
COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 29, 311-328 (1985)

Reconstruction of Quadtrees from Quadtree Medial
Axis Transforms*

HANAN SAMET

Computer Science Department. University of Mayland, College Park, MaTland 20742

Received January 22,1984; revised May 24.1984

An algorithm is presented for reconstructing a quadtree from its quadtree medial axis
transform (QMAT). It is useful when performing operations for which the QMAT is well suited
(e.g., thinning of an image). The algorithm is a postorder tree traversal which propagates the
subsumption of each BLACK QMAT node in the eight possible directions. Analysis of the
algorithm shows that its average execution time is proportional to the number of leaf nodes in
the quadtree. The algorithm also serves to reinforce the appropriateness of the definition of the
quadtree skeleton which does not permit a BLACK quadtree node to require more than one
element of the quadtree skeleton for its subsumption. 0 1%?5 Academic PKSS. IX

1. INTRODUCTION

The quadtree [9, 261 is a technique of region representation which has been the
subject of much research in recent years. This research has focussed on its inter-
changeability with more common representations such as borders [3, 161 arrays [17],
and rasters [18, 271 as well as performing basic image processing operations
[4, 19, 20, 291. It has been used as a basis for a cartographic information system [14],
computer graphics [5, 61, and also for modeling 3dimensional objects [7, 12, 301.

The development of the quadtree was motivated to a large degree by a desire to
save storage. It was seen as a means of aggregating blocks having similar properties.
Unfortunately, the amount of space that is required depends on the positioning of
the regions in the image. Shifting the contents of an image, represented by a
quadtree, by one pixel can easily lead to a dramatic increase of the space required.
Thus it is desirable to have an image representation that is less sensitive to shift. The
quadtree medial axis transform (QMAT) [24] is a data structure that has such a
property while at the same time occupying at most the same amount of space as the
quadtree. In essence, a quadtree is a partition of a region into a set of disjoint
squares having sides of lengths that are powers of two, whereas the QMAT results in
a partition of space into a set of possibly nondisjoint squares having sides whose
lengths are sums of powers of two. An alternative to the shift sensitivity problem is
to try to construct an optimal (space-wise) quadtree by trying a subset of all possible
shifts [ll] which is nevertheless an expensive process.

It is important to note that the motivation for our study of QMAT is its decreased
sensitivity to shift operations and not the usual purpose of obtaining skeleton-like
approximations of the image. Nevertheless, algorithms such as the one we present
here should be useful when the QMAT is used to facilitate operations such as
thinning [13] and it is desired to have the quadtree representation of the thinned

*The support of the U.S. Army Engineer Topographic Laboratories under Contract DAAG-70-81-C.
059 is gratefully acknowledged.

311
0734-189X/85 $3.00

Copyright c 1985 by Academic Press. Inc
Ail rights of reproduction in any form rewvrd

312 HANAN SAMET

a b

65 66 60 61 56 52

FIG. 1. An image, its maximal blocks, the corresponding quadtree, the chessboard distance transform,
the block decomposition of the QMAT, and the QMAT. Blocks in the image and in the QMAT are
shaded: (a) Sample image; (b) Block decomposition of the image in (a); (c) Quadtree representation of the
blocks in (b); (d) Chessboard distance transform of (b); (e) Block decomposition of the QMAT of (b)
(radius values are within parentheses); (f) QMAT representation of the blocks in (b) (radius values are
within parentheses).

image. To see this, we note that traditional thinning requires examination of the
image pixel by pixel. In contrast, using a quadtree representation, we can take
advantage of its hierarchical nature and perform thinning by traversing the image
block by block and possibly replacing a block by a smaller block. The QMAT
representation stores the radius of the area spanned by the QMAT block thereby
facilitating the detection of stopping points for thinning (i.e., when connectivity is
lost). Now, thinning may be implemented by traversing the image block by block
and at times just changing the value of the radius. Since the QMAT is often even
more compact than the quadtree, thinning is speeded up as well, since there are
fewer elements (i.e., blocks) to examine. Further discussion of thinning and skeletons
is beyond the scope of this paper.

An algorithm for the construction of a QMAT from its quadtree is given in [24].
In this paper we present an algorithm for the reverse process-i.e., the reconstruc-
tion of a quadtree from its QMAT. Section 2 contains a discussion of the representa-

RECONSTRUCTION OF QUADTREES

d

f A
0

e

B E

A c D

I(s) FGH 2(4) W N 0

FIG. l.-Continued.

tion that we use. Section 3 reviews the concepts of distance, quadtree skeletons, and
QMATs. In Section 4 we present our algorithm both informally and formally using a
variant of ALGOL 60, while Section 5 contains an analysis of its execution time.

2. DEFINITIONS AND NOTATION

We assume that the given image is a 2” by 2” array of unit square “pixels.” The
quadtree is an approach to image representation based on a successive subdivision of
the array into quadrants. In essence, we repeatedly subdivide the array into
quadrants, subquadrants,. . . , until we obtain blocks (possibly single pixels) which
consist entirely of l’s or 0’s. This process is represented by a tree of out-degree 4 in
which the root node represents the entire array, the four sons of the root node
represent the quadrants, and the terminal nodes correspond to those blocks of the
array for which no further subdivision is necessary. For example, Fig. lb is a block
decomposition of the region in Fig. la while Fig. lc is the corresponding quadtree.
In general, BLACK and WHITE square nodes represent blocks consisting entirely of
l’s and O’s respectively. Circular nodes, also termed GRAY nodes, denote nontermi-
nal nodes.

