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Image representation plays an important role in image processing applications. Recently 
there has been a considerable interest in the use of quadtrees. This has led to the development 
of algorithms for performing image processing tasks as well as for performing converting 
between the quadtree and other representations. Common to these algorithms is a traversal of 
the tree and the performance of a given computation at each node. These computations 
typically require the ability to examine adjacencies between neighboring nodes. Algorithms are 
given for determining such adjacencies in the horizontal, vertical, and diagonal directions. The 
execution times of the algorithms are analyzed using a suitably defined model. 

I. JNTRODUCTJON 

Region representation is an important aspect of image processing with numerous 
representations finding use. Recently, there has emerged a considerable amount of 
interest in the quadtree [3-8, 111. This stems primarily from its hierarchical nature, 
which lends itself to a compact representation. It is also quite efficient for a number 
of traditional image processing operations such as computing perimeters [14], 
labeling connected components [ 131, finding the genus of an image [I], and comput- 
ing centroids and set properties [ 181. Development of algorithms to convert between 
the quadtree representation and other representations such as chain codes [2, lo], 
rasters [12, 171, binary arrays [ll], and medial axis transforms [15, 16, 191 lend 
further support to this importance. 

In this paper we discuss methods for moving between adjacent blocks in the 
quadtree. We first show how transitions are made between blocks of equal size and 
then generalize our result to blocks of different size, where the destination block is 
either of larger or smaller size than the source block. Such blocks are termed 
neighbors. Note that the transitions that we discuss also include those along 
diagonal, as well as horizontal and vertical, directions. The importance of these 
methods lies in their being the cornerstone of many of the quadtree algorithms (e.g., 
[ 1, 2, 10, 12-19]), since they are basically tree traversals with a “visit” at each node. 
More often than not these visits involve probing a node’s neighbors. The significance 
of our methods lies in the fact that they do not use coordinate information, 
knowledge of the size of the image, or storage in excess of that imposed by the 
nature of the quadtree data structure. 

*The support of the Defense Advanced Research Projects Agency and the U.S. Army Night Vision 
Laboratory under Contract DAAG-53-76C-0138 (DARPA Order 3206) is gratefully acknowledged, as is 
the help of Kathryn Riley in preparing this paper and Pat Young in preparing the figures. I have 
benefitted greatly from discussions with Azriel Rosenfeld. 
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2. DEFINITIONS AND NOTATION 

The quadtree is an approach to image representation based on the successive 
subdivision of the image into quadrants. It is represented by a tree of outdegree 4 in 
which the root represents a block and the four sons represent in order the NW, NE, 
SW, and SE quadrants. We assume that each node is stored as a record containing 
six fields. The first five fields contain pointers to the node’s father and its four sons, 
which correspond to the four quadrants. If P is a node and I is a quadrant, then 
these fields are referenced as FATHER(P) and SON(P,I), respectively. We can 
determine the specific quadrant in which a node, say P, lies relative to its father by 
use of the function SONTYPE( which has a value of I if SON(FATHER(P), I) = P. 
The sixth field, NODETYPE, describes the contents of the block of the image which 

FIG. 1. A region, its maximal blocks, and the corresponding quadtree. Blocks in the region are shaded, 
background blocks are blank. (a) Region. (b) Block decomposition of the region in (a). (c) Quadtre-e 
representation of the blocks in (b). 
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the node represents- i.e., WHITE if the block contains no l’s, BLACK if the block 
contains only l’s, and GRAY if it contains O’s and 1’s. Alternatively, BLACK and 
WHITE nodes are terminal nodes, while GRAY nodes are nonterminal nodes. For 
example, Fig. lb is a block decomposition of the region in Fig. la while Fig. lc is the 
corresponding quadtree. 

Let the four sides of a node’s block be called its N, E, S, and W sides. They are 
also termed its boundaries and at times we speak of them as if they are directions. 
We define the following predicates and functions to aid in the expression of 
operations involving a block’s quadrants and its boundaries. ADJ(B, I) is true if and 
only if quadrant I is adjacent to boundary B of the node’s block, e.g., ADJ(W, SW) 
is true. REFLECT(B, I) yields the SONTYPE value of the block of equal size that is 
adjacent to side B of a block having SONTYPE value I, e.g., REFLECT(N, SW) = 
NW. COMMONSIDE(QLQ2) indicates the boundary of the block containing 
quadrants Ql and 42 that is common to them; e.g., COMMONSIDE(SW,NW) = W. 
If Ql and Q2 are not adjacent brother quadrants (e.g., NE and SW) or if Ql and 42 
are the same, then the value of COMMONSIDE is undefined. OPQUAD(Q) is the 
quadrant which does not share a block boundary with quadrant Q; e.g., 
OPQUAD(SW) = NE. Figure 2 shows the relationship between the quadrants of a 
node and its boundaries while Tables l-4 contain the definitions of the ADJ, 
REFLECT, OPQUAD, and COMMONSIDE relationships respectively. D corre- 
sponds to an undefined value. 

For a quadtree corresponding to a 2” X 2” array we say that the root is at level n, 
and that a node at level i is at a distance of n - i from the root of the tree. In other 
words, for a node at level i, we must ascend n - i FATHER links to reach the root 
of the tree. Note that the farthest node from the root of the tree is at a level 2 0. A 

Table 1. ADJ(S,Q) Table 2. REFLECT(S,Q) 

COPlMONSIDE 

g== c 

Table 3. OPQUA!J(Q) Table 4. COMMONSIDE(Ql,QZ) 

FIG. 2. Relationship between a block’s four quadrants and its boundaries. 
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node at level 0 corresponds to a single pixel in the image. Also, we say that a node is 
of size 2” if it is found at level s in the tree. 

