
Data structures to support
Bezier-based modelling
Hanan Samet and Robert E Webber*

Data structure issues that arise in B6zier-based modelling
are surveyed. Both low and high level implementation
details are discussed. The low level issues deal with the
interaction between the representation of the individual
patches and the representation of the collection of
patches. The high level discussion consists of two parts.
The first deals with how to maintain the topological
integrity of the objects being modelled. This includes an
outline of a technique for adapting Euler operators to
B6zier primitives. The second is concerned with increasing
the efficiency of certain operations by using hierarchical
spatial data structures. Such representations facilitate the
execution of operations that depend on spatial proximity
(i.e., which patch is closest to another patch).

Bezier primitives, surtaces, computer-aided design, data structures,
quadtrees, octrees, Euler operators

Many applications in computer-aided design require
the manipulation of objects whose surfaces are arbitrarily
curved rather than being flat (i.e., planar). Examples of
such applications range from design packages in the
automobile industry ~'55 to font design tools in desktop
publishing 2. In fact, it is not uncommon for the user to
be unable to give a precise mathematical formula for
the surface. Instead, the user would like to resort to an
intuitive (e.g., interactive) specification of the surface
in the sense that aesthetic feedback from the designer
plays an important role in the final form of the surface.
Ideally, the user would like to have a system where a
surface can be varied by tweaking a few knobs rather
than defining new equations.

In general, it is difficult to draw the desired surface.
This has led to the development of techniques that
enable the surface to be specified by the coordinates
of a few points in space. These points are known as
control points. By varying the locations of these control
points, the surface can be defined and then visualized.
One such set of control points is said to comprise a
Bezier primitive ~'~'sS. The Bezier primitives present the

Computer Science Department and Institute of Advanced Computer
Studies and Center for Automation Research, University of Maryland,
College Park, MD 20742, USA
* Department of Computer Science, The University of Western
Ontario, London, Ontario, Canada N6A 5B9
Paper received: 15 August 1990. Revised: 1 November 1990

designer with a collection of control points that
define a curved object. These control points form an
exaggerated outline of the curved object. By moving
the control points, designers can interactivelv construct
the desired curved object. The algebraic basis of the
Bezier primitives is the Bernstein polynomials ~'
commonly used by numerical analysts. Bezier primitives
can also be derived from a purely geometric construction
due to de Casteljau "7

An even more complex problem is that frequently
it is not possible to define the entire surface by a single
concise mathematical formula. Thus the surface is often
viewed as consisting of a collection of surfaces (termed
patches) which may be required to satisfy continuity,
o ifferentiability, and curvature constraints at the points
and curves at which they are adjacent. The efficient
representation of collections of the patches based on
Bezier primitives is the subject of this paper.

The mathematics of Bezier primitives has a number of
useful properties. One such property is the convex hull
property. It states that the obiect defined by a set of
control points of a B~zier primitive will lie within the
convex hull of those control points. Bezier primitives
are usually based on a triangular or a rectangular
network of control points. For Bezier primltwes based
on a triangular network of control points, the following
property also holds. If the network of control points is
a convex surface then the curved surface generated
by the control points will also be convex ~9~°

Another important property that holds for both a
tnangular and rectangular network of control points is
that a Bezier primitive can be subdivided into a
collection of smaller Bezier primitives that collectively
define the same surface as the original Bezier primitive.
Using this property, in contunction with the convex
hull property, enables us to obtain progressively tighter
approximating bounds (i.e.. collections of co nvex hulls)
within which the surface must lie. Indeed. these
approximations eventually converge to the original
surface

The above properties can be combined to form the
basis of a generic surface intersection procedure 1! ~.
Such a procedure is useful for displaying the objects
being modelled, checking that a collection of B~zier
primitives forms a valid boundary of an object, and
locating the position of a g~zier primitive with respect
to a linear volume element (i.e., whether or not it
intersects the element) as is common when using some
form of spatial subdivision (e.g., octrees as discussed

162 0010 4485/91/030162-15 '.i('~ 1991 Butterworth-Heinemann ttd computer-aided design

below). For example, the following five observations
serve as the control structure of a simple recursive
algorithm for detecting whether or not a particular
Bezier primitive, say B, intersects a given cube, say C:

• If the control points of B are inside C, then B is inside C
• If all the control points of B are outside C and on

the other side of the same face (e.g., above the top
face of the cube), then B is outside C

• If B can be decomposed into subprimitives that are
all inside C, then B is inside C

• If B can be decomposed into subprimitives that are
all outside C, then B is outside C

• If B can be decomposed into subprimitives, some of
which are inside C and some of which are outside
C, then B is both inside and outside C

An algorithm that has this control structure explores
the possibility of intersection between cube C and
B@zier primitive B by recursively subdividing those
subprimitives that could not be identified as being
completely inside C or completely outside C until they
could be so classified.

As the number of Bezier primitives increases, we
must pay more attention to data structure issues. They
are influenced by the type of operations that we wish
to perform. There are three maior issues which are most
logically considered in the following order, as it is indeed
the order in which they arise. The first is the interaction
between the representation of the individual patches
and the representation of the collection of patches.
The remaining two issues are somewhat complementary.
They address the question of whether the representation
is to support operations based on the topology of the
patches (i.e., which patch is connected to which patch)
or operations based on spatial proximity (i.e., which
patch is closest to another patch).

The first issue is the representation of the primitives
as a set - i.e., to support the operations of insertion,
deletion, and enumeration. As the number of primitives
increases, it is often the case that the operations only
need to manipulate a subset of the primitives. For
example, as the number of primitives increases, the
proportion of the primitives that are visible from a
particular viewpoint usually decreases. Thus it becomes
increasingly wasteful to have to access every primitive
for each display operation.

One obvious optimization of the display operation
is to ignore primitives that appear on the back sides
of objects (e.g.,~). However, this requires that we be
able to determine which primitives are parts of which
obiects, as well as their orientation with respect to the
objects. This determination requires that we construct
a connectivity graph of primitives that are neighbours
by virtue of sharing a vertex or edge. We must also
keep track of orientation information in the connectivity
graph. In addition, such a graph is useful for investigating
whether or not a collection of primitives define a valid
boundary of an object. Moreover, this graph is a good
heuristic for grouping patches that are neighbours by
virtue of spatial proximity. This heuristic is motivated

by the tendency for primitives that are very close to
other primitives to be directly connected to them.

Nevertheless, as the number of primitives becomes
very large, it is useful to organize them directly by their
spatial location. This, of course, improves the efficiency
of algorithms that are spatially motivated (e.g.,
determining the patch at which a user is pointing).
However, for a very large collection of primitives, it also
improves the efficiency of algorithms that manipulate
the connectivity graph of primitives. This makes sense
because spatial proximity is a good heuristic for grouping
patches that are connected.

Spatial proximity is important because the perform-
ance of connectivity graph algorithms depend on the
accessibility of the actual memory locations at which
the relevant information is stored. It is well known that
most computer memories are organized in a linear
manner - i .e., once location i has been accessed, it is
much easier to access location i + 1 than arbitrary
location j. Moreover, it is easier to devise a technique
for embedding a higher-dimensional space (e.g., a
three-dimensional array)in a linear space than a general
graph. Thus for the purpose of placing the data in
memory, it is preferable to embed a connectivity graph
in a spatial organization rather than a general graph
structure.

The rest of this paper is organized as follows. The
next section presents techniques for representing the
collection of Bezier primitives as a set, as well as the
individual primitives. The third section discusses tech-
niques for representing the topological aspects of a
collection of Bezier primitives. This discussion includes
material relevant to confirming that a collection of
primitives defines a topologically meaningful object.
The fourth section describes some techniques for
organizing the Bezier primitives by their spatial properties.

REPRESENTING SETS OF BI=ZIER
PRIMITIVES

In this section, we briefly discuss some alternative issues
in the representation of the individual B6zier primitives,
followed by a more detailed examination of the
representation of the collection of the primitives. One
such issue is the question of whether the Bezier
primitives are curves, surfaces, or solids, and whether
they exist in the plane or in 3D space. Collections of
1D Bezier primitives in the plane tend to be easier to
represent than 2D Bezier primitives (i.e., surfaces) in a
3D space. In this paper, the focus is on 2D Bezier
primitives in a 3D space. Another issue is whether or
not all of the Bezier primitives in a collection will have
the same number of control points. In this paper, we
do not address the additional complications that arise
when using different types of Bezier primitives, thereby
requiring variable amounts of storage per primitive.

