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A tutorial survey is presented of hierarchical data structures for representing collections 
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Several types of representations are described. Some are designed for use with the plane- 
sweep paradigm, which works well for static collections of rectangles. Others are oriented 
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point in a higher multidimensional space and treats the problem as one involving point 
data. The other representation is area based-that is, it depends on the physical extent of 
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INTRODUCTION minimum enclosing object. Of course, the 
exact boundaries of the object are also 

The problem of how to represent collec- stored; but usually they are only accessed 
tions of small rectangles arises in many if a need for greater precision exists. For 
applications. The most common example is example, bounding rectangles can be used 
when a rectangle is used to approximate in cartographic applications to approxi- 
other shapes for which it serves as the mate objects such as lakes, forests, and 
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hills [Matsuyama et al. 19841. In such 
a case, the approximation gives a rough 
indication of the existence of an object. 
This is useful in processing spatial queries 
in a geographic information system. Such 
queries can involve the detection of over- 
lapping areas, a determination of proxim- 
ity, and so on. Another application is the 
detection of cartographic anomalies that 
require further resolution when a map is 
printed. 

Rectangles are also used in the process 
of very large-scale integration (VLSI) de- 
sign rule checking as a model of chip com- 
ponents for the analysis of their proper 
placement. Again, the rectangles serve as 
minimum enclosing objects. This process 
includes tasks such as determining whether 
components intersect and ensuring the sat- 
isfaction of constraints involving factors as 
minimum separation and widths. These 
tasks have a practical significance in that 
they can be used to avoid design flaws, and 
so i n. 

The size of the collection depends on the 
application; it can vary tremendously. For 
example, in cartographic applications the 
number of elements in the collection is 
usually small, and frequently the sizes of 
the rectangles are of the same order of 
magnitude as the space from which they 
are drawn. On the other hand, in VLSI 
applications, the size of the collection is 
quite large (e.g., millions of components), 
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and the sizes of the rectangles are several 
orders of magnitude smaller than the space 
from which they are drawn. 

In this tutorial we focus primarily on how 
to represent a large collection of rectangles 
as is common in VLSI applications. Our 
techniques, however, are equally applicable 
to other domains. We assume that all rec- 
tangles are positioned so that their sides 
are parallel to the x and y coordinate axes. 
We first give a general introduction to the 
problem domain and to the tasks whose 
solutions such representations are intended 
to facilitate. The representations and issues 
that we discuss are also common to multi- 
attribute data. In order to compare the 
different representations, we will use the 
collection of rectangles given in Figure 1 
and the collection of points correspond- 
ing to the locations of the cities given in 
Figure 2. 

Initially, we present representations that 
are designed for use with the plane-sweep 
solution paradigm [Preparata and Shamos 
1985; Shamos and Hoey 19761. This solu- 
tion consists of two passes. The first pass 
sorts the data along one dimension, and the 
second pass processes the result of the first 
pass. In this case, the rectangles are repre- 
sented by the intervals that form their 
boundaries. Use of this paradigm requires 
maintaining a changing set of intervals 
whose endpoints are known in advance (a 
by-product of the initial sorting pass). One 
representation that we discuss is the seg- 
ment tree. The segment tree represents the 
intervals as unions of atomic segments 
whose endpoints are members of the collec- 
tion of rectangles. It turns out that the 
segment tree is suboptimal with respect to 
its space requirements, and this leads to 
the development of the interval tree. The 
interval tree does not decompose each in- 
terval into segments and hence reduces the 
space requirements without increasing the 
execution time. In essence, the interval tree 
is a balanced binary tree of suitably chosen 
points from the space spanned by the in- 
tervals so that interval I is associated with 
the point P that is closest to the root such 
that P is in I. 

Our discussion of the plane-sweep solu- 
tion paradigm uses the rectangle intersec- 
tion problem as a motivating example. For 
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Figure 1. (a) A collection of rectangles. Members of the collection are designated by 
solid lines and labeled alphabetically (A-G). Query rectangles are designated by broken 
lines and labeled numerically (l-3). P and Q are query points. (b) The locations of the 
endpoints of the rectangles and the points in (a). For a rectangle, x,, and .xR correspond 
to its left and right boundaries, respectively, and yH and yr correspond to its bottom and 
top boundaries, respectively. For a point, xL and yB are its x and y coordinate values, 

Figure 2. A collection of points. 

this task, as well as many other tasks, the 
plane-sweep paradigm leads to worst-case 
optimal solutions in time and space. Rep- 
resentations such as the segment and in- 
terval tree, however, are designed primarily 
for formulations of the tasks in a static 
environment. This means that the identity 
of all of the rectangles must be known a 
priori if the worst-case time and space 
bounds are to hold. Furthermore, for some 
tasks, the addition of a single object to the 
database may force the reexecution of the 
algorithm on the entire database. 

The remaining representations are for a 
dynamic environment. They are differen- 
tiated by the way in which each rectangle 
is represented. The first type of represen- 
tation reduces each rectangle to a point in 
a higher (usually) dimensional space and 
then treats the problem as if it involves a 
collection of points. The second type is 
region based in the sense that the subdivi- 
sion of the space from which the rectangles 
are drawn depends on the physical extent 
of the rectangle-it does not just treat a 
rectangle as one point. A number of these 
region-based representations make use of 
variants of a data structure commonly re- 
ferred to as a quadtree. Interestingly, these 
quadtree representations are very similar 
to the segment and interval trees that are 
used with the plane-sweep paradigm. More- 
over, we observe that the quadtree serves 
as a multidimensional sort and the process 
of traversing it is analogous to a plane 
sweep in multiple dimensions. We conclude 
with a discussion of some representations 
that are more commonly used in a problem 
domain that involves a relatively small 
number of rectangles (e.g., as found in a 
cartographic application). 
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Figure 3. An example (a) region, (b) its binary array, (c) its maximal blocks 
(blocks in the region are shaded), and (d) the corresponding quadtree. 

Since the focus of this tutorial is on 
hierarchical data structures, we will find 
ourselves making frequent comparisons 
with quadtree like data structures. Hence 
in the following we briefly review them. 
The term quadtree is used to describe a 
class of hierarchical data structures whose 
common property is that they are based on 
the principle of recursive decomposition of 
space (similar to divide and conquer meth- 
ods [Aho et al. 19741). They can be differ- 
entiated on (1) the type of data they are 
used to represent and (2) the principle guid- 
ing the decomposition process. The decom- 
position may be into equal parts on each 
level, termed a regular decomposition, or it 
may be governed by the input. The second 
distinction is very similar to that between 
a trie [Fredkin 19601 and a tree, respec- 
tively. The most common quadtree repre- 

sentations are the region quadtree [Hunter 
1978; Klinger 1971; Samet 19841 (really a 
trie) and the point quadtree [Finkel and 
Bentley 19741. 

The region quadtree is used to represent 
region data and is based on the successive 
subdivision of an image into four equal-size 
blocks until each block is of a uniform color 
or type. Figure 3 is an example of a binary 
image consisting of a region and its region 
quadtree representation. The region quad- 
tree is based on a regular decomposition. 
On the other hand, the point quadtree is a 
representation of multiattribute data where 
the subdivision lines are determined by the 
input data. In essence, it is a multidimen- 
sional binary search tree. For example, Fig- 
ure 4 is the point quadtree for the data in 
Figure 2 when the cities are inserted in the 
order in which they appear in Figure 2. See 
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Figure 4. A point quadtree corresponding to the points in Figure 2. 

Samet [ 1984,1989a, 1989b] for more details 
on quadtrees and related hierarchical data 
structures. 

1. CHOOSING A REPRESENTATION 

In choosing a representation for a collec- 
tion of objects’ we are faced with two issues. 
First, we must choose a representation 

’ In this section we will speak of arbitrary objects 
although the subsequent discussion will be restricted 
to rectangles. 

for the objects. Second, we must decide 
whether (and if so, how) to organize the 
objects that make up the collection. During 
our decision process we will be confronted 
with many of the same issues that arise in 
the representation of multiattribute data. 
For example, we must decide between a 
static and a dynamic representation, be- 
tween making use of comparative search 
and address computation, and between re- 
trieval on one key that is a combination of 
all the keys and just using a subset of the 
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keys. Of course, there are many other op- 
tions and factors, and thus a choice can 
only be made after a careful consideration 
of the type of operations (including queries) 
we wish to support. Not surprisingly, the 
operations are similar to those commonly 
considered for points. It should be men- 
tioned that there are situations where the 
representation issue is not as crucial. For 
example, implementing an operation using 
plane-sweep methods (see Section 2) im- 
plies a sequential process in which only a 
subset of the objects is generally of interest. 
Thus, there is no need to be concerned 
about how to represent the entire collection 
of objects. 

Hinrichs and Nievergelt [ 19831 and Hin- 
richs [1985a] suggest that the representa- 
tions of the individual objects can be 
grouped into three principal categories, 
which are briefly described below. First, we 
can use a representative point (e.g., the 
centroid). Such an approach is not good for 
proximity queries if the object’s extent (e.g., 
lengths of the sides for a rectangle) is not 
stored together with the coordinate values 
of the representative point. 

Second, we can represent an object by 
its characteristic parts. There are many 
choices, some of which are outlined below: 

(1) The representation can be based on 
the interior of the object. For example, 
we could decompose the object into 
smaller units (e.g., a decomposition of 
a rectangle into squares as would be 
done by a region quadtree). Each unit 
contains a pointer to the complete de- 
scription of the object. 

(2) The representation can be based on the 
boundary of the object. For example, 
polygons are often represented as an 
ordered collection of vertices or, equiv- 
alently, by the line segments compris- 
ing their boundaries. 

(3) The representation can be proce- 
dural-that is, a combination of (1) and 
(2) according to a well-defined set of 
rules. The combination could also be 
based on a decomposition into units 
of a smaller dimension. For example, 
a rectangle is often represented as 
the Cartesian product of two one- 
dimensional spheres (i.e., intervals). 
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There are several difficulties with such 
approaches. One problem is that updating 
(e.g., insertion or deletion) will generally 
require processing several units. Another 
more serious drawback is that at times a 
query is posed in such a manner that none 
of the characteristic parts of an object, say 
0, that satisfies the query will match the 
query’s description, yet 0 does satisfy the 
query. The problem is that not all proper- 
ties are inherited by the parts. For example, 
suppose we are dealing with a collection of 
polygons stored so that each polygon is 
represented by the line segments that con- 
stitute its edges. We wish to determine 
whether a given polygon contains a given 
rectangle. Clearly, no edge of the polygon 
will contain the rectangle. Hence a solution 
to this problem requires that with each edge 
of a polygon (or rectangle) we store an 
identifier that indicates the polygons or 
objects associated with each of its sides. 

Third, we can represent an object by 
partitioning the space from which it is 
drawn into cells that are adapted to the 
objects. Each cell is like a bucket that con- 
tains references to all objects that intersect 
it. The cells may be disjoint or may be 
permitted to overlap. In the latter case, if 
the partition is such that there always ex- 
ists at least one cell that contains the object 
in its entirety, we can avoid the redundancy 
that is a natural consequence of the multi- 
ple references to the object. Of course, the 
fact that cells may overlap will increase 
the costs of certain query operations since 
several cells may cover a specific point. 

Once a representation has been selected 
for the individual objects, we must choose 
how to represent the collection of the ob- 
jects. There are numerous ways of doing SO. 

In this tutorial we are primarily interested 
in hierarchical representations, so the bulk 
of our discussion concentrates on hierar- 
chical methods and on operations for which 
they are useful. As we will see, the method 
that is used depends to a large degree on 
the manner in which the individual ob- 
jects are represented. When objects are 
represented using representative points, 
data structures for multiattribute data 
are applicable (e.g., grid file [Nievergelt 
et al. 19841, k-d trees [Bentley 19751, point 
quadtrees [Finkel and Bentley 19741, PR 
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quadtrees [Orenstein 1982; Samet 19841, 
variations on B-trees [Comer 19791). The 
choice depends on whether we wish to or- 
ganize the data to be stored (i.e., methods 
based on comparative search) or the 
embedding space from which the data are 
drawn (i.e., methods based on address com- 
putation). Similar considerations apply 
when individual objects are represented by 
their characteristic parts, as is the case 
when using variants of the region quadtree. 

The principal tasks that are to be per- 
formed are similar to those for multiat- 
tribute data. They range from the basic 
operations such as insertion and deletion 
to more complex queries that include exact 
match, partial match, range, partial range, 
finding all objects (e.g., rectangles) in a 
given region, finding nearest neighbors 
with respect to a given metric for the data 
domain, and even join queries [Ullman 
19821. The most common of these queries 
involves proximity relations and are clas- 
sified into two classes by Hinrichs [1985a]. 
The first is an intersection query that seeks 
to determine if two sets intersect. This 
could be in the form of a window operation 
or query that finds all the rectangles that 
intersect (i.e., partially overlap) a given re- 
gion. An alternative query is to determine 
all rectangles that intersect (i.e., partially 
overlap) other rectangles. The second is a 
subset relation and can be formulated in 
terms of enclosure (i.e., is A a subset of B) 
or of containment (i.e., does A contain B). 

In describing queries involving these re- 
lations we must be careful to distinguish 
between a point and an object. A point is 
an element in the d-dimensional space from 
which the objects are drawn. It is not an 
element of the space into which the objects 
may be mapped by a particular represen- 
tation. For example, in the case of a collec- 
tion of rectangles in two dimensions, a 
point is an element of the Euclidean plane 
and not a rectangle even though we may 
choose to represent each rectangle by a 
point in some multidimensional space. 