Each node in a quadtree is stored as a record containing seven fields. The first five
fields contain pointers to the node’s father and its four sons, labeled NW, NE, SE,
and SW. Given a node P and a son I, these fields are referenced as FATHER(P)
and SON(P, I), respectively. At times it is useful to use the function (SONTYPE(P),
where SONTYPE = Q iff SON(FATHER(P), Q) = P. The sixth field, NODE-
TYPE, describes the contents of the block of the image which the node
represents-i.e., BLACK, WHITE, or GRAY. The seventh field, DIST, indicates the

314 HANAN SAMET

distance [22] to the nearest WHITE node according to the specified distance metric.
This field is only meaningful for BLACK nodes. Both WHITE and GRAY nodes are
said to have distance zero.

Let the four sides of a node’s block be called its N, E, S, and W sides. They are
also termed its boundaries and at times we speak of them as if they are directions.
Figure 2 shows the relationship between the quadrants of a node’s block and its
boundaries. The specification of the spatial relationships between the various sides is
facilitated by use of the functions OPSIDE, CSIDE, and CCSIDE. Given side B,
OPSIDE(B) corresponds to the side facing B; e.g., OPSIDE(N) = S. CSIDE(B) and
CCSIDE(B) correspond to the sides adjacent to side B in the clockwise and
counterclockwise directions respectively; e.g., CSIDE(N) = E and CCSIDE(N) = W.
We also define the following predicates and functions to aid in the expression of
operations involving a block’s quadrants and boundaries. ADJ(B, I) is true if and
only if quadrant Z is adjacent to boundary B of the node’s block, e.g., ADJ(E, SE) is
true. REFLECT(B, I) yields the SONTYPE value of the block of equal size that is
adjacent to side B of the block having SONTYPE value I; e.g., REFLECT(N, SE) =
NE, REFLECT(E, SE) = SW, REFLECT(S, SE) = NE, and REFLECT(W, SE) =
SW. COMMONSIDE(Ql,Q2) indicates the boundary of the block containing
quadrants Ql and Q2 that is common to them (if Ql and Q2 are not adjacent
brother quadrants, then the value of COMMONSIDE(Q1, Q2) is undefined); e.g.,
COMMONSIDE(SE, SW) = S while COMMONSIDE(NW, SE) is undefined.
QUAD(S1, S2) is the quadrant bounded by boundaries Sl and S2 (if Sl and S2
are not adjacent boundaries, then QUAD(S1, S2) is undefined); e.g., QUAD(S, E) =
SE while QUAD(S, N) is undefined. Similarly, OPQUAD(QUAD(S1, S2) =
QUAD(OPSIDE(Sl), OPSIDE(S2)).

For a quadtree corresponding to a 2” by 2” array we say that the root is at level n,
and that a node at level i is at a distance of n - i from the root of the tree. In other
words, for a node at level i, we must ascend n - i FATHER links to reach the root
of the tree. Note that the farthest node from the root of the tree is at level 2 0. A
node at level 0 corresponds to a single pixel in the image. Also, we say that a node is
of size 2s if it is found at level S in the tree-i.e., it has a side of length 2s.

A natural by product of the treelike nature of the quadtree representation is that
many basic operations are implemented as tree traversals. The difference between
them is in the nature of the computation that is performed at the node. Often, these
computations involve the examination of some nodes that are adjacent to the node
being processed. We shall speak of these adjacent nodes as neighbors. In order to be
more precise, given node P, corresponding to block P and a direction D, we say
that node Q, corresponding to block Q, is the neighbor of node P in direction D
(i.e., neighbor(P, D) = Q), when both of the following conditions are satisfied.

W E

S

FIG. 2. Relationship between a block’s four quadrants and its boundaries.

RECONSTRUCTION OF QUADTREES 315

(1) P and Q share a common border, even if only a comer.
(2) The block corresponding to Q is the smallest block (it may be GRAY) of

size greater than or equal to the block corresponding to P.

For example, block 50 in Figs. lb and c has neighbors 48, 51,22,21, 32, T, and Q.
Note that the neighboring nodes need not be distinct-i.e., a node may serve as a
neighbor in more than one direction. For example, for node 50 in Fig. 1, node 48
overlaps the N and NE neighboring directions.

3. QUADTREE SKELETONS AND QUADTREE MEDIAL AXIS TRANSFORMS

Before presenting the QMAT to the quadtree conversion algorithm, let us briefly
review the concepts behind the QMAT. The QMAT of an image is based on the
notions of a medial axis. The medial axis of a region [l, 131 is a subset of its points
each of which has a distance from the complement of the region (using a suitably
defined distance metric) which is a local maximum. The medial axis transform
(MAT) consists of the set of medial axis or skeleton points and their associated
distance values.