3. NEIGHBOR FINDING ALGORITHMS 

Given a node corresponding to a specific block in the image, its neighbor of equal 
size in the horizontal or vertical direction is determined by locating a common 
ancestor. Next, we retrace the path while making mirror image moves about an axis 
formed by the common boundary between the blocks associated with the two nodes. 
The common ancestor is simple to determine-e.g., to find an eastern neighbor, the 
common ancestor is the first ancestor node which is reached via its NW or SW son. 
For example, the eastern neighbor of node A in Fig. 3a is G. It is located by 
ascending the tree until the common ancestor, D, is found. This requires going 
through a NE link to reach B, a NE link to reach C, and a NW link to reach D. 
Node G is now reached by backtracking along the previous path with the ap- 
propriate mirror image moves. This requires descending a NE link to reach E, a NW 
link to reach F, and a NW link to reach G. Figures 3a and b show how the eastern 
neighbor of node A is located. The algorithm for locating an equal sired neighbor in 
a given horizontal or vertical direction is given below using a variant of ALGOL 60 
[9]. Note that we assume that the neighbor in the specified direction does indeed 
exist (i.e., we are not on the border of the image). 

node procedure EQUAL-ADJ-NEIGHBOR(P, D); 
/* Locate an equal-sized neighbor of node P in horizontal or vertical direction D */ 
begin 

value node P; 
value direction D; 
return (SON(if ADJ(D, SONTYPE( then 

EQUAL-ADJ-NEIGHBOR(FATHER(P), D) 
else FATHER(P), 
REFLECT(D, SONTYPE(P)) 

end; 

b 

FIG. 3. Process of locating the eastern neighbor of node A (i.e., G). (a) Block decomposition. (b) Tree 
representation. 
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Finding a node’s neighbor in the diagonal direction (i.e., its corresponding block 
touches the given node’s block at a comer) is more complex. Given a node 
corresponding to a specific block in the image, its neighbor of equal size in a 
diagonal direction is determined by a three-step process. First, we locate the given 
node’s nearest ancestor who is also adjacent (horizontally or vertically) to an 
ancestor of the sought neighbor. Next, we make use of EQUAL-ADJ-NEIGHBOR 
to access the ancestor of the sought neighbor in the direction of the adjacency. 
Finally, we retrace the remainder of the path while making directly opposite moves 
(i.e., 180’ opposite so that a NW move becomes a SE move). The nearest ancestor of 
the first step is the first ancestor which is not reached by a link equal to the direction 
of the desired neighbor-e.g., to find a SE neighbor, the nearest such ancestor is the 
first ancestor node that is not reached via its SE son. For example, the SE neighbor 
of node A in Fig. 4a is G. It is located by ascending the tree until the nearest 
ancestor, B, which is also adjacent horizontally (in this case) to an ancestor of G, i.e., 
F, is found. This requires going through a NE link to reach B. Node F is now 
reached by applying EQUAL-ADJ-NEIGHBOR in the direction of the adjacency 
(i.e., east). This forces us to go through a NE link to reach C and a NW link to reach 
D. Backtracking results in descending a NW link to reach E and a NW link to reach 
F. Finally, we backtrack along the remainder of the path making 180“ moves-i.e., 
we descend a SW link to reach G. Figures 4a and b show how the SE neighbor of 
node A is located. Note that, at times, EQUAL-ADJ-NEIGHBOR may not need to 
be applied. This is the case when the nearest ancestor of the first step is reached by a 
link equal to a direction opposite that of the desired neighbor (e.g., in Fig. 1, the SW 
neighbor of node 16 is 25 with the nearest ancestor of step 1 being node A). The 
algorithm for locating an equal size neighbor in a given diagonal direction is given 
below. Once again, we assume that the neighbor in the specified direction does 
indeed exist (i.e., we are not on the border of the image). 

node procedure EQUAL-CORNERNEIGHBOR(P, C); 
/ *Locate an equal-sized neighbor of node P in the direction of quadrant C */ 
begin 

value node P; 
vaiue quadrant c; 
retum(SON(if SONTYPE = OPQUAD(C) then FATHER(P) 

else if SONTYPE = C then 
EQUAL-CORNERNEIGHBOR(FATHER(P), C) 

else EQUAL-ADJ-NEIGHBOR( 
FATHER(P), 

end; 

COMMONSIDE(SONTYPE(P), C)), 
OPQUAD(SONTYPE(P)))); 

It is often the case that neighbors are of different sizes. In such a case, we say that 
we want the neighboring terminal nodes having equal or greater size (e.g., the eastern 
neighbor of node 23 in Fig. 1 is 16). If such a node does not exist, then we return a 
GRAY node of equal size if possible (e.g., the northern neighbor of node 23 in Fig. 1 
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FIG. 4. Process of locating the SE neighbor of node A (i.e., G). (a) Block decomposition. (b) Tree 
representation. 

is J). Otherwise the node is adjacent to the border of the image (not the region) and 
NULL is returned since there is no neighbor in the specified direction (e.g., the 
northern neighbor of node 2 in Fig. 1 is NULL). When a node does not have a 
neighboring terminal node of equal or greater size, returning a GRAY node of equal 
size is reasonable because the given node whose neighbor is being sought has more 
than one neighboring terminal node in the given direction. The algorithms for 
locating neighbors of equal or greater size in horizontal and vertical directions as 
well as diagonal directions are given below using procedures GTEQUAL-ADJ- 
NEIGHBOR and GTEQUAL-CORNER-NEIGHBOR respectively. Note that a 
neighbor in a diagonal direction, say C, will not always abut against comer C of the 
node whose neighbor is sought (e.g., node 16 is a nonabutting NE neighbor of node 
23 in Fig. 1). 