2. PLANE-SWEEP METHODS 

The term plane-sweep is used to character- 
ize a paradigm employed to solve geometric 
problems by sweeping a line (plane in three 

dimensions) across the plane (space in 
three dimensions) and halting at points 
where the line (plane) makes its first or 
last intersection with any of the objects 
being processed. At these points, the solu- 
tion is partially computed so that at the 
end of the sweep a final solution is avail- 
able. In this discussion we are dealing with 
two-dimensional data. Assume, without 
loss of generality, that the line is swept in 
the horizontal direction and from left to 
right. In order to use this solution tech- 
nique, we need to organize two sets of data. 
The first set consists of the halting points 
of the line (i.e., the points of initial or final 
intersection). It is usually organized as a 
list of x coordinate values sorted in ascend- 
ing order. The second set consists of a 
description of the status of the objects that 
are intersected by the current position of 
the sweep line. This status reflects the in- 
formation relevant to the problem that is 
being solved, and it must be updated at 
each halting point. Thus, the data structure 
used to store the status must be dynamic. 
The characteristics of this data structure 
will determine, to a large extent, the effi- 
ciency of the solution. 

The application of plane-sweep methods 
to rectangle problems is much studied. The 
solutions to many of these problems require 
the data to be ordered in a manner that 
makes use of some variant of multidimen- 
sional sorting. In such cases, the execution 
times of optimal algorithms are often con- 
strained by how fast we can sort, which for 
N objects usually means a lower bound of 
O(N. log,N). At times, an increase in 
speed can be obtained by making use of 
more storage. The text of Preparata and 
Shamos [1985] contains an excellent dis- 
cussion of a number of problems to which 
such techniques are applicable. 

We assume that each rectangle is speci- 
fied by four values; the x coordinates of its 
two vertical sides and the y coordinates of 
its two horizontal sides (equivalently, these 
are the x and y coordinates of its lower-left 
and upper-right corners). We also assume 
that each rectangle is closed on its left and 
bottom sides and open on its top and right 
sides. Applying the same open-closed con- 
vention to the boundaries of a rectangle 
finds that its horizontal (vertical) bounda- 
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ries are closed on their left (bottom) ends 
and open on their right (top) ends. Alter- 
natively, the boundaries can be described 
as being semiclosed. 

In this section we focus on the efficient 
solution of the problem of reporting all 
intersections between rectangles and, to a 
lesser extent, on some related problems. We 
assumed that a static environment, that is, 
the identity of all rectangles is known a 
priori. Note that a naive way to report all 
intersections is to check each rectangle 
against every other rectangle, which re- 
quires O(N2) time for N rectangles. The 
plane-sweep solution of the problem con- 
sists of two passes. The first pass sorts the 
left and right boundaries (i.e., x coordinate 
values) of the rectangles in ascending order 
and forms a list. For example, consider the 
collection of rectangles given in Figure 1. 
Letting RI and R, denote the left and right 
boundaries of rectangle R, the result of the 
first pass is a list consisting of 3, 6, 8, 21, 
23, 25, 26, 31, 33, 34, 35, 37, 38, 38 corre- 
sponding to Al, EL, A,, IA, CL I%, E,, S, G, 
B,, F,, C,, D,, G,, respectively. 

The second pass sweeps a vertical scan 
line through the sorted list from left to right 
halting at each one of these points. This 
pass requires solving a quasi-dynamic ver- 
sion of the one-dimensional intersection 
problem. At any instant, all rectangles that 
intersect the scan line are considered active 
(e.g., rectangles D, E, and G for a vertical 
scan line through x = 24 in Figure 1). We 
must report all intersections between a 
newly activated rectangle and currently ac- 
tive rectangles that lie on the active scan 
line. The sweep process halts every time a 
rectangle becomes active (causing it to be 
inserted in the set of active rectangles) or 
ceases to be active (causing it to be deleted 
from the set of active rectangles). The key 
to a good solution is to organize the active 
rectangles so that intersection detection, 
insertion, and deletion are executed effi- 
ciently. 

The first pass involves sorting, and thus 
it requires O(N . log, N) time. Insofar as 
the second pass is concerned, each rectan- 
gle is nothing more than a one-dimensional 
vertical line segment. There are several 
data structures that can be used to repre- 

sent line segments. If we only care about 
reporting the intersections of boundaries 
(i.e., vertical boundaries with horizontal 
boundaries), then a balanced binary tree is 
adequate to represent the bottom and top 
boundaries (i.e., y coordinate values) of the 
active line segments [Bentley and Ottmann 
19791. Unfortunately, such a representa- 
tion fails to account for intersections that 
result when one rectangle is totally con- 
tained within another rectangle. 

In the rest of this section we focus on 
solutions that use the segment, interval, 
and priority search trees to represent the 
active line segments. We first explain the 
segment tree and then show how the order 
of the space requirements of the solution 
can be reduced by using either the interval 
or priority search trees while still retaining 
the same order of execution time. We con- 
clude by briefly explaining how some re- 
lated problems can be solved using the same 
techniques. 

2.1 Segment Trees 

The segment tree is a representation for a 
collection of line segments devised by Bent- 
ley [1977]. It is useful for detecting all the 
intervals that contain a given point. It is 
best understood by first examining a sim- 
plified version that we call a unit-segment 
tree, which is used to represent a single line 
segment. For the moment, assume that the 
endpoints of the line segments of our col- 
lection are drawn from the set of integers 
f i ] 0 5 i 5 2&). Let S be a line segment with 
endpoints 1 and r (I < r). S consists of the 
set of consecutive unit intervals [j: j + 1) 
(1 5 j < r). The unit-segment tree is a 
complete binary tree of depth h such that 
the root is at level h, and nodes at level 0 
(i.e., the bottom) represent the sequence of 
consecutive intervals [j: j + 1) (0 5 j < 2h). 
A node at level i in the unit-segment tree 
represents the interval [p: p + 2’) (i.e., the 
sequence of 2’ consecutive unit intervals 
starting at p where p mod 2’ is 0). 

Representing line segment S in a unit- 
segment tree is easy. We start at the root 
of the tree and check if its corresponding 
interval is totally contained in S. If yes, 
then we mark the node with S. In such a 
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A A 

Figure 5. The unit-segment tree for the segment [3 : 11) labeled 
A in the range [0: 16). 

case, we say that S covers the node’s inter- 
val. Otherwise, we repeat the process for 
the left and right sons of S. This process 
visits at most four nodes at each level while 
marking at most two of them. Thus, it is 
easy to see that inserting a line segment 
into a unit-segment tree in a top-down 
manner can be achieved in O(h) time. An 
equivalent bottom-up description of this 
process is that a node is marked with S if 
all (i.e., both) the intervals corresponding 
to its sons are totally contained in S, in 
which case the sons are no longer marked 
with S. 

As an example of the unit-segment tree, 
consider a collection of line segments with 
integer endpoints that are in the range 
[0: 16). In this case, there are 16 possible 
intervals, each of unit length. The unit- 
segment tree for a line segment, named A, 
of length 8 whose endpoints are at 3 and 11 
is given in Figure 5. Note that the interval 
[i: i + 1) is represented by the node labeled 
i. From the figure it is easy to observe the 
close analogy between the unit-segment 
tree and a one-dimensional region quadtree 
[Rosenfeld and Kak 19821, where the unit 
intervals are the one-dimensional analog of 
pixels. The analogy is completed by letting 
BLACK (WHITE) correspond to the la- 
beled (unlabeled) nodes and merging 
brother nodes of the same color. 

The unit-segment tree is inadequate for 
two reasons: (1) it can only represent one 

line segment, and (2) it is only defined for 
line segments with integer endpoints. The 
segment tree is an adaptation of the unit- 
segment tree that enables the use of one 
data structure to represent a collection of 
line segments with arbitrary endpoints by 
removing the restriction that the intervals 
be of uniform length, and by replacing the 
mark at each node by a linked list of the 
names of the line segments that contain 
that node. This is achieved in the following 
manner. Given a set of N line segments, we 
first sort their endpoints and remove du- 
plicates to obtain yo, yl, . . . , ym (m < 2N). 
Next, we form the segment tree in the same 
way as the unit-segment tree with the ex- 
ception that interval [j: j + 1) is replaced 
by the interval [yj: yj+l) (0 5 j c 2h and 
2h-’ 5 m < 2h). Each line segment S with 
endpoints y1 and yr consists of the sequence 
of consecutive intervals [yj: yj+,) (1 5 j 
< r). A node at level i in the segment tree 
represents the interval [y,: y,,,~) (i.e., the 
sequence of 2’ consecutive intervals start- 
ing at yP, where p mod 2’ is 0). Each node 
is marked with the names of all the line 
segments that cover the node’s correspond- 
ing interval and that do not cover the cor- 
responding interval of the parent node. As 
in the case of the unit-segment tree, a node 
and its brother cannot be both marked with 
the same line segment. The set of line seg- 
ments associated with each node is repre- 
sented as a doubly linked list. 
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Figure 6. The segment tree for the set of line segments corresponding 
to the vertical boundaries of the rectangles in Figure 1. Terminal node 
i corresponds to the interval [yC : y,,,). 

For example, Figure 6 is the segment tree 
for the set of line segments that correspond 
to the vertical boundaries of the rectangles 
in Figure 1. Although there are seven line 
segments, the segment tree contains 12 
intervals since there are only 13 different 
endpoints. Since the segment tree is a com- 
plete binary tree, in this case it has four 
unused intervals. Each terminal node is 
labeled with its corresponding interval 
number and the leftmost endpoint of the 
interval-that is, node i corresponds to the 
interval [yi: YL+~ ). Nodes are also labeled 
with the sets of names of the line segments 
that cover their corresponding intervals. 
For example, the interval [23 : 34) is labeled 
with {A, C ) since it is covered by these line 
segments. 

Inserting a line segment in the segment 
tree is analogous to inserting it in the unit- 
segment tree. The only difference is that 
the line segment must also be placed in the 
list of the line segments that is associated 
with the node. It can be placed anywhere 
in the list and thus we usually attach it to 
the front of the list. In a domain of N line 
segments, insertion (into the tree and list) 
takes 0 (log, N) time per line segment. 

Deleting a line segment from a segment 
tree is somewhat more complex. We must 
remove the line segment from the doubly 
linked list that is associated with each node 

that contains it. This could be expensive, 
since in the worst case it requires the trav- 
ersal of O(log, N) linked lists, each contain- 
ing O(N) entries. This difficulty is avoided 
by maintaining an auxiliary table with one 
entry for each of the N line segments. Each 
table entry points to a list of pointers. Each 
pointer points to a list entry for the line 
segment in a node, say P, of the segment 
tree such that P’s interval is covered by the 
line segment. This table is built as the line 
segments are entered into the segment tree. 
It contains at most N entries and can be 
accessed or updated in 0 (log, N) time when 
implemented as a balanced binary tree (or 
even in constant time if implemented as an 
array, in which case each line segment must 
be represented by a unique integer in the 
range 1 . . . N). We can use an array instead 
of a dictionary because we know the iden- 
tities of the rectangles in advance (i.e., a 
static environment). 

A segment tree for N line segments has 
a maximum of 2 . N leaf nodes. Each line 
segment covers the intervals of at most 
2 . [log, Nl nodes of the segment tree. At 
each of these nodes, deletion of the line 
segment can be done in constant time, 
since the segment lists that are associated 
with these nodes are implemented as dou- 
bly linked lists. Thus, the total cost of 
deleting a line segment is O(log, N). The 
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segment tree has a total of O(N) nodes, 
and since each line segment can appear 
in (i.e., cover) O(log,N) nodes, the total 
space required (including the auxiliary 
table) in the worst case is O(N . logn N). 
Interestingly, Bucher and Edelsbrunner 
[1983] have shown that the average space 
requirement for a segment tree is also 
O(N - log,N). 

Given F rectangle intersections, using a 
segment tree to determine the set of rectan- 
gles that intersect each other is somewhat 
complex [Bentley and Wood 19801 if we 
want to do it in O(N . log, N + F) time. In 
particular, it involves considerably more 
work than just inserting a line segment and 
reporting the rectangles associated with the 
line segments that were encountered during 
the insertion process. Conceptually, the 
problem is quite straightforward-for each 
line segment S, with starting and ending 
points 1 and r, respectively, we want the set 
of line segments A such that Ai fl S is 
nonempty for each Ai E A. Recalling that 
the segment tree is good for detecting all 
intervals that contain a given point, we 
formulate the problem as an infinite set of 
point queries-that is, for each point pi in 
line segment S find all line segments that 
contain it. This process requires O(log,N) 
time for each point that is queried. In order 
to avoid looking at every point in S (an 
infinite number!), we can restrict our 
search to the endpoints of the line segments 
that are overlapped by S. An obvious, but 
unacceptable solution is to explicitly store 
with each line segment the set of segments 
that intersect it, at a total storage cost of 
O(N”). 

A more reasonable solution, which makes 
use of the above restriction on the search, 
is given by Six and Wood [ 1980,1982], who 
decompose the search into two disjoint 
problems. They make use of the obvious 
fact that any line segment whose starting 
point is greater than r or whose ending 
point is less than 1 does not intersect the 
line segment S. The first problem consists 
of determining all line segments with start- 
ing points less than 1 whose intersection 
with S is nonempty. The second problem 
consists of determining all line segments 
with starting points that lie between 1 and 

r. Thus, there is really only a need to be 
concerned with an ordering that is based 
on the starting points. 

