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Data structure issues that arise in B6zier-based modelling 
are surveyed. Both low and high level implementation 
details are discussed. The low level issues deal with the 
interaction between the representation of the individual 
patches and the representation of the collection of 
patches. The high level discussion consists of two parts. 
The first deals with how to maintain the topological 
integrity of the objects being modelled. This includes an 
outline of a technique for adapting Euler operators to 
B6zier primitives. The second is concerned with increasing 
the efficiency of certain operations by using hierarchical 
spatial data structures. Such representations facilitate the 
execution of operations that depend on spatial proximity 
(i.e., which patch is closest to another patch). 

Bezier primitives, surtaces, computer-aided design, data structures, 
quadtrees, octrees, Euler operators 

Many applications in computer-aided design require 
the manipulation of objects whose surfaces are arbitrarily 
curved rather than being flat (i.e., planar). Examples of 
such applications range from design packages in the 
automobile industry ~'55 to font design tools in desktop 
publishing 2. In fact, it is not uncommon for the user to 
be unable to give a precise mathematical formula for 
the surface. Instead, the user would like to resort to an 
intuitive (e.g., interactive) specification of the surface 
in the sense that aesthetic feedback from the designer 
plays an important role in the final form of the surface. 
Ideally, the user would like to have a system where a 
surface can be varied by tweaking a few knobs rather 
than defining new equations. 

In general, it is difficult to draw the desired surface. 
This has led to the development of techniques that 
enable the surface to be specified by the coordinates 
of a few points in space. These points are known as 
control points. By varying the locations of these control 
points, the surface can be defined and then visualized. 
One such set of control points is said to comprise a 
Bezier primitive ~'~'sS. The Bezier primitives present the 
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designer with a collection of control points that 
define a curved object. These control points form an 
exaggerated outline of the curved object. By moving 
the control points, designers can interactivelv construct 
the desired curved object. The algebraic basis of the 
Bezier primitives is the Bernstein polynomials ~' 
commonly used by numerical analysts. Bezier primitives 
can also be derived from a purely geometric construction 
due to de Casteljau "7 

An even more complex problem is that frequently 
it is not possible to define the entire surface by a single 
concise mathematical formula. Thus the surface is often 
viewed as consisting of a collection of surfaces (termed 
patches) which may be required to satisfy continuity, 
o ifferentiability, and curvature constraints at the points 
and curves at which they are adjacent. The efficient 
representation of collections of the patches based on 
Bezier primitives is the subject of this paper. 

The mathematics of Bezier primitives has a number of 
useful properties. One such property is the convex hull 
property. It states that the obiect defined by a set of 
control points of a B~zier primitive will lie within the 
convex hull of those control points. Bezier primitives 
are usually based on a triangular or a rectangular 
network of control points. For Bezier primltwes based 
on a triangular network of control points, the following 
property also holds. If the network of control points is 
a convex surface then the curved surface generated 
by the control points will also be convex ~9~° 

Another important property that holds for both a 
tnangular and rectangular network of control points is 
that a Bezier primitive can be subdivided into a 
collection of smaller Bezier primitives that collectively 
define the same surface as the original Bezier primitive. 
Using this property, in contunction with the convex 
hull property, enables us to obtain progressively tighter 
approximating bounds (i.e.. collections of co nvex hulls) 
within which the surface must lie. Indeed. these 
approximations eventually converge to the original 
surface 

The above properties can be combined to form the 
basis of a generic surface intersection procedure 1! ~. 
Such a procedure is useful for displaying the objects 
being modelled, checking that a collection of B~zier 
primitives forms a valid boundary of an object, and 
locating the position of a g~zier primitive with respect 
to a linear volume element (i.e., whether or not it 
intersects the element) as is common when using some 
form of spatial subdivision (e.g., octrees as discussed 
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below). For example, the following five observations 
serve as the control structure of a simple recursive 
algorithm for detecting whether or not a particular 
Bezier primitive, say B, intersects a given cube, say C: 

• If the control points of B are inside C, then B is inside C 
• If all the control points of B are outside C and on 

the other side of the same face (e.g., above the top 
face of the cube), then B is outside C 

• If B can be decomposed into subprimitives that are 
all inside C, then B is inside C 

• If B can be decomposed into subprimitives that are 
all outside C, then B is outside C 

• If B can be decomposed into subprimitives, some of 
which are inside C and some of which are outside 
C, then B is both inside and outside C 

An algorithm that has this control structure explores 
the possibility of intersection between cube C and 
B@zier primitive B by recursively subdividing those 
subprimitives that could not be identified as being 
completely inside C or completely outside C until they 
could be so classified. 

As the number of Bezier primitives increases, we 
must pay more attention to data structure issues. They 
are influenced by the type of operations that we wish 
to perform. There are three maior issues which are most 
logically considered in the following order, as it is indeed 
the order in which they arise. The first is the interaction 
between the representation of the individual patches 
and the representation of the collection of patches. 
The remaining two issues are somewhat complementary. 
They address the question of whether the representation 
is to support operations based on the topology of the 
patches (i.e., which patch is connected to which patch) 
or operations based on spatial proximity (i.e., which 
patch is closest to another patch). 

The first issue is the representation of the primitives 
as a set - i.e., to support the operations of insertion, 
deletion, and enumeration. As the number of primitives 
increases, it is often the case that the operations only 
need to manipulate a subset of the primitives. For 
example, as the number of primitives increases, the 
proportion of the primitives that are visible from a 
particular viewpoint usually decreases. Thus it becomes 
increasingly wasteful to have to access every primitive 
for each display operation. 

One obvious optimization of the display operation 
is to ignore primitives that appear on the back sides 
of objects (e.g.,~). However, this requires that we be 
able to determine which primitives are parts of which 
obiects, as well as their orientation with respect to the 
objects. This determination requires that we construct 
a connectivity graph of primitives that are neighbours 
by virtue of sharing a vertex or edge. We must also 
keep track of orientation information in the connectivity 
graph. In addition, such a graph is useful for investigating 
whether or not a collection of primitives define a valid 
boundary of an object. Moreover, this graph is a good 
heuristic for grouping patches that are neighbours by 
virtue of spatial proximity. This heuristic is motivated 

by the tendency for primitives that are very close to 
other primitives to be directly connected to them. 

Nevertheless, as the number of primitives becomes 
very large, it is useful to organize them directly by their 
spatial location. This, of course, improves the efficiency 
of algorithms that are spatially motivated (e.g., 
determining the patch at which a user is pointing). 
However, for a very large collection of primitives, it also 
improves the efficiency of algorithms that manipulate 
the connectivity graph of primitives. This makes sense 
because spatial proximity is a good heuristic for grouping 
patches that are connected. 