There is also the issue of whether the Bezier primitive
(i.e., patch) is based on a triangular or a rectangular
grid of control points. A triangular patch (e.g., Figure
l(a)) will have at most three neighbours, where two
patches are said to be neighbours it they share an edge.
However, a rectangular patch (e.g., Figure l(b)) will

volume 23 number 3 april 1991 163

CO[} [I 'O i
~ll point 7°~;:t

c d

COl~ II-Ol . " I

point,~:- . ; ed ~,~"
. nUlr',t ~ ~ COI l [7O i

C O l l t i ' () [t 'O I l : TO [

V L' T'[L' X p() i iI [[3()tTl [\'L*I *,0 X

CC)I/EI'O[C) l l T~)

point Fx>m

. o C - : ~

b

Figure 1. (a) Triangular B6zier patch; (b) rectangular
B6zier patch

have at most four neighbours with which it shares an
edge. It is often easier to decompose a surface into a
tessellation of triangles than one of rectangles (e.g.,
consider a globe and the problems that arise at the
poles in a Mercator projection). Another benefit of
triangular patches is that they have fewer control
points, which means that the evaluation of the primitive
is faster. In this paper, we use triangular Bezier primitives
(specifically a cubic primitive requiring 10 control
points). However, the data structure issues that we
discuss are equally applicable to rectangular patches.

In the following discussion, it is convenient to
distinguish among three classes of control points within
a triangular B&zier primitive (as labelled in Figure l(a)).
The three control points that are at the corners of the
triangular control network are called vertex control
points. A useful property of the Bezier primitive is that
it actually passes through the vertex control points. In
our example cubic triangular B~zier patch, there are
two control points along the edge of the triangular
network between each pair of vertex control points.
These are called edge control points. The four control
points along an edge, say E, of the triangular network
(i.e., a vertex control point, two edge control points,
and the other vertex control point on E) are the control
points for a cubic B~zier curve that forms the boundary
of the cubic triangular patch on E. In general, the patch
does not pass through the edge control points. However,
in order for two neighbouring patches to be properly
aligned, they will share both the vertex control points
and the edge control points on the appropriate edge.
The final class of control points consists of the interior

control point, say I, and called an interior control poinL
Usually, the patch does not pass through I, and l is not
shared with any of its neighbouring patches.

An individual Bezier primitive consists of an ordered
collection of control points. A typical Bezier primitive
is a triangular cubic patch, determmed by ten control
ponts in 3D space, i.e., by 30 numbers (either fixed-point
or floating-point numeric representations could be
used). Assuming a 4-byte number, a single Bezier
primitive requires 120 bytes of sto~age. Editing a Bezier
primitive consists of altering the value of some subset
of these 30 numbers. Whenever we need to determine
the location of the actual surface defined by the patch,
the control points of the patch are usually accessed in
a row-by-row manner. Thus a standard embedding of
a triangular array into a linear array is algorithmically
efficient.

One way to represent a collectio~ of Bezier primitives
is as an array of records where each record corresponds
to a single B(~zier primitive. At al~y instance of time,
not all the records of the array are in use. A simple
way to organize the array would be to use a counter
N to indicate how many primitives are in use. To add
a new primitive P, N is incremented, and P is copied
into the N 'h element of the array. To delete the k th

primitive, the N 'h primitive in the array is copied to the
k 'h entry in the array, and N is decremented

One problem with this approach is determining the
maximum size of the array. Instead c?f using a 120
megabyte array (thereby permitting the storage of a
million cubic triangular patches), we can use a paging
approach. In this case, we can make use of an array
of 1000 pointers to serve as a page table (which would
consume 4000 bytes of storageL Each pointer would
either point at a page (i.e., another array) of 1024 B6zier
primitives (120 kbytes) or be NIL {indicating that no
primitives reside on that pagel. Finding the k th entry in
the set of primitives is easy. Fir< find the [k,.1024] th
pointer, say P, and then access the i L - [k /1024]'1024) 'h
entry in the array pointed at by P

A second problem with the array approach is that
it ignores the expected redundancy in a control network
of triangular Bezier primitives. For such a primitive, the
six edge control points will most likely be shared with
one other primitive, the three vertex control points will
most likely be shared with two or more other primitives,
and the one internal control point is most likely to be
unique to that primitive, l-hus, for our example of one
million primitives, the number of unique control points
is likely to be tess than five million, rather than the 10
million that are stored in the array approach.

The above approach can be iniplemented by storing
the five million 'unique' control points as an array of
five nil[ion records of three numbers each (requiring
12 bytes apiece) thereby consuming 60 megabytes of
storage. We also need to store the actual primitives.
They can be stored as an array of one million records
of 10 indices apiece (requiring 4 bytes per index) into
the array of control points, thereby consuming an
additional 40 million bytes. Such a representation would
store the entire set of primitives in 100 megabytes rather
than the 120 megabytes required in the original array
approach. This technique is similar to that used by

164 ~ ,,mputer-aided design

Baumgart ~'' in the winged-edge data structure, a basis
of the boundary model (BRep) TM representation of
planar-faced solids, where the basic data item is an
edge rather than a control point. The paging approach
outlined earlier could be used here as well for managing
both the array of control points and the array of Bezier
primitives.

A further refinement would be to separate the array
of control points into three different types of arrays:
one for the vertex control points, one for the pairs of
edge control points, and one for the isolated internal
control point. Thus, each record that corresponds to a
cubic triangular Bezier primitive would require seven
indices (three vertex indices, three edge indices, and
one internal index) rather than 10 indices. This
implementation means that each record requires 28
bytes instead of 40 bytes. Thus one million primitives
would consume 28 megabytes. Remembering that we
need 60 megabytes for just storing the control points
means that the entire set of primitives requires 88
megabytes instead of 120 megabytes.

As a final refinement of the cubic traingular Bezier
primitive, the index for the internal control point could
be replaced by the actual value of the coordinates at
that point. Since there is no expected sharing of this
point, the net effect of this optimization would be the
elimination of one million indices (4 megabytes). The
result is that only 84 megabytes of storage are needed
for the set of one million primitives. It is interesting to
observe that the net gain as a result of sharing the
storage for the control points in a manner analogous
to the sharing of edges in the winged-edge data
structure is not very large.

REPRESENTATION OF THE TOPOLOGY OF
BI~ZIER PRIMITIVES

One problem that arises when working with a collection
of geometric primitives (regardless of whether they are
Bezier primitives) is that of ensuring that the primitives
define a valid object in the space being modelled. For
example, when designing an aeroplane, a M6bius strip
(see Figure 2)is generally not considered a meaningful
part. Ensuring that such objects do not arise depends
on the representation being used. For example in the
case of Constructive Solid Geometry (CSG) is this is
achieved by using 'regularized' Boolean operations,
while for boundary models (BRep) TM this is achieved by
using Euler operators ~ (when augmented by suitable
intersection checking which is a form of regularization -
see the discussion of inter-oblect intersection at the
end of this section).

An example of the CSG approach would be to use
half planes as primitives and then form objects as a
Boolean combination of half planes. Figure 3 illustrates

Figure 2. M6bius strip

D

(AB~ B C ~ E A) , ~ (C D ~ DE ~ EA)

Figure 3, Example of construction o[CSG representation
o[pentagon

U / \
N' N

n / \ / \ EA CD / \
AB BC

N
/ \

DE EA

Figure 4. Data structure corresponding to Figure 3

a pentagon defined as a Boolean combination of half
planes in 2D space.]-he corresponding data structure
(Figure 4) is a tree where the internal nodes correspond
to the operators in the Boolean expression and the leaf
nodes correspond to the half plane primitives. For CSG,
ensuring that only valid objects result from a Boolean
expression is equivalent to ensuring that every intersection
is either empty or creates an object with the same
dimensionality as the operands to the intersection
operation (e.g., the intersection of two half planes is
not permitted to result in a line). This is achieved by
modifying the definition of the Boolean operators to
be regularized Boolean operators is, where these details
are taken into account.