node procedure GTEQUAL-ADJ-NEIGHBOR(P, D); 
/* Locate a neighbor of node P in horizontal or vertical direction D. If such a node 

does not exist, then return NULL */ 
begin 

value node P; 
value direction D; 
node Q; 
if not NULL(FATHER(P)) and ADJ(D, SONTYPE( then 

/* Find a common ancestor */ 
Q +- GTEQUAL-ADJ-NEIGHBOR(FATHER(P), D) 

else Q + FATHER(P); 
/* Follow the reflected path to locate the neighbor */ 
return (if not NULL(Q) and GRAY(Q) then 

SON(Q, REFLECT(D, SONTYPE(P 
el* Q); 

end; 
node procedure GTEQUAL-CORNER-NEIGHBOR(P, C); 
/* Locate a neighbor of node P in the direction of quadrant C. If such a node does 

not exist, then return NULL */ 
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begin 
value node P; 
value quadrant c; 
node Q; 
if not NULL(FATHER(P)) and SONTYPE # OPQUAD(C) then 

/* Find a common ancestor */ 
if SONTYPE = C then 

Q +- GTEQUAL-CORNER-NEIGHBOR(FATHER(P), C) 
else Q t GTEQUAL-ADJ-NEIGHBOR( 

FATHER(P), 
COMMONSIDE(SONTYPE(P), C)) 

else Q + FATHER(P); 
/* Follow opposite path to locate the neighbor */ 
return (if not NULL(Q) and GRAY(Q) then SON(Q, OPQUAD(SONTYPE(P))) 

else Q); 
end; 

If neighbors are of different sizes, we may wish to know the size of the adjacent or 
abutting neighbor. In such a case, we want our neighbor finding algorithms to return 
both a pointer to the neighboring node and a value from which the node’s size can 
be easily computed. This is relatively straightforward when we know the level in the 
tree at which is found the node whose neighbor is being sought. In fact, such an 
algorithm need only increment the level counter by 1 for each link that is ascended 
while locating the common ancestor, and then decrement the level counter by 1 for 
each link that is descended while locating the appropriate neighbor. The algorithms 
for locating neighbors of equal or greater size, with their corresponding level 
positions, in horizontal and vertical directions as well as diagonal directions, 
are given below using procedures GTEQUAL-ADJ-NEIGHBOR2 and GTEQUAL 
-CORNERNEIGHBOR2, respectively. Note the use of reference parameters to 
transmit and return results. An alternative is to define a record of type block having 
two fields of type node and integer, whose values are a pointer to the neighboring 
node and its level, respectively. 

procedure GTEQUAL-ADJ-NEIGHBOR(P, D, Q, L); 
/* Return in Q the neighbor of node P in horizontal or vertical direction D. L 

denotes the level of the tree at which node P is initially found and the level of the 
tree at which node Q is ultimately found. If such a node does not exist, then 
return NULL */ 

begin 
value node P; 
value direction D; 
refkrence node Q; 
reference integer L; 
L+-Ls- 1; 
if not NULL(FATHER(P)) and ADJ(D, SONTYPE( then 

/* Find a common ancestor */ 
GTEQUAL_ADJ_NEIGHBOR2(FATHER(P), D, Q, L) 

else Q + FATHER(P); 
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/* Follow the reflected path to locate the neighbor */ 
if not NULL(Q) and GRAY(Q) then 

ha 
Q + SON(Q, REFLECT(D, SONTYPE(P) 
L+L- 1; 

end; 
end; 

procedure GTEQUAL_CORNER_NEIGHBOR2(P, C, Q, L); 
/* Return in Q the neighbor of node P in the direction of quadrant C. L denotes the 

level of the tree at which node P is initially found and the level of the tree at 
which node Q is ultimately found. If such a node does not exist, then return 
NULL */ 

begin 
value node P; 
value quadrant c; 
reference node Q; 
reference integer L; 
L*L+l; 
if not NULL(FATHER(P)) and SONTYPE # OPQUAD(C) then 

/* Find a common ancestor */ 
if SONTYPE = C then 

GTEQUAL_CORNERNEIGHBOR2(FATHER(P), C, Q, L) 
else GTEQUAL_ADJ_NEIGHBOR2( 

FATHER(P), 
COMMONSIDE(SONTYPE(P),C), Q, L) 

else Q + FATHER(P); 
/* Follow the opposite path to locate the neighbor */ 
if not NULL(Q) and GRAY(Q) then 

ha 
Q + SON(Q, OPQUAD(SONTYPE(P))); 
L+L-1; 

end; 
end; 

At times we may wish to locate an adjacent horizontal or vertical neighbor 
regardless of its size. In such a case, we also specify a comer of the block 
corresponding to the node whose neighbor is being sought. The neighbor node must 
be adjacent to this comer (e.g., node 21 is the northern neighbor of node 23 which is 
adjacent to the NE comer of node 23). The algorithm for computing such a neighbor 
is given below by procedure CORNERADJ-NEIGHBOR, which makes use of 
GTEQUAL-ADJ-NEIGHBOR. 

node procedure CORNER-ADJ-NEIGHBOR(P, D, C); 
/* Locate a neighbor of node P in horizontal or vertical direction D which 

is adjacent to comer C of node P. If such a node does not exist, then return 
NULL */ 

begin 
value node P; 
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due direction D; 
value quadrant C; 
P + GTEQUAL-ADJ-NEIGHBOR(P, D); 
while GRAY(P) do P + SON(P, REFLECT(D, C)); /* Descend to the desired 

corner */ 
return (P); 

end; 

Similarly, in the case of a diagonal neighbor, we may also wish to locate the 
neighbor in the given direction regardless of its size (e.g., node 20 is a NE neighbor 
of node 22 in Fig. 1 that is smaller in size). The algorithm for locating an 
arbitrary-sized diagonal neighbor is given below by procedure CORNER-CORNER 
-NEIGHBOR which makes use of GTEQUAL-CORNER-NEIGHBOR. 

node procedure CORNERCORNERNEIGHBOR(P, C); 
/* Locate a neighbor of node P in the direction of quadrant C that abuts against 

corner C of node P. If such a node does not exist, then return NULL */ 
begin 

value node P; 
value quadrant c; 
node Q; 
Q + GTEQUAL-CORNER-NEIGHBOR(P, C); 
while GRAY(Q) do Q + SON(Q, OPQUAD(C)); /* Descend to the desired 

comer */ 
return (Q); 

end; 

It should be clear that procedures similar to CORNER-ADJ-NEIGHBOR and 
CORNER-CORNER-NEIGHBOR can be constructed that also return the level at 
which the desired neighboring node is found. This will not be done here. 