Spatial proximity is important because the perform- 
ance of connectivity graph algorithms depend on the 
accessibility of the actual memory locations at which 
the relevant information is stored. It is well known that 
most computer memories are organized in a linear 
manner - i .e., once location i has been accessed, it is 
much easier to access location i +  1 than arbitrary 
location j. Moreover, it is easier to devise a technique 
for embedding a higher-dimensional space (e.g., a 
three-dimensional array)in a linear space than a general 
graph. Thus for the purpose of placing the data in 
memory, it is preferable to embed a connectivity graph 
in a spatial organization rather than a general graph 
structure. 

The rest of this paper is organized as follows. The 
next section presents techniques for representing the 
collection of Bezier primitives as a set, as well as the 
individual primitives. The third section discusses tech- 
niques for representing the topological aspects of a 
collection of Bezier primitives. This discussion includes 
material relevant to confirming that a collection of 
primitives defines a topologically meaningful object. 
The fourth section describes some techniques for 
organizing the Bezier primitives by their spatial properties. 

REPRESENTING SETS OF BI=ZIER 
PRIMITIVES 

In this section, we briefly discuss some alternative issues 
in the representation of the individual B6zier primitives, 
followed by a more detailed examination of the 
representation of the collection of the primitives. One 
such issue is the question of whether the Bezier 
primitives are curves, surfaces, or solids, and whether 
they exist in the plane or in 3D space. Collections of 
1D Bezier primitives in the plane tend to be easier to 
represent than 2D Bezier primitives (i.e., surfaces) in a 
3D space. In this paper, the focus is on 2D Bezier 
primitives in a 3D space. Another issue is whether or 
not all of the Bezier primitives in a collection will have 
the same number of control points. In this paper, we 
do not address the additional complications that arise 
when using different types of Bezier primitives, thereby 
requiring variable amounts of storage per primitive. 

There is also the issue of whether the Bezier primitive 
(i.e., patch) is based on a triangular or a rectangular 
grid of control points. A triangular patch (e.g., Figure 
l(a)) will have at most three neighbours, where two 
patches are said to be neighbours it they share an edge. 
However, a rectangular patch (e.g., Figure l(b)) will 
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Figure 1. (a) Triangular B6zier patch; (b) rectangular 
B6zier patch 

have at most four neighbours with which it shares an 
edge. It is often easier to decompose a surface into a 
tessellation of triangles than one of rectangles (e.g., 
consider a globe and the problems that arise at the 
poles in a Mercator projection). Another benefit of 
triangular patches is that they have fewer control 
points, which means that the evaluation of the primitive 
is faster. In this paper, we use triangular Bezier primitives 
(specifically a cubic primitive requiring 10 control 
points). However, the data structure issues that we 
discuss are equally applicable to rectangular patches. 

In the following discussion, it is convenient to 
distinguish among three classes of control points within 
a triangular B&zier primitive (as labelled in Figure l(a)). 
The three control points that are at the corners of the 
triangular control network are called vertex control 
points. A useful property of the Bezier primitive is that 
it actually passes through the vertex control points. In 
our example cubic triangular B~zier patch, there are 
two control points along the edge of the triangular 
network between each pair of vertex control points. 
These are called edge control points. The four control 
points along an edge, say E, of the triangular network 
(i.e., a vertex control point, two edge control points, 
and the other vertex control point on E) are the control 
points for a cubic B~zier curve that forms the boundary 
of the cubic triangular patch on E. In general, the patch 
does not pass through the edge control points. However, 
in order for two neighbouring patches to be properly 
aligned, they will share both the vertex control points 
and the edge control points on the appropriate edge. 
The final class of control points consists of the interior 

control point, say I, and called an interior control poinL 
Usually, the patch does not pass through I, and l is not 
shared with any of its neighbouring patches. 

An individual Bezier primitive consists of an ordered 
collection of control points. A typical Bezier primitive 
is a triangular cubic patch, determmed by ten control 
ponts in 3D space, i.e., by 30 numbers (either fixed-point 
or floating-point numeric representations could be 
used). Assuming a 4-byte number, a single Bezier 
primitive requires 120 bytes of sto~age. Editing a Bezier 
primitive consists of altering the value of some subset 
of these 30 numbers. Whenever we need to determine 
the location of the actual surface defined by the patch, 
the control points of the patch are usually accessed in 
a row-by-row manner. Thus a standard embedding of 
a triangular array into a linear array is algorithmically 
efficient. 

One way to represent a collectio~ of Bezier primitives 
is as an array of records where each record corresponds 
to a single B(~zier primitive. At al~y instance of time, 
not all the records of the array are in use. A simple 
way to organize the array would be to use a counter 
N to indicate how many primitives are in use. To add 
a new primitive P, N is incremented, and P is copied 
into the N 'h element of the array. To delete the k th 

primitive, the N 'h primitive in the array is copied to the 
k 'h entry in the array, and N is decremented 

One problem with this approach is determining the 
maximum size of the array. Instead c?f using a 120 
megabyte array (thereby permitting the storage of a 
million cubic triangular patches), we can use a paging 
approach. In this case, we can make use of an array 
of 1000 pointers to serve as a page table (which would 
consume 4000 bytes of storageL Each pointer would 
either point at a page (i.e., another array) of 1024 B6zier 
primitives (120 kbytes) or be NIL {indicating that no 
primitives reside on that pagel. Finding the k th entry in 
the set of primitives is easy. Fir< find the [k,.1024] th 
pointer, say P, and then access the i L - [k /1024]'1024) 'h 
entry in the array pointed at by P 

A second problem with the array approach is that 
it ignores the expected redundancy in a control network 
of triangular Bezier primitives. For such a primitive, the 
six edge control points will most likely be shared with 
one other primitive, the three vertex control points will 
most likely be shared with two or more other primitives, 
and the one internal control point is most likely to be 
unique to that primitive, l-hus, for our example of one 
million primitives, the number of unique control points 
is likely to be tess than five million, rather than the 10 
million that are stored in the array approach. 

The above approach can be iniplemented by storing 
the five million 'unique' control points as an array of 
five nil[ion records of three numbers each (requiring 
12 bytes apiece) thereby consuming 60 megabytes of 
storage. We also need to store the actual primitives. 
They can be stored as an array of one million records 
of 10 indices apiece (requiring 4 bytes per index) into 
the array of control points, thereby consuming an 
additional 40 million bytes. Such a representation would 
store the entire set of primitives in 100 megabytes rather 
than the 120 megabytes required in the original array 
approach. This technique is similar to that used by 
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Baumgart ~'' in the winged-edge data structure, a basis 
of the boundary model (BRep) TM representation of 
planar-faced solids, where the basic data item is an 
edge rather than a control point. The paging approach 
outlined earlier could be used here as well for managing 
both the array of control points and the array of Bezier 
primitives. 

