FIG. 1. An image, its maximal blocks, and the corresponding quadtree. Blocks in the image
are shaded. (a) Sample image. (b) Block decomposition of the image in (a). (c) Quadtree rep-
resentation of the blocks in (b).

We assume that the given image is a 2” by 2” array of unit square “pixels,”
each of which has value 0 or 1. The quadtree is an approach to image repre-
sentation based on successive subdivision of the array into quadrants. In essence,
we repeatedly subdivide the array into quadrants, subquadrants, . . . until we
obtain blocks (possibly single pixels) which consist entirely of either l’s or 0’s.
This process is represented by a tree of out-degree 4 in which the root node
represents the entire array, the four sons of the root node represent the quad-
rants, and the terminal nodes correspond to those blocks of the array for which
no further subdivision is necessary. For example, Fig. lb is a block decomposi-
tion of the region in Fig. la while Fig. lc is the corresponding quadtree. In
general, BLACK and WHITE square nodes represent blocks consisting entirely
of l’s and O’s respectively. Circular nodes, also termed GRAY nodes, denote
nonterminal nodes.

Each node in a quadtree is stored as a record containing six fields. The first
five fields contain pointers to the node’s father and its four sons, labeled NW,
NE, SE, and SW. Given a node P and a son I, these fields are referenced as
FATHER(P), and SON(P, I), respectively. The sixth field, named NODETYPE,
describes the contents of the block of the image which the node represents-
i.e., WHITE, BLACK, or GRAY.

90

12 3 4

k

A B C

1239
(a) (b)

Ash
F G H I

(c)

FIG. 2. Inkwmdkte treea in the prows of obtsining a quadtree corrreeponding to Fig. 1s.

2. ALGORITWM

The quadtree construction algorithm examines each pixel in the binary array
once and only once and in a manner which is analogous to a postorder tree
traversal. For example, the pixels in the binary array of Fig. la are labeled
in the order in whioh they have been examined (e.g., denoting the array by A,
we see that A[& l] is examined first, followed by A[l, 21, A[2, l], Ac2, 21,
AD, 31, .' .). However, a node is only created if it is maximal-in other words,
if it cannot participate in any further merges (a merge is said to occur when
four sons of a node are either all BLACK or all WHITE). For exsmpk, Fig. 2a
shows the partial quadtree resulting from examining pixels 1, 2, 3, and 4 of
Fig. la. Note that since all the pixels are not of the same type (i.e., pixels 1, 2,
and 3 are WRITE while pixel 4 is BLACK), their nodes oannot ~~~~~~t~
in any further merges and thus the segment of the final quadtree ~~~~~,~~~
to their contribution can be constructed. In contrast, pixels 5, 6, 7, and, 8’ of
Fig. la are of the same type (i.e., BLACK) and thus they will be repre#er&d
by node A in t-he final quadtree. No nodes are ever construeted corr~&g
to these pixels. As a final example of a merge, we observe that pixels 17-32
are ultimately represented by node D in the quadtree of Fig. le. &aW&Wr,,
the node corresponding to these pixels is only created once its remaining brothers
have been processed (i.e., pixels 33-48 and 49-64). This is in contrast with
the GRAY node corresponding to pixels 1-16 which was created as soon as it
was determined that its four sons are not all WHITE or all BtM?K.

The main procedure is termed ~~A~~~~ and is invoked with the values
of the log of the im&ge diameter (?a, for a 2" by 2" image array) and the n&me
of the image array. It controls the oa;nstruction of the quadtree and if the ,i
is all WHITE or all BLACK, t&en it crc&es the apprqwiate one-m@
The actual cons&u&km of the tree is performed by procedure CO~~~~~~
which remu&vcly 1319annin~ all the pi&s aad creates aodses wfiesnevx~ d3r’, f@tir
sms are nat of the same type. The tree is built as CUmT&VCT retu
examining its sons. CON&TRUCT makes use of a data &mature tti
denoted by the symbol (,), which is a record hsviag two &SS~

QUADTREES FROM BINARY ARRAYS 91

and POINTER. It is used to return more than one value from CONSTRUCT.
COLOR is a function which indicates whether a pixel is BLACK or WHITE.

As an example of the application of the algorithm consider the image given
in Fig. la. Figure lb is the corresponding maximal block decomposition while
Fig. lc is its quadtree representation. The pixels in Fig. la have been num-
bered according to the order in which they are examined by the algorithm.
Blocks in Fig. lb having alphabetic labels correspond to instances where merging
has taken place. The alphabetic labels have been assigned according to the order
in which the merged nodes were created (i.e., A, B, C, . . .). Figures 2a, b, and c
show the partial quadtrees after pixels 1-4, 1-15, and 49-64, respectively, have
been examined.