The first problem is solved by performing 
a point query for point 1 on the segment 
tree representation of the line segments. In 
order to determine all the line segments 
that contain 1, we simply locate the smallest 
interval that contains it. Since a segment 
tree for N line segments has a maximum of 
2 . N leaf nodes, this search visits at most 
flog,Nl + 1 nodes. For each node that is 
visited, we traverse its associated list of line 
segments and report them as containing 1. 
This process requires O(log,N + FI) time, 
where F, is the number of line segments 
that contain 1. Since a segment tree is used, 
it needs 0 (N . log, N) space. 

The second problem is solved by per- 
forming a range query for range [l: r) on 
the set of starting points of the line seg- 
ments. This query is one for which a range 
tree [Bentley 1979, Bentley and Maurer 
19801 that stores the starting points of the 
line segments is ideal. A range tree is a 
balanced binary tree where the data points 
are stored in sorted order in the leaf nodes, 
which are linked in this order by use of a 
doubly linked list. Therefore, insertion and 
deletion are both O(log,N) processes. A 
range query consists of locating the node 
corresponding to the start of the range, say 
L, and the closest node to the end of the 
range, say R, and then reporting the line 
segments corresponding to the nodes that 
lie between them by traversing the linked 
list of nodes. This process requires O(log, N 
+ FL,) time, where F[, is the number of line 
segments with starting points in [l: r). 
Since a balanced binary tree is used, it 
needs O(N) space. The combination of the 
point and range query solution requires 
O(N . log, N) space and O(N . log, N + F) 
time, where F is the number of rectangle 
intersections. 

2.2 Interval Trees 

Suppose we try to determine the set of 
rectangles that intersect each other by just 
using a segment tree. The problem with 
this approach is that upon insertion of a 
line segment, say S, in a segment tree, we 
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cannot find all of the existing line segments 
in the tree that are totally contained in S, 
or partially overlap S, without examining 
every node in each subtree that contains S. 
For example, consider the segment tree of 
Figure 6 without line segment A (i.e., for 
segments B, C, D, E, F, and G). Upon 
inserting line segment A in the node cor- 
responding to interval [14 : 23), the only 
way to determine the existence of line seg- 
ment F (corresponding to the interval 
[15 : 19)) that is totally contained in A is to 
descend to the bottom of the subtree rooted 
at [ 14 : 23). A similar example can be con- 
structed to show that this problem also 
arises in the case of partial overlap. Unfor- 
tunately, checking for total containment or 
partial overlap in this way takes O(N) time 
for each line segment, or O(N’) for all the 
line segments. 

The above problem can be overcome in 
part by making the following modifications 
to the segment tree. Link each marked node 
(i.e., a node whose corresponding interval 
overlaps at least one line segment), say P, 
to some of the nodes in P’s subtrees that 
are marked. This could be implemented by 
an auxiliary binary tree whose elements are 
the marked nodes. Since each line segment 
can be associated with more than one node 
in the segment tree, the number of inter- 
sections that can be detected is bounded by 
2 . N2 . logn N, while the number of differ- 
ent intersections is bounded by N2. Remov- 
ing duplicates will require sorting, and even 
use of the bin method [Weid 19781, which 
is linear, still leaves us with an O(N2 . 
log2 N) process. The duplicate entries, how- 
ever, can be avoided by redefining the seg- 
ment tree so that a line segment is only 
associated with one node-the nearest 
common ancestor2 of all the intervals con- 
tained in the line segment (e.g., the node 
corresponding to the interval [3 : 38) for line 
segments A and C in Figure 6). The absence 
of duplicate entries also means that the 
space requirements can be reduced to 
O(N). 

*The principle of associating key information with 
the nearest common ancestor is similar to Chazelle 
and Guibas’ [1986a, 1986131 fractional cascading. It is 
also used as the basis of an efficient solution of the 
point location problem by Edelsbrunner et al. [1986]. 

The above modifications serve as the 
foundation for the development of the 
interval tree of Edelsbrunner [1980a, 
1983a, 1983b] and the tile tree of McCreight 
[ 19801. The difference between them is that 
the tile tree is based on a regular decom- 
position, while the interval tree is not. In 
the rest of this section, we only discuss the 
interval tree. 

The interval tree is designed specifically 
to detect all intervals that intersect a given 
interval. It is motivated by the dual goals 
of reducing the space requirement to O(N) 
while maintaining an execution time of 
O(N. log, N + F). The interval tree solu- 
tion also makes use of the decomposition 
of the search into the two disjoint tasks of 

(1) determining all line segments that 
overlap the starting point of the query 
line segment, and 

(2) determining all line segments whose 
starting point lies within the query line 
segment. 

Once again, assume that we are given a 
set of N line segments such that line seg- 
ment Si corresponds to the interval [1, : ri)- 
that is, li and ri are its left and right end- 
points, respectively. The endpoints of the 
N line segments are sorted (with duplicates 
removed) to obtain the sequence yo, yl, . . . , 
y,,, (m < 2N and 2h-’ % m < 2h). The 
interval tree is a three-level structure, 
where the first (and principal) level is 
termed the primary structure, the second 
level is termed the secondary structure, and 
the third level is termed the tertiary struc- 
ture. We shall illustrate our discussion with 
Figure 7, the interval tree for the set of 
line segments corresponding to the vertical 
boundaries of the rectangles in Figure 1. 

The primary structure is a complete 
binary tree with m + 1 external (i.e., ter- 
minal) nodes such that when the tree is 
flattened and the internal nodes are re- 
moved, external node i corresponds to yi. 
In Figure 7, the primary structure is de- 
noted by solid lines. In our example, 
although there are 7 line segments, the 
primary structure contains only 13 exter- 
nal nodes as there are only 13 different 
endpoints. Each terminal node is labeled 
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Figure 7. The interval tree for the set of line segments corresponding to the 
vertical boundaries of the rectangles in Figure 1. The primary structure is shown 
by solid lines. The secondary structure is shown by dotted lines. The tertiary 
structure is shown by broken lines, with the active nodes circled with thick 
lines. The interrelationships between the endpoints of the line segments are 
also shown. 

with its corresponding endpoint [i.e., yi for 
terminal node i (0 % i < 2N)]. Each internal 
node is assigned an arbitrary value, stored 
in the field VAL, that lies between the 
maximum value in its left subtree and the 
minimum value in its right subtree (usually 
their average). For example, the root node 
in Figure 7 is labeled with 22. 

Given a line segment corresponding to 
the interval [l :r), we say that its nearest 
common ancestor in the interval tree is the 
internal node that contains 1 and r in its 
left and right subtrees, respectively. For 
example, in Figure 7, node 22 is the nearest 
common ancestor of line segment A, which 
corresponds to the interval [6, 36). 

Each internal node in the primary struc- 
ture, say u, serves as the key to a pair of 
secondary structures LS and RS that rep- 
resent the sets of left and right endpoints, 
respectively, of the line segments for which 
u is the nearest common ancestor (i.e., they 
contain U’S value). Elements of the sets LS 
and RS are linked in ascending and de- 
scending order, respectively. In Figure 7, 

the secondary structure is denoted by dot- 
ted lines emanating from each internal 
node that has a nonempty secondary struc- 
ture. The sets LS and RS are distinguished 
by dotted lines emanating from the internal 
node to its left and right sides, respectively. 
When LS and RS contain more than one 
entry, we show them linked in increasing 
and decreasing order, respectively (e.g., LS 
of the root node shows 6 pointing to 21 
since the corresponding intervals are 
[6 : 36) and [21: 36)). Each starting (ending) 
point appears in LS (RS) as many times as 
there are line segments that have it as a 
starting (ending) point. For example, 36 
appears twice in RS of the root node in 
Figure 7 as it is the ending point of line 
segments A and C. In order to support rapid 
insertion and deletion, the sets LS and RS 
are implemented as balanced binary trees 
(as well as doubly linked lists). 

Each internal node in the primary struc- 
ture has eight pointers-two to its left and 
right subtrees in the primary structure (LP 
and RP), two to the roots of LS and RS in 
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the secondary structure, one to the mini- 
mum value in LS, one to the maximum 
value in RS, and two (LT and RT) to its 
left and right subtrees in the tertiary struc- 
ture, which we discuss below. 

An internal node in the primary struc- 
ture is marked active if its corresponding 
secondary structure is nonempty or both of 
its sons have active descendants; otherwise, 
it is marked inactive. The active nodes of 
the primary structure form the tertiary 
structure, which is a binary tree. It is rooted 
at the root of the primary structure and is 
linked via the LT and RT fields of the 
internal nodes of the primary structure. If 
node v of the primary structure is inactive, 
then LT(v) and RT(v) are Q [i.e., pointers 
to Nil]. If v is active, then LT(v) points to 
the closest active node in the left subtree 
of v [i.e., in LP(v)], and RT(v) points to 
the closest active node in the right subtree 
of v [i.e., in RP(v)]. If there are no closest 
active nodes in the left and right subtrees 
of v, then LT(v) and RT(v), respectively, 
are Q (i.e., pointers to NLL). In Figure 7, 
the tertiary structure is denoted by broken 
lines linking all of the active nodes (e.g., 
nodes 22, 12.5, 7, 17, 35, and 25), which are 
also marked with thicker ellipses. The ter- 
tiary structure is useful in collecting the 
line segments that intersect a given line 
segment and enables us to avoid examining 
primary nodes whose corresponding line 
segments do not. It can be shown that more 
than half of the elements of the tertiary 
structure (i.e., active nodes) have nonempty 
secondary structures. 

Inserting the line segment [I: r) in the 
interval tree is very simple. We start at the 
root and locate the first node v such that 
1 < VAL(v) < r. In this case, we insert 1 
into LS(v) and r into RS(v). Both of these 
processes can be achieved in O(logz N) 
time. Updating the tertiary structure re- 
quires us to traverse it in parallel with the 
primary structure and takes O(log, N) 
time. Deletion of a line segment is per- 
formed in a similar manner and with the 
same complexity. 

Reporting the rectangle intersections in 
an interval tree is straightforward, al- 
though there are a number of cases to con- 
sider. Again, this task is performed while 

inserting a vertical line segment, say S, 
corresponding to the interval [1: r). During 
this process we search for and report the 
line segments that overlap S. Assume that 
the interval tree is rooted at TI . The search 
has the following three stages: 

(1) Start at T1 and find the first node v 
such that 1< VAL(v) < r. 

(2) Start at v and locate 1 in the left subtree 
of v. 

(3) Start at v and locate r in the right 
subtree of v. 

This search involves the secondary struc- 
tures of the nodes in the primary structure. 
The tertiary structure is used to limit the 
number of nodes in the primary structure, 
with empty secondary structures, that must 
be examined. Note that all of the overlap- 
ping line segments will be reported, and 
each will be reported only once since it is 
associated with the secondary structure of 
just one node in the primary structure. 

In the following we present the main 
ideas of the three stages. Figure 8 aids 
the visualization of the symbols used in 
the explanation for [I: r). All secondary 
and tertiary structures that are visited 
are marked with dotted and broken lines, 
respectively. 

First, we explain stage (1). (Tij denotes 
the set of nodes encountered during the 
search for v. We use the insertion of line 
segment [6: 20) into the interval tree of 
Figure 7 as our example. The secondary 
structures associated with each Ti must be 
checked for a possible overlap with S. This 
is quite simple. Either 2 < r < VAL(Ti) or 
VAL(T,) < 1< r. 

If r < VAL(Ti), then we need only report 
the line segments in the secondary struc- 
ture of Ti whose starting points are less 
than r (e.g., line segment A upon examining 
the internal node with value 22). To achieve 
this we visit LS( Ti) in ascending order until 
we encounter a line segment whose starting 
point exceeds r. We then search the left 
subtree of T; [i.e., LP(Ti)]. 

Similarly, if VAL(Ti) < I, we need only 
report the elements of the secondary struc- 
ture of Ti whose ending points are greater 
than 1. To do this, we visit RS(Ti) in de- 
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Figure 8. Example of an interval tree search for the 
interval [1 : r). All secondary structures that are visited 
are marked with dotted lines. All tertiary structures 
that are visited are marked with broken lines. 

scending order until encountering a line 
segment whose ending point is less than 1. 
The search is then continued in the right 
subtree of Z’i [i.e., RP(Ti)]. 

Both of these cases are executed in time 
proportional to the number of intersections 
that are reported. Once node IJ has been 
located we report all elements of its second- 
ary structure as intersecting S. In our ex- 
ample, we would report line segment G, 
since v is the internal node with value 12.5. 

Now, we explain stages (2) and (3). They 
are very similar and thus we just discuss 
stage (2). We use the insertion of line seg- 
ment [6 : 34) into the interval tree of Figure 
7 as our example. In this case, v is the root 
of the tree (the internal node with value 
22). Let (Lil denote the set of nodes en- 
countered during the search for 1 in this 
stage. Recall that 1 < VAL(v). Either 1 < 
VAL(L;) or VAL(Li) < 1. 

If 1 < VAL(L,), then 5’ intersects every 
line segment in the secondary structure of 
Li as well as all the line segments in the 
secondary structures in the right subtree of 
Lie The first set consists of just the line 
segments in RS(L;) (e.g., line segment G 
upon examining the internal node with 
value 12.5). The second set is obtained by 
visiting all the active nodes in the right 
subtree of Li, RP(Li) (e.g., line segment F 
during the processing of the internal node 
with value 12.5 since F is associated with 
the active internal node with value 17). In 
order to avoid visiting irrelevant nodes we 
make use of the tertiary structure using the 
pointers LT(Li) and RT(Li). It can be 
shown that more than half of the elements 
of the tertiary structure have nonempty 
secondary structures, and thus the time 
necessary to execute this process is propor- 
tional to the number of intersections that 
are reported. The search is continued in the 
left subtree of Lip LP(Li). 