Distance is measured using the chessboard distance metric, given below,

In [19] it is shown to be most appropriate for a quadtree since it has the property
that for a given point p, the set of points {q} such that d(p, q) 5 t is a square. This
metric is used to define the chessboard distance transform for a quadtree as a
function DIST which yields for each BLACK block in the quadtree the chessboard
distance from the center of the block to the nearest point which is on a BLACK-
WHITE border. More formally, letting x be the center of a BLACK block b, z be a
point on the border of the WHITE block w, say B(w), we have

In addition, we say that DIST of a WHITE block is zero and that the border is
BLACK for the purpose of the computation of F and DIST.

We are now ready to define the concept of a quadtree skeleton. Given a BLACK
block, bi, it is convenient to use S(bi) to refer to that part of the image spanned by a
square with side width 2 . DIST(b,) centered about 6,. Let the set of BLACK blocks
in the image be denoted by B. A quudtree skeleton is the set T of BLACK blocks
satisfying the following properties:

(1) urea(B) = U J(ti)

(2) for any tj E T, Jbk E B(b, # ti) 3 S(tj) c S(b,)
(3) Vb, E B, 3t, E T 3 S(b,) c S(t,).

For example, for the quadtree of Figs. lb and c, the quadtree skeleton consists of
nodes 1 and 2 with chessboard distance transform values of 5 and 4, respectively,
assuming a 24 by 24 image. Property (1) insures that the entire image is spanned by

316 HANAN SAMET

the quadtree skeleton. Property (2) is termed the subsumption property and we say
that bj is subsumed by b, when S(bj) c S(b,). Property (2) means that the elements
of the quadtree skeleton are the blocks with the largest distance transform values.
Property (3) insures that no block in B and not in T requires more than one element
of T for its subsumption-e.g., the case that one half of the block is subsumed by
one element of T and the other half is subsumed by another element of T is not
permitted. In [24] it is shown that the quadtree skeleton of an image is unique.

The QMAT of an image is the quadtree whose BLACK nodes correspond to the
BLACK blocks comprising the quadtree skeleton and their associated chessboard
distance transform values. All remaining nodes in the QMAT are WHITE and
GRAY with distance value zero. For example, Fig. Id contains the chessboard
distance transform corresponding to the region given in Fig. la. Figs. le and f
contain the block and tree representations, respectively, of the QMAT of Figs. lb
and c. The algorithm for constructing the QMAT from its quadtree is given in [24].

4. ALGORITHM

Construction of a quadtree from its QMAT is relatively straightforward. We
perform a postorder traversal of the QMAT, and for each element of the quadtree
skeleton (i.e., a BLACK node in the QMAT), say ti, we add all elements of S(ti) to
the quadtree. This is done by examining the neighbors of ti. There are at most eight
such neighbors as shown in [22]. Once a neighbor, say g, is found to be subsumed by
an element of the QMAT, the same process of neighbor examination is performed
for the neighbors of g in the specified direction. For example, in Fig. 1, when
processing the eastern edge of node 1 of the QMAT, we add nodes 3 and 6 by
expanding node F. Next, we add nodes 4 and 5, and nodes 7 and 8 by expanding
nodes P and Q, respectively, as they are the eastern neighbors of 3 and 6.

The main procedure is termed QMAT-TO-QUADTREE and is invoked with a
pointer to the QMAT representing the image and an integer corresponding to the log
of the diameter of the image (e.g., n for a 2” X 2” image array). QMAT-TO
-QUADTREE traverses the QMAT and controls the examinations of the eight
neighbors of each BLACK node which is an element of the QMAT. Note that
QMAT-TO-QUADTREE is an “in place” algorithm in the sense that it overwrites
the current tree (i.e., the QMAT) in the process of constructing the corresponding
quadtree. An alternative algorithm could be devised which would create a copy of
the QMAT as it constructs the quadtree thereby processing the two trees in parall.el.

The neighbors of each node are obtained by procedures MAKE-EQUALADJ
-NEIGHBOR and MAKE-EQUAL-CORNER-NEIGHBOR. In particular, we
require a neighbor of equal size along each of the directions. If the neighbor is of
larger size, then by use of ADD-FOUR-WHITE-SONS it is decomposed into four
WHITE sons as many times as is required to get the appropriate size. For example,
the western neighbor of node 2 in Fig. le is D and is larger than 2. Therefore, we
replace it by a GRAY node of four WHITE sons (i.e., 62, K, 63, and L) and return
K as the appropriate neighbor. Of course, if the node is on the edge of the image in
the desired direction, then no neighbor exists and NULL is returned (e.g., the
northern neighbor of node 1 in Fig. le). Note that MAKE-EQUALADJ
-NEIGHBOR locates a neighboring node of equal size along directions N, E, S, and
W while MAKE-EQUAL-CORNERNEIGHBOR locates a neighboring node of
equal size along directions NE, SE, SW, and NW.

RECONSTRUCTION OF QUADTREES 317

a

I(31 2(2) 312) B

FIG. 3. An image, its quadtree, and its QMAT showing that PROPAGATE-ADJACENT need not be
applied when propagating the subsumption in the eastern and southern directions for node 1: (a) Image
and its block decomposition; (b) Quadtree representation of the blocks in (a); (c) QMAT of the image in
(a) (radius values are within parentheses).