This list of line segments in Figure 5 is an example
of the boundary model for the pentagon of Figure 3.
Notice that the line segments indicate their constituent
vertices as well as the orientation of the line with respect
to the interior of the object. The orientation information
is important because a boundary defines two objects,
one on the inside of the boundary and one on the
outside of the boundary. In order to determine the
object that has been defined, we need to know which
direction is to be viewed as 'inside.' For the boundary
model, ensuring that only valid objects are created
becomes the problem of ensuring that there is always
a consistent labelling of inside and outside for the
primitives that make up the objects being modelled.
This is guaranteed by using a collection of operators
called the Euler operators 1~,~6. Thus an object like that

volume 23 number 3 april 1991 165

B

n

AB, BC, CD, DE, EA

Figure 5. Boundary model representation corresponding
to Figure 3

B p,

E

a b)" \ C ~ •

B B

d ~ > ~ e ~ /
E

E

Figure 6. Euler operator sequence leading to construction
of Figure 5

in Figure 5 would be built by the sequence shown in
Figure 6.

Let us look more closely at how Figure 6 is constructed.
We will use the MakeTriangle, MakeVertex, and
MoveVertex operators. The first step is to generate the
smallest possible valid polygon (e.g., MakeTriangle
yielding Figure 6(a)). The next step is to add a new
vertex to the polygon using a MakeVertex operator (e.g.,
Figure 6(b)). MakeVertex creates a new vertex as well
as updates the edge database• by removing edge CA
and adding edges CE and EA. At this point, the location
of vertex E is moved by applying the MoveVertex
operator (e.g., Figure 6(c)). MoveVertex checks to make
sure that moving the vertex does not cause any of the
line segments to intersect at any points that are not
vertices. MoveVertex also checks the consistency of
the orientation labelling. Next, insert point D using the
MakeVertex operator (Figure 6(d)), and move it to its
correct location using a MoveVertex operator (Figure
6(e)).

Evaluating intersections of Bezier primitives in a
manner analogous to that used in CSG can be very
expensive. The problem is that we must compute the
intersections of 3D objects, which would require that
we work with cubic tetrahedrat B~zier primitives. In

particular, the number or control points un eacn c:ub~<
tetrahedra[Bezier primitive is twice ¢i.e. 20 instead or
1()~ the number of control points in each cubk triangular
Bezier primitive, which is the pnrnltwe used for the
analogous boundary rnodel.

When comparing the boundarL model with CSG we
observe that the dimensionalitv ol the BezJer pnmiuve~
comprising the boundary model t~ one less than that
of the analogous B(~zier pnmitives ~ompnsnng CSG [his
is because the dimensionatit\ of the border is one tess
than that of the object that is being bounded. Therefore
there is a tendency to use the houndary model to
reduce the dimensionalit,/ of the Bezier prtmittve and
thus minimize its complexity.

Now, let us see how we can adapt the concept or
a Euler operator to the Bezier primitive. The traditional
development ol Euler operators ,~ ~n terms ol the
creation and destruction of vertice, edges, and faces.
A typical operator is one that changes an edge into
two edges while adding a vertex recall the MakeVertex
operator illustrated in Figure 6). Fo~ example, applying
the MakeVertex operator to a mangular face would
create a quadrilateral face. However in a system OT
triangular B(~zier primitives a quadrilateral race is
meaningless. Thus, when adding a vertex, say V to an
edge, say AB, (~f a triangular B(~zier primitwe ABC in a
system of triangular Bezier pnmltlw~g tt is not sufficient
for edge AB to be split ulto two new edges, AV and
BV. Instead, a third edge VC is added connecting vertex
V to the vertex C of triangular Bezier primitive AB(:
(which is opposite edge AB). This results in the split of
the triangular Bezier pnmltlve \BC into two new
triangular B(~zier primitives AVC and BVC see Figure
7). Furthermore, if edge AB happened to be shared with
a neighbouring triangular Bezier pnrn~uve, say ABD. then
a fourth edge VD would have to be added, thereby
splitting neighbouring triangular Bezier pnmitwe CBD
into two new triangular Bezier primitives AVD and BVD
as well.

We propose the following six operators as a mtnimal
set of Euler operators appropriate for maintaining a
system of triangular B(~zier primitives. These operators
are named MakeTetrahedron, DeleteTetrahedron,
MakeVertexOnEdge, RemoveVertexOnEdge, Merge-
Triangles, and CutTriangle. Figure 8 illustrates the
functionality of each of these operators.

MakeTetrahedron defines a minimal solid object
bounded by four triangular Bezier primitives. The Bezier
primitives are initialized to correspond to equilateral
planar triangles. The size and orientation of the
tetrahedron are parameters of the MakeTetrahedron

!~IEC fOI" I IC%

\ ¢2['tL'X

Figure 7. Example oi application oi MakeVertex operator
to triangular B~zier primitive

166 computer-aided design

M:lkcTc:r:~hcdron

a

DclcteTe:r:l}~cdron

b

M :t k,,'\'e r:e \ ()r', E d gc

si~¢ far :ic,,,,
ver tex

C

Remove",&rtexOn Edge

\ '~ rt~.'X tO

ren :ovc

d

.McrgeTriangles

t,.,.o tetrahe~!ra o t One sol id v, ith 6
4 t:'ian~:!e,, each ~ri:lngle faces

e

CutTr iang!e

Figure 8. Euler operators for maintaining system
triangular Bezier primitives

of

operator. When a tetrahedron is created within an
already existing object, the new tetrahedron determines
a hole within the object. DeleteTetrahedron removes
the four Bezier primitives of the tetrahedron from the
collection of Bezier primitives.

The MakeVertexOnEdge operator takes as parameters
an edge, say AB, and the two triangular B(}zier primitives
ABC and ABD that share the edge AB, and a point, say
V, on edge AB. V becomes a vertex control point shared
by the four triangular B~zier primitives AVC, BVC, AVD,
and BVD. The remaining control points for these four
triangular B6zier primitives are computed using the
Bezier subdivision algorithm, s

The RemoveVertexOnEdge operator is the inverse
of MakeVertexOnEdge. It can only be applied to a vertex,
say V, that is the common corner of four triangular
Bezier primitives AVC, BVC, AVD, and BVD that form
the quadrilateral ABCD. When RemoveVertexOnEdge
is applied, the four edges that meet at vertex V are
removed (i.e., AV, BV, CV, and DV), and are replaced
by a new edge (i.e., AB or CD) specified as a parameter
to the function. Note that two new internal control
points R and S need also to be specified so that
triangular Bezier primitives ABC and ABD will be valid
Bezier primitives.

MergeTriangles takes two triangular Bezier primitives
as parameters, say ABC and DEF. It removes both

triangular Bezier primitives ABC and DEF from the
collection of B~zier primitives. All references to vertices
D, E, and F in the collection of Bezier primitives are
changed to references to A, B, and C, respectively.
This operator can be used for forming handles in an
object or for merging two solid objects into one solid
object.

CutTriangle is the inverse of the MergeTriangles
operator. Its parameter is a sequence of three distinct
edges, say AB, BC, and CA, from the collection of B~zier
primitives, such that there exists no triangular B~zier
primitive ABC. The edges that share exactly one vertex
with the non-existent triangle ABC are partitioned into
two subsets, say L and R, depending on the side of
ABC on which they lie. Next, triangular Bezier primitive
ABC is added to the collection of Bezier primitives
(thereby requiring the user to specify an internal control
point for it, say V). The user must also specify a second
Bezier triangular primitive DEF (and a control point for
it), which is also added to the collection of Bezier
primitives. All references to vertices A, B, and C in edges
of the subset R are replaced by references to the
vertices D, E, and F, respectively. On the other hand,
note that all references to vertices A, B, and C in edges
of the subset L remain unchanged. This operator has
the effect of cutting a solid into two parts (if the solid
has no holes) or, depending on the location of the cut,
reducing the number of holes in a solid by one.