If VAL(L;) < 1, then we report the line 
segments in the secondary structure of Li 
whose ending points are greater than 1. To 
do this, we visit RS(Li) in descending order 
until encountering a line segment whose 
ending pont is less than 1. This process is 
executed in time proportional to the num- 
ber of intersections that are reported. The 
search is continued in the right subtree of 
LL, RP(Li). 

Solving the rectangle intersection prob- 
lem using an interval tree requires O(N) 
space and O(N . log, N + F) time, where F 
is the number of rectangle intersections.3 
The space requirements are obtained by 
observing that for N line segments we 
need at most 2 . N terminal nodes in the 
primary structure and likewise for the 
secondary structures. The tertiary struc- 
ture is constructed from nodes in the pri- 
mary structure, and thus it requires no 
additional space except for the pointer 
fields. Making use of the fact that the in- 

’ For the tile tree, the execution time is O(N . 
log,(max(N, K)) + F), where the horizontal bounda- 
ries of the rectangles are integers between 0 and 
K - 1. The execution time becomes O(N . log, N + 
F) if the 2. N y coordinate values are first sorted and 
then mapped into the integers from 0 to 2 . N - 1. 
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terval tree is a complete binary tree, the 
number of internal nodes in the primary 
and secondary structures is bounded by 2 . 
N- 1. 

The execution time requirements are ob- 
tained by noting that searching the primary 
structure for the starting and ending points 
of a line segment takes O(log, N) time. The 
number of nodes in the secondary structure 
that are visited is of the same order as the 
number of rectangle intersections that are 
found. Since at least one-half of the active 
nodes have nonempty secondary structures, 
the number of nodes in the tertiary struc- 
ture that are visited is no more than twice 
the number of nodes visited in the second- 
ary structure. Constructing the interval 
tree takes O(N . log, N) time since the end- 
points of the line segments that form the 
sides of the rectangles must be sorted. 

2.3 Priority Search Trees 

Using an interval tree, as described in Sec- 
tion 2.2, yields an optimal worst-case space 
and time solution to the rectangle intersec- 
tion problem. The interval tree solution 
requires that we know in advance the end- 
points of all of the vertical intervals since 
they must be sorted and stored in a com- 
plete binary tree. Thus, given N rectangles, 
the storage requirement is always O(N). 
The solution can be slightly improved 
by adapting the priority search tree of 
McCreight [1985] to keep track of the 
active vertical intervals. In this case, the 
storage requirements for the sweep pass 
only depend on the maximum number of 
vertical intervals that can be active at any 
one time, say M. Moreover, there is no need 
to know their endpoints in advance, and 
thus there is no need to sort them. This 
also has an effect on the execution time of 
the algorithm since the data structure used 
to keep track of the endpoints of the verti- 
cal intervals is the determinative factor in 
the amount of time necessary to do a 
search. Thus, when using the priority 
search tree, the sweep pass of the solution 
to the rectangle intersection problem can 
be performed in O(N . log, M + F) time, 
rather than O(N . log, N + F) time. How- 
ever, sorting the endpoints of the horizontal 

intervals, which is the first pass of the plane 
sweep, still requires O(N . log, N) time. 

A priority search tree keeps track of 
points in a two-dimensional space. It is 
built in the following manner. Assume that 
no two data points have the same x coor- 
dinate value. Sort all the points along the 
x coordinate and store them in the leaf 
nodes of a balanced binary search tree, say 
T. We proceed from the root node toward 
the leaf nodes. With each internal node of 
T, say I, associate the point in the subtree 
rooted at I with the maximum value for its 
y coordinate that has not already been 
stored at a shallower depth in the tree. If 
such a point does not exist, then leave the 
node empty. For example, treating the ver- 
tical boundaries [ ya, yT) of the rectangles 
in Figure 1 as points (x, y), Figure 9 is their 
corresponding priority search tree. For N 
points, the priority search tree requires 
O(N) storage. 

The priority search tree is designed for 
solving queries involving semi-infinite 
ranges in two-dimensional space. Perform- 
ing a semi-infinite range query ([L,: R,], 
[L,: a~]) using a priority search tree is done 
as follows. Descend the tree looking for the 
nearest common ancestor of L, and R,, say 
Q. Now, recursively, apply the following 
search procedure to the subtree rooted at 
Q. Let T denote the root of the subtree that 
is currently being processed, and let P be 
the point associated with it. If no such P 
exists, then we are finished with the entire 
subtree rooted at T since all points in 
its subtrees have already been examined 
and/or reported. Examine the y coordinate 
value of P, say Py . If P, < L,, then we are 
finished with the entire subtree rooted at T 
since P is the point with the maximum y 
coordinate value in the subtree. Otherwise, 
perform the following steps: 

(1) 

(2) 

Check if the x coordinate value of P is 
in the range [L, : R,]; if yes, then output 
P as satisfying the query. 
Determine where the search is to be 
continued. If both T and its right son 
are on the path from Q to L,, then 
continue in the right son of T; else if 
both T and its left son are on the path 
from Q to R,, then continue in the left 
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E A G F C D 
(3,8) (6,36) (11.14) (15,19) (21,36) (23,27) 

Figure9. The priority search tree for the set of line segments 
corresponding to the vertical boundaries [ye, yT) of the rectangles 
in Figure 1. Each vertical boundary [yB, yT) is treated as a point 
(x, y) in a two-dimensional space. The leaf nodes contain the ye 
values and the internal nodes contain the maximum yT values. 
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son of T; else continue in the two sons 
of T. 

For Npoints, this process requires O(log, N 
+ F) time, where F is the number of points 
found. 

There are two keys to understanding the 
use of the priority search tree in solving 
the rectangle intersection problem. As- 
sume, again, that all intervals are semi- 
closed (i.e., they are closed on their left 
ends and open on their right ends). First, 
each one-dimensional interval, say [a : b), is 
represented by the point (a, b) in two- 
dimensional space. This two-dimensional 
space is represented by a priority search 
tree. Second, we observe that the one- 
dimensional interval [a : b) intersects the 
interval [c: d) if and only if a < d and 
c < b. An equivalent observation is that the 
point (c, d) lies in the range ([-m: b), 
(a: ml). This equivalence means that in or- 
der to find all one-dimensional intervals 
that intersect the interval [a : b), we need 
only perform the semi-infinite range query 
([--03 : b), (a : m]) in the priority search tree. 
If the priority search tree contains M one- 
dimensional intervals, then this operation 

requires O(log, M + F) time, where F is the 
number of intersecting intervals found. 

In order for the space and time bounds 
to be comparable with the interval tree, we 
must also show that a one-dimensional in- 
terval can be inserted and deleted from a 
priority search tree in O(log, M) time. This 
is achieved by implementing the priority 
search tree as a “red-black” balanced bi- 
nary tree [Guibas and Sedgewick 19781. 
The red-black balanced binary tree has the 
property that, for M items, insertions and 
deletions take O(log,M) time with O(1) 
rotations [Tarjan 19831. McCreight [ 19851 
shows that the priority search tree adapta- 
tion of the red-black balanced binary tree 
can be maintained at a cost of O(log, M) 
per rotation. The use of a red-black bal- 
anced binary tree does not affect the O(M) 
storage requirements of the priority search 
tree. Hence the desired time and space 
bounds are achieved. 

When the priority search tree is imple- 
mented as a red-black balanced binary tree, 
its node structure differs from the way it 
was defined earlier in this section. In par- 
ticular, the internal nodes now also contain 
intervals. The interval associated with an 
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internal node, say I, is the one whose left 
endpoint, say L, is the median value of the 
left endpoints of the intervals in I’s sub- 
trees. All intervals in I’s left subtree have 
left endpoints that are less than L, whereas 
the intervals in I’s right subtree have left 
endpoints that are greater than L. 

Comparing the interval and priority 
search tree solutions to the rectangle inter- 
section problem, we find that the priority 
search tree is considerably simpler from a 
conceptual standpoint than the interval 
tree. The execution time requirements of 
the priority search tree are lower when the 
sort pass is ignored. Also, the priority 
search tree enables a more dynamic solu- 
tion than the interval tree because for the 
priority search tree only the endpoints of 
the horizontal intervals need to be known 
in advance. On the other hand, for the 
interval tree the endpoints of both the hor- 
izontal and vertical intervals must be 
known in advance. 

2.4 Applications 

Data structures such as the segment tree 
can be used within the plane-sweep para- 
digm to solve a number of problems other 
than rectangle intersection. In fact, the seg- 
ment tree was originally developed by Bent- 
ley [ 19771 as part of a plane-sweep solution 
to compute the area (also termed a measure 
problem [Klee 19771) of a collection of rec- 
tangles where overlapping regions are only 
counted once. It can also be used to com- 
pute the perimeter. 

The central idea behind the use of the 
segment tree to compute the area is to keep 
track of the total length of the parts of the 
vertical scan line, say Li at halting point 
Xi, that overlap the vertical boundaries of 
rectangles that are active just to the left of 
Xi. This quantity is adjusted at each halting 
point. The total area is obtained by accu- 
mulating the product of this quantity with 
the difference between the current halting 
point and the next halting point-that is, 
Li * (Xi - Xi-l). In order to facilitate this 
computation, each node of the segment tree 
contains the length of the overlap of the 

marked4 components of its corresponding 
interval with the vertical scan line. 

As an example of the computation of the 
area, consider the collection of rectangles 
in Figure 1. When the scan line passes over 
x = 7, the lengths of its overlaps with the 
nodes corresponding to intervals [6 : 8), 
[3 : 8), [8 : 14), [3 : 14), [14 : 23), [3 : 23), 
[23 : 34), [34: 36), [34: 38), [23 : 38), [23 : w), 
and [3: 03) are 2, 5, 6, 11, 9, 20, 11, 2, 2, 13, 
13, and 33, respectively. In addition, for 
each marked node of the segment tree, we 
record the number of times, if any, it is 
marked. In our example, when x = 7, the 
nodes corresponding to the intervals [6 : 8), 
[3:8), [8:14), [14:23), [23:34), and 
[34:36) are marked once; however, at no 
time in this example will any node be 
marked more than once. These values are 
adjusted whenever a vertical boundary of a 
rectangle is inserted into, or deleted from, 
the segment tree-that is, at each halting 
point. For N rectangles, this adjustment 
process requires O(log, N) steps per halting 
point or O(N . log, N) for the area of the 
entire collection. The total space require- 
ments is O(N). 

As stated earlier, the unit-segment tree 
is analogous to a region quadtree in one 
dimension. This analogy is exploited by van 
Leeuwen and Wood [1981] in solving mea- 
sure problems in higher dimensional spaces 
(i.e., cl> 2). Lee [1983] also uses the same 
technique to develop an algorithm that 
finds the maximum number of rectangles 
whose intersection is not empty (also 
termed a maximum clique [Harary 19691). 
As an example of this method consider the 
problem of computing the volume that is 
occupied by the union of a collection of 
three-dimensional rectangular parallel- 
epipeds. van Leeuwen and Wood [ 19811 use 
a plane-sweep solution that sorts the 
boundaries of the parallelepipeds along one 
direction (say x) and then sweeps a plane 
(instead of a line) parallel to the y-z plane 
across it. At any instant of time, the plane 
consists of a collection of cross sections 

4 By marked we mean that the node’s interval is com- 
pletely contained in a vertical boundary of one of the 
rectangles. 
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(i.e., two-dimensional rectangles). This col- 
lection is represented as a region quadtree 
in a manner analogous to the segment tree. 

The region quadtree is built as follows. 
Assume that there is a maximum of N 
boundaries in all directions. First, sort the 
y and z boundaries of the parallelepipeds 
(removing duplicates) obtaining yo, yl, . . . , 
yp (P < 2W, 20, 21, . . . , 2, (q < 2M, and 
2h-’ I max(p, q) < 2h. Assume without 
loss of generality that the boundaries are 
distinct. If not, then there are fewer subdi- 
visions. Also, add enough subdivision lines 
so that there are 2h subdivisions in each of 
y and z. Next, form a grid with an origin at 
the lower left corner such that the two- 
dimensional interval with a lower left cor- 
ner at (i, j) corresponds to the rectangular 
parallelepiped with (yi, z;) as its lower left 
corner. Each two-dimensional interval is 
marked with the name of the parallelepiped 
of which it is a part. At this point, only the 
terminal nodes of the quadtree are marked. 
The nonterminal nodes are marked as fol- 
lows. Visit the intervals in an order such as 
that used in building a region quadtree from 
a binary array [Samet 19801. Whenever 
four brother two-dimensional intervals, say 
1i, are in the same parallelepiped, say P, 
then their father node, say F, gets the label 
of the parallelepiped and P is no longer 
associated with any of Ii. Whenever no 
parallelepipeds are associated with four 
brother intervals, then they are merged and 
their corresponding nodes are removed 
from the quadtree. Building the region 
quadtree is an O(N’) process. 