Once a neighboring node of equal size has been located, we must propagate the
subsumption and thereby add BLACK nodes as is necessary. This may require
changing WHITE nodes to BLACK or decomposing them into smaller nodes.
Procedure PROPAGATE-ADJACENT propagates subsumption in the horizontal
and vertical directions. It checks if the neighboring node, say Y, is subsumed entirely
by the node currently being processed, say X. If Y is not, then there are three cases
depending on Y’s type. If Y is BLACK, then Y is left alone (e.g., when propagating
subsumption in the eastern and southern directions for node 1 in Fig. 3 and
encountering BLACK nodes 2 and 3, respectively). If Y is WHITE, then Y is
decomposed into four WHITE sons and PROPAGATE-ADJACENT is reapplied
recursively to the two sons closest to the node whose subsumption is being
propagated, i.e., X. For example, node F of the QMAT in Fig. le is an eastern
neighbor of node 1 but it is not totally subsumed by node 1 and thus it is
decomposed into WHITE sons 3,6, P, and e. PROPAGATE-ADJACENT is now
reapplied to nodes 3 and 6. The final case is when the node is GRAY which means
that we recursively reapply PROPAGATE-ADJACENT to the two adjacent sons as
was done for a WHITE node. When the neighboring node Y is subsumed entirely,
we perform the following two steps. First, we convert Y to a BLACK node if it is
WHITE or GRAY. Second, we determine if there is further subsumption in the
direction being processed. For example, while processing node 1 in Fig. le, node 3 is
subsumed by node 1 but so is part of node P. This forces us to recursively reapply
PROPAGATE-ADJACENT to the eastern neighbor of 3-i.e., P.

Procedure PROPAGATE-CORNER is analogous in spirit to PROPAGATE
-ADJACENT in the sense that it propagates subsumption in the comer directions
(i.e., NE, SE, SW, and NW). It checks if the neighboring node, say Y, is subsumed

318 HANAN SAMET

entirely by the node currently being processed, say X. If Y is not, then there are
three cases depending on Y’s type. If Y is BLACK, then Y is left alone. If Y is
WHITE, then Y is decomposed into four WHITE sons and PROPAGATE
-CORNER is reapplied recursively to the son closest to the node whose subsump-
tion is being propagated, i.e., X. For example, node H of the QMAT in Fig. le is a
southeastern neighbor of node 1 but it is not totally subsumed by node 1 and thus it
is decomposed into WHITE sons 9, T, U, and V. PROPAGATE-CORNER is now
reapplied to node 9. The final case is when the node is GRAY which means that we
recursively reapply PROPAGATE-CORNER to the nearest son as was done for a
WHITE node. When the neighboring node Y is subsumed entirely, then we perform
the following two steps. First, we covert Y to a BLACK node if it is WHITE or
GRAY. Second, we determine if there is further subsumption in the comer direction
being processed as well as its two adjacent directions. For example, while processing
node 1 in Fig. le, node 9 is subsumed by node 1 but so are parts of nodes T, U, and
I’. This forces us to recursively reapply PROPAGATE-CORNER to the southeast-
em neighbor of 9-i.e., V and PROPAGATE-ADJACENT to the eastern and
southern neighbors of 9-i.e., T and U, respectively.

Figures 4a and b provide a snapshot of the QMAT to quadtree construction
process by showing the intermediate quadtree immediately after finishing processing
node 1. Note that node I/ is a GRAY node having sons 12,39,40, and 41 of which
12 is BLACK while 39, 40, and 41 are WHITE. In contrast, in Figures lb and c
node V is BLACK (and is termed 32). This is because when processing node 2 and
checking its northeastern neighbor (i.e., H) for subsumption we were compelled to
reapply PROPAGATE-CORNER to node V which was a GRAY node. However, as
far as node 2 is concerned, the entire space spanned by node V is subsumed by node
2 and hence it was converted to a BLACK node. A similar situation can arise when
PROPAGATE-ADJACENT encounters a GRAY node.

The process of recursive application of procedures PROPAGATE-ADJACENT
and PROPAGATE-CORNER is guaranteed to terminate by virtue of Theorem 1 of
[22] which shows that a QMAT BLACK block of size 2” by 2” has an upper bound
of 3 . 2(“-‘) for its distance transform value. Practically speaking, this means that in
Fig. le, when checking the space subsumed by node 1 we need not examine nodes to
the east, south, and southeast of nodes F, G, and H, respectively. Also note that
whenever a BLACK node is generated by procedure PROPAGATE-ADJACENT or
PROPAGATE-CORNER, its DIST field is set to zero so that procedure QMAT
-TO-QUADTREE need not waste its time trying to propagate subsumption for it.