The procedures outlined above always return NULL when a neighbor in a 
specified direction does not exist. This situation arises whenever the node whose 
neighbor is sought is adjacent to the border of the image along the specified 
direction. At times the NULL pointer is not convenient. Instead, we could assume 
that the image is surrounded by WHITE blocks as in Fig. 5a or by BLACK blocks 
as in Fig. 5b. The choice of WHITE or BLACK for the surrounding blocks depends 
on the particular application. For example, we use WHITE in the case of the 
quadtree to boundary code conversion algorithm [2] while BLACK is more useful in 
the case of the computation of distance [15] and the construction of a Quadtree 
Medial Axis Transform [ 161. 

At times it is useful to determine if certain edges of the blocks corresponding to 
two neighboring nodes extend past each other or are aligned. For example, in Fig. 1, 
node 16 extends past node 10 with respect to their western boundaries, while the 
western boundaries of nodes 9 and 16 are aligned. We assume that the level of the 
tree at which each of the two nodes, say P and Q at levels LP and LQ, respectively, 
reside is known. It should be clear that at most 1 LP-LQ ) nodes must be visited. This 
can be seen by observing that the smaller of the two nodes cannot extend farther 
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a b 

FIG. 5. Technique to avoid lacking a neighbor in a given direction. (a) Image surrounded by WHITE 
blocks. (b) Image surrounded by BLACK blocks. 

than the other because this would imply that the two nodes properly overlap, which 
is impossible. At best, the smaller node can be aligned with the other node, and this 
occurs if and only if the smaller node is adjacent to the extreme side in the 
designated direction of the nearest common ancestor of the two nodes. The algo- 
rithm for computing the aligned relationship is given below by procedure ALIGNED. 

Boolean procedure ALIGNED(P, LP, Q, LQ, D); _, 
/* Given two nodes P and Q, at levels LP and LQ respectively, which are adjacent 

along side CCSIDE(D) of node P, determine whether either of P or Q extends 
farther in direction D than the other (return FALSE), or their two sides in 
direction D are aligned (return TRUE) */ 

begin 
value node P, Q; 
value integer LP, LQ; 
value direction D; 
node R; 
integer I; 
if LP = LQ then return (TRUE) 
else if LP > LQ then R + Q 
else R + P; 
/* The smaller of the two nodes cannot extend farther than the other because this 

would imply that P and Q properly overlap, which is impossible. At best, the 
smaller node can be aligned with the other node, and this occurs if and only if 
the smaller node is adjacent to the extreme side in direction D of the nearest 
common ancestor of nodes P and Q */ 

for I + 1 step 1 until ABS(LP - LQ) do 
begin 

if not ADJ(D, SONTYPE( then return (FALSE) 
else R t FATHER(R); 

end; 
return (TRUE); 

end; 

The above techniques should be contrasted with other methods of locating 
neighbors [3-‘5, 81. In [8], a method is described for moving between adjacent blocks 
of equal size that are brothers (i.e., have the same father node). This method does 
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not make use of the tree structure; instead, coordinate information and knowledge 
of the size of the image are used to locate a neighboring brother in a given horizontal 
or vertical direction. This is accomplished by a number of primitives termed MOVE 
UP, MOVE DOWN, MOVE RIGHT, and MOVE LEFT. Transitions to nonbrother 
neighboring blocks require the use of approximations through the use of primitives 
named MORE, LESS, and GAMMA. The disadvantages of these methods is that 
they require computation (rather than chasing links) and are clumsy when adjacent 
blocks are not brothers as well as when they are of different sizes than the block 
whose neighbor is sought. 

In [3-51 a number of algorithms are described for operating on images using 
quadtrees. Transitions between neighboring blocks are made by use of explicit links 
from a node to its adjacent neighbors in the horizontal and vertical directions. This 
is achieved through the use of adjacency trees, “ropes,” and “nets.” An adjacency 
tree exists whenever a leaf node, say X, has a GRAY neighbor, say Y, of equal size. 
In such a case, the adjacency tree of X is a binary tree rooted at Y whose nodes 
consist of all sons of Y (BLACK, WHITE, and GRAY) that are adjacent to X. For 
example, for node 16 in Fig. 1, the western neighbor is GRAY node F with an 
adjacency tree as shown in Fig. 6. A rope is a link between adjacent nodes of equal 
size at least one of which is a leaf node. For example, in Fig. 1, there exists a rope 
between node 16 and nodes G, 17, H, and F. Similarly, there exists a rope between 
node 37 and nodes M and N; however, there does not exist a rope between node L 
and nodes M and N. 

The algorithm for finding a neighbor using a roped quadtree is quite simple. We 
want a neighbor, say Y, on a given side, say D, of a block, say X. If there is a rope 
from X on side D, then it leads to the desired neighbor. If no such rope exists, then 
the desired neighbor must be larger. In such a case, we ascend the tree until 
encountering a node having a rope on side D, that leads to the desired neighbor. In 
effect, we have ascended the adjacency tree of Y. For example, to find the eastern 
neighbor of node 21 in Fig. 1, we ascend through node J to node F, which has a rope 
along its eastern side leading to node 16. 