A further refinement would be to separate the array 
of control points into three different types of arrays: 
one for the vertex control points, one for the pairs of 
edge control points, and one for the isolated internal 
control point. Thus, each record that corresponds to a 
cubic triangular Bezier primitive would require seven 
indices (three vertex indices, three edge indices, and 
one internal index) rather than 10 indices. This 
implementation means that each record requires 28 
bytes instead of 40 bytes. Thus one million primitives 
would consume 28 megabytes. Remembering that we 
need 60 megabytes for just storing the control points 
means that the entire set of primitives requires 88 
megabytes instead of 120 megabytes. 

As a final refinement of the cubic traingular Bezier 
primitive, the index for the internal control point could 
be replaced by the actual value of the coordinates at 
that point. Since there is no expected sharing of this 
point, the net effect of this optimization would be the 
elimination of one million indices (4 megabytes). The 
result is that only 84 megabytes of storage are needed 
for the set of one million primitives. It is interesting to 
observe that the net gain as a result of sharing the 
storage for the control points in a manner analogous 
to the sharing of edges in the winged-edge data 
structure is not very large. 

REPRESENTATION OF THE TOPOLOGY OF 
BI~ZIER PRIMITIVES 

One problem that arises when working with a collection 
of geometric primitives (regardless of whether they are 
Bezier primitives) is that of ensuring that the primitives 
define a valid object in the space being modelled. For 
example, when designing an aeroplane, a M6bius strip 
(see Figure 2)is generally not considered a meaningful 
part. Ensuring that such objects do not arise depends 
on the representation being used. For example in the 
case of Constructive Solid Geometry (CSG) is this is 
achieved by using 'regularized' Boolean operations, 
while for boundary models (BRep) TM this is achieved by 
using Euler operators ~ (when augmented by suitable 
intersection checking which is a form of regularization - 
see the discussion of inter-oblect intersection at the 
end of this section). 

An example of the CSG approach would be to use 
half planes as primitives and then form objects as a 
Boolean combination of half planes. Figure 3 illustrates 

Figure 2. M6bius strip 
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Figure 4. Data structure corresponding to Figure 3 

a pentagon defined as a Boolean combination of half 
planes in 2D space. ]-he corresponding data structure 
(Figure 4) is a tree where the internal nodes correspond 
to the operators in the Boolean expression and the leaf 
nodes correspond to the half plane primitives. For CSG, 
ensuring that only valid objects result from a Boolean 
expression is equivalent to ensuring that every intersection 
is either empty or creates an object with the same 
dimensionality as the operands to the intersection 
operation (e.g., the intersection of two half planes is 
not permitted to result in a line). This is achieved by 
modifying the definition of the Boolean operators to 
be regularized Boolean operators is, where these details 
are taken into account. 

This list of line segments in Figure 5 is an example 
of the boundary model for the pentagon of Figure 3. 
Notice that the line segments indicate their constituent 
vertices as well as the orientation of the line with respect 
to the interior of the object. The orientation information 
is important because a boundary defines two objects, 
one on the inside of the boundary and one on the 
outside of the boundary. In order to determine the 
object that has been defined, we need to know which 
direction is to be viewed as 'inside.' For the boundary 
model, ensuring that only valid objects are created 
becomes the problem of ensuring that there is always 
a consistent labelling of inside and outside for the 
primitives that make up the objects being modelled. 
This is guaranteed by using a collection of operators 
called the Euler operators 1~,~6. Thus an object like that 
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to Figure 3 

B p, 

E 

a b )" \ C ~  • 

B B 

d ~ > ~ e ~ /  
E 

E 
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of Figure 5 

in Figure 5 would be built by the sequence shown in 
Figure 6. 

Let us look more closely at how Figure 6 is constructed. 
We will use the MakeTriangle, MakeVertex, and 
MoveVertex operators. The first step is to generate the 
smallest possible valid polygon (e.g., MakeTriangle 
yielding Figure 6(a)). The next step is to add a new 
vertex to the polygon using a MakeVertex operator (e.g., 
Figure 6(b)). MakeVertex creates a new vertex as well 
as updates the edge database• by removing edge CA 
and adding edges CE and EA. At this point, the location 
of vertex E is moved by applying the MoveVertex 
operator (e.g., Figure 6(c)). MoveVertex checks to make 
sure that moving the vertex does not cause any of the 
line segments to intersect at any points that are not 
vertices. MoveVertex also checks the consistency of 
the orientation labelling. Next, insert point D using the 
MakeVertex operator (Figure 6(d)), and move it to its 
correct location using a MoveVertex operator (Figure 
6(e)). 

Evaluating intersections of Bezier primitives in a 
manner analogous to that used in CSG can be very 
expensive. The problem is that we must compute the 
intersections of 3D objects, which would require that 
we work with cubic tetrahedrat B~zier primitives. In 

particular, the number or control points un eacn c:ub~< 
tetrahedra[ Bezier primitive is twice ¢i.e. 20 instead or 
1()~ the number of control points in each cubk triangular 
Bezier primitive, which is the pnrnltwe used for the 
analogous boundary rnodel. 

When comparing the boundarL model with CSG we 
observe that the dimensionalitv ol the BezJer pnmiuve~ 
comprising the boundary model t~ one less than that 
of the analogous B(~zier pnmitives ~ompnsnng CSG [his 
is because the dimensionatit\ of the border is one tess 
than that of the object that is being bounded. Therefore 
there is a tendency to use the houndary model to 
reduce the dimensionalit,/ of the Bezier prtmittve and 
thus minimize its complexity. 

Now, let us see how we can adapt the concept or 
a Euler operator to the Bezier primitive. The traditional 
development ol Euler operators ,~ ~n terms ol the 
creation and destruction of vertice, edges, and faces. 
A typical operator is one that changes an edge into 
two edges while adding a vertex recall the MakeVertex 
operator illustrated in Figure 6). Fo~ example, applying 
the MakeVertex operator to a mangular face would 
create a quadrilateral face. However in a system OT 
triangular B(~zier primitives a quadrilateral race is 
meaningless. Thus, when adding a vertex, say V to an 
edge, say AB, (~f a triangular B(~zier primitwe ABC in a 
system of triangular Bezier pnmltlw~g tt is not sufficient 
for edge AB to be split ulto two new edges, AV and 
BV. Instead, a third edge VC is added connecting vertex 
V to the vertex C of triangular Bezier primitive AB(: 
(which is opposite edge AB). This results in the split of 
the triangular Bezier pnmltlve \BC into two new 
triangular B(~zier primitives AVC and BVC see Figure 
7). Furthermore, if edge AB happened to be shared with 
a neighbouring triangular Bezier pnrn~uve, say ABD. then 
a fourth edge VD would have to be added, thereby 
splitting neighbouring triangular Bezier pnmitwe CBD 
into two new triangular Bezier primitives AVD and BVD 
as well. 

We propose the following six operators as a mtnimal 
set of Euler operators appropriate for maintaining a 
system of triangular B(~zier primitives. These operators 
are named MakeTetrahedron, DeleteTetrahedron, 
MakeVertexOnEdge, RemoveVertexOnEdge, Merge- 
Triangles, and CutTriangle. Figure 8 illustrates the 
functionality of each of these operators. 