Implementing the operators described above requires
that we be able to query the collection of Bezier
primitives efficiently. In particular, we need to be able
to determine (i.e., query) which triangular Bezier
primitives share an edge with a given triangular B&zier
primitive. There are a number of ways this can be
achieved. One approach is to add three index fields to
the record which represents each Bezier primitive. For
each triangular B6zier primitive ABC, the index fields
point at the Bezier primitives adjacent to the constituent
edges AB, BC, and CA, respectively. This would add 12
bytes to the size of each record that corresponds to a
Bezier primitive. Using the final representation disussed
above means that the amount of storage necessary to
represent one million B(}zier primitives increases from
84 megabytes to 96 megabytes.

An alternative representation is to associate the
adjacency information with the edge records rather
than with the records of the Bezier primitives. This is
similar to the winged-edge representation of Baumgart sb.
In this case, for each edge we store the indices of the
two adjacent B6zier primitives. This would increase the
size of the edge record by 8 bytes. Since there are three
edges for each triangular Bezier primitive, and all edges
are shared by two triangular Bezier primitives, the
amount of storage required for this approach would
be the same as for the previous approach that added
three index fields for each Bezier primitive.

Another implementation decision is determining
which side of each Bezier primitive (i.e., face) is
'outward'. This is achieved by adopting the convention
that the indices to the edges and vertices in a B~zier
primitive appear in a clockwise order. In this way, when
we compute the clockwise crossproduct of the derivative
of two curved borders of the Bezier primitive, evaluated

volume 23 number 3 april 1991 167

at the curved borders' common vertex, we get a vector
pointing in the 'outward' direction.

As with the traditional Euler operators, it is necessary
to check for inter-object intersection in order to ensure
that a valid solid is being created. The Euler operators
by themselves only guarantee the topological validity
of the objects created. Additional checking is necessary
to make sure that objects have not been specified that
have boundary patches that coincide (thus creating
zero-width regions). The only points that are permitted
to belong to more than one Bezier primitive are those
that are vertex points or points on the boundary curve
defined by the edge control points. Doing this efficiently
requires the use of spatial data structures as discussed
in the fourth section. There is also the issue of whether
an individual Bezier primitive is self-intersecting, has
holes, etc. Because there is a continuous mapping
between a triangle and the triangular Bezier primitive
(defined by barycentric coordinates and the Bernstein
polynomials 5) the triangular Bezier primitive will not
have holes or handles. Indeed, it can also be observed
that the image of the boundary of the triangle will form
the boundary of the triangular Bezier primitive. Thus
we need not worry about holes appearing inside of a
triangular B~zier primitive, provided that the border of
the primitive does not self-intersect. However, it is
possible for the mapping to cause a Bezier primitive to
intersect itself.

In the case of triangular Bezier primitives, there are
a few known results relevant to the self-intersection
problem 8'9'1°. The most simple is a theorem stating that
the surface defined by a convex network of control
points is also convex. Since a convex shape does not
self-intersect, Bezier primitives with convex control
networks are 'guaranteed' to not self-intersect. Thus if
we restrict ourselves to triangular B&zier primitives with
convex control networks we need not worry about the
self-intersection of primitives. If we further constrained
the B~zier primitives so that the four control points on
each edge lie in a plane, thereby ensuring that each
edge of the Bezier primitive was planar, then we would
have an example of one of the proposed splinehedra
data structures ~7.

If triangular Bezier primitives with non-convex control
networks are to be used, then it becomes necessary
to check the primitive, say P, directly for self-intersection.
This can be achieved by subdividing P into convex
subprimitives and then testing for self-intersection of
this network of convex subprimitives. At worst, the
Bezier primitive might need to be subdivided to a level
at which each primitive is planar. At this point, the
problem reduces to testing for self-intersection of a
polygonal network.

R E P R E S E N T I N G G E O M E T R Y O F BI~ZIER
PRIMIT IVES

For sufficiently small collections of Bezier primitives, the
methods of the previous section are sufficient. However,
as the number of primitives gets large, it has been
observed that individual updates to the collection tend
to involve only a small number of primitives that are

spatially near one another '~. i-<~r example, when
connecting two previously disjoint objects by performing
a MergeTriangles operation, it is necessary to determine
if the merger caused intersection of the border of the
two objects anywhere other tha~ at the lo(ation of
'triangular' region where the two objects are being
merged. Performing this determination using the data
structures discussed in the third section (i.e., CSG and
BRep) requires that we compare ew~ry patch in the first
object with every patch in the second object. However,
if the primitives were organized s~ that patches that
were close to each other in the model were close to
each other in the graph of the data structure, then the
number of comparison operation~ could be reduced
substantially. Thus, by using a spatial data structure that
takes into account the location o: the primitives (i.e.,
their geometry! as opposed to merely keeping track of
the interconnectivity of the primitives ~i.e. their
topology), large collections of Bezier primitives can be
efficiently updated and displayed.

In order to develop a spatial data structure to
organize Bezier primitives, it is worthwhile to consider
the procedure by which primitives are tested for
intersection. The most straightforward approach is to
treat the locus of points comprising the Bezier primitive
as being the actual data that ~s to be stored in the data
structure. This approach is the subject of the next
section. In the two-dimensional case the B~zier primitive
(i.e., the patch is a complicated curved surface and
determining the intersection points ~nvolves the solution
of nontriviat polynomial equation>

On the other hand. the convex hull property
guarantees that for example, if a line fails to intersect
the polyhedron defined bv the convex hull of the
control points of the Bezier prtm~uve, then that line will
also fail to intersect the pnm~tive itself. Thus an
alternative view would be to build a spatial data
structure for a collection of possibly overlapping convex
polyhedra and to perform the necessary spatial searching
in that data structure. However. s~nce determining the
convex hull of 10 points is computationally expensive,
there is a tendency for implementations ~9'2° to use the
rectilinear bounding box of the control points to
spatially bound a B~zier primitive rather than the
convex hull. fhus spatial data structures relevant to
Bezier primitives focus on storing overlapping rectilinear
boxes rather than overlapping polyhedra. The next
section discusses data structures for spatially orgamzing
collections of rectilinear boxes ~l.e. by sorting them),
hierarchical data structures "u '~: being used to perform
the necessary spatial organization

In the case of biquadratic B~zier primitives. Brunet
and Ayala ''-{ propose a non-rectilinear polyhedron that
tends to yield a tighter approximation than a rectilinear
bounding box but a looser one than the convex hull.
The rationale for using such a polyhedron is the
observation that the edges of a biquadratic prim~twe
are planar. Brunet and Ayala observe further that for
any given edge E of a primitive P the remainder of P
will tend to lie on the same side of the plane in which
E lies (i.e., primitive P will tend not to lie on both sides
of that plane). For more details about this technique
interested readers should consult the or~ginat paper '{

168 ~mputer-aided design

The hierarchical data structures discussed below are
based on the principle of recursive decomposition
(similar to divide and conquer methods) 24. These data
structures are useful because of their ability to focus
on the interesting subsets of the data. This focusing
results in an efficient representation and in improved
execution times. Thus, they are particularly useful for
performing search and set operations. Nevertheless, it
is true that many of the operations for which they are
used can often be performed as efficiently, or more so,
with other data structures. However, hierarchical data
structures are attractive because of their conceptual
clarity and ease of implementation. They serve primarily
as devices to sort data of more than one dimension
and different spatial types, and hence their use provides
a spatial index. The term quadtree is often used to
describe this class of data structures. This particular
approach to hierarchical spatial data structures is the
focus of the next two sections. For a more extensive
treatment of heirarchical spatial data structures, see 21'22.

Spatially organizing the network of surfaces

There are two ways of representing a region. The first
is by its interior and the second is by its boundary. We
first describe the region quadtree 2~'~7 which represents
a region by its interior. Assume that the data is binary
and consists of an image array of picture elements
(termed pixels), where ls correspond to interior points
and 0s correspond to exterior points. The region
quadtree is built by successively subdividing the image
array into four equal-size quadrants. If the array does
not consist entirely of ls or entirely of 0s (i.e., the region
does not cover the entire array), it is then subdivided
into quadrants, subquadrants, etc., until blocks are
obtained (possibly single pixels) that consist entirely of
ls or entirely of 0s. As an example of the region
quadtree, consider the region shown in Figure 9a which
is represented by the 2 ~ x 2 ~ binary array in Figure 9(b).
The resulting blocks for the array of Figure 9(b) are
shown in Figure 9(c). This process is represented by a
tree of degree 4 (Figure 9(d)).