At times it is not convenient to ascend nodes searching for ropes. A data structure 
named a net is used in [3-51 to obviate this step by linking all leaf nodes to their 
neighbors regardless of their relative size. Thus in the previous example there would 
be a direct link between nodes 21 and 16 along the eastern side of node 2 1. The 
advantage of ropes and nets is that the number of links that must be traversed is 
reduced. However, the disadvantage is that the storage requirements are consider- 
ably increased since many additional links are necessary. In contrast, our methods 
are implemented by algorithms that make use of the existing structure of the 
tree-i.e., four links from a nonleaf node to its sons, and a link from a nonroot node 
to its father. 

F 

PC’ J 
23 

15 21 

FIG. 6. Adjacency tree for the western neighbor of node 16 in Fig. I. 
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4. ANALYSIS 

The execution time of the neighbor finding algorithms presented in Section 3 
depends on the relative positions of the nodes in question. Clearly, the execution 
time depends on the number of nodes that must be traversed in locating the desired 
neighbor. In the following we analyze the average execution time of EQUAL- 
ADJ-NEIGHBOR, GTEQUAL -ADJ-NEIGHBOR, CORNER _ 
ADJ-NEIGHBOR, EQUAL-CORNER-NEIGHBOR, GTEQUAL-CORNER- 
NEIGHBOR, CORNER-CORNER-NEIGHBOR, and ALIGNED. GTEQUAL- 
ADJ-NEIGHBOR2 and GTEQUAL-CORNER-NEIGHBOR2 have the same 
execution time as GTEQUAL-ADJ-NEIGHBOR and GTEQUAL-CORNER- 
NEIGHBOR, respectively, since they visit the same number of nodes. 

At this point it is appropriate to elaborate on our notion of average. We assume a 
random image in the sense that a node is equally likely to appear in any position and 
level in the quadtree. This means that we assume that all neighbor pairs (i.e., 
configurations of adjacent nodes of varying sizes) have equal probability. This is 
different from the more conventional notion of a random image which implies that 
every block at level 0 (i.e., pixel) has an equal probability of being BLACK or 
WHITE. Such an assumption would lead to a very low probability of any nodes 
corresponding to blocks of size larger than 1. Clearly, for such an image, the 
quadtree is the wrong representation. 

THEOREM 1. The average of the number of nodes visited by EQUAL-ADJ- 
NEIGHBOR is bounded by 4. 

ProojI Given a node P at level i and a direction D, there are 2”-’ . (2,-j - 1) 
neighbor pairs of equal sized nodes. 2”-’ . 2’ have their nearest common ancestor at 
level n, 2”-’ . 2’ at level n - 1, . . . , and 2”-’ * 2”-;-’ at level i + 1. For each node 
at level i having a nearest common ancestor at levelj, the number of nodes that will 
be visited in the process of locating an equal sized neighbor at level i is 2 . (j - i). 
This is obtained by observing that the nearest common ancestor is at a distance of 
j - i. Therefore, the average number of nodes visited by EQUAL-ADJ- 
NEIGHBOR is 

n-1 n 
x 2 2n-i . 2n-j . 2(j - i) 

i=O j=i+l 

n-l 
’ 2 2”-i . (2ri - 1) 

i=O 

The numerator of (1) can be simplified to yield 

(1) 

n-1 n-i 
2 z 22n-Zi-jtl . j 

i=O j=l 

(2) 
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Making use of the identities (3)-(5) in (2) leads to (6) 

The denominator of (1) can be simplified in a similar manner to yield 

3. (22”+2 - 3 . 2”+’ + 2). 

(3) 

(4) 

(5) 

(6) 

(7) 

Substituting (6) and (7) into (1) yields 

4 _ 3 . (n - 1) * 2n+2 + 12 
22n+2 - 3 . 2n+l + 2 

= 4 as n gets large 
54 Q.E.D. 

THEOREM 2. The average number of nodes visited by GTEQUAL- 
ADJ-NEIGHBOR is bounded by 5. 

Proof Given a node P at level i and a direction D, and recalling Theorem 1, 
there are 2”-’ . Z/n=i+,2n-j . (j - i) pairs such that the neighboring node is of size 
greater than or equal to that of P. The indexj in the summation corresponds to the 
level at which the nearest common ancestor is located. For a node at level i, a 
direction D, and a nearest common ancestor at level j, we have possible neighbor 
pairs having the initial node at level i and the neighboring nodes at levels j - 1, 
j - 2,..., i f 1, i-i.e., j - i possible neighbor pairs. Thus for a node at level i, the 
number of nodes that will be visited in the process of locating a greater than or equal 
sized neighbor at level k with a nearest common ancestor at level j is ( j - i + j - k). 
This is obtained by observing that the nearest common ancestor is at a 
distance of j - i. Therefore, the average number of nodes visited by GTEQUAL- 
ADJ-NEIGHBOR is 

n-1 n j-l 

I2 2 
2n-i . 2n-j . 2 (j-i+j-k) 

i=O i=i+l k=i 

n-l n-i 
. x 2n-i . z j. 2n-i-j 

i=O j=l 

(8) 
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The numerator of (8) can be simplified to yield 

n-l n--i 
2 2 22.-+-j-l . (3j2 + j). 

i=lJ=l 

Making use of identities (3)-(5) and (10) in (9) leads to (11) 

$ $-n2+;;+6, 

j=l 

10 
1.2 2n+2 -(3n2 + 7n + 18) * 2” + 2n + y. 