As an example of the application of the algorithm, consider the region given in
Fig. la. Figure lb is the corresponding block decomposition while Fig. lc is its
quadtree representation. Figure Id contains the chessboard distance transform
corresponding to Fig. lb. Figures le and f contain the block decomposition of the
QMAT and the quadtree representation of QMAT corresponding to Fig. lb,
respectively. Figure 4 shows the quadtree resulting after propagating the subsump-
tion of node 1. All the BLACK nodes have labels ranging from 1 to 32 while the
WHITE nodes have labels ranging from 33 to 68. The GRAY nodes have labels
ranging between A and I/. Nodes 1 and 2 are the elements of the quadtree skeleton
(i.e., the BLACK nodes comprising the QMAT). The remainder of the BLACK
nodes have been labeled in the order in which they were visited (and thereby
created) by procedures PROPAGATE-ADJACENT and PROPAGATE-CORNER.

RECONSTRUCTION OF QUADTREES 319

b

a

FIG. 4. Intermediate quadtree immediately after propagating the subsumption of node 1: (a) Image
and its block decomposition; (b) Quadtree representation of the blocks in (a).

Note the presence of GRAY node V; BLACK node 12; and WHITE nodes 39, 40,
and 41 in Fig. 4; and their replacement by BLACK node 32 in Fig. 1. This was
explained earlier to be a result of checking the subsumption of node 2.

procedure QMAT-TO-QUADTREE(P, LEVEL);
/* Given a QMAT rooted at node P spanning a 2LEVEL x 2LEVEL space, find its

corresponding quadtree. */
begin

value nude P;
value integer LEVEL;
nude Q;
direction D;
quadrant I;
if BLACK(P) then

begin
if DIST(P) > 2 f (LEVEL - 1) then

320 HANAN SAMET

begin/* Node P subsumes some of its neighbors */
for D in (‘N’, ‘E’, ‘s’, ‘W’} do

begin
MAKE-EQUAL.ADJ-NEIGHBOR(P, D, Q);
if not NULL(Q) then

PROPAGATEADJACENT(Q, LEVEL,
DIST(P)- 2 t
(LEVEL - l), D);

MAKE-EQUALXORNERNEIGHBOR(P, QUAD
(D, CSIDE
CD)), Q>;

if not NULL(Q) then
PROPAGATE.CORNER(QLEVEL,

DIST(P)- 2 t
(LEVEL - l), D;

end;
end;

DIST(P) + 0;
end

else if GRAY(P) then
begin

for I in {‘NW’, ‘NE’, ‘SE’, ‘SW’} do
QMAT-TO-QUADTREE(SON(P, I), LEVEL - 1);

end;
end; /* WHITE nodes are left alone */

procedure MAKE-EQUAL-ADJ-NEIGHBOR(P, D, Q);
/* Return in Q the neighbor of node P in horizontal or vertical direction D which

is equal in size to P. If P is adjacent to the border of the image along the
specified direction, then NULL is returned. If the neighbor is of size greater
than P and is WHITE, then it is broken up into four WHITE quadrants in
order to obtain the desired neighbor. If the neighbor is BLACK, then it is not
broken up further. */

begin
value node P;
reference node Q;
value direction D;
if not NULL(FATHER(P)) and ADJ(D, SONTYPE(P)) then

/* Find a common ancestor */
MAKE-EQUALADJ-NEIGHBOR(FATHER(P), D, Q)

else Q + FATHER(P);
/* Follow the reflected path to locate the neighbor */
if not NULL(Q) and not BLACK(Q) then

Q + SON(if GRAY(Q) then Q
else ADD-FOURWHITE-SONS(Q),
REFELCT(D, SONTYPE(P)));

end;

RECONSTRUCTION OF QUADTREES 321

procedure MAKE-EQUAL-CORNER-NEIGHBOR(P, C, Q);
/* Return in Q the neighbor of node P in the direction of comer C of P which is

equal in size to P. If P is adjacent to the border of the image along the
specified direction, then NULL is returned. If the neighbor is of size greater
than P and is WHITE, then it is broken up into four WHITE quadrants in
order to obtain the desired neighbor. If the neighbor is BLACK, then it is not
broken up further. */

begin
value node P;
reference nude Q;
vahle quadraut c;
if not NULL(FATHER(P)) and SONTYPE(P) # OPQUAD(C) then

if SONTYPE = C then
MAKE-EQUAL-CORNER-NEIGHBOR(FATHER(P), C, Q)

else MAKE-EQUALADJ-NEIGHBOR(FATHER(P),
COMMONSIDE
(SONTYPE(C>, Q>

else Q + FATHER(P);
/* Follow the opposite path to locate the neighbor */
if not NULL(Q) and not BLACK(Q) then