As the scan line is swept, each halting 
point causes the insertion and/or deletion 
of two-dimensional intervals from the 
quadtree. Insertion and deletion of a two- 
dimensional interval is an O(N) process 
since a rectangle can appear in at most 
O(N) nodes. Thus, we see that a plane- 
sweep algorithm employing the region 
quadtree will execute in time O(N . 
log,N + N*) or O(N*) since there are O(N) 
halting points. This is an improvement over 
a solution of Bentley [1977], which recur- 
sively performs a plane sweep across each 
of the planes (i.e., it reduces it to N one- 
dimensional subproblems) for an execution 

time of O(N* . log2 N). Generalizing these 
results to d dimensions reduces the time 
requirement of Bentley’s solution from 
O(Nd-’ . log2N) to O(Nd-‘); however, this 
increases the space requirement from 0 (N) 
to O(N*). This is achieved by recursively 
reducing the d-dimensional problem to N 
problems in (d - 1) dimensions until we 
obtain the three-dimensional case and then 
solving each three-dimensional problem as 
discussed above. 

Another related problem is finding the 
containment set (also known as the inclu- 
sion or enclosure set) of a collection of 
rectangles. The containment set is the set 
of all pairs of rectangles A and B such that 
A contains B. Variants of the segment tree 
are used by Vaishnavi and Wood [1980] to 
solve this problem in O(N . log; N + F) 
time and O(N. log: N) space. The space 
requirement is reduced to O(N) by Lee and 
Preparata [1982], who map each rectangle 
into a point in four-dimensional space and 
solve a point dominance problem. 

As described in Section 1, the rectangle 
intersection problem is closely related to 
the following problems: 

(1) Determining all rectangles that are 
contained in a given rectangle, 

(2) Determining all rectangles that enclose 
a given rectangle, 

(3) Determining all rectangles that par- 
tially overlap or are contained in a 
given rectangle (a window query). 

The plane-sweep approach is not appropri- 
ate for these problems since, regardless of 
the data structures employed (e.g., seg- 
ment, interval, or priority search trees), 
sorting is a prerequisite and thus any al- 
gorithm requires at least 0 (N . log2 N) time 
for N rectangles. In contrast, the naive 
solution of intersecting each rectangle with 
the query rectangle is an O(N) process. 

The problems described above can be 
solved by segment trees and interval trees 
without making use of a plane sweep [Ov- 
ermars 19881. The key is to adapt these 
representations to store two-dimensional 
intervals in a manner similar to that in 
which a two-dimensional range tree is de- 
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veloped from a one-dimensional range tree changing set of points in sorted order. A 
[Edelsbrunner 19821. For example, a seg- more serious problem is that in a dynamic 
ment tree can be adapted to represent rec- environment, the sweep pass of a plane- 
tangles as follows. Project the rectangles sweep algorithm will usually have to be 
on the x axis and store these intervals in a reexecuted, since there is no data structure 
segment tree, say T. Let I be an internal corresponding to it.5 In the following sec- 
node in T and let RI denote the rectangles tions we discuss methods for a dynamic 
whose horizontal sides are associated with environment whose worst-case behavior is 
I. For each I build a segment tree for the not as good as that of plane sweep. Inter- 
projections of Rr on the y axis. We can also estingly, the data structures that were used 
build an interval tree for the projections of in the plane-sweep approach are also appli- 
RI on the y axis. cable in the dynamic environment. 

Using such adaptations of the segment 
and interval trees, for N rectangles the 
execution time of the solution to the win- 
dow query is 0 (log? N + F), where F is the 
number of rectangles that satisfy the query. 
The difference is in their storage require- 
ments-the segment tree solution requires 
O(N . log; N) space, whereas the interval 
tree solution requires O(N . log, N) space. 
For both of these structures, judicious use 
of doubly linked lists ensures that rectan- 
gles can be inserted and deleted in 
O(loggN) time. Of course, these structures 
must still be built, which requires O(N. 
IogZN) time in both cases. In the case of 
the segment tree solution, the query time 
can be reduced further to O(log,N + F) 
with the same space and preprocessing 
costs by adding some pointers (termed a 
layered tree) [Vaishnavi and Wood 19821. 
It is not clear how to adapt the prior- 
ity search tree to store two-dimensional 
intervals. 

3. POINT-BASED METHODS 

The plane-sweep paradigm for solving 
the geometric problems discussed earlier in 
this section (e.g., the rectangle intersection 
problem) assumes that the set of rectangles 
is only processed once. It can be shown that 
for many of these problems, plane-sweep 
methods yield a theoretically optimal solu- 
tion. A disadvantage is that such solutions 
assume a static environment. 

In this section we first discuss the repre- 
sentation of rectangles as points and then 
examine the representation of the collec- 
tion of points. A common solution to the 
problem of representing a collection of ob- 
jects is to approximate elements of the col- 
lection by simpler objects. One technique 
is to represent each object by using one of 
a number of primitive shapes that contain 
it. Up to now we have used rectangles, but 
other shapes such as triangles, circles, 
cubes, parallelepipeds, cylinders, and 
spheres are also possible. This approach is 
motivated, in part, by the fact that it is 
easier to test the containing objects for 
intersection than it is to perform the test 
using the actual objects. For example, it is 
easier to compute the intersection of two 
rectangles than of two polygons for which 
the rectangles serve as approximations. 
More complex approximations can be cre- 
ated by composing Boolean operations and 
geometric transformations on instances 
of the primitive types. In fact, this is the 
basis of the constructive solid geometry 
[Requicha 1980; Voelcker and Requicha 
19771 (CSG) technique of representing 
three-dimensional objects. 

In contrast, in a dynamic environment 
where update operations occur frequently 
(i.e., rectangles are added and deleted), the 
plane-sweep approach is less attractive. 
Plane-sweep methods require that the end- 
points of all rectangles are known a priori 
and that the endpoints be sorted before the 
sweep pass. This is not a major problem, 
since it is easy to maintain a dynamically 

The advantage of using such approxi- 
mations is that each primitive can be 
described by a small set of parameters 
and can in turn represent a large class of 
objects. In particular, if primitive P is 

’ Application of newly introduced methods employing 
persistent search trees due to Sarnak and Tajan 
[1986] to the rectangle intersection problem may be 
useful in avoiding the reexecution of the sweep pass. 
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described by k parameters, then each set 
of parameter values defines a point in a 
k-dimensional space assigned to the class 
of objects whose members are all the pos- 
sible instances of primitive P. Such a point 
is termed a representative point. Note that 
a representative point, and the class to 
which it belongs, completely define all of 
the topological and geometric properties of 
the corresponding object. 

Most primitives can be described by more 
than one set of parameters. For example, 
using Cartesian coordinates, a circle is de- 
scribed by a representative point in three- 
dimensional space consisting of the x and 
y coordinates of its center and the value 
of its radius. On the other hand, using 
polar coordinates, a circle can also be de- 
scribed by a representative point in three- 
dimensional space consisting of the p and 0 
coordinates of its center and the value of 
its radius. For other primitives, the choices 
are even more varied. For example, the 
class of objects formed by a rectangle in 
two dimensions whose sides are parallel to 
the x and y coordinate axes is described by 
a representative point in four-dimensional 
space. Some choices for the parameters are 
as follows: 

(1) 

(2) 

(3) 

The x and y coordinates of two diago- 
nally opposite corners of the rectangle 
(e.g., the lower left and upper right). 
The x and y coordinates of a corner of 
the rectangle, together with its horizon- 
tal and vertical extents. 
The x and y coordinates of the centroid 
of the rectangle, together with its hor- 
izontal and vertical extents (i.e., the 
horizontal and vertical distances from 
the centroid to the relevant sides). 

The actual choice depends on the type of 
operations we intend to perform on the 
objects formed by them. 

Different parameters have different ef- 
fects on the queries, and thus making the 
right choice is important. Hinrichs and 
Nievergelt [ 19831 and Hinrichs [1985a] 
lump the parameters into two classes- 
location and extension. Location parame- 
ters specify the coordinates of a point such 
as a corner or a centroid, whereas extension 
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Figure 10. (a) Horizontal (i.e., x) and (b) vertical 
(i.e., y) intervals corresponding to the sides of the 
rectangles in Figure 1. Solid lines correspond to rec- 
tangles in the collection, and broken lines correspond 
to the query rectangles. 

parameters specify size, such as the radius 
of a circle. This distinction is always pos- 
sible for objects that can be described as 
Cartesian products of spheres of varying 
dimension. Many common objects can be 
described in this way. For example, a rec- 
tangle is the Cartesian product of two one- 
dimensional spheres, whereas a cylinder is 
the Cartesian product of a one-dimensional 
sphere and a two-dimensional sphere. 
Whenever such a distinction between lo- 
cation and extension parameters can be 
drawn, the proximity queries that are de- 
scribed in Section 1 have cone-shaped 
search regions where the tip of the cone is 
usually in the subspace of the location pa- 
rameters and has the shape of the query 
point or query object. 

The importance of making the right 
choice can be seen by examining the class 
of one-dimensional intervals on a straight 
line. As an example, consider the collection 
of rectangles given in Figure 1. Each rec- 
tangle can be represented as the Cartesian 
product of two one-dimensional spheres 
corresponding to the sides that are given as 
horizontal and vertical intervals in Fig- 
ure 10. These intervals can be represented 
using any of the three representations 
enumerated above. Representation (1) 
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R 

Figure 11. Representation of the horizontal inter- 
vals of Figure 1 as ordered pairs (L, R), where L and 
R are the left and right endpoints, respectively, of the 
interval. 

yields an ordered pair (L, R) where L and 
R correspond to the left and right endpoints 
of the interval, respectively. Figure 11 
shows how the horizontal intervals would 
be represented using this method. 

In most applications the intervals are 
small. Therefore, for representation (l), L 
and R are very close in value. L < R means 
that the representative points are clustered 
near and above the diagonal. Thus, the 
representative points are not well distrib- 
uted and hence any data structure that is 
based on organizing the embedding space of 
the data (e.g., address computation), in 
contrast to one based on the actual repre- 
sentative points that are stored (e.g., com- 
parative search), will have to pay a price 
for the empty half of the embedding space. 
On the other hand, Hinrichs and Nievergelt 
[1983] point out that separating the loca- 
tion parameters from the extension param- 
eters results in a smaller embedding space, 
which is filled more uniformly. For exam- 
ple, representation (3) is used in Figure 12, 
where the horizontal intervals are repre- 
sented as an ordered pair (CX, DX) such 
that CX is the centroid of the interval and 
DX is the distance from the centroid to the 
end of the interval. 

Bearing the above considerations in 
mind, representation (3) seems to be the 
most appropriate. In such a case, a rec- 

D: 
I 

0 IO 20 
cx 

30 40 

Figure 12. Representation of the horizontal inter- 
vals of Fiaure 1 as ordered pairs (CX. DX). where CX 
and DX are the centers ani half-ien&hs, kspectively, 
of the interval. 

tangle is represented by the 4-tuple (c,, d,, 
c,, d,), which is interpreted as the Carte- 
sian product of a horizontal and a vertical 
one-dimensional interval-that is, (c,, d,) 
and (c,, $), respectively.6 This represen- 
tation is used by Hinrichs and Nievergelt 
[1983] and Hinrichs [1985a], and the fol- 
lowing examples of its utility are due to 
them. 

Proximity queries involving point and 
rectangular query objects are easy to imple- 
ment. Their answers are conic-shaped re- 
gions in the four-dimensional space formed 
by the Cartesian product of the two interval 
query regions. This is equivalent to com- 
puting the intersection of the two query 
regions, but is much more efficient. It also 
enables us to visualize our examples since 
the horizontal and vertical intervals cor- 
respond to the projections of the query 
responses on the c,-cl, and cY-dY planes, 
respectively. 

We illustrate our discussion with the col- 
lection of rectangles given in Figure 1 along 
with query point P and query rectangles 1, 
2, and 3. Note that when the query objects 
are not individual points or rectangles, the 
representation of a rectangle as the Carte- 
sian product of two orthogonal intervals is 
not that useful (e.g., query regions in the 
form of an arbitrary line or circle). 

For a point query, we wish to determine 
all intervals that contain a given point, say 

’ The notation (c,, d,) corresponds to a point in a two- 
dimensional space. It is not the open one-dimensional 
interval whose left and right endpoints are at c, and 
d,, respectively. 
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Figure 13. Search region for a point query on P for 
(a) the horizontal intervals and (b) the vertical inter- 
vals of Figure 1. All intervals containing P are in the 
shaded regions. Intervals appearing in the shaded 
regions of both (a) and (b) correspond to rectangles 
that contain P. 

p. These intervals form a cone-shaped re- shaped region whose tip is the interval I. 
gion whose tip is an interval of length zero 
centered at P.~ For example, the horizontal 

For example, the horizontal and vertical 
intervals that overlap the horizontal and 

and vertical intervals containing P are vertical sides of query rectangle 1 are shown 
shown shaded in Figures 13a and 13b, re- 
spectively. To find all the rectangles that 

shaded in Figures 14a and 14b, respectively. 

contain a given point, we access a specific 
To find all the rectangles that overlap the 

region in the four-dimension1 space defined 
query window, we access a specific region 

by the Cartesian product of the horizontal 
in the four-dimensional space defined by 
the Cartesian product of the horizontal and 

and vertical point-in-interval query re- vertical interval-in-interval query regions. 
gions. For example, P is in the set of rec- For example, query rectangle 1 overlaps 
tangles with representative points in the the intersection of the shaded portions 
intersection of the shaded portions of Fig- of Figures 14a and 14b-that is, (B, D) 
ures 13a and 13b-that is, (C, D) is the is the intersection of (B, D, E, G) and 
intersection of (C, D, G) and (A, C, D). (4 B, C, JX 

A window query is a bit more complex. 
In this case, the one-dimensional analog of 
this query is to find all intervals that over- 
lap a given interval, say I. Again, the set of 
overlapping intervals consists of a cone- 

For a containment query, the one-dimen- 
sional analog is to find all the intervals that 
are totally contained within a given inter- 
val, say I. The set of contained intervals 
consists of a cone-shaped region whose tip 
is at I and that opens in the direction of 
smaller extent values. This makes sense 
since all intervals within the cone are to- 

’ McCreight [1980] uses the same technique in con- 
junction with representation (1) to solve the problem. 