In the tree representation, the root node corresponds
to the entire array. Each son of a node represents a
quadrant (labelled in order NW, NE, SW, SE)of the region
represented by that node. The leaf nodes of the tree
correspond to those blocks for which no further
subdivision is necessary. A leaf node is said to be black
or white, depending on whether its corresponding block
is entirely inside or entirely outside of the represented
region. All non-leaf nodes are said to be grey. The
quadtree representation for Figure 9(c) is shown in
Figure 9(d). Of course, region quadtrees can also be
used to represent non-binary images. In this case, we
apply the same merging criteria to each colour.

Quadtree-like data structures can also be used to
represent images in three dimensions and higher. The
region octree 2~ ~,7~8 data structure is the 3D analogue
of the region quadtree. It is constructed in the following
manner. We start with an image in the form of a cubical
volume and recursively subdivide it into eight congruent
disjoint cubes (called octants) until blocks are obtained
of a uniform colour or a predetermined level of

j_l r -j
a

6 ~ i l 5 i i::114.1
_ I ~ % t Q

,IZl~a

b c

Level 5

Level 2 I NW ~' SE E

L e v e l I -

, ' , t ~ \

7 8 9]0 f5 16 17 18

d

Figure 9. Region, its binary array, its maximal blocks, and
corresponding quadtree. (a) Region; (b) binary array;
(c) block decomposition of region in (a)--blocks in
region are shaded; (d) quadtree representation ot blocks
in (c)

5 6 7 3 910 I l i2

a b c

Figure 10. (a) Example three-dimensional object; (b) its
octree block decomposition; and (c) its tree representation

decomposition is reached. Figure 10(a)is an example
of a simple 3D object whose raster octree block
decomposition is given in Figure 10(b) and whose tree
representation is given in Figure 10(c).

A key to the analysis of the execution time of
quadtree algorithms is the quadtree complexity
theorem, 2s'28 which states that the size of the quadtree
representation of a region (i.e., the number of blocks)
is linear in the perimeter of the region. This result
also holds for 3D data 29 where perimeter is replaced
by surface area, as well as higher dimensions, say d,
for which it is cast in terms of the (d - 1)-dimensional
interfaces between the d-dimensional objects being
represented. The quadtree complexity theorem also
directly impacts the analysis of the execution time of
algorithms. In particular, most algorithms that execute
on a quadtree (or octree) representation of an image
instead of an array representation have an execution
time that is proportional to the number of blocks in
the image rather than the number of array elements.
In its most general case, this means that the application

volume 23 number 3 april 1991 169

of a quadtree algorithm to a problem in d-dimensional
space executes in time proportional to the analogous
array-based algorithm in the (d - 1)-dimensional space
of the surface of the original d-dimensional image.
Therefore, quadtrees (and octrees)act like dimension-
reducing devices.

One of the deficiencies of the region octree is that
if the faces of the object (or objects) represented by
it are not rectilinear, then the representation is not
exact in the sense that it is an approximation. The only
exception is if the faces are mutually orthogonal, in
which case a suitable rotation operation can be applied
to yield rectilinear faces. We prefer an exact
representation. In the following, we describe the PM
octree ~° ~, an approach that is based on the interior
and the boundary of the region. We first discu>s
its use for objects with planar faces. Next, we show
how it can be used for objects whose faces are
described by more general methods such as B6zier
primitives.

In the PM octree, the resulting decomposition ensures
that each octree leaf node corresponds to a single
vertex, a single edge, or a single face. The only
exceptions are that a leaf node may contain more than
one edge if all the edges are incident at the same vertex.
Similarly, a leaf node may contain more than one face
if all the faces are incident at the same vertex or edge.
The above subdivision criteria can be stated more
formally as follows:

• At most, one vertex can lie in a region represented
by an octree leaf node.

• If an octree leaf node's region contains a vertex,
then it can contain no edge or face that is not
incident at that vertex.

• If an octree leaf node's region contains no vertices,
then it can contain at most one edge.

• If an octree leaf node's region contains no vertices
and contains one edge, then it can contain no face
that is not incident at that edge.

• If an octree leaf node's region contains no edges,
then it can contain at most one face.

• Each region's octree leaf node is maximal.

An implementation of the PM octree consists of leaf
nodes of type vertex, edge, and face. For our purposes,
it is permissible to have more than two faces meet at
a common edge. However, such a situation cannot
arise when modelling solids that are bounded by
compact, orientable two-manifold surfaces (i.e., only
two faces may meet at an edge and the surface is
two-sided). Nevertheless, it is plausible when 3D objects
are represented by their surfaces.

The space requirements of the PM octree are
considerably harder to analyse than those of the region
octree 37. Nevertheless, it should be clear that the PM
octree for a given object is much more compact than
the corresponding region octree. For example, Figure
11(b) is a PM octree decomposition of the object in
Figure 11 (a).

For the proper execution of many operations, the
fact that a node is of type vertex, edge, or face is not
sufficient to properly characterize the object. It has

~ i ~'~''~'~
a

b

Figure 11. laJ Example three-dimensional oblect: and
(b) i~s correspondin[~ PM octree

been proposed that each node contains the polygons
determined by the boundary of the object that intersects
the node 3~. This ts somewhat cumbersome and requires
a considerable amount of extra information.Moreover.
the vertices of the polygons cannot be specified exactly
as most often they are not the vertices of the object.
In particular, they are artifacts of the decomposition
process. A more efficient solution is to store with each
face node the equation of the plane of the face that
is associated with the node 37. In addition, the direction
of the object relative to the face must be noted. For
nodes of type edge and vertex the configuration of
the faces (i.e. the planes) that make up the edge and
vertex must also be recorded. This information s used
to classify a point inside the node with respect to the
object so that the PM octree can be built.

The PM octree approach that we have described ~s
based on permitting just one face in an octant with
some exceptions. An alternative approach is to disregard
the effects of edges and vertices and to use a simpler
decomposition rule which is based on the number of
faces that are permitted to occupy an octant. This is
termed a bucketing approach by Samet 21. It is used bv
Miintyl~ and Tamminen 1~ who only permit a maximum
of three faces to be in an octant See Nelson and
Samet ~8~9 for the use of this technique for the
representation of collections of line segments.

PM octree techniques have also been extended to
handle curved surfaces. Primitives including cylinders
and spheres have been used in conjunct ion with a
decomposition rule limiting the number of distinct
primitives that can be associated with a leaf node 4°41
Another approach 2~'42 extends the concepts of face
node, edge node, and vertex node to handle faces
represented by biquadratic B~zier primitives. The use
of biquadratic B~zier primitives enables a better fit with
fewer primitives than can be obtained with planar faces.
thereby reducing the size of the octree. On the other
hand, using biquadratc Bezier primitives may require
more pnmitives than the use of the traditional bicubic
Bezier primitive. Comparing the modelling efficiency of
biquadratic B~zier primitives and cubic triangle-based
B~zier primitives is less straightforward.

170 ~ omputer-aided design

When working with linear features (such as polygonal
faces and edges in PM octrees), the intersection of two
linear objects (e.g., polygonal faces) is another linear
object (e.g., a collection of points and line segments).
However, for most B~zier primitives, the intersection of
two B(~zier primitives is not another B~zier primitive of
the same type. Thus, although the borders of a Bezier
surface primitive can be represented by B~zier curves,
an edge formed by the intersection of two Bezier surface
primitives might not be representable by a Bezier curve.
This leads to two types of edge nodes and two types
of vertex nodes - i.e., those that arise from the
conventional presence of B(~zier primitives (termed
edge-a and vertex-a) and those that arise from the
intersection of two B6zier primitives (termed edge-b
and vertex-b) ~'~'. This complicates the extension of PM
octree methods to Bezier primitives, since some design
systems may wish to permit the user to create edges
for which there is no simple representation. Brunet and
Ayala :~ overcome this complication by requiring that
such curves be adequately representable by their linear
approximations. Of course, storing such linear
approximations defeats the compactness and accuracy
that result from representing the nonlinear features
directly.