Q 6 SON(if GRAY(Q) then Q
else ADD-FOURWHITE-SONS(Q),
OPQUAD(SONTYPE(P)));

end;

noBe proceckne ADD-FOURWHITE-SONS(P);
/* Return node P after converting it to a GRAY node and adding four WHITE

sons. */
begin

value nude P;
nude Q;
quadrant Z, J;
NODETYPE +- ‘GRAY’;
for Z in {‘NW’, ‘NE’, ‘SE’, ‘SW’} do

begin
Q +- createnode ();
SON(P, I) +- Q;
FATHER(Q) +- P;
NODETYPE +- ‘WHITE’;
DIST(Q) +- 0;
for J in {‘NW, ‘NE’, ‘SE’, ‘SW} do SON(Q, J) +- NULL;

end;
retum (P);

end;

procedure PROPAGATE-ADJACENT(P, L, T, D);
/* Node P at level L is adjacent to side D of a QMAT node whose span exceeds

its width by T-i.e., P is subsumed or partially subsumed by that node. P or

322 HANAN SAMET

its appropriate sons are to be converted to BLACK nodes if they are not
already BLACK. */

begin
value node P;
value integer L, T,
value direction D;
if2tL> Tthen

begin /* P is too large to be totally subsumed by its adjacent QMAT
node */

if BLACK(P) then return;
if WHITE(P) then ADD-FOUR-WHITE-SONS(P);
PROPAGATEADJACENT(SON(P, QUAD(OPSIDE(D),

CCSIDE(D))), L- 1, T, 0);
PROPAGATEADJACENT(SON(P, QUAD(OPSIDE(D),

CSIDE(D))), L- 1 T, D);
end

else
begin /* P is subsumed by its adjacent QMAT node */

if GRAY(P) then /* Account for nondisjointess of the QMAT-see
Fig. 4 */

return SONS to avail (P);
NODETYPE(P) + ‘BLACK’; /* Change P to BLACK if not already

so */

end;

if 2 t L c T then /* Propagate subsumption to neighbors of P on side
D */

PROPAGATE-ADJACENT(SON(FATHER(P),
REFLECT(SONTYPE(P), D)), L,
T-2f L, D);

end;

procedure PROPAGATE-CORNER(P, L, T, D);
/* Node P at level L is adjacent to comer QUAD(D, CSIDE(D)) of a QMAT

node whose span exceeds its width by T-i.e., P is subsumed or partially
subsumed by that node. P or its appropriate sons are to be converted to
BLACK nodes if they are not already BLACK. */

begin
value node P;
value integer L, T,
value direction D;
if2?Lb- Tthen

begin
/* P is too large to be totally subsumed by its corner adjacent QMAT

node */
if BLACK(P) then return;
if WHITE(P) then ADD-FOURWHITE-SONS(P);
PROPAGATE XORNER(SON(P, QUAD(OPSIDE(D),

CCSIDEJD))), L- 1, T, D);

RECONSTRUCTION OF QUADTREES 323

end
else

begin /* P is subsumed by its adjacent QMAT node */
if GRAY(P) then /* Account for nondisjointness of the QMAT-see

Fig. 4 */
retum SONS to avail (P);

NODETYPE(P) +- ‘BLACK’; /* Change P to BLACK if not already
so */

if2TLcTthen
begin

/*Propagate subsumption to neighbors of P on its comer and
the two sides adjacent to the comer */

PROPAGATE-ADJACENT(SON(FATHER(P),
QUAD(D, CCSIDE(D))), L,
T-2? L, D);

end:
end;

PROPAGATE-CORNER(SON(FATHER(P),
QUAD(D, CSIDE(D))), L,
T-2? L, 0);

PROPAGATE-ADJACENT(SON(FATHER(P),
QUAD(OPSIDE(D),
CSIWD N),
L, T- 2 t L, CSIDE(D)));

end;

5. ANALYSIS

The running time of the QMAT to quadtree algorithm, measured by the number
of nodes visited, is dependent on the ultimate size of the quadtree and on the
number of elements in the quadtree skeleton (i.e., BLACK nodes in the QMAT).
The analysis of the execution time is quite similar to that performed for the
chessboard distance computation algorithm in [15, 221. In essence, we must propa-
gate subsumption for each BLACK element of the QMAT. Actually, we only need
to do this work for those elements of size 2” whose chessboard distance transform
value is > 2(“-‘). Elements of the QMAT satisfying this criterion are termed
subsuming elements. Propagating subsumption requires the examination of the eight
neighbors of the subsuming element. This is achieved by procedures MAKE-EQUAL
ADJ-NEIGHBOR, PROPAGATE-ADJACENT, MAKE-EQUAL-CORNER
-NEIGHBOR, and PROPAGATE-CORNER-NEIGHBOR. Each of these proce-
dures is invoked a maximum of four times for each subsuming element. Note that
the neighbor is of equal size here rather than greater than or equal size as is common
in most of the other analyses of quadtree algorithms that examine neighbors [21].
The amount of work performed by these procedures depends on the value of the
chessboard distance transform of the subsuming element. In the worst case, the
subsuming element is found at level n - 1 and has a chessboard distance transform
value of 2(“-l) + 2(n-2) - 1. In such a case we will have to visit 2(“+l) - 2 nodes in
the case of a horizontal or vertical neighbor, and 2(n+2) - 2 . (2n + 1) nodes in the

324 HANAN SAMET

FIG. 5. Image and its quadtree showing the worst case for the N and NE neighbors when n = 3: (a)
Image and its block decomposition; (b) Quadtree representation of the blocks in (a).

case of a diagonal neighbor. For example, consider Fig. 5, where n = 3 and nodes
are labeled in the order in which the neighbors of node 1 and their progeny have
been visited. Starting with the northern neighbor and proceeding clockwise, we visit
the nodes B, 2, 3, D, 4, 5, 6, 7, E, 8, 9, 10, 11. Next, we visit the northeastern
neighbor and its progeny in the order C, 13, F, 14, 15, 16, 17, G, 18, 19, 20, 21, H,
22, 23, 24, 25.