DY 
4 

(b) 

Figure 14. Search region for a window query on 
query rectangle 1 of Figure 1 for (a) the horizontal 
intervals and (b) the vertical intervals of that figure. 
All intervals that contain points of rectangle 1 are in 
the shaded regions. Intervals appearing in the shaded 
regions of both (a) and (b) correspond to rectangles 
that intersect rectangle 1. 
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Figure 15. Search regions for a containment query Figure 16. Search regions for an enclosure query on 
on query rectangle 2 of Figure 1 for (a) the horizontal query rectangle 3 of Figure 1 for (a) the horizontal 
intervals and (b) the vertical intervals of that figure. intervals and (b) the vertical intervals of that figure. 
All intervals that are contained in one of the intervals All figures that enclose one of the intervals forming 
forming rectangle 2 are in the shaded regions. Inter- rectangle 3 are in the shaded regions. Intervals ap- 
vals appearing in the shaded regions of both (a) and pearing in the shaded regions of both (a) and (b) 
(b) correspond to rectangles that are contained in correspond to the rectangles that enclose rectangle 3. 
rectangle 2. 

tally contained in the interval represented 
by the tip. For example, the horizontal and 
vertical intervals that are contained in the 
horizontal and vertical sides of query rec- 
tangle 2 are shown shaded in Figures 15a 
and 15b, respectively. To find all the rec- 
tangles that are contained in the query 
window, we access a specific region in the 
four-dimensional space defined by the 
Cartesian product of the horizontal and 
vertical contained-in-interval query re- 
gions. For example, query rectangle 2 
contains the intersection of the shaded por- 
tions of Figures 15a and 15b-that is, (F). 

For an enclosure query, the one-dimen- 
sional analog is to find all the intervals that 
enclose the given interval, say I. The set of 
enclosing intervals consists of a cone- 
shaped region whose tip is at I and that 
opens in the direction of larger extent val- 
ues. This is logical since the interval rep- 
resented by the tip is contained (i.e., 

enclosed) by all intervals within the cone. 
For example, the horizontal and vertical 
intervals that enclose the horizontal and 
vertical sides of query rectangle 3 are shown 
shaded in Figures 16a and 16b, respectively. 
To find all the rectangles that enclose the 
query window, we access a specific region 
in the four-dimensional space defined by 
the Cartesian product of the horizontal and 
vertical enclose-interval query regions. For 
example, query rectangle 3 contains the 
intersection of the shaded portions of Fig- 
ures 16a and 16b-that is, (E). 

In spite of the relative ease with which 
the above queries are implemented using 
the representative point method with rep- 
resentation (3), there are queries for which 
it is ill suited. For example, suppose we 
wish to solve the rectangle intersection 
problem. The fact is, no matter which of 
the three representations we use, in order 
to solve this problem we must intersect 
each rectangle with every other rectangle. 
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The problem is that none of these represen- 
tations is area oriented-that is, they 
reduce a spatial object to a single repre- 
sentative point. Although the extent of the 
object is reflected in the representative 
point, the final mapping of the representa- 
tive point in the four-dimensional space 
does not result in the preservation of near- 
ness in the two-dimensional space from 
which the rectangles are drawn. In other 
words, two rectangles may be very close 
(and possibly overlap), yet the Euclidean 
distance between their representative 
points in four-dimensional space may be 
quite large, thereby masking the overlap- 
ping relationship between them. For ex- 
ample, even though rectangles B and D 
intersect query rectangle 1, we cannot eas- 
ily tell if they intersect each other except 
by checking their sizes. 

Our discussion has emphasized represen- 
tation (3). Nevertheless, as we will see 
below, the other representations are also 
commonly used. Interestingly, although a 
rectangle whose sides are parallel to the x 
and y axes requires four values to be 
uniquely specified, it is also frequently 
modeled by a representative point in a two- 
dimensional space. The representative 
point corresponds to the centroid of the 
rectangle or to one of its corners (e.g., lower 
left). If rectangles are not permitted to 
overlap, then such a representation is suf- 
ficient to ensure that no two rectangles 
have the same representative point. Of 
course, since two values do not uniquely 
specify the rectangle, the remaining values 
are retained in the record corresponding to 
the rectangle that is associated with the 
representative point. If rectangles are per- 
mitted to overlap, then such a representa- 
tion means that there may be more than 
one record associated with a specific rep- 
resentative point. 

Once a specific representative point 
method is chosen for the rectangle, we can 
use any one of a number of techniques for 
representing multiattribute data to orga- 
nize the collection of representative points. 
Again, the choice of representation depends 
to a large extent on the type of operations 
that we will be performing. As an example, 
Lauther [ 19781 and Rosenberg [1985] make 

use of a balanced k-d tree to organize the 
rectangles whose representative point uses 
representation (1). The k-d tree [Bentley 
19751 is a binary search tree where at each 
level of the tree a different coordinate is 
tested when determining the direction in 
which a branch is to be made. Therefore, 
in the two-dimensional case (i.e., a 2-d 
tree!), we compare x coordinates at the root 
and at even levels (assuming the root is at 
level 0) and y coordinates at odd levels. For 
example, Figure 17 is the k-d tree corre- 
sponding to the data of Figure 2. 

The balanced k-d tree is a k-d tree 
where at each level the number of nodes 
in the two subtrees is either equal or differ 
by 1. Lauther [1978] discusses the solution 
of the rectangle intersection problem using 
the balanced k-d tree. The solution is an 
adaptation of the O(N2) algorithm. It first 
builds the tree (equivalent to a sorting pro- 
cess) and then traverses the tree in inorder 
and intersects each rectangle, say P, with 
the remaining unprocessed rectangles (i.e., 
the inorder successors of Pa). Two rectan- 
gles with sides parallel to the axes intersect 
if their projections on the x axis intersect 
and their projections on the y axis inter- 
sect. The one-dimensional analog of this 
condition has been used in the segment and 
interval tree solutions to the rectangle in- 
tersection problem (see Sections 2.1 and 
2.2). More formally, we say that in order 
for rectangle Q to intersect rectangle P, all 
four of the following conditions must be 
satisfied: 

(1) xmin(Q) 5 pax 
(2) ymin(Q) 5 yrnax(P) 
(3) xmin(P) 5 pax 
(4) ymin(P) 5 yrnax(Q) 

Armed with this formulation of the prob- 
lem, we see that there is no need to visit all 
of the inorder successors of P since when- 
ever one of these conditions fails to hold at 
a node Q, the appropriate subtree of Q need 
not be searched. These conditions can be 
restated in the following manner, which is 

’ In this discussion we use P to refer to both a rectangle 
and its corresponding node in the tree. The correct 
meaning should be clear from the context. 
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Figure 17. A k-d tree corresponding to the points in Figure 2. 

more compatible with the way in which the Now, we build a balanced k-d tree with 
balanced k-d tree is traversed: discriminators Ko, K,, K2, K3 correspond- 

ing to x,i,, ymin, -x,,,, and -ymax, respec- 
(5) xmin(Q) 5 pax 
(6) ymin(Q) 5 Ymax(P) 

(7) -&nax (8) 5 -xmin(P) 
(8) -~max(Q) 5 -Ymin(f’) 

tively. Whenever we encounter node Q 
discriminating on Kd such that Kd(Q) > 
K Cd+2jmod4(P), then all the nodes in the right 
subtree of Q need not be examined further. 
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(4 (b) 

Figure 18. Blocks examined when searching for points within a 
conic region for a collection of intervals represented by (a) a grid 
file and(b) a k-d tree. 

Solving the rectangle intersection prob- 
lem as described above has an upper bound 
of O(N’) and a lower bound of O(N . 
log,N). The lower bound is achieved when 
pruning is assumed to occur at every right 
subtree. When the rectangle intersection 
problem is posed in terms of conditions (5)- 
(8), the relation 5 between Q and P is said 
to be a dominance relation [Preparata and 
Shamos 19851. In such a case, the intersec- 
tion problem is called the dominance merge 
problem by Preparata and Shamos [ 19851. 
Given F rectangle intersections, the algo- 
rithm of Preparata and Shamos solves the 
rectangle intersection problem in O(N . 
logs N + F) time instead of the optimal 
O(N . log, N + F) time. 

Building a balanced k-d tree takes more 
time than an ordinary k-d tree since medi- 
ans must be computed in order to assure 
balance. The balanced k-d tree makes point 
searches and region searches quite efficient. 
Rosenberg [1985] compares the perform- 
ance of the k-d tree, a point method in his 
formulation, with linked lists’ and the area- 
based quadtree approaches discussed in 
Section 4.1 below and concludes that the 
point methods are superior. However, he 
only takes into account point and window 
queries. Comparisons using queries such as 
finding all intersecting rectangles may lead 
to a different conclusion. 

Hinrichs and Nievergelt [ 19831 and Hin- 
richs [1985a, 1985b] make use of the grid 

’ The rectangles are stored in a doubly linked list. 

file to organize the rectangles whose rep- 
resentative point uses representation (3). A 
grid file yields a partition of space into 
variable-sized blocks having a finite capac- 
ity that are accessed with the aid of a 
directory. For example, Figure 18a is an 
example space partition induced by a grid 
file. The result is that proximity queries 
are answered by examining all grid blocks 
that intersect the cone-shaped search re- 
gions. They prefer this method to one based 
on a tree (e.g., the k-d tree) because the 
relevant grid blocks are in contiguous re- 
gions, whereas in a tree, contiguous blocks 
may appear in different subtrees. Hinrichs 
and Nievergelt are quite concerned with 
reducing the number of disk access opera- 
tions necessary to process such queries. For 
example, Figure 18 shows a conic-shaped 
search region when the rectangles are or- 
ganized with a grid file (Figure 18a) and a 
k-d tree (Figure 18b). In the case of a grid 
file, blocks A, B, C, D, E, and F would be 
examined, whereas for a k-d tree blocks G, 
H, I, J, K, L, and M would be examined. 
Note that blocks I and K are in a different 
subtree of the k-d tree than blocks G, H, J, 
L, and M. In the worst case, solving the 
rectangle intersection problem when using 
a grid file takes O(N’) time. This is 
achieved by using the naive method of Sec- 
tion 2. The expected cost, however, will be 
lower since it is assumed that the points 
corresponding to the rectangles are well 
distributed among the grid blocks. For an 
analysis of grid file methods on randomly 
distributed point data, see Regnier [ 19851. 
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The techniques discussed above for or- 
ganizing the collection of representative 
points assume that the representative point 
lies in four-dimensional space. Another 
possibility is to use a representative point 
in two-dimensional space. For example, 
suppose that in our application we must 
perform a point query (i.e., determine the 
rectangles that contain a given point). In 
this case, when the representative point is 
the centroid, some of the tree representa- 
tions require that we search the entire data 
structure. For example, this is the case for 
the point quadtree (see Figure 4) because 
the rectangle that is centered at a given 
point can lie in all of the quadrants. Of 
course, pruning can occur at deeper levels 
in the tree. In contrast, using the lower left 
corner as the representative point may per- 
mit the pruning of up to three quadrants in 
the search. For instance, when the query 
point lies in the SW quadrant, then no 
rectangle whose representative point lies in 
the NW, NE, or SE quadrants can contain 
the query point. 

4. AREA-BASED METHODS 

The problem with using trees in conjunc- 
tion with representative point methods 
such as those discussed in Section 3 is that 
the placement of the node in the tree (i.e., 
its depth) does not reflect the size (i.e., the 
spatial extent) of the rectangle. It primarily 
depends on the location of the represent- 
ative point. In this section we focus on 
alternative representations provided by 
area-based methods that associate each rec- 
tangle with blocks that contain it or blocks 
that it contains. The sizes and positions of 
these blocks may be predetermined as is 
the case in an approach based on the region 
quadtree. This need not be the case, how- 
ever, nor must the blocks be disjoint. 

As an example of a representation based 
on the region quadtree, suppose that we 
represent each rectangle by its minimum 
enclosing quadtree block (i.e., a square). 
The rectangle is associated with the center 
of the quadtree block. Of course, more than 
one rectangle can be associated with a given 
enclosing square and a technique must be 
used to differentiate among them. Observe 
that in this case, we do not explicitly store 

a representative point. Instead, there is a 
predefined set of representative points with 
which rectangles can be stored. In some 
sense this is analogous to hashing [Knuth 
19731, where the representative points cor- 
respond to buckets. These techniques, 
which we term CIF quadtrees, have been 
developed independently by Kedem [ 19821 
(called a quad-CIF tree) and by Abel and 
Smith [ 19831. 