The denominator of (8) can be simplified in a similar manner to yield 

$ . 22 n+2 - (n + 1). p+’ - ). 

(9) 

(10) 

(11) 

(12) 

Substituting (11) and (12) into (8) yields 

(9n2 - 9n + 24) . 2” - 6n - 24 5-- 

22n+3 - 3 . (n + 1) .2”+’ - 2 

1: 5 as n gets large 

I 5. Q.E.D. 

THEOREM 3. The average number of nodes visited by CORNER-ADJ- 
NEIGHBOR is bounded by 14/3. 

Proof. Given a node P at level i, and a direction D towards comer C of P, using 
similar reasoning as in Theorem 1 and 2, there are 2”-’ . Z&+ ,2”-j . j neighbor 
pairs where we make no restriction on the relative size of the neighboring node. j 
corresponds to the level at which the nearest common ancestor is located. For a node 
at level i, a direction D towards comer C, and a nearest common ancestor at levelj, 
we have possible neighbor pairs having the initial node at level i and the neighboring 
node at levels j - 1, j - 2, . . . , i + 1, i, i - 1, . . . ,2,1,0-i.e., j possible neighbor 
pairs. Thus for a node at level i, the number of nodes that will be visited in the 
process of locating a neighbor at level k with a nearest common ancestor at levelj is 
( j - i + j - k). This is obtained by observing that the nearest common ancestor is 
at a distance ofj - i. Therefore, the average number of nodes visited by CORNER- 
ADJ-NEIGHBOR is 

n-1 n j-l 
x x 2"-'.2"-j. 2 (j-i+j-k) 

i=O j=i+ 1 k=O 

n-1 . ” 2 2 2”-i. 2”-J .j 

i=O j=i+l 

(13) 
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The numerator of (13) can be simplified to yield 

n-l n-i 

x z 22n-2i--j-’ . ((3j’ + j) + 4ji + i* + i) 
i=O jr 1 

Making use of the identities (3), (4), (lo), (15), and (16) in (14) leads to (17) 

j$ 6 = & (20 - 9n2 + ;y + ” ), 

98 122 
27’ 

22n+2 -(3n2 + lln + 10) . 2” - $2 - ;n - 27. 

The denominator of (13) can be simplified in a similar manner to yield 

$2 *n+* - (n + 2) .2”+’ + $ + $. 
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(14) 

(15) 

(16) 

(17) 

(18) 

Substituting (17) and (18) into (13) yields 

14 (27n* + 15n - 78) - 2” + 3n2 + 39n + 78 
-- 
3 7 . 2*“+* - 9 . (n + + 6n 2) .2”+’ + 8 

= 14/3 as n gets large 
5 14/3. Q.E.D. 

THEOREM 4. The average number of nodes visited by EQUAL-CORNER- 
NEIGHBOR is bounded by 16/3. 

Proof: Given a node P at level i and a direction towards quadrant C, there are 
(2”-i - l)* neighbor pairs of equal sized nodes. 4’ . (2 * (2n-i - 1) - 1) have their 
nearest common ancestor at level n, 4’ . (2 - (2”-‘-’ - 1) - 1) at level n - 1,. . . 
and 4”-i-’ . (2 . (2n-r-(n-i-‘) - 1) - 1) at level i + 1. In order to see this, consider 
Fig. 7, where a grid is shown for n = 3. If all BLACK and WHITE nodes are at level 

FIG. 7. Sample grid illustrating blocks whose nodes are at level 0 and whose nearest common ancestor 
is at level 2 2 when attempting to locate a NE neighbor. 
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0 (i.e., a complete quadtree), then for a neighbor pair in the NE direction we see that 
nodes along the fifth row and fourth column have their nearest common ancestor at 
level 3 (i.e., 13 nodes labeled l- 13). Continuing the process for the NW, NE, SW, 
and SE quadrants of Fig. 7 we find that all neighbor pairs contained exclusively 
within these quadrants have their nearest common ancestor at level I 2. In particu- 
lar, for the NW quadrant, nodes along the third row and second column have their 
nearest common ancestor at level 2 (i.e., 5 nodes labeled 14-18). The NE, SW, and 
SE quadrants are analyzed in a similar manner. This process is next applied to the 
four subquadrants of each quadrant to obtain the neighbor pairs whose nearest 
common ancestor is at level 1. Note that we had to consider every row in the image 
when analyzing neighbor pairs in the diagonal directions whereas we only needed to 
consider one row or one column when analyzing neighbor pairs in the N, E, S, and 
W directions. This is necessary because for neighbors in the diagonal directions, each 
row and column in the image has a different number of neighbor pairs with a 
common ancestor at a given level while this number is constant for each row or 
column when considering neighbor pairs in the horizontal and vertical directions. 

For each node at level i having a nearest common ancestor at level j, the number 
of nodes that will be visited in the process of locating an equal sized neighbor 
at level i is 2 * (j - i). This is obtained by observing that the nearest common 
ancestor is at a distance of j - i. Therefore, the average number of nodes visited by 
EQUAL-CORNER-NEIGHBOR is 

n-1 n 
2 z 4-i. (2 . (2”~i-(n-j) - 1) - 1) . 2. (j - i) 

i=O j=i+l 

n-1 (19) 

2 (2n-i - l)* 
i=O 

The numerator of (19) can be simplified to yield 

n-l n-i 
x x (22n-2i-j+2 _ 3 . 22n-*i-2jfl) .j. 