In the following we analyze the average execution time of the QMAT to quadtree
algorithm. Our analysis assumes a 2” x 2” image in the sense that a node is equally
likely to appear in any position and level in the quadtree. This means that all
configurations of adjacent nodes of varying sizes have equal probability. This is
different from the more conventional notion of a random image which implies that
every block at level 0 (i.e., pixel) has an equal probability of being BLACK or
WHITE. Such an assumption would lead to a very low probability of any nodes
corresponding to blocks of size larger than 1. Clearly, for such an image the quadtree
is the wrong representation. We have used this equal configuration model in our
prior work [21] and experimental results in [28] have vindicated this assumption. The
amount of work performed by the combination of procedures MAKE-EQUAL
ADJ-NEIGHBOR and PROPAGATE-ADJACENT is the same as that performed
by procedures GTEQUAL-ADJ-NEIGHBOR and DISTADJACENT in the com-
putation of the chessboard distance transform as reported in [15, 221. The same
equivalence holds for the work performed by the combination of procedures MAKE
-EQUAL-CORNER-NEIGHBOR and PROPAGATE-CORNER and procedures
GTEQUAL-CORNER-NEIGHBOR and DIST-CORNER in [15, 221. Both of
these tasks have average execution times of O(1). They are invoked a total of eight
times for each BLACK node in the tree. We also must visit each node in the
quadtree as part of the traversal. Since a quadtree with B and W BLACK and
WHITE leaf nodes, respecitively, has 0(B + W) nodes we have proven the follow-
ing theorem:

THE~RJZM 1. The average execution time of the QMAT to quadtree algorithm is
O(B + W).

RECONSTRUCTION OF QUADTREES 325

6. CONCLUDING REMARKS

An algorithm has been presented for reconstructing a quadtree from its QMAT. It
is useful when performing operations for which the QMAT is well suited. For
example, thinning an image is quite simple when it is represented by a QMAT. The
algorithm’s running time was shown to have an average execution time of 0(B + W)
where B and W correspond to the number of blocks comprising the objects and the
background of the image respectively. Actually, the number of BLACK nodes (i.e.,
the image complexity) dominates the execution time of the algorithm. In fact, it can
be said that the algorithm takes time proportional to the number BLACK nodes in
the QMAT since subsumption is only propagated for these nodes. Clearly, this is a
better bound than the number of BLACK blocks in the image because the size of the
quadtree is an upper bound on the size of the QMAT (see [24]). Subsumption is not
propagated for the remaining BLACK nodes (i.e., those that are generated during
subsumption propagation) because their DIST field is set to zero.

In Section 3 the quadtree skeleton was defined in terms of properties (1) (2), and
(3). In [24] an alternative definition is proposed which replaces property (3) by
property (3’) below:

(3’) $, E 7’3 S($) c US(t,> t, f t,.

Property (3) does not yield a minimal quadtree skeleton because it does not permit a
quadtree block to require more than one block of T for its subsumption-i.e., one
half of the block would be subsumed by one element of T and the other half would
be subsumed by another element of T. For example, in the image of Fig. 6a,
property (3) requires that the quadtree skeleton contains blocks 5, 14, and 15 while
property (3’) only requires blocks 5 and 15 since together they subsume block 14.
Property (3) was used instead of (3’) because by definition of the QMAT the tree size
is unaffected by which property is used since the only difference is that the
additional blocks are represented by BLACK nodes instead of WHITE nodes (e.g.,
node 14 in Figs. 6b and c). Furthermore, property (3) was shown to lead to a simpler
QMAT creation algorithm. In [24] it is stated that use of property (3’) should lead to
a faster quadtree reconstruction algorithm since the quadtree skeleton is potentially
smaller. However, use of such a QMAT definition would require an additional step
in procedure QMAT-TO-QUADTREE to check for merging. This would be per-
formed at the conclusion of processing a GRAY node. Since property (3) does not
permit a node to require more than one element of the quadtree skeleton for its
subsumption, this merger is impossible when using our algorithm and thus need not
be checked.

It should be clear that our algorithm for reconstructing the quadtree from its
QMAT is not unique. We have adopted an approach similar to that used in the
computation of the perimeter of an image represented by a quadtree [20]-i.e., for
each BLACK node, its neighbors in the four directions N, E, S, and W were
examined to see if they were GRAY or WHITE and if yes, then the appropriate
values were added to the perimeter. In the discussion of the perimeter computation
algorithm, it was proposed that instead of examining the four neighbors of each
BLACK node, the perimeter could also be obtained by traversing the quadtree and
only examining the S and E boundaries of BLACK and WHITE nodes. In the case

326 HANAN SAMET

a

25 (01

b A

Aa?