In this section we expand further on the 
area-based approaches. We first present a 
detailed implementation of one variant of 
the CIF quadtree, which is related to the 
MX quadtree representation of point data 
[Samet 19841. Next, we describe some 
quadtree-based alternatives that permit a 
rectangle to be associated with more than 
one quadtree block. We conclude with a 
discussion of the R-tree and some of its 
variants. It is a hierarchy of rectangular 
regions that contain the data rectangles. 
The hierarchy is constructed by rules sim- 
ilar to those used to define a B-tree. The 
regions need not be disjoint. Analyzing 
the space requirements of these representa- 
tions as well as the execution time of 
algorithms that use them is quite difficult, 
since it depends heavily on the distribution 
of the data. In most cases, a limited part of 
the tree must be traversed and thus the 
execution time depends, in part, on the 
depth and the shape of the tree. 

4.1 MX-CIF Quadtrees 

The MX-CIF quadtree associates each rec- 
tangle, say R, with the quadtree node cor- 
responding to the smallest block that con- 
tains R in its entirety. Rectangles can be 
associated with both terminal and nonter- 
minal nodes. Subdivision ceases whenever 
a node’s block contains no rectangles. Al- 
ternatively, subdivision can also cease once 
a quadtree block is smaller than a predeter- 
mined threshold size. This threshold is 
often chosen to be equal to the expected 
size of the rectangle [Kedem 19821. Fig- 
ure 19 is the MX-CIF quadtree for the set 
of rectangles in Figure 1. Once a rectangle 
is associated with a quadtree node, say P, 
it is not considered to be a member of any 

lo CIF denotes Caltech Intermediate Form. 
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(a) 

{Ad 

(b) 

Figure 19. The MX-CIF quadtree (b) and the block 
decomposition induced by it (a) for the rectangles in 
Figure 1. 

of the sons of P. For example, in Figure 19, 
rectangle G overlaps the space spanned by 
both the SE son of the root and the NE 
son of the SE son of the root; yet G is only 
associated with the SE son of the root. 

It should be clear that more than one 
rectangle can be associated with a given 
enclosing block (i.e., node). There are sev- 
eral ways of organizing these rectangles. 
The simplest solution is to maintain a 
linked list of these rectangles. Another ap- 
proach, due to Kedem [ 19821, is described 
below. 

Let P be a quadtree node and let S be 
the set of rectangles that are associated 
with P. Members of S are organized into 
two sets according to their intersection (or 
colinearity of their sides) with the lines 
passing through the centroid of P’s block. 
We shall use the term axes or axis lines to 
refer to these lines. For example, consider 
node P centered at (CX, CY). All members 
of S that intersect the line x = CX form 

E D 0 

(4 (b) 

Figure 20. Binary trees for the y axes passing 
through (a) the root of the MX-CIF quadtree in Figure 
19 and (b) the NE son of the root of the MX-CIF 
quadtree in Figure 19. 

one set, and all members of S that intersect 
the line y = CY form the other set. Equiv- 
alently, these sets correspond to the rec- 
tangles intersecting the y and x axes, 
respectively, passing through (CX, CY). If 
a rectangle intersects both axes (i.e., it con- 
tains the centroid of P’s block), then we 
adopt the convention that it is stored with 
the set associated with the y axis. These 
subsets are implemented as binary trees 
(really tries), which in actuality are one- 
dimensional analogs of the MX-CIF quad- 
tree. For example, Figure 20 illustrates the 
binary tree associated with the y axes pass- 
ing through the root and the NE son of the 
root of the MX-CIF quadtree of Figure 19. 
The subdivision points of the axis lines are 
shown by tick works in Figure 19. 

At this point, the following observations 
can be made. The MX-CIF quadtree is 
related to the region quadtree in the same 
way as the interval tree is related to the 
segment tree. The MX-CIF quadtree is the 
two-dimensional analog of the tile tree” 
(without the tertiary structure). The tile 
tree and the one-dimensional MX-CIF 
quadtree are identical. In particular, when 
rectangles are not permitted to overlap, the 
secondary structures of the tile tree consist 
of at most one rectangle. When the tile tree 
is used in this context, it is not a complete 
binary tree. Alternatively, it is not neces- 
sarily balanced since the subdivision points 
are fixed by virtue of regular decomposition 
rather than being determined by the end- 
points of the domain of rectangles as in the 
definition of the interval tree. 

I1 The analogy is with the tile tree instead of the 
interval tree because the MX-CIF quadtree is based 
on a regular decomposition. 
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A rectangle is inserted into an MX-CIF 
quadtree by a top-down search for the po- 
sition that it is to occupy. This position is 
determined by a two-step process. First, the 
first subdivision point must be located such 
that at least one of its axis lines (i.e., the 
quadrant lines emanating from the subdi- 
vision point) intersects the input rectangle. 
Second, having found such a point and an 
axis, say point P and axis V, the subdivision 
process is repeated for the V axis until the 
first subdivision point that is contained 
within the rectangle is located. During the 
process of locating the destination position 
for the input rectangle, the space spanned 
by the MX-CIF quadtree may have to be 
repeatedly subdivided (termed splitting) 
creating new nodes in the process. In the 
worst case, each rectangle is at the maxi- 
mum depth of the tree, say n.12 Thus, the 
worst-case cost of building an MX-CIF 
quadtree for N rectangles is O(n . N) in 
space and time. Of course, the expected 
behavior should be better. It should be clear 
that the shape of the resulting MX-CIF 
quadtree is independent of the order in 
which the rectangles are inserted into it. 
Deletion of nodes is more complex and may 
require collapsing of nodes-that is, the 
direct counterpart of the node splitting 
process outlined above. 

The most common operations are deter- 
mining whether a given rectangle overlaps 
(i.e., intersects) any of the existing rectan- 
gles or performing a window query. Another 
popular query seeks to determine whether 
one collection of rectangles can be overlaid 
on another collection without any of the 
component rectangles intersecting one an- 
other. These two operations can be imple- 
mented by using variants of algorithms 
developed for handling set operations (i.e., 
union and intersection) in region-based 
quadtrees [Hunter and Steiglitz 1979; 
Shneier 19811. The window query is an- 
swered by intersecting the query window 
with the MX-CIF quadtree. The overlay 
query is answered by a two-step process. 
The two MX-CIF quadtrees are first inter- 
sected. If the result is empty, then they can 
be safely overlaid, and all that is needed is 

I2 n is the sum of the maximum depths of the MX- 
CIF quadtree and of the binary tree. 

to perform a union of the two MX-CIF 
quadtrees. Boolean queries can also be 
easily handled. 

When the rectangles are allowed to in- 
tersect, reporting the pairs of rectangles 
that intersect each other is achieved by 
traversing the MX-CIF quadtree and for 
each node examining all neighboring nodes 
that can contain rectangles that intersect 
it. In the worst case, for some rectangles we 
may have to examine the entire MX-CIF 
quadtree. If this is the case, however, the 
remaining rectangles will not require this 
much work. Nevertheless, the worst-case 
execution time of this task is O(n . W) for 
a tree of maximum depth n with N rec- 
tangles. The expected behavior should be 
better. 

Abel and Smith [1983] also represent a 
collection of rectangles by an MX-CIF 
quadtree. The difference between their ap- 
proach and that of Kedem [1982] is that 
they do not use binary trees, or any other 
data structure, to organize the rectangles 
that are associated with each quadtree node 
separately. They represent each rectangle 
by its locational code. The locational code 
represents a sequence of 2-bit directional 
codes that locate the quadtree node along a 
path from the root of the quadtree. The 
code also reflects the level at which the 
node is found. These codes are subse- 
quently organized in a B+-tree [Comer 
19791. Note that many rectangles have 
identical locational codes, and thus the rec- 
tangle dimensions must also be stored along 
with the locational codes in the B+-tree. 
For example, for the set of rectangles in 
Figure 19, rectangles B, C, and D have the 
same locational code, and so do rectangles 
A and E. 

4.2 Multiple Quadtree Block Representations 

One of the problems with the MX-CIF 
quadtree and other representations that as- 
sociate each rectangle with the smallest 
enclosing quadtree block is that determin- 
ing how many rectangles intersect a win- 
dow (e.g., in the form of a rectangle) may 
be quite costly. The problem is that the 
quadtree nodes that intersect the query rec- 
tangle may contain many rectangles that 
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do not intersect the query rectangle, yet 
each one of them must be individually com- 
pared with the query rectangle to determine 
the existence of a possible intersection. 

For example, consider the MX-CIF 
quadtree in Figure 19, which corresponds 
to the collection of rectangles given in Fig- 
ure 1. Although query rectangle 1 (see Fig- 
ure 1) is in the NE quadrant of the root of 
the MX-CIF quadtree, we still have to 
check some of the rectangles that are stored 
at the root of the entire quadtree since these 
rectangles could conceivably overlap the 
query rectangle. This work could be avoided 
by using a more compact (in an area sense) 
representation of each rectangle. Such a 
representation would use more, and 
smaller, quadtree blocks to represent each 
rectangle, but the total area of the blocks 
would be considerably less than that of the 
smallest enclosing quadtree block. The 
result is that more rectangles would be 
eliminated from consideration due to the 
pruning that occurs during the search of 
the quadtree. A number of alternatives are 
available to achieve this effect. They 
are examined briefly below. 

One possibility is to use a region quadtree 
representation for each rectangle. Such a 
representation would lead to many nodes 
since its underlying decomposition rule re- 
quires that the block corresponding to each 
node be homogeneous (i.e., that it be totally 
contained within one of the rectangles or 
not be in any of the rectangles). Permitting 
rectangles to overlap forces a modification 
of the decomposition rule. In particular, it 
implies that decomposition ceases when a 
block is totally contained within one or 
more rectangles. If a block is contained in 
more than one rectangle, however, it must 
be totally contained in all of them. 

Abel and Smith [1985] present a less 
radical alternative. They propose that in- 
stead of using the minimum enclosing 
quadtree block, each rectangle is repre- 
sented by a collection of enclosing quadtree 
blocks. They suggest that the collection 
contain a maximum of four blocks, al- 
though other amounts are also possible. 
The four blocks are obtained by determin- 
ing the minimum enclosing quadtree block, 
say B, for each rectangle, say R, and then 
splitting B once to obtain quadtree blocks 

(a) 

IF) 
(b) 

Figure 21. The expanded MX-CIF quadtree (b) and 
the block decomposition induced by it (a) for the 
rectangles in Figure 1. 

Bi (i E (NW, NE, SW, SE]) such that Ri is 
the portion of R, if any, that is contained 
in B;. Next, for each Bi we find the mini- 
mum enclosing quadtree block, say Di, that 
contains Ri. Now, each rectangle is repre- 
sented by the set of blocks consisting of Die 
We term such a representation an expanded 
MX-CIF quadtree. 

As an example of the expanded MX-CIF 
quadtree, consider Figure 21, which corre- 
sponds to the collection of rectangles of 
Figure 1. Several items are worthy of note. 
First, each node appears at least one level 
lower in the expanded MX-CIF quadtree 
than it did in the MX-CIF quadtree. Sec- 
ond, some of the Di may be empty (e.g., 
rectangle A in Figure 21 is covered by 
blocks 2 and 4; rectangle F in Figure 21 is 
covered by block 14). Third, the covering 
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blocks are not necessarily of equal size (e.g., 
rectangle E in Figure 21 is covered by 
blocks 4 and 12). It should be clear that the 
area covered by the collection of blocks Di 
is not greater than that of B. 

The worst-case execution time for build- 
ing the expanded MX-CIF quadtree and 
the space requirements are the same as for 
the MX-CIF quadtree-that is, O(n. N) 
for a tree of maximum depth n with N 
rectangles. The worst-case execution time 
of the rectangle intersection problem is also 
the same as that for the MX-CIF quad- 
tree-that is, O(n . N’). Abel and Smith 
suggest that the search process can be made 
more efficient by applying the splitting 
process again to the blocks Die Of course, 
the more times that we split, the closer we 
get to the region quadtree representation of 
the rectangles. Also, this increases the 
space requirement and the insertion and 
deletion costs. 

Shaffer [1986] presents a pair of data 
structures termed an RR quadtree that is 
somewhat related to the expanded MX- 
CIF quadtree. Two variants are given. The 
first, called an RR1 quudtree makes use of 
a decomposition rule that splits until each 
node contains either just one rectangle or 
all of the rectangles in the node intersect 
each other. Thus, all rectangles are associ- 
ated with terminal nodes. When rectangles 
are not permitted to overlap, this decom- 
position rule means that no block can con- 
tain a part of more than one rectangle. For 
example, consider Figure 22, which is the 
RR1 quadtree corresponding to the collec- 
tion of rectangles of Figure 1. Note that 
node 3 had to be decomposed further since 
rectangles B, C, and D do not mutually 
intersect each other. 

The storage requirements of the RR1 
quadtree are much higher than those of the 
MX-CIF and expanded MX-CIF quad- 
trees. This is due to the need to decompose 
the collection when many rectangles are 
near each other without mutually inter- 
secting each other-for example, a chain 
formed by intersecting rectangles. This 
problem is partially resolved by loosening 
the decomposition criterion of the RR1 
quadtree to permit a node, say N, to contain 
a pair of rectangles if they intersect or are 

(a) 

Figure 22. The RR, quadtree (b) and the block de- 
composition induced by it (a) for the rectangles in 
Figure 1. 

a part of a chain of connected rectangles so 
that each rectangle in the chain is also in 
the node. The resulting structure is called 
an RR, quudtree. For example, consider Fig- 
ure 23, which is the RR2 quadtree corre- 
sponding to the collection of rectangles of 
Figure 1. Note that now, unlike the RR1 
quadtree, node 3 need not be further de- 
composed to deal with rectangles B, C, and 
D. These three rectangles form a chain of 
intersecting rectangles but they do not mu- 
tually intersect each other. 