MakeTetrahedron defines a minimal solid object 
bounded by four triangular Bezier primitives. The Bezier 
primitives are initialized to correspond to equilateral 
planar triangles. The size and orientation of the 
tetrahedron are parameters of the MakeTetrahedron 

!~IEC fOI" I IC% 

\ ¢2['tL'X 

Figure 7. Example oi application oi MakeVertex operator 
to triangular B~zier primitive 
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operator. When a tetrahedron is created within an 
already existing object, the new tetrahedron determines 
a hole within the object. DeleteTetrahedron removes 
the four Bezier primitives of the tetrahedron from the 
collection of Bezier primitives. 

The MakeVertexOnEdge operator takes as parameters 
an edge, say AB, and the two triangular B(}zier primitives 
ABC and ABD that share the edge AB, and a point, say 
V, on edge AB. V becomes a vertex control point shared 
by the four triangular B~zier primitives AVC, BVC, AVD, 
and BVD. The remaining control points for these four 
triangular B6zier primitives are computed using the 
Bezier subdivision algorithm, s 

The RemoveVertexOnEdge operator is the inverse 
of MakeVertexOnEdge. It can only be applied to a vertex, 
say V, that is the common corner of four triangular 
Bezier primitives AVC, BVC, AVD, and BVD that form 
the quadrilateral ABCD. When RemoveVertexOnEdge 
is applied, the four edges that meet at vertex V are 
removed (i.e., AV, BV, CV, and DV), and are replaced 
by a new edge (i.e., AB or CD) specified as a parameter 
to the function. Note that two new internal control 
points R and S need also to be specified so that 
triangular Bezier primitives ABC and ABD will be valid 
Bezier primitives. 

MergeTriangles takes two triangular Bezier primitives 
as parameters, say ABC and DEF. It removes both 

triangular Bezier primitives ABC and DEF from the 
collection of B~zier primitives. All references to vertices 
D, E, and F in the collection of Bezier primitives are 
changed to references to A, B, and C, respectively. 
This operator can be used for forming handles in an 
object or for merging two solid objects into one solid 
object. 

CutTriangle is the inverse of the MergeTriangles 
operator. Its parameter is a sequence of three distinct 
edges, say AB, BC, and CA, from the collection of B~zier 
primitives, such that there exists no triangular B~zier 
primitive ABC. The edges that share exactly one vertex 
with the non-existent triangle ABC are partitioned into 
two subsets, say L and R, depending on the side of 
ABC on which they lie. Next, triangular Bezier primitive 
ABC is added to the collection of Bezier primitives 
(thereby requiring the user to specify an internal control 
point for it, say V). The user must also specify a second 
Bezier triangular primitive DEF (and a control point for 
it), which is also added to the collection of Bezier 
primitives. All references to vertices A, B, and C in edges 
of the subset R are replaced by references to the 
vertices D, E, and F, respectively. On the other hand, 
note that all references to vertices A, B, and C in edges 
of the subset L remain unchanged. This operator has 
the effect of cutting a solid into two parts (if the solid 
has no holes) or, depending on the location of the cut, 
reducing the number of holes in a solid by one. 

Implementing the operators described above requires 
that we be able to query the collection of Bezier 
primitives efficiently. In particular, we need to be able 
to determine (i.e., query) which triangular Bezier 
primitives share an edge with a given triangular B&zier 
primitive. There are a number of ways this can be 
achieved. One approach is to add three index fields to 
the record which represents each Bezier primitive. For 
each triangular B6zier primitive ABC, the index fields 
point at the Bezier primitives adjacent to the constituent 
edges AB, BC, and CA, respectively. This would add 12 
bytes to the size of each record that corresponds to a 
Bezier primitive. Using the final representation disussed 
above means that the amount of storage necessary to 
represent one million B(}zier primitives increases from 
84 megabytes to 96 megabytes. 

An alternative representation is to associate the 
adjacency information with the edge records rather 
than with the records of the Bezier primitives. This is 
similar to the winged-edge representation of Baumgart sb. 
In this case, for each edge we store the indices of the 
two adjacent B6zier primitives. This would increase the 
size of the edge record by 8 bytes. Since there are three 
edges for each triangular Bezier primitive, and all edges 
are shared by two triangular Bezier primitives, the 
amount of storage required for this approach would 
be the same as for the previous approach that added 
three index fields for each Bezier primitive. 

Another implementation decision is determining 
which side of each Bezier primitive (i.e., face) is 
'outward'. This is achieved by adopting the convention 
that the indices to the edges and vertices in a B~zier 
primitive appear in a clockwise order. In this way, when 
we compute the clockwise crossproduct of the derivative 
of two curved borders of the Bezier primitive, evaluated 
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at the curved borders' common vertex, we get a vector 
pointing in the 'outward' direction. 

As with the traditional Euler operators, it is necessary 
to check for inter-object intersection in order to ensure 
that a valid solid is being created. The Euler operators 
by themselves only guarantee the topological validity 
of the objects created. Additional checking is necessary 
to make sure that objects have not been specified that 
have boundary patches that coincide (thus creating 
zero-width regions). The only points that are permitted 
to belong to more than one Bezier primitive are those 
that are vertex points or points on the boundary curve 
defined by the edge control points. Doing this efficiently 
requires the use of spatial data structures as discussed 
in the fourth section. There is also the issue of whether 
an individual Bezier primitive is self-intersecting, has 
holes, etc. Because there is a continuous mapping 
between a triangle and the triangular Bezier primitive 
(defined by barycentric coordinates and the Bernstein 
polynomials 5) the triangular Bezier primitive will not 
have holes or handles. Indeed, it can also be observed 
that the image of the boundary of the triangle will form 
the boundary of the triangular Bezier primitive. Thus 
we need not worry about holes appearing inside of a 
triangular B~zier primitive, provided that the border of 
the primitive does not self-intersect. However, it is 
possible for the mapping to cause a Bezier primitive to 
intersect itself. 

In the case of triangular Bezier primitives, there are 
a few known results relevant to the self-intersection 
problem 8'9'1°. The most simple is a theorem stating that 
the surface defined by a convex network of control 
points is also convex. Since a convex shape does not 
self-intersect, Bezier primitives with convex control 
networks are 'guaranteed' to not self-intersect. Thus if 
we restrict ourselves to triangular B&zier primitives with 
convex control networks we need not worry about the 
self-intersection of primitives. If we further constrained 
the B~zier primitives so that the four control points on 
each edge lie in a plane, thereby ensuring that each 
edge of the Bezier primitive was planar, then we would 
have an example of one of the proposed splinehedra 
data structures ~7. 