(20) 
ix0 j=l 

Making use of identities (3)-(5) and (15) in (20) leads to (21) 

16 
9.2 2nf2 _ (n + 1) * 2”+3 +n*+sz+8 

3 9’ (20 
The denominator of (19) can be simplified in a similar manner to yield 

f. (2 2n+2 - 3 . 2”+* + 3n + 8). (22) 

Substituting (21) and (22) into (19) yields 

16 (6n - 10) . 2”+* - 3n2 i- 5n •k 40 -- 
3 2*“+* - - 2”+* 3 + 3n + 8 

= 16/3 as n gets large 
5 16/3. Q.E.D. 
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THEOREM 5. The average number of nodes visited by (GTEQUAL-CORNER- 
NEIGHBOR is bounded by 6. 

Proof: Given a node P at level i and a direction towards quadrant C, and 
recalling Theorem 4, there are Z&+,4”-i * (2 . (2”-i-(“-j) - 1) - 1) * (j - i) 
neighbor pairs such that the neighboring node is of size greater than or equal to that 
of P. The index j in the summation corresponds to the level at which the nearest 
common ancestor is located. Recall that a neighbor in the direction of quadrant C 
will not always abut against comer C of the node whose neighbor is sought (e.g., 
node 16 is a nonabutting NE neighbor of node 23 in Fig. 1). For a node at level i, a 
direction towards quadrant C, and a nearest common ancestor at levelj, we have 
possible neighbor pairs having the initial node at level i and the neighbor node at 
levelsj- l,j-2,..., i + 1, i-i.e., ( j - i) possible neighbor pairs. Thus for a 
node at level i, the number of nodes that will be visited in the process of locating a 
greater than or equal sized neighbor at level k with a nearest common ancestor at 
level j is (j - i + j - k). This is obtained by observing that the nearest common 
ancestor is at a distance ofj - i. Therefore, the average number of nodes visited by 
GTEQUAL-CORNER-NEIGHBOR is 

n-1 n j-i 

x x 4”-j.(2.(2”-‘-(“-j)-l)-l). x(j-i+j-k) 
i=O j=i+l k=i 

n-1 n (23) 
x 2 4”-i . (2 .(y-i-(n-i) _ 1) _ 1) . (j _ i) 

i=O j=i+ 1 

The numerator of (23) can be simplified to yield 

n-i n-i 
z 2 (22n--2i-j - 3 . 22n-2i-2j-I) . (3j2 +i). (24) 
i=O j=l 

Making use of the identities (3)-(5), (lo), (15), and (16) in (24) leads to (25) 

16 
7.2 2n+2 - (6n2 + 14n + 32) . 2” + in3 + 3n2 + Tn + y. (25) 

The denominator of (23) is equal to 5 of the numerator of (19)-i.e., (21): 

8 
9 * 22n+2 

11 -(n+ 1).2”+‘+;+7n+$. 

Substituting (25) and (26) into (23) yields 

6 _ (27n2 - 45n + 36) . 2n+2 - 9n3 + 81n - 144 
16 . z2n+2 - 18 . (n + 1) . 2”+2 + 9n2 + 33n + 8 

= 6 as n gets large 
I 6. Q.E.D. 

THEOREM 6: The average number of nodes visited by CORNERCORNER- 
NEIGHBOR is bounded by 6 &. 
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Proof Given a node P at level i and a direction towards quadrant C, using 
similar reasoning as in Theorems 3 and 4, there are Xy++,4”-j . (2 . (2”-i-(“-j) - 
1) - 1) . j neighbor pairs where we make no restriction on the relative size of the 
abutting neighboring node. j corresponds to the level at which the nearest common 
ancestor is located. For a node at level i, a direction towards quadrant C, and a 
nearest common ancestor at levelj, we have possible neighbor pairs having the initial 
node at level i and the neighboring node at levels j - 1, j - 2,. . . , i + 1, i, 
i-l , . . . ,2,1,0-i.e., j possible neighbor pairs. Thus for a node at level i, the 
number of nodes that will be visited in the process of locating a neighbor at level k 
with a nearest common ancestor at level j is ( j - i + j - k). This is obtained by 
observing that the nearest common ancestor is at a distance of j - i. Therefore, the 
average number of nodes visited by CORNER-CORNER-NEIGHBOR is 

n-l " j-l 

x x 4*-j. (2 . (2n-i-(n-j) - l)- 1). x (j- 1 +j-k) 
i=O j=i+l k=O 

n-l n . (27) 
x 2 4n-j .(2 .(2n-i-(n-i) _ 1) - 1) . j 

i=O j=i+l 

The numerator of (27) can be simplified to yield 

n-l n-i 
= x 2 (22n--2i-j - 3 . 22n--2i--2jF-1) . (3j2 + 4ji + j + i2 + i). (28) 

i=O j=l 

Making use of identities (3)-(5), (lo), (15), and (16) in (28) leads to (29) 

164 94 
27’ 

22”+2-(6n2+22n+32).2”+n3++2+-;j-n+~. (29 

The denominator of (27) can be simplified in a similar manner to yield 

22n+2 - (n + 2) * 2n+2 + n2 + 4n + 4. (30) 

Substituting (29) and (30) into (27) yields 

&J 164- 
i 

(162n2 - 62n - 448) * 2” - 27n3 + lln2 + 374n + 448 

22”+2 - (n + 2) . 2n+2 + n2 + 4n + 4 

= 164/27 as n gets large 
I 164/27 = 6 6. Q.E.D. 

THEOREM 7. The average number of nodes visited by ALIGNED is bounded by 
19/21. 