Brunet 4~ makes use of the linear approximation
method as a basis for the following decomposition rule
to yield a face octree. A face octree consists of interior
(black), exterior (white), and face nodes. Given a surface
S and a tolerance 8, the decomposition is such that
each face node is associated with just one part of the
surface. For each face node, say F, there exists an
oriented plane ~, such that for every point P of S in
F's cube, the distance from P to x~ is less than or equal
to {:. Each face node contains the explicit equation of
the associated plane. Brunet shows that the set of
planes can be limited by restricting the set of feasible
normal directions and the distance to the origin. Every
face node can be interpreted as a band which spans
a distance equal to the tolerance on both sides of the
plane that is associated with the node. Thus the whole
boundary of the object is contained in the region
defined by the 'union' of the bands of the face nodes
in the octree, termed a thick surface. This means that
the whole surface can be analysed just by studying the
properties of the thick surfaces and there is no need
to consider artificial geometric elements such as
boundaries between smoothly connected patches.

From the quadtree complexity theorem we know
that the number of nodes in the region octree is
proportional to the surface area of the object being
represented i.e., the decomposition is at a maximum
where the border of the objects passes through a node.
Using a planar approximation of the surface within a
node (as done by the face octree) can be expected to
result in the number of nodes being proportional to the
length of its edges i.e., the decomposition is at a
maximum where the edges of the surface of the object
pass through a node. In this case, we must make some
allowance for the curvature of the surface (the greater
the degree of non-planarity of the surface, the greater
the number of planar pieces necessary to obtain an
accurate approximation of the surface). A further

refinement of the PM octree decomposes until each
node contains just one vertex (see the discussion of the
PR quadtree in the next section). Thus the decomposition
is at a maximum where the separation between two
distinct vertices of the object is at a minimum. Such a
decomposition rule may be difficult to achieve for
curved surfaces. Nevertheless, it is worth noting that
as the number of octree nodes decreases, the complexity
of describing (and hence manipulating) the contents
of a leaf node increases. Thus the question of whether
to use an approach based on faces, edges, or vertices
will depend on the application.

The difficulty in representing curved surfaces by using
a PM octree lies in devising efficient methods of
calculating the intersection between a Bezier primitive
(or any other curved surface representation) and an
octree node. This is computationally expensive in
general. One possible way to overcome this expense
is to use a decomposition rule such that a B6zier
primitive is in a region if its bounding box is in the
region (see the next section). However, in general, this
rule does not halt in cases where the bounding boxes
overlap while the Bezier primitives have no points in
common. Thus the Bezier primitives have to be subdivided
to determine which Bezier primitives are actually within
which regions. The control structure for an algorithm
based on this approach has been described in the first
section. Observe that in this approach we are organizing
a collection of patches (e.g., Bezier primitives) in the
space that they occupy. This is in contrast to decomposing
a single patch in its parametric representation by use
of quadtree techniques (e.g.,4%

Spatially organizing bounding boxes of the
surfaces

There are two principal methods of representing
bounding boxes: point-based and region-based.
Point-based representations treat each box as a point
(e.g., its centroid, a combination of some of its extreme
points, etc.) and then make use of data structures for
points. Region-based representations treat each box as
a region an hence take its extent into account. In order
to simply the presentation, we restrict our example to
two-dimensional data. This means that our examples
will consist of rectangles. We first discuss point-based
methods. This is followed by region-based methods.

One point-based representation reduces each
bounding box to a representative point in a higher
dimensional space, and then treats the problem as if
we have a collection of points. This is the approach of
Hinrichs and Nievergelt4~.4L Each bounding box is a
Cartesian product of two one-dimensional intervals
where each interval is represented by its centroid and
extent. The collection of bounding boxes is, in turn,
represented by a grid file r:, which is a hierarchical data
structure for points. The problem with this approach is
that although the extent of the object is reflected in
the representative point, the final mapping of the
representative point in the 4D space does not result in
the preservation of proximity in the 2D space from
which the bounding boxes are drawn. In other words,
two bounding boxes may be very close (and possibly

volume 23 number 3 april 1991 171

overlap), yet the Euclidean distance between their
representative points in four-dimensional space may
be quite large, thereby masking the overlapping
relationship between them.

Another approach which does not require a transition
into a higher-dimensional space represents each bounding
box by its centroid, which is a point in the 3D space
within the bounding boxes. One approach to storing
these centroids is to use a PR quadtree 2L48. It is an
adaptation of the region quadtree to point data which
associates data points (that need not be discrete) with
quadrants. The PR quadtree is organized in the same
way as the region quadtree. The difference is that leaf
nodes are either empty (i.e., white) or contain a data
point (i.e., black) and its coordinates. Each block
contains at most one data point. For example, Figure 12
is the PR quadtree corresponding to a set of points in
a 2D space.

Data points are inserted into a PR quadtree by
searching for them. Actually, the search is for the block
in which the data point, say A, belongs (i.e., a leaf
node). If the block is already occupied by another data

.:? 75;

TORONTO
s

(5,45)
DENVER c~c~sc'.

• t
• (25 ,55)

OMAHA i
q

L----.------

(o,o)

(50JO)
~'.,',~0SlLE

X ~

(8 0 , 6 5)
• BUFFALO

I

!

(100,0)

a

CHICAGO !a ~,H~. AT L . '~NT~ ~4i,&MI

b
Figure 12. PR quadtree (b) and records it represents ~a)

point with different x and ~ co,ordinates, say B, then
the block must repeatedly be subdivided ~termed
splitting) until nodes A and B no longer occupy the
same block. This may result in many subdivisions,
especially if the Euclidean distance between A and B
is very small. The shape of the resulting PR quadtree
is independent of the order in which data points are
inserted into it. Deletion of nodes is more complex and
may require collapsing of nodes i.e., the direct
counterpart of the node splitting process ~)utlined
above.

PR quadtrees, as well as ,Rher quadtree-hke
representations for point data, are especially attractive
in applications that involve search. A typical query is
one that requests the determination of all records
within a specified distance o~ a given point. The
efficiency of the PR quadtree ties in its role as a pruning
device on the amount of search that is required. Thus
many records will not need to be examined. For
example, suppose that in the hypothetical database of
Figure 12 we wish to find all points within eight units
of a data point with coordinates (84,10). In such a case,
there is no need to search the NW, NE, and SW
quadrants of the root (i.e. /5(].50)). l-hus we can restrict
our search to the SE quadrant ~,{ the tree "ooted at
root. Similany, there s no need to search the NW. NE
and SW quadrants of the tree rooted at the SE quadrant
(i.e., (75,25)). Note that the search ranges are usuatlv
orthogonally defined regions such as rectangles. Other
search regions are also feasible as the above example
demonstrated (i.e.. a circle).

As another example, suppose that we wish to locate
the nearest point to a given poinL sav P. This is achieved
by a top-down recursive algorithm, lnitiallv at each
level of the recursion we explore the subtree that
contains P. Once the leaf node containing P has been
found, the distance from P to the nearest pnmitive m
the leaf node is calculated ~empty leaf nodes have a
value of infinity). Next. we unwind the recursLon so that
at each level we search the subtrees that represent
regions overlapping a circle centred at P whose radius
is the distance to the closest pnmiuve that has been
found so far. When more than one subtree must be
searched, the subtrees representing regions nearer to
P are searched before the subtrees that are farther away
(since it is possible that a pnmluve in them might make
it unnecessarv to search the subtrees that are farther
way}.

tor example, consider Figure 13 and the task of
finding the nearest neighbour of P in node 1. We first
visit node 1. If we visit nodes in the order NW, NE, SW,
SE, then as we unwind for the first time, we visit nodes
2 and 3 and the subtrees of the eastern brother of 1.
Once we visit node 4, there is no need to visit node 5
since node 4 contained A. However, we must still visit
node 6 containing point B (closer than A), but now
there is no need to visit node 7. Unwinding one more
level reveals that due to the distance between P and
B, there is no need to visit nodes 8, 9, 10, 11, and 12.
However, node 13 must still be visited, as it could
contant a point that is closer to P than B.

The situation is more complex when we are dealing
with bounding boxes instead of points. In this case, the

172 ~L omputer-aided design

8

©

I0

12

9 2

11 I

C

15

p •

5

A.
+.B 7

Figure "13. Example illustrating neighbouring object
problem. P is location of pointing device. Nearest object
is represented by point B in node 6

maximum amount of pruning that is possible is not
always realized. The problem is that the object
represented by the point may extend beyond the
boundaries of the quadtree block in which it lies.
Moreover, bounding boxes may overlap. Thus more
blocks may have to be searched. The search process
can be made more efficient by storing at each subtree
of the quadtree the minimum and maximum values of
the x and y coordinates of all the bounding boxes that
are associated with the points stored in the subtree.