If triangular Bezier primitives with non-convex control 
networks are to be used, then it becomes necessary 
to check the primitive, say P, directly for self-intersection. 
This can be achieved by subdividing P into convex 
subprimitives and then testing for self-intersection of 
this network of convex subprimitives. At worst, the 
Bezier primitive might need to be subdivided to a level 
at which each primitive is planar. At this point, the 
problem reduces to testing for self-intersection of a 
polygonal network. 

R E P R E S E N T I N G  G E O M E T R Y  O F  BI~ZIER 
PRIMIT IVES 

For sufficiently small collections of Bezier primitives, the 
methods of the previous section are sufficient. However, 
as the number of primitives gets large, it has been 
observed that individual updates to the collection tend 
to involve only a small number of primitives that are 

spatially near one another '~. i-<~r example, when 
connecting two previously disjoint objects by performing 
a MergeTriangles operation, it is necessary to determine 
if the merger caused intersection of the border of the 
two objects anywhere other tha~ at the lo(ation of 
'triangular' region where the two objects are being 
merged. Performing this determination using the data 
structures discussed in the third section (i.e., CSG and 
BRep) requires that we compare ew~ry patch in the first 
object with every patch in the second object. However, 
if the primitives were organized s~ that patches that 
were close to each other in the model were close to 
each other in the graph of the data structure, then the 
number of comparison operation~ could be reduced 
substantially. Thus, by using a spatial data structure that 
takes into account the location o: the primitives (i.e., 
their geometry! as opposed to merely keeping track of 
the interconnectivity of the primitives ~i.e. their 
topology), large collections of Bezier primitives can be 
efficiently updated and displayed. 

In order to develop a spatial data structure to 
organize Bezier primitives, it is worthwhile to consider 
the procedure by which primitives are tested for 
intersection. The most straightforward approach is to 
treat the locus of points comprising the Bezier primitive 
as being the actual data that ~s to be stored in the data 
structure. This approach is the subject of the next 
section. In the two-dimensional case the B~zier primitive 
(i.e., the patch is a complicated curved surface and 
determining the intersection points ~nvolves the solution 
of nontriviat polynomial equation> 

On the other hand. the convex hull property 
guarantees that for example, if a line fails to intersect 
the polyhedron defined bv the convex hull of the 
control points of the Bezier prtm~uve, then that line will 
also fail to intersect the pnm~tive itself. Thus an 
alternative view would be to build a spatial data 
structure for a collection of possibly overlapping convex 
polyhedra and to perform the necessary spatial searching 
in that data structure. However. s~nce determining the 
convex hull of 10 points is computationally expensive, 
there is a tendency for implementations ~9'2° to use the 
rectilinear bounding box of the control points to 
spatially bound a B~zier primitive rather than the 
convex hull. fhus spatial data structures relevant to 
Bezier primitives focus on storing overlapping rectilinear 
boxes rather than overlapping polyhedra. The next 
section discusses data structures for spatially orgamzing 
collections of rectilinear boxes ~l.e. by sorting them), 
hierarchical data structures "u '~: being used to perform 
the necessary spatial organization 

In the case of biquadratic B~zier primitives. Brunet 
and Ayala ''-{ propose a non-rectilinear polyhedron that 
tends to yield a tighter approximation than a rectilinear 
bounding box but a looser one than the convex hull. 
The rationale for using such a polyhedron is the 
observation that the edges of a biquadratic prim~twe 
are planar. Brunet and Ayala observe further that for 
any given edge E of a primitive P the remainder of P 
will tend to lie on the same side of the plane in which 
E lies (i.e., primitive P will tend not to lie on both sides 
of that plane). For more details about this technique 
interested readers should consult the or~ginat paper '{ 
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The hierarchical data structures discussed below are 
based on the principle of recursive decomposition 
(similar to divide and conquer methods) 24. These data 
structures are useful because of their ability to focus 
on the interesting subsets of the data. This focusing 
results in an efficient representation and in improved 
execution times. Thus, they are particularly useful for 
performing search and set operations. Nevertheless, it 
is true that many of the operations for which they are 
used can often be performed as efficiently, or more so, 
with other data structures. However, hierarchical data 
structures are attractive because of their conceptual 
clarity and ease of implementation. They serve primarily 
as devices to sort data of more than one dimension 
and different spatial types, and hence their use provides 
a spatial index. The term quadtree is often used to 
describe this class of data structures. This particular 
approach to hierarchical spatial data structures is the 
focus of the next two sections. For a more extensive 
treatment of heirarchical spatial data structures, see 21'22. 

Spatially organizing the network of surfaces 

There are two ways of representing a region. The first 
is by its interior and the second is by its boundary. We 
first describe the region quadtree 2~'~7 which represents 
a region by its interior. Assume that the data is binary 
and consists of an image array of picture elements 
(termed pixels), where ls correspond to interior points 
and 0s correspond to exterior points. The region 
quadtree is built by successively subdividing the image 
array into four equal-size quadrants. If the array does 
not consist entirely of ls or entirely of 0s (i.e., the region 
does not cover the entire array), it is then subdivided 
into quadrants, subquadrants, etc., until blocks are 
obtained (possibly single pixels) that consist entirely of 
ls or entirely of 0s. As an example of the region 
quadtree, consider the region shown in Figure 9a which 
is represented by the 2 ~ x 2 ~ binary array in Figure 9(b). 
The resulting blocks for the array of Figure 9(b) are 
shown in Figure 9(c). This process is represented by a 
tree of degree 4 (Figure 9(d)). 

In the tree representation, the root node corresponds 
to the entire array. Each son of a node represents a 
quadrant (labelled in order NW, NE, SW, SE)of the region 
represented by that node. The leaf nodes of the tree 
correspond to those blocks for which no further 
subdivision is necessary. A leaf node is said to be black 
or white, depending on whether its corresponding block 
is entirely inside or entirely outside of the represented 
region. All non-leaf nodes are said to be grey. The 
quadtree representation for Figure 9(c) is shown in 
Figure 9(d). Of course, region quadtrees can also be 
used to represent non-binary images. In this case, we 
apply the same merging criteria to each colour. 

Quadtree-like data structures can also be used to 
represent images in three dimensions and higher. The 
region octree 2~ ~,7~8 data structure is the 3D analogue 
of the region quadtree. It is constructed in the following 
manner. We start with an image in the form of a cubical 
volume and recursively subdivide it into eight congruent 
disjoint cubes (called octants) until blocks are obtained 
of a uniform colour or a predetermined level of 
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Figure 9. Region, its binary array, its maximal blocks, and 
corresponding quadtree. (a) Region; (b) binary array; 
(c) block decomposition of region in (a)--blocks in 
region are shaded; ( d) quadtree representation ot blocks 
in (c) 
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Figure 10. ( a) Example three-dimensional object; ( b ) its 
octree block decomposition; and ( c ) its tree representation 

decomposition is reached. Figure 10(a)is an example 
of a simple 3D object whose raster octree block 
decomposition is given in Figure 10(b) and whose tree 
representation is given in Figure 10(c). 