The RR2 quadtree still requires consid- 
erably more storage than the MX-CIF and 
expanded MX-CIF quadtrees. The advan- 
tage of the RR quadtree family, however, is 
that if two rectangles intersect, then they 
must be stored in the same node. This 
makes window queries quite efficient since 
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I I I 

(a) 

IF} {G} {G} 
(b) 

Figure 23. The RR, quadtree (b) and the block de- 
composition induced by it (a) for the rectangles in 
Figure 1. 

fewer rectangles must be examined for in- 
tersection. In particular, the number of rec- 
tangle comparisons required by a window 
query in an RR2 quadtree is equal to the 
number of comparisons that would be made 
were the query rectangle being inserted into 
the tree. 

The space requirements of the region 
quadtree and the RR quadtree family are 
dependent on the amount of space that is 
required to store an individual rectangle. In 
all three cases, for a tree of maximum depth 
n, a rectangle requires O(2”) space. For N 
rectangles, the time required to build the 
region quadtree is O(N. 2’7, whereas for 
the RR quadtree family it may be as high 
as O(N2 . 2”) since each rectangle must be 
checked against the rectangles in each node 
in which it is contained-there are O(27 

such nodes and each can contain N rectan- 
gles. Solving the rectangle intersection 
problem is quite easy since it is done by 
traversing the tree and reporting all nodes 
that contain more than one rectangle. The 
time required is the same as the space re- 
quirement. It can be shown that each inter- 
section is only reported once. 

4.3 R-Trees 

The R-tree of Guttman [1984] is a hierar- 
chical data structure that is derived from 
the B-tree. Each node in the tree corre- 
sponds to the smallest d-dimensional rec- 
tangle that encloses its son nodes. The leaf 
nodes contain pointers to the actual geo- 
metric objects in the database, instead of 
sons. The objects are represented by the 
smallest aligned rectangle in which they 
are contained. Often the nodes correspond 
to disk pages, and thus the parameters de- 
fining the tree are chosen so that a small 
number of nodes is visited during a spatial 
query. Note that rectangles corresponding 
to different nodes may overlap. Also, a rec- 
tangle may be spatially contained in several 
nodes, yet it can only be associated with 
one node. This means that a spatial query 
may often require several nodes to be vis- 
ited before ascertaining the presence or ab- 
sence of a particular rectangle. Our discus- 
sion is limited to the representation of 
rectangles in two dimensions. 

The basic rules for the formation of an 
R-tree are very similar to those for a B- 
tree. All leaf nodes appear at the same level. 
Each entry in a leaf node is a 2-tuple of the 
form (R, 0) such that R is the smallest 
rectangle that spatially contains data object 
0. Each entry in a nonleaf node is a 2-tuple 
of the form (R, P) such that R is the small- 
est rectangle that spatially contains the 
rectangles in the child node pointed at by 
P. An R-tree of order (m, M) means that 
node in the tree, with the exception of the 
root, contains between m 5 TM/21 and M 
entries. The root node has at least two 
entries unless it is a leaf node. 

For example, consider the collection of 
rectangles given in Figure 1, and treat the 
query rectangles (i.e., 1, 2, and 3) as ele- 
ments of the collection so that there is a 
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Figure 24. (a) R-tree for the collection of rectangles 
in Figure 1 and (b) the spatial extents of the enclosing 
rectangles. 

total of 10 rectangles. Let A4 = 3 and m = 
2. One possible R-tree for this collection is 
given in Figure 24a. Figure 24b shows the 
spatial extent of the rectangles of the nodes 
in Figure 24a, with broken lines denoting 
the rectangles corresponding to the sub- 
trees rooted at the nonterminal nodes. Note 
that the R-tree is not unique. Its structure 
depends heavily on the order in which the 
individual rectangles were inserted into 
(and possibly deleted from) the tree. 

The algorithm for inserting an object 
(i.e., a record corresponding to its enclosing 
rectangle) in an R-tree is analogous to that 
used for B-trees. New rectangles are added 
to leaf nodes. The appropriate leaf node is 
determined by traversing the R-tree start- 
ing at its root and at each step choosing 
the subtree whose corresponding rectangle 
would have to be enlarged the least. Once 
the leaf node has been determined, then 
check if insertion of the rectangle will cause 
the node to overflow. If yes, then it must 
be split and the M + 1 records must be 

u r-i u r---- 

;y+ff+g 
0 

- ---I 
I I 
I 

1 I 

I I 
’ Id 

.: :- 

II 
1 I I 
:-: [I L------1 E 

Figure 25. (a) Four rectangles and the splits that 
would be induced (b) by minimizing the total area of 
the covering rectangles and (c) by minimizing the area 
common to the covering rectangles of both nodes. 

distributed in the two nodes. Splits are 
propagated up the tree. 

There are many possible ways to split a 
node. One possible goal is to distribute the 
records among the nodes so that the like- 
lihood that the nodes will be visited in 
subsequent searches will be reduced. This 
is accomplished by minimizing the total 
areas of the covering rectangles for the 
nodes (i.e., coverage). An alternative goal 
is to reduce the likelihood that both nodes 
are examined in subsequent searches. This 
is accomplished by minimizing the area 
common to both nodes (i.e., overlap). Of 
course, at times these goals may be con- 
tradictory. For example, consider the four 
rectangles in Figure 25a. The first goal is 
satisfied by the split in Figure 25b, whereas 
the second goal is satisfied by the split in 
Figure 25~. 

Deletion of a rectangle, say R, from an 
R-tree proceeds by locating the leaf node, 
say L, containing R and removing R from 
L. Next, adjust the covering rectangles on 
the path from L to the root of the tree while 
removing all nodes in which underflow oc- 
curs and adding them to the set U. Once 
the root node is reached, if it has just one 
son, then the son becomes the new root. 
The nodes in which underflow occurred 
(i.e., members of U) are reinserted at the 
root. Elements of U that correspond to leaf 
nodes result in the placement of their con- 
stituent rectangles in the leaf nodes, 
whereas other nodes are placed at a level 
so that their leaf nodes are at the same level 
as those of the whole tree. 

The deletion algorithm for an R-tree dif- 
fers from that for a B-tree in that in the 
case of underflow, nodes are reinserted in- 
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stead of being merged with adjacent nodes. 
The difficulty is that there is no concept of 
adjacency in an R-tree, although we could 
merge with the sibling whose area will be 
increased the least or even just distribute 
the elements of the underlowing node 
among its siblings. Nevertheless, reinser- 
tion is used by Guttman [1984] because of 
a feeling that it enables the tree to reflect 
the changing spatial structure of the data 
dynamically rather than the gradual deg- 
radation that could arise when a rectangle 
maintains the same parent throughout its 
lifetime! 

Searching for points or regions in an R- 
tree is straightforward. The only problem 
is that a large number of nodes may have 
to be examined since a rectangle may be 
contained in the covering rectangles of 
many nodes while its corresponding record 
is only contained in one of the leaf nodes 
(e.g., in Figure 24, rectangle 1 is contained 
in its entirety in Rl, R2, R3, and R5). For 
example, suppose we wish to determine the 
identity of the rectangle element in the 
collection of rectangles given in Figure 1, 
which contains point Q at coordinates 
(21,24). Since Q can be in either of Rl and 
R2, we must search both of their subtrees. 
Searching Rl first, we find that Q could 
only be contained in R3. Searching R3 does 
not lead to the rectangle that contains Q 
even though Q is in a portion of rectangle 
D that is in R3. Thus, we must search R2, 
and we find that Q can only be contained 
in R5. Searching R5 results in locating D, 
which is the desired rectangle. 

The insertion algorithm, and the ac- 
companying node splitting techniques, 
described above are based on a dynamic 
database. If the database can be expected 
to be static and all of the objects are known 
a priori, then a different technique can be 
used to build an R-tree. Roussopoulos and 
Leifker [1985] propose the use of a packed 
R-tree, which is an R-tree that is built by 
successively applying a nearest-neighbor 
relation to group objects in a node after the 
set of objects has been sorted according to 
a spatial criterion. Once an entire level of 
the tree is built, the algorithm is reapplied 
to add nodes at the next higher level, ter- 
minating when a level contains just one 

node. This is a static method that results 
in each node being filled to capacity. 

Although the packed R-tree does not nec- 
essarily result in a minimum coverage and/ 
or overlap, empirical tests [Roussopoulos 
and Leifker 19851 of its performance on 
point searches in a database of two-dimen- 
sional points show its use to lead to signif- 
icant improvements vis a vis an R-tree that 
was built using the conventional R-tree 
insertion routine. In these tests each node 
was constructed by selecting an object from 
a spatially sorted list and then adding its 
M - 1 nearest neighbors. Once all the nodes 
at a given level have been constructed, the 
process is applied recursively, forming 
nodes at successively higher levels in the 
tree until just one node remains. A better 
approach, although far costlier from a 
combinatorial standpoint, is to choose 
the M objects simultaneously so that the 
area of the resulting covering rectangle is 
minimized. 

Another alternative to the R-tree is the 
R+-tree [Sellis et al. 1987; Stonebraker et 
al. 19861, which is an extension of the k-d- 
B-tree [Robinson 19811 to deal with rectan- 
gles. The motivation for the R+-tree is to 
avoid overlap among the bounding rectan- 
gles. In particular, all bounding rectangles 
(i.e., at levels other than the leaf) are non- 
overlapping. Thus, each rectangle is asso- 
ciated with all the bounding rectangles that 
it intersects. The result is that there may 
be several paths starting at the root to the 
same rectangle. This will lead to an increase 
in the height of the tree. Retrieval time, 
however, is sped up. The cell tree of 
Gunther [1987] is similar to the R+-tree, 
with the principal difference being that the 
nonleaf nodes of the cell tree are convex 
polyhedra instead of bounding rectangles. 

Figure 26 is an example of one possible 
R+-tree for the collection of rectangles in 
Figure 1. Once again, the query rectangles 
(i.e., 1, 2, and 3) are treated as elements of 
the collection so that there is a total of 10 
rectangles. This particular tree is of order 
(2, 3), although in general it is not possible 
to always guarantee that all nodes will have 
a minimum of two entries. Notice that rec- 
tangles D and E appear in three different 
nodes, whereas rectangle B appears in two 
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Figure 26. (a) R’-tree for the collection of rectangles in Figure 
1 and (b) the spatial extents of the enclosing rectangles. 

different nodes. Of course, other variants 
are possible since the R+-tree is not unique. 

It is interesting to note that the decom- 
position into blocks induced by the R+-tree 
is similar to the way a region quadtree 
would be used to represent a collection of 
rectangles (see Section 4.2). Since the R+- 
tree is an extension of the k-d-B-tree, it has 
a drawback that B-tree performance guar- 
antees are no longer valid. For example, 
pages are not guaranteed to be 50% full 
without very complicated record insertion 
and deletion procedures. Nevertheless, em- 
pirical tests by Faloutsos et al. [ 19871 reveal 
reasonable behavior in comparison to the 
conventional R-tree. These tests were cou- 
pled with a limited analysis of the behavior 
of the two data structures when used to 
represent one-dimensional intervals of 
equal length by transforming them to 
points in two dimensions using represen- 
tation (2) of Section 3. Sellis et al. [1987] 
suggest that performance of the R+-tree 
can be improved by a judicious choice of 
partition lines, as well as by a careful initial 
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grouping of the rectangles at the leaf level. 
The latter can be achieved by applying 
heuristics similar to those used to build a 
packed R-tree. 

Assume that the R-tree and the R+-tree 
are constructed in a batch manner-that 
is, all the rectangles are known before the 
construction and hence are arbitrarily 
grouped together. For N rectangles, the 
construction time and space requirements 
of these two data structures are both O(N) 
and O(N2), respectively. The reason for the 
higher costs for the R+-tree is that a rec- 
tangle may appear in N nodes because of 
its intersection with N other rectangles. 
This analysis assumes that no optimization 
is performed when a node overflows. In 
both cases, the worst-case execution time 
of the rectangle intersection problem is 
O(N2). 

5. CONCLUDING REMARKS 

In this tutorial we gave an overview of a 
number of different hierarchical represen- 



tations for collections of rectangles. The 
choice of a representation is not clear-cut. 
It depends on the problem domain and the 
tasks to be performed. Although our cov- 
erage has been limited, we have seen that 
the various methods are quite similar. In 
particular, we have shown a close relation- 
ship between quadtree like area-based rep- 
resentations and the representations used 
to support solutions based on the plane- 
sweep paradigm. 

In retrospect, this relationship is not sur- 
prising. It is based on the observation that 
algorithms that make use of traversals of a 
quadtree are in actuality performing a two- 
dimensional plane sweep. Furthermore, a 
quadtree decomposition is really a multi- 
dimensional sort. In contrast, solutions 
based on representations such as the inter- 
val tree perform a sort in one dimension 
and then a sweep in the other direction. Of 
course, a similar solution could also be de- 
vised in a multidimensional environment. 
In such a case, the concept of an active 
border [Samet and Tamminen 1985, 19881 
used in the multidimensional plane sweep 
embodied by a quadtree traversal is the 
analog of the scan line in the one-dimen- 
sional plane-sweep. At any instant in a 
traversal of the quadtree, the active border 
represents the boundary between the nodes 
that have been processed and those that 
have not. The similarity is completed by 
devising data structures to represent the 
active border that have properties analo- 
gous to those of the segment and interval 
trees. It would be interesting to explore this 
relationship further. 
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