The second representation is region-based in the
sense that the subdivision of the space from which the
bounding boxes are drawn depends on the physical
extent of the bounding box - not just one point in the
bounding box. Representing the collection of bounding
boxes, in turn, with a tree-like data structure has the
advantage that there is a relation between the depth
of a node in the tree and the size of the bounding
box(es) associated with it. In the remainder of this
section, we given an example of a region-based
representation.

The MX-CIF quadtree of Kedem 4~ (see also Abel and
Smith ~°) is a region-based representation where each
bounding box is associated with the quadtree node
corresponding to the smallest block which contains it
in its entirety. Subdivision ceases whenever a node's
block contains no bounding box. Alternatively, subdivision
can also cease once a quadtree block is smaller than
a predetermined threshold size. This threshold is often
chosen to be equal to the expected size of the bounding
box 49. For example, Figure 14 is the MX-CIF quadtree
for a collection of bounding boxes. Note that bounding
box F occupies an entire block and hence it is
associated with the block's father. Also bounding boxes
can be associated with both terminal and non-terminal
nodes.

A

I
1 ['-' ~

L =- '

B

D

I

i+1
: I C
L

I

I , !
J

I F
I

IG ! !

a

{A,E}

{F}

b ,

Figure "14. MX-CIF quadtree. (a) Collection of rectangles
and block decomposition induced by MX-CIF quadtree.
(b) Tree representation of (a)

It should be clear that more than one bounding box
can be associated with a given enclosing block and,
thus, often we find it useful to be able to differentiate
between them. Kedem +9 proposes to do so in the
following manner. Let P be a quadtree node with
centroid (CX, CY), and let S be the set of bounding
boxes that are associated with P. Members of S are
organized into two sets according to their intersection
(or collinearity of their sides) with the lines passing
through the centroid of P's block - i .e. , all members
of S that intersect the line x = CX form one set and all
members of S that intersect the line y- - CY form the
other set.

If a bounding box intersects both lines (i.e., it contains
the centroid of P's block), then we adopt the convention
that it is stored with the set associated with the line
through x = CX. These subsets are implemented as
binary trees (really tries), which in actuality are 1D
analogues of the MX-CIF quadtree. For example, Figure 15
illustrates the binary tree associated with the y axes
passing through the root and the NE son of the root
of the MX-CIF quadtree of Figure 14. Interestingly, the
MX-CIF quadtree is a 2D analogue of the interval tree s~,s2,
which is a data structure that is used to support optimal
solutions based on the plane-sweep paradigm s~ to some

volume 23 number 3 april 1991 173

 d]k
E

, / ' \
/ .,

m I
r " ,

a b
Figure 15. Binary trees for the y axes passing through
(a) the root of MX-CIF quadtree in Figure 5 and (b) NE
son of the root of MX-CIF quadtree in Figure 14

rectangle problems in computational geometry and
VLSI designs.

In the case of 3D data we would use a PR octree as
well as an MX-CIF octree. The PR octree is a
straightforward extension of the PR quadtree. The
MX-CIF octree can be defined in a number of ways.
Recall that the MX-CIF quadtree is a two-level data
structure in the sense that it also makes use of two
one-dimensional MX-CIF quadtrees to differentiate
between the cases where more than one bounding
rectangle can be associated with a particular enclosing
quadtree block. In the case of 3D data, we can use either
a three-level structure or a two-level structure when
more than one bounding box is associated with an
enclosing octree block. In particular, the second level
consists of three MX-CIF quadtrees (one for each of
the xy, xz, and yz planes) while the third level consists of
two 1D MX-CIF quadtrees for each of the three MX-CIF
quadtrees of the second level. The third level is not
used if we restrict ourselves to a two-level structure.

CONCLUDING REMARKS

A survey has been presented of data structure issues
that arise in Bezier-based modelling. We have discussed
both low-level implementation details as well as some
higher level ones. The low level discussion has been in
terms of the number of bytes that would be required
to store the raw data corresponding to the Bezier
primitives. The higher-level discussion has been with
respect to supporting the maintenance of the topological
integrity of the objects being modelled. This included
an outline of a technique for adapting Euler operators
to Bezier primitives. We also discussed how to increase
the efficiency of certain operations by using hierarchical
spatial data structures. Such representations facilitate
the execution of operations that depend on spatial
proximity (i.e., which patch is closest to another patch).
The actual integration of these methods into existing
implementations remains to be done and will
undoubtedly lead to new results and additional research.

It is worth noting that our analysis of the results of
using pointers (indices) to share vertex data among
neighbouring Bezier primitives only leads to a minor
reduction in the storage requirements in the case of
B6zier control points. Thus, there is merit in not sharing

relevant to a particular B6zie~ [~{I;l~Jti~(~ [." ~Ui!~igci(~L;~
in memory This would lead ~(~ i:i~., greatest iocatit~ ~!
references when ,t spatidl ,n;.tanizati~', ~s t~ed ~,
determine the actual l~)(:ati(;r3 , ' . tJ](' data ifi memol\
Similar issues arise in geograph, .~fornlation sys[ems :'~

A C K N O W L E D G E M E N T S

lhe support of the National ~ciem e Foundation under
Grant IRI-88-02457 is gratefully acknowledged

REFERENCES

1 B~zier, P 'Mathematical and practical possibtities
of UNISURF n Computer Aided Geometric Design
Barnhill, R A and Riesenfeld, R F (eds) Academic
Pres~ New York 1974'~

2 Knuth, D E METAFOlX, Tb~ok Addison-Wesley,
Reading, MA 1986

3 B~zier, P The Mathematical Basis o/ the UNISURF
CAD %stem, Butterworth Guildford. UK ,1986

4 Bernstein, S 'Demonstration du thereme de
Weirstrass fondee sur le caicul de probabilite
b/arkov Soobs. Matem ob-va 1~ (1912). pp 1-2

5 Farin, G Curves and Surtaces for Computer Aided
Geometri(Design, Academic Press. San Diego
1988)

6 de Casteljau, P 'Courbes et surfaces a p61es
Technical Report. Soci6t(~ Andr6 Citroen. Paris (1963)

7 de Casteljau, P Shape Mathematics and CAD. Kogan
Page. London (1986)

8 Chang, G Z and Davis, P J 'The convexity of
Bernstein polynomials over triangles' I. Approx.
Theory. VoJ 40 No 1 (1984) pp 11--28

9 Chang, G Z and Hoschek, J 'Convexity and variation
diminishing property of Bernstein polynomials over
triangles.' in Multivariate Approximation Theory IlL
Schempp, W and Zeller, K (eds) Birkh~iuser Verlag,
Basel Switzerland (198.5) pp 61-70

10 Goodman, T N T 'Variation diminishing properties
of Bernstein polynomials ~n triangles']. Approx.
Theory Vol 50 No 2 (1987 pp 111-126

11 Catmull, E Computer display of curved surfaces
Proc. ConL Compul. Graph.. Pattern Recognition.
and Data Structure. Los Angeles (1975) pp 11-17

12 Lane, J M, Carpenter, L C, Whirred, T and Blinn, l F
Scan line methods for displaying parametrically
defined surfaces' Communications of the ACM Vol
23 Xlo 1 (1980) pp 23--34

13 Baumgart, B G 'Geometric modeling for computer
vision" PhD. dissertation, STAN-CS-463 Computer
Science Department, Stanford University, Stanford,
CA (1974)

14 M~ntyl~i, M An Introduction to Solid Modetin(4
Computer Science Press. Rockvitle. MD ~1987)

174 (:omputer-aided design

15 Requicha, A A G 'Representations of rigid solids:
theory, methods, and systems' ACM Computing
Surveys Vol 12 No 4 (1980) pp 437-464

16 M~ntyl~, M and Sulonen, R 'GWB: A solid modeler
with Euler operators' IEEE Comput. Graph. Appl.
Vol 2 No 7 (1982) pp 17 31