A key to the analysis of the execution time of 
quadtree algorithms is the quadtree complexity 
theorem, 2s'28 which states that the size of the quadtree 
representation of a region (i.e., the number of blocks) 
is linear in the perimeter of the region. This result 
also holds for 3D data 29 where perimeter is replaced 
by surface area, as well as higher dimensions, say d, 
for which it is cast in terms of the ( d -  1)-dimensional 
interfaces between the d-dimensional objects being 
represented. The quadtree complexity theorem also 
directly impacts the analysis of the execution time of 
algorithms. In particular, most algorithms that execute 
on a quadtree (or octree) representation of an image 
instead of an array representation have an execution 
time that is proportional to the number of blocks in 
the image rather than the number of array elements. 
In its most general case, this means that the application 
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of a quadtree algorithm to a problem in d-dimensional 
space executes in time proportional to the analogous 
array-based algorithm in the (d - 1 )-dimensional space 
of the surface of the original d-dimensional image. 
Therefore, quadtrees (and octrees)act like dimension- 
reducing devices. 

One of the deficiencies of the region octree is that 
if the faces of the object (or objects) represented by 
it are not rectilinear, then the representation is not 
exact in the sense that it is an approximation. The only 
exception is if the faces are mutually orthogonal, in 
which case a suitable rotation operation can be applied 
to yield rectilinear faces. We prefer an exact 
representation. In the following, we describe the PM 
octree ~° ~, an approach that is based on the interior 
and the boundary of the region. We first discu>s 
its use for objects with planar faces. Next, we show 
how it can be used for objects whose faces are 
described by more general methods such as B6zier 
primitives. 

In the PM octree, the resulting decomposition ensures 
that each octree leaf node corresponds to a single 
vertex, a single edge, or a single face. The only 
exceptions are that a leaf node may contain more than 
one edge if all the edges are incident at the same vertex. 
Similarly, a leaf node may contain more than one face 
if all the faces are incident at the same vertex or edge. 
The above subdivision criteria can be stated more 
formally as follows: 

• At most, one vertex can lie in a region represented 
by an octree leaf node. 

• If an octree leaf node's region contains a vertex, 
then it can contain no edge or face that is not 
incident at that vertex. 

• If an octree leaf node's region contains no vertices, 
then it can contain at most one edge. 

• If an octree leaf node's region contains no vertices 
and contains one edge, then it can contain no face 
that is not incident at that edge. 

• If an octree leaf node's region contains no edges, 
then it can contain at most one face. 

• Each region's octree leaf node is maximal. 

An implementation of the PM octree consists of leaf 
nodes of type vertex, edge, and face. For our purposes, 
it is permissible to have more than two faces meet at 
a common edge. However, such a situation cannot 
arise when modelling solids that are bounded by 
compact, orientable two-manifold surfaces (i.e., only 
two faces may meet at an edge and the surface is 
two-sided). Nevertheless, it is plausible when 3D objects 
are represented by their surfaces. 

The space requirements of the PM octree are 
considerably harder to analyse than those of the region 
octree 37. Nevertheless, it should be clear that the PM 
octree for a given object is much more compact than 
the corresponding region octree. For example, Figure 
11(b) is a PM octree decomposition of the object in 
Figure 11 (a). 

For the proper execution of many operations, the 
fact that a node is of type vertex, edge, or face is not 
sufficient to properly characterize the object. It has 
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Figure 11. laJ Example three-dimensional oblect: and 
( b ) i~s correspondin[~ PM octree 

been proposed that each node contains the polygons 
determined by the boundary of the object that intersects 
the node 3~. This ts somewhat cumbersome and requires 
a considerable amount of extra information.Moreover. 
the vertices of the polygons cannot be specified exactly 
as most often they are not the vertices of the object. 
In particular, they are artifacts of the decomposition 
process. A more efficient solution is to store with each 
face node the equation of the plane of the face that 
is associated with the node 37. In addition, the direction 
of the object relative to the face must be noted. For 
nodes of type edge and vertex the configuration of 
the faces (i.e. the planes) that make up the edge and 
vertex must also be recorded. This information s used 
to classify a point inside the node with respect to the 
object so that the PM octree can be built. 

The PM octree approach that we have described ~s 
based on permitting just one face in an octant with 
some exceptions. An alternative approach is to disregard 
the effects of edges and vertices and to use a simpler 
decomposition rule which is based on the number of 
faces that are permitted to occupy an octant. This is 
termed a bucketing approach by Samet 21. It is used bv 
Miintyl~ and Tamminen 1~ who only permit a maximum 
of three faces to be in an octant  See Nelson and 
Samet ~8~9 for the use of this technique for the 
representation of collections of line segments. 

PM octree techniques have also been extended to 
handle curved surfaces. Primitives including cylinders 
and spheres have been used in conjunct ion with a 
decomposition rule limiting the number of distinct 
primitives that can be associated with a leaf node 4°41 
Another approach 2~'42 extends the concepts of face 
node, edge node, and vertex node to handle faces 
represented by biquadratic B~zier primitives. The use 
of biquadratic B~zier primitives enables a better fit with 
fewer primitives than can be obtained with planar faces. 
thereby reducing the size of the octree. On the other 
hand, using biquadratc Bezier primitives may require 
more pnmitives than the use of the traditional bicubic 
Bezier primitive. Comparing the modelling efficiency of 
biquadratic B~zier primitives and cubic triangle-based 
B~zier primitives is less straightforward. 
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When working with linear features (such as polygonal 
faces and edges in PM octrees), the intersection of two 
linear objects (e.g., polygonal faces) is another linear 
object (e.g., a collection of points and line segments). 
However, for most B~zier primitives, the intersection of 
two B(~zier primitives is not another B~zier primitive of 
the same type. Thus, although the borders of a Bezier 
surface primitive can be represented by B~zier curves, 
an edge formed by the intersection of two Bezier surface 
primitives might not be representable by a Bezier curve. 
This leads to two types of edge nodes and two types 
of vertex nodes - i.e., those that arise from the 
conventional presence of B(~zier primitives (termed 
edge-a and vertex-a) and those that arise from the 
intersection of two B6zier primitives (termed edge-b 
and vertex-b) ~'~'. This complicates the extension of PM 
octree methods to Bezier primitives, since some design 
systems may wish to permit the user to create edges 
for which there is no simple representation. Brunet and 
Ayala :~ overcome this complication by requiring that 
such curves be adequately representable by their linear 
approximations. Of course, storing such linear 
approximations defeats the compactness and accuracy 
that result from representing the nonlinear features 
directly. 