node procedure QUADTREE (LEVEL) ;
/* find the quadtree corresponding to a BTLEVEL by 2rLEVEL binary array A */
begin

integer
value LEVEL ;
global Boolean array A[1 :2TLEVEL, 1 :BTLEVEL]; /* A is a global */
quadrant I;
pair P;
node Q;
P c CONSTRUCT (LEVEL, BfLEVEL, BTLEVEL) ;
if TYPE(P) = GRAY then

begin
FATHER(POINTER(P)) +- NULL;
return (POINTER(P)) ;

end
else

begin /* the entire image is BLACK or WHITE */
Q c CREATENODE () ;
NODETYPE t TYPE(P) ;
for I in (NW, NE, SW, SE) do SON(Q, I) +- NULL;
FATHER(Q) + NULL;
return (Q) ;

end ;
end ;
pair procedure CONSTRUCT (LEVEL, X, Y) ;
/* construct the portion of a quadtree of size BTLEVEL by ZTLEVEL having

its southeasternmost pixel corresponding to entry A[X, Y] of the image
array. A is a global variable */

begin
integer

value LEVEL, X, Y;
pair array PCNW. . .SE]; /* P has entries corresponding to NW, NE, SW,

and SE */
quadrant I, J ;

92 HANAN SAMET

node Q, R;
if LEVEL = $4 then /* procw the pixel */

return ((COLOR (A[X, Y]), NULL)) /* (,) creates a (POIWTE.R., TYPE)
pair */

else
begin

LEVEL + LEVEL-l ;
P[NW] +- CONSTRUCT (LEVEL, X-2rLEVEL, Y-21‘LEVEL) ;
P[NE] +-- CONSTRUCT (LEVEL, X, Y-2rLEVEL) ;
PCSW] t CONSTRUCT (LEVEL, X-BTLEVEL, Y) ;
P[SE] +-- CONSTRUCT (LEVEL, X, Y) ;
if TYPE (PCNW]) # GRAY and

TYPE (PCNW]) = TYPE (PCNE]) = TYPE @‘[SW]) =
TYPE (P@E]) then

return (P[NW]) /* all brothers are of the same type */
else
begin /* create a non-terminal GRAY node */

Q +-- CREATENODE () ;
for I in {NW, NE, SW, SE) do

begin
if TYPE (PCI]) = GRAY then
/* link P[I] to its father node */

begin
SON (Q, I) + POINTER (PCI]) ;
FATHER (POINTER (PCI])) + Q;

end
else /* create a maximal node for P[I] */

begin
R +-- CREATENODE () ;
NODETYPE (R) + TYPE (PCI]);
.for J in (NW, NE, SW, SE j do SON (R, J) +-- NULL;
SON (&,1)+--R;
FATHER (R) +- Q ;

end ;
end ;

NODETYPE (Q) +-- GRAY;
return ((GRAY, Q));

end ;
end;

end ;

3. CONCLUDING REMARKS

The running time of the quadtree construction algorithm is propostio@l to 9
the number of pixels in the image since this is the number of times prow&we
CONSTRUCT is invoked (and equal to the number of nodes in a eemp&e

QUADTREES FROM BINARY ARRAYS 93

quadtree for a 2” by 2” image). The algorithm is highly recursive. However,
the maximum depth of recursion is equal to the log of the image diameter
(i.e., n for a 2” by 2” image). The algorithm is especially attractive because
only quadtree nodes which are part of the final quadtree are created. This is
in contrast with an approach that would build a complete quadtree for the
image and then attempt to obtain maximal blocks by merging. An inter-
mediate approach was used in [S] where a quadtree was constructed for an
image given its row-by-row (i.e., raster) description. In that method, the number
of nodes was reduced by merging as soon as it became feasible. For example,
no merging was possible when processing the first row. However, a merge can be
attempted as soon as the first two pixels in the second row are processed. Note
that the method used here is optimal in the sense that a minimum number
of quadtree nodes is created. This is important when storage is at a premium-
i.e., tree nodes require considerably more space than pixels.

REFERENCES

1. C. R. Dyer, A. Rosenfeld, and H. Samet, Region Represent&b: Boundary Codes from Quad-
tree-s, Computer Science TR-732, University of Maryland, College Park, Maryland,
February 1979; Comm. ACM, in press..

2. G. M. Hunter and K. Steiglitz, Operations on images using quadtrees, IEEE Trans. Pattern
Analysis Machine Intelligence PAMI-1, 1979, 145-153.

3. A. Klinger and C. R. Dyer, Experiments in picture representation using regular decomposi-
tion, Computer Graphics Image Processing 5, 1976, 68-105.

4. P. Naur (Ed.), Revised report on the algorithmic language ALGOL 60, Comm. ACM 3,
1960, 299-314.

5. H. Same& Region Representation: Quadtrees from Boundary Codes, Computer Science TR-741,
University of Maryland, College Park, Maryland, March 1979; Comm. ACM, in press.

6. H. Samet, Region Representation: Raster-Madtree Conversion, Computer Science TR-766,
University of Maryland, College Park, Maryland, May 1979.