17 Dobkin, D P and Souvaine, D L 'Computational
geometry in a curved world' Algorithmica Vol 5 No
3 (1990) pp 421 457

18 M~intyl~i, M and Tamminen, M 'Localized set
operations for solid modeling' Computer Graphics
Vol 17 No 3 (1983) pp 279-288 (also Proceedings
of the SIGCRAPH'83 Conlerence, Detroit (1983))

19 Lane, J M and Riesenfeld, R F 'A theoretical
development for the computer generation and
display of piecewise polynomial surfaces' IEEE Trans.
Pattern Anal. Math. Intell. Vol 2 No 1 (1980) pp
35 46

20 Lasser, D'lntersection of parametric surfaces in the
Bernstein Bezier representation' Comput.-Aided
Des. Vol 18 No 4 (1986) pp 186-192

21 Samet, H The Design and Analysis of Spatial Data
Structures, Addison-Wesley, Reading, MA (1990)

22 Samet, H Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and CIS,
Addison-Wesley, Reading, MA (1990)

23 Brunet, P and Ayala, D 'Extended octtree
representation of free form surfaces' Comput.-
Aided Geom. Des. Vol 4 Nos 1-2 (1987) pp
141 154

24 Aho, A V, Hopcrofi, J E and UIIman, J D The Design
and Analysis of Computer Algorithms Addison-
Wesley, Reading, MA (1974)

25 Hunter, G M 'Efficient computation and data
structures for graphics' PhD. dissertation, Department
of Electrical Engineering and Computer Science,
Princeton University, Princeton, NJ (1978)

26 Jackins, C L and Tanimoto, S L 'Oct-trees and their
use in representing three-dimensional objects'
Comput. Graph. and Image Processing Vol 14 No 3
(1980) pp 249 270

27 Meagher, D 'Geometric modeling using octree
encoding' Comput. Graph. and Image Processing
Vol 19 No 2 (1982) pp 129-147

28 Hunter, G M and Steiglitz, K 'Operations on images
using quad trees' IEEE Trans. Pattern Anal. Mach.
Intell. Vol 1 No 2 (1979) pp 145 153

29 Meagher, D 'Octree encoding: a new technique
for the representation, the manipulation, and display
of arbitrary 3-D objects by computer' Electrical and
Systems Engineering Technical Report IPL-TR-80-
"111, Rensselaer Polytechnic Institute, Troy, NY
(1980)

30 Ayala, D, Brunet, P, Juan, R and Navazo, I 'Object
representation by means of nonminimal division

quadtrees and octrees' ACM Trans. Graph. Vol 7,
No 1 (1985) pp 41 59

31 Carlbom, I, Chakravarty, I and Vanderschel, D 'A
hierarchical data structure for representing the
spatial decomposition of 3-D objects' IEEE Comput.
Graph. Appl. Vol 5 No 4 (1985) pp 24-31

32 Fujimura, K and Kunii, T L 'A hierarchical space
indexing method' Proc. Comput. Graph. "85, Tokyo
(1985) T1-4, 1-14

33 Hunter, G M Geometrees for interactive visualization
of geology: an evaluation System Science Department,
Schlumberger-Doll Research, Ridgefield, CT (1981)

34 Quinlan, K M and Woodwark, J R 'A spatially-
segmented solids database justification and
design Proc. CAD'82 Conference, Butterworth,
Guildford, UK (1982) pp 126 132

35 Tamminen, M 'The EXCELL method for efficient
geometric access to data' Acta Polytechnica
Scandinavica Mathematics and Computer Science
Series No. 34, Helsinki, Finland (1981)

36 Vanderschel, D J 'Divided leaf octal trees' Research
Note Schlumberger-Doll Research, Ridgefield, CT
(1984)

37 Navazo, I 'Contribucio ales %cniques de modelat
geometric d'objectes poliedrics usant la codificacio
amb arbres octals' PhD. dissertation, Escola Tecnica
Superior d'Enginyers Industrials, Departament de
Metodes Informatics, Universitat Polit~cnica de
Catalunya, Barcelona, Spain (1986)

38 Nelson, R C and Samet, H 'A consistent hierarchical
representation for vector data' Comput. Graph. Vol
20 No 4 (1986) pp 197-206 (also Proc. SIGGRAPH'86
Conference, San Francisco (1987) pp 270-277

39 Nelson, R C and Samet, H 'A population analysis
for hierarchical data structures' Proc. SICMOD
Conference, San Francisco (1987) pp 270-277

40 Fujimoto, A, Tanaka, T and Iwata, K 'ARTS:
accelerated ray-tracing system' IEEE Comput.
Graph. Appl. Vol 6 No 4 (1986) pp 16-26

41 Wyvill, G and Kunii, T L 'A functional model for
constructive solid geometry' Visual Computer Vol
1 No 1 (1985) pp 3-14

42 Navazo, I, Ayala, D and Brunet, P 'A geometric
modeller based on the exact octree-representation
of polyhedra' Comput. Graph. Forum Vol 5 No 2
(1986) pp 91 104

43 Brunet, P 'Face octrees: involved algorithms and
applications' Technical Report 151-90-14 Departament
de Llenguatges i sistemes informatics, Universitat
Politecnica de Catalunya, Barcelona, Spain (1990)

44 Carlson, W E 'An algorithm and data structure for
3D object synthesis using surface patch inter-
sections' Comput. Graph. Vol 16 No 3 (1982) pp
255-264 (also Proc. SICCRAPH'82 ConL Boston
(1982))

volume 23 number 3 april 1991 175

45 Hinrichs, K and Nievergelt, J 'The grid file: a data
structure designed to sdpport proximity queries on
spatial objects' Proc. WG'83 (International Workshop
on Graphtheoretic Concepts in Comput. Science),
Nagl, M and Perl, J (eds) Trauner Verlag, Linz,
Austria (1983) pp 100-113

46 Hinrichs, K 'The grid file system: implementation
and case studies of applications' PhD. dissertation,
Institut fur Informatik, ETH, Zurich, Switzerland
(1985)

47 Nievergelt, J, Hinterberger, H and Sevcik, K C 'The
grid file: an adaptable, symmetric multikey file
structure' ACM Trans. Database Systems Vol 9 No
1 (1984) pp 38-71

48 Orenstein, J A 'Multidimensional tries used for
associative searching' Inf. Process. Lett. Vol 14 No
4 (1982) pp 150-157

49 Kedem, G 'The quad-CIF tree: a data structure for
hierarchical on-line algorithms' Proc. Nineteenth
Design Automation Conference Las Vegas (1982)
pp 352-357

50 Abel, D J and Smith, J L 'A data structure and
algorithm based on a linear key for a rectangle
retrieval problem' Comput. Vision, Graph. Image
Processing Vol 24, No 1 (1983) pp 1-13

51 Edelsbrunner, H 'Dynamic rectangle intersection
searching' Institute for Information Processing Report
47, Technical University of Graz, Graz, Austria
(1980)

52

53

54

55

56

57

58

McCreight, E M,Efficient algorithms for enumerating
intersecting intervals and rectangles' Xerox Palo
Alto Research Center Report CSL-80-09, Palo Alto,
CA (1980)

Preparata, F P and Shamos, M I Computational
Geometry: An Introduction, Springer-Vertag, New
York (1985)

Shaffer, C A, garnet, H and Nelson R C 'QUILT: a
geographic information system based on quadtrees
Int. J. Geographical Inf. Systems Vol 4 No 2 (1990)
pp 103- 131

B~zier, P Emploi des Machines a Commude
Numerique Masson & Cie Editeurs, Paris (i970)
(translated into English by Forrest, A R and
Pankhurst, A F as Numerical Controh Mathematics
and Applications Wiley, London (1972)

Baumgart, B G 'A polyhedron representation for
computer vision' Proc. National Comput. Conf. 44
Anaheim, CA (1975) pp 589.596

Klinger, A 'Patterns and search statistics', in
Optimizing Methods in Statistics R~lagi, J S (ed)
Academic Press, New York ~ 971) pp 303 337

Reddy, D R and Rubin, g !Representation of three-
dimensional objects' CMU-C5-78-1"13 Computer
Science Department, Carnegie-Mellon University,
Pittsburgh (1978)

176 computer-aided design