Brunet 4~ makes use of the linear approximation 
method as a basis for the following decomposition rule 
to yield a face octree. A face octree consists of interior 
(black), exterior (white), and face nodes. Given a surface 
S and a tolerance 8, the decomposition is such that 
each face node is associated with just one part of the 
surface. For each face node, say F, there exists an 
oriented plane ~, such that for every point P of S in 
F's cube, the distance from P to x~ is less than or equal 
to {:. Each face node contains the explicit equation of 
the associated plane. Brunet shows that the set of 
planes can be limited by restricting the set of feasible 
normal directions and the distance to the origin. Every 
face node can be interpreted as a band which spans 
a distance equal to the tolerance on both sides of the 
plane that is associated with the node. Thus the whole 
boundary of the object is contained in the region 
defined by the 'union' of the bands of the face nodes 
in the octree, termed a thick surface. This means that 
the whole surface can be analysed just by studying the 
properties of the thick surfaces and there is no need 
to consider artificial geometric elements such as 
boundaries between smoothly connected patches. 

From the quadtree complexity theorem we know 
that the number of nodes in the region octree is 
proportional to the surface area of the object being 
represented i.e., the decomposition is at a maximum 
where the border of the objects passes through a node. 
Using a planar approximation of the surface within a 
node (as done by the face octree) can be expected to 
result in the number of nodes being proportional to the 
length of its edges i.e., the decomposition is at a 
maximum where the edges of the surface of the object 
pass through a node. In this case, we must make some 
allowance for the curvature of the surface (the greater 
the degree of non-planarity of the surface, the greater 
the number of planar pieces necessary to obtain an 
accurate approximation of the surface). A further 

refinement of the PM octree decomposes until each 
node contains just one vertex (see the discussion of the 
PR quadtree in the next section). Thus the decomposition 
is at a maximum where the separation between two 
distinct vertices of the object is at a minimum. Such a 
decomposition rule may be difficult to achieve for 
curved surfaces. Nevertheless, it is worth noting that 
as the number of octree nodes decreases, the complexity 
of describing (and hence manipulating) the contents 
of a leaf node increases. Thus the question of whether 
to use an approach based on faces, edges, or vertices 
will depend on the application. 

The difficulty in representing curved surfaces by using 
a PM octree lies in devising efficient methods of 
calculating the intersection between a Bezier primitive 
(or any other curved surface representation) and an 
octree node. This is computationally expensive in 
general. One possible way to overcome this expense 
is to use a decomposition rule such that a B6zier 
primitive is in a region if its bounding box is in the 
region (see the next section). However, in general, this 
rule does not halt in cases where the bounding boxes 
overlap while the Bezier primitives have no points in 
common. Thus the Bezier primitives have to be subdivided 
to determine which Bezier primitives are actually within 
which regions. The control structure for an algorithm 
based on this approach has been described in the first 
section. Observe that in this approach we are organizing 
a collection of patches (e.g., Bezier primitives) in the 
space that they occupy. This is in contrast to decomposing 
a single patch in its parametric representation by use 
of quadtree techniques (e.g.,4% 

Spatially organizing bounding boxes of the 
surfaces 

There are two principal methods of representing 
bounding boxes: point-based and region-based. 
Point-based representations treat each box as a point 
(e.g., its centroid, a combination of some of its extreme 
points, etc.) and then make use of data structures for 
points. Region-based representations treat each box as 
a region an hence take its extent into account. In order 
to simply the presentation, we restrict our example to 
two-dimensional data. This means that our examples 
will consist of rectangles. We first discuss point-based 
methods. This is followed by region-based methods. 

One point-based representation reduces each 
bounding box to a representative point in a higher 
dimensional space, and then treats the problem as if 
we have a collection of points. This is the approach of 
Hinrichs and Nievergelt4~.4L Each bounding box is a 
Cartesian product of two one-dimensional intervals 
where each interval is represented by its centroid and 
extent. The collection of bounding boxes is, in turn, 
represented by a grid file r:, which is a hierarchical data 
structure for points. The problem with this approach is 
that although the extent of the object is reflected in 
the representative point, the final mapping of the 
representative point in the 4D space does not result in 
the preservation of proximity in the 2D space from 
which the bounding boxes are drawn. In other words, 
two bounding boxes may be very close (and possibly 
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overlap), yet the Euclidean distance between their 
representative points in four-dimensional space may 
be quite large, thereby masking the overlapping 
relationship between them. 

Another approach which does not require a transition 
into a higher-dimensional space represents each bounding 
box by its centroid, which is a point in the 3D space 
within the bounding boxes. One approach to storing 
these centroids is to use a PR quadtree 2L48. It is an 
adaptation of the region quadtree to point data which 
associates data points (that need not be discrete) with 
quadrants. The PR quadtree is organized in the same 
way as the region quadtree. The difference is that leaf 
nodes are either empty (i.e., white) or contain a data 
point (i.e., black) and its coordinates. Each block 
contains at most one data point. For example, Figure 12 
is the PR quadtree corresponding to a set of points in 
a 2D space. 

Data points are inserted into a PR quadtree by 
searching for them. Actually, the search is for the block 
in which the data point, say A, belongs (i.e., a leaf 
node). If the block is already occupied by another data 
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point with different x and ~ co,ordinates, say B, then 
the block must repeatedly be subdivided ~termed 
splitting) until nodes A and B no longer occupy the 
same block. This may result in many subdivisions, 
especially if the Euclidean distance between A and B 
is very small. The shape of the resulting PR quadtree 
is independent of the order in which data points are 
inserted into it. Deletion of nodes is more complex and 
may require collapsing of nodes i.e., the direct 
counterpart of the node splitting process ~)utlined 
above. 

PR quadtrees, as well as ,Rher quadtree-hke 
representations for point data, are especially attractive 
in applications that involve search. A typical query is 
one that requests the determination of all records 
within a specified distance o~ a given point. The 
efficiency of the PR quadtree ties in its role as a pruning 
device on the amount of search that is required. Thus 
many records will not need to be examined. For 
example, suppose that in the hypothetical database of 
Figure 12 we wish to find all points within eight units 
of a data point with coordinates (84,10). In such a case, 
there is no need to search the NW, NE, and SW 
quadrants of the root (i.e. /5(].50)). l-hus we can restrict 
our search to the SE quadrant ~,{ the tree "ooted at 
root. Similany, there s no need to search the NW. NE 
and SW quadrants of the tree rooted at the SE quadrant 
(i.e., (75,25)). Note that the search ranges are usuatlv 
orthogonally defined regions such as rectangles. Other 
search regions are also feasible as the above example 
demonstrated (i.e.. a circle). 