Proof. Given a node P at level i and a direction D, using similar reasoning as in 
Theorems 2 and 3, there are 2”-’ . Z&+,2”-j *j neighbor pairs such that there is no 
restriction on the size of the neighboring node. j corresponds to the level of the tree 
at which the nearest common ancestor is located. Given i and j as defined above, we 
have possible neighbor pairs having an initial node at level i and a neighboring node 
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at levelsj- l,j-2 ,..., i+ 1, i, i- l,..., 2, 1, 0-i.e., j possible neighbor pairs. 
For a node at level i and a neighbor at level k, at most 1 i - k 1 nodes must be visited 
in determining the aligned relationship. Therefore the average number of nodes 
visited by ALIGNED is 

n-i n j-l 

i=O i=i+l k=O 

n-1 n 
2 2 2”-i.2”-j.j .  

i=Oj=i+l 

The numerator of (31) can be simplified to yield 
n-1 n-i 

xx 
22n-Zi-j- 1 . (j’ -j - i + i’). 

izz() j=l 

Making use of identities (3)-(5), (lo), (15), and (16) in (32) leads to (33) 

19 11 
27’ 

22”+2-(n2+,+6).2”+;n2+Tn+$ 

(31) 

(32) 

(33) 

The denominator of (31) is equal to (18) and substituting (33) and (18) in (31) yields 

19 3 (21n2 - 17n + 50) * 2” - 7n2 - 13n - 50 ---. 
27 7 7 . 22”+2 - 9 . (n + 2) . 2”+’ -t- 6n + 8 

= 19/21 as n gets large 
5 19/21. Q.E.D. 

The analysis of the ALIGNED relationship performed in Theorem 7 can also be 
used to yield an estimate of the cost of finding neighbors when using the roping 
methods of Hunter [3-51. Recall that roping implies that equal sized neighbors are 
linked directly regardless of whether or not they are brothers. In the case of a larger 
sized neighbor, the time required to access it in a roped quadtree is equal to the 
number of FATHER links that must be ascended to reach a GRAY ancestor node 
of size equal to that of the desired neighbor. Therefore, the following is the analog of 
Theorem 2 when roping is used. 

THEOREM 8. The average number of nodes visited when seeking larger sized 
neighbors in the horizontal and vertical directions in a roped quadtree is bounded by 1. 

Proof Given a node P at level i and a direction D we have from Theorem 2 that 
there are 2”-’ . X7,,+ ,2”-j . (j - i) pairs such that the neighboring node is of size 
greater than or equal to that of P. For a node at level i, the number of nodes that 
will be visited in locating a greater than or equal sized neighbor at level k (k 2 i) 
where the nearest common ancestor is at level j is k - i. The average is obtained as 
follows: 

n-l n j-l 

x 2 2"-i.2"-j. x (k-i) 

i=O j=i+l k=i 

n-1 n-i 
. 

(34) 
x 2n-i. xj-2?l-i-j 

i=O j=l 
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The numerator of (34) can be simplified to yield 

n-1 n-i 
x x 22n-2i-j-l . (j2 -j). (35) 

Making use of identities (3)-(5) and (10) in (35) leads to 

$2 2n+2 _ (n’+n+4).2”+;. (36) 

The denominator of (34) is equal to (12) and substituting (36) and (12) in (34) yields 

l- 
3 * (n’ - n + 2) .2” - 6 

22n+3 _ 3 . (n + 1) * 2”+’ - 2 

- 1 as n gets large 
5 1. Q.E.D. 

If one is interested in finding a smaller or larger neighbor in a roped quadtree, 
then we must add to the analysis of Theorem 8 a factor for finding a smaller sized 
neighbor. In the case of a roped quadtree we merely need to follow the rope and 
then descend to find the smaller neighbor. However, the cost of finding the smaller 
and larger sized neighbors is precisely the cost of the ALIGNED procedure. Thus 
for a roped quadtree, the analog of Theorem 3 is given below. 

THEOREM 9. The average number of nodes visited when seeking neighbors of 
arbitrary size in the horizontal and vertical directions in a roped quadtree is bounded by 
19/21. 

Proof. Given a node P at level i and a direction D we have from Theorem 3 that 
there are 2”-’ * X&+,2”-j .j neighbor pairs such that there is no restriction on the 
size of the neighboring node. For a node at level i, the number of nodes that will be 
visited in locating a greater than or equal sized neighbor at level k (k L i) where the 
nearest common ancestor is at level j is k - i. Similarly, in locating a smaller sized 
neighbor at level k (k < i) i - k nodes will be visited. The average is obtained as 
follows: 

n-l n i-l j-l 

2 2 2”-‘*2”-j* 2 (i-k)+ 2 (k-i) 
i=O j=i+ I k=O k=i 

n-1 n 
’ x z 2n-i. 2n-j .j 

i=O j=i+l 

(37) 

However, (37) is identical to (31) and our result follows. Q.E.D. 
Note that the bounds of Theorems 8 and 9 do not reflect the fact that one must 

also visit one additional link due to the presence of the rope (i.e., the link which the 
rope represents). It should also be clear that if the quadtree is netted, then no links 
need ever be traversed except for the link which the net represents. 
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5. CONCLUDING REMARKS 

We have described the neighbor finding techniques for quadtrees in detail. The 
analyses of the various algorithms demonstrate that the operation is quite efficient. 
We have used an unusual model of a random image in our analysis. However, as 
stated in Section 4, had we used a model which attributes a given probability (e.g., 
l/2) for a pixel being BLACK or WHITE, the quadtree for a 2” X 2” image would 
most likely have n levels and have neighboring nodes of equal size. In such a case, 
Theorems 1 and 4 are applicable and show a lower bound on the execution time of 
adjacent and comer neighbor locating algorithms. Thus our model attempts to 
present a more realistic view of the time complexity of these algorithms. 

We have also analyzed an alternative neighbor finding technique which makes use 
of a construct termed a rope. In such a case, we saw that neighbors can be located 
more quickly (at about f to 4 of the cost when our technique is used). Nevertheless, 
if space is at a premium, roping should probably not be used without some careful 
thought. An upper bound on the number of links necessary to achieve roping is four 
times the number of leaf nodes since each leaf node may participate in a maximum 
of four ropes (one for each side). 
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