As another example, suppose that we wish to locate 
the nearest point to a given poinL sav P. This is achieved 
by a top-down recursive algorithm, lnitiallv at each 
level of the recursion we explore the subtree that 
contains P. Once the leaf node containing P has been 
found, the distance from P to the nearest pnmitive m 
the leaf node is calculated ~empty leaf nodes have a 
value of infinity). Next. we unwind the recursLon so that 
at each level we search the subtrees that represent 
regions overlapping a circle centred at P whose radius 
is the distance to the closest pnmiuve that has been 
found so far. When more than one subtree must be 
searched, the subtrees representing regions nearer to 
P are searched before the subtrees that are farther away 
(since it is possible that a pnmluve in them might make 
it unnecessarv to search the subtrees that are farther 
way}. 

tor example, consider Figure 13 and the task of 
finding the nearest neighbour of P in node 1. We first 
visit node 1. If we visit nodes in the order NW, NE, SW, 
SE, then as we unwind for the first time, we visit nodes 
2 and 3 and the subtrees of the eastern brother of 1. 
Once we visit node 4, there is no need to visit node 5 
since node 4 contained A. However, we must still visit 
node 6 containing point B (closer than A), but now 
there is no need to visit node 7. Unwinding one more 
level reveals that due to the distance between P and 
B, there is no need to visit nodes 8, 9, 10, 11, and 12. 
However, node 13 must still be visited, as it could 
contant a point that is closer to P than B. 

The situation is more complex when we are dealing 
with bounding boxes instead of points. In this case, the 

172 ~L omputer-aided design 



8 

© 

I0 

12 

9 2 

11 I 

C 

15 

p • 

5 

A. 
+.B 7 

Figure "13. Example illustrating neighbouring object 
problem. P is location of pointing device. Nearest object 
is represented by point B in node 6 

maximum amount of pruning that is possible is not 
always realized. The problem is that the object 
represented by the point may extend beyond the 
boundaries of the quadtree block in which it lies. 
Moreover, bounding boxes may overlap. Thus more 
blocks may have to be searched. The search process 
can be made more efficient by storing at each subtree 
of the quadtree the minimum and maximum values of 
the x and y coordinates of all the bounding boxes that 
are associated with the points stored in the subtree. 

The second representation is region-based in the 
sense that the subdivision of the space from which the 
bounding boxes are drawn depends on the physical 
extent of the bounding box - not just one point in the 
bounding box. Representing the collection of bounding 
boxes, in turn, with a tree-like data structure has the 
advantage that there is a relation between the depth 
of a node in the tree and the size of the bounding 
box(es) associated with it. In the remainder of this 
section, we given an example of a region-based 
representation. 

The MX-CIF quadtree of Kedem 4~ (see also Abel and 
Smith ~°) is a region-based representation where each 
bounding box is associated with the quadtree node 
corresponding to the smallest block which contains it 
in its entirety. Subdivision ceases whenever a node's 
block contains no bounding box. Alternatively, subdivision 
can also cease once a quadtree block is smaller than 
a predetermined threshold size. This threshold is often 
chosen to be equal to the expected size of the bounding 
box 49. For example, Figure 14 is the MX-CIF quadtree 
for a collection of bounding boxes. Note that bounding 
box F occupies an entire block and hence it is 
associated with the block's father. Also bounding boxes 
can be associated with both terminal and non-terminal 
nodes. 
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Figure "14. MX-CIF quadtree. (a) Collection of rectangles 
and block decomposition induced by MX-CIF quadtree. 
(b) Tree representation of (a) 

It should be clear that more than one bounding box 
can be associated with a given enclosing block and, 
thus, often we find it useful to be able to differentiate 
between them. Kedem +9 proposes to do so in the 
following manner. Let P be a quadtree node with 
centroid (CX, CY), and let S be the set of bounding 
boxes that are associated with P. Members of S are 
organized into two sets according to their intersection 
(or collinearity of their sides) with the lines passing 
through the centroid of P's block - i .e. ,  all members 
of S that intersect the line x = CX form one set and all 
members of S that intersect the line y- -  CY form the 
other set. 

If a bounding box intersects both lines (i.e., it contains 
the centroid of P's block), then we adopt the convention 
that it is stored with the set associated with the line 
through x = CX. These subsets are implemented as 
binary trees (really tries), which in actuality are 1D 
analogues of the MX-CIF quadtree. For example, Figure 15 
illustrates the binary tree associated with the y axes 
passing through the root and the NE son of the root 
of the MX-CIF quadtree of Figure 14. Interestingly, the 
MX-CIF quadtree is a 2D analogue of the interval tree s~,s2, 
which is a data structure that is used to support optimal 
solutions based on the plane-sweep paradigm s~ to some 
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Figure 15. Binary trees for the y axes passing through 
(a) the root of MX-CIF quadtree in Figure 5 and (b) NE 
son of the root of MX-CIF quadtree in Figure 14 

rectangle problems in computational geometry and 
VLSI designs. 

In the case of 3D data we would use a PR octree as 
well as an MX-CIF octree. The PR octree is a 
straightforward extension of the PR quadtree. The 
MX-CIF octree can be defined in a number of ways. 
Recall that the MX-CIF quadtree is a two-level data 
structure in the sense that it also makes use of two 
one-dimensional MX-CIF quadtrees to differentiate 
between the cases where more than one bounding 
rectangle can be associated with a particular enclosing 
quadtree block. In the case of 3D data, we can use either 
a three-level structure or a two-level structure when 
more than one bounding box is associated with an 
enclosing octree block. In particular, the second level 
consists of three MX-CIF quadtrees (one for each of 
the xy, xz, and yz planes) while the third level consists of 
two 1D MX-CIF quadtrees for each of the three MX-CIF 
quadtrees of the second level. The third level is not 
used if we restrict ourselves to a two-level structure. 

CONCLUDING REMARKS 

A survey has been presented of data structure issues 
that arise in Bezier-based modelling. We have discussed 
both low-level implementation details as well as some 
higher level ones. The low level discussion has been in 
terms of the number of bytes that would be required 
to store the raw data corresponding to the Bezier 
primitives. The higher-level discussion has been with 
respect to supporting the maintenance of the topological 
integrity of the objects being modelled. This included 
an outline of a technique for adapting Euler operators 
to Bezier primitives. We also discussed how to increase 
the efficiency of certain operations by using hierarchical 
spatial data structures. Such representations facilitate 
the execution of operations that depend on spatial 
proximity (i.e., which patch is closest to another patch). 
The actual integration of these methods into existing 
implementations remains to be done and will 
undoubtedly lead to new results and additional research. 

It is worth noting that our analysis of the results of 
using pointers (indices) to share vertex data among 
neighbouring Bezier primitives only leads to a minor 
reduction in the storage requirements in the case of 
B6zier control points. Thus, there is merit in not sharing 

relevant to a particular B6zie~ [~{I;l~Jti~(~ [." ~Ui!~igci(~L;~ 
in memory This would lead ~(~ i:i~., greatest iocatit~ ~! 
references when ,t spatidl ,n;.tanizati~', ~s t~ed ~, 
determine the actual l~)(:ati(;r3 , ' .  tJ]( ' data ifi memol\ 
Similar issues arise in geograph, .~fornlation sys[ems :'~ 
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