0 C
24 25 Aa? 0 C

24 25

FIG. 6. An image and its corresponding QMATS using properties (3) and (3’) for the quadtree
skeleton definitions. Blocks in the QMAT are shaded: (a) Image and its block decomposition (The value
of the chessboard distance transform is within parentheses.); (b) QMAT of the image in (a) using property
(3) (radius values are within parentheses); (c) QMAT of the image in (a) using property (3’) (radius values
are within parentheses).

of the BLACK nodes we examine WHITE adjacent nodes, and in the case of
WHITE nodes, we examine BLACK adjacent nodes. This removed redundant
checks since each boundary has a node on each side. An analogous algorithm for the
reconstruction of the quadtree from its QMAT would always examine E, SE, S, and
SW neighbors in the propagation of subsumption. In the case of BLACK elements
of the QMAT we would proceed in the same way as procedure QMAT-TO
-QUADTREE in Section 4. However, WHITE nodes are considerably more
cumbersome to process. For example, when processing the eastern side of WHITE
QMAT node D of Fig. If, we must determine if there are any BLACK nodes (of any
size) adjacent to its eastern side and then propagate their subsumption back to node
D. This requires us to examine all of the adjacent BLACK nodes. The result is a
QMAT reconstruction algorithm that is considerably more complex.

Our algorithm makes use of the bottom-up neighbor finding techniques of [21]. In
essence, a node’s neighbor in a given direction is located by ascending the tree until
a nearest common ancestor is found, and then descending down the tree in search of
the appropriate node. This technique has an average worst case of four nodes being
visited for each neighbor that is sought. The worst case for a 2” by 2” image is 2 * n.
An alternative method, termed top-down, makes use of a neighbor vector, containing
the eight neighbors of each node in the eight directions, as an actual parameter to
the tree traversal [23]. Variants of this technique are discussed in [S, 141. It could be
used in our implementation thereby obviating, in part, the need for procedures
MAKE-EQUAL-ADJ-NEIGHBOR and MAKE-EQUAL-CORNERNEIGH-
BOR. However, it would not remove the average worst case characterization of the

RECONSTRUCTION OF QUADTREES 32-l

entire QMAT-TO-QUADTREE algorithm since we still must account for the
average worst case of procedures PROPAGATE-ADJACENT and PROPAGATE
-CORNER. Nevertheless, the procedure would be faster since the eight neighbors
would be immediately accessible.

ACKNOWLEDGMENTS

I have benefitted greatly from discussions with Robert E. Webber. I would Iike to
thank Diana Greenberg and Janet Salzman for their help in the preparation of the
paper.

REFERENCES
1. H. Blum, A transformation for extracting new descriptors of shape, in Models for rhe Perception of

Speech and Visual Form (W. Wathen-Dunn, Ed.), pp. 362-380, MIT Press, Cambridge, Mass..
1967.

2. R. 0. Duda and P. E. Hart, Pattern C~ass~~curion und Scene Anu(vsis, Wiley-Interscience, New York,
1973.

3. C. R. Dyer, A. Rosenfeld, and H. Samet, Region representation: Boundary codes from quadtrees.
Comm. ACM 23, No. 3 (1980). 171-179.

4. C. R. Cyer, Computing the Euler number of an image from its quadtree, Comput. Gruphics Image
Process. 13. No. 3 (1980), 270-276.

5. G. M. Hunter and K. Steiglitz, Operations on images using quad trees, IEEE Trans. Pattern Anal
Mach. Intel/. 1, No. 2 (1979), 145-153.

6. G. M. Hunter and K. Steiglitz, Linear transformation of pictures represented by quad trees, Compuf.
Graphics Imuge Process. 10, No. 3 (1979). 289-296.

7. C. L. Jackins and S. L. Tanimoto, Ott-trees and their use in representing three-dimensional objects.
Comput. Graphics Image Process. 14, No. 3 (1980), 249-270.

8. C. L. Jackins and S. L. Tanimoto, Quad-trees, act-trees, and k-trees-A generalized approach to
recursive decomposition of Euclidean space, IEEE Trans. Pattern Anal. Mach. Intell. 5, No. 5
(1983), 533-539.

9. A. Klinger, Patterns and search statistics, in Optimizing Methorctr in Statistics pp. 303-337, (J. S.
Rustagi, Ed.), Academic Press, New York, 1971.

10. A. Klinger and M. L. Rhodes, Organization and access of image data by areas, IEEE Trans. Pattern
Awl. Much. Intel/. 1, No. 1 (1979). 50-60.

11. M. Li, W. I. Grosky, and R. Jain, Normalized quadtrees with respect to translations, Cornput.
Gruphics Image Process. u), No. 1 (1982), 72-81.

12. D. Meagher, Geometric modeling using octree encoding, Comput. Graphics Image Process. 19, No. 2
(1982). 129-147.

13. A. Rosenfeld and A. C. Kak, Digitul Picture Processing, Academic Press, New York, 1976.
14. A. Rosenfeld, H. &met, C. Shaffer, and R. E. Webber, Application of Hierarchical Duta Structures IO

Geogruphical Information Systems, Computer Science TR-1197, University of Maryland, College
Park, Md., June 1982.

15. H. Samet, A Distunce Transform for Images Represented by Quudtrees, Computer Science TR-780.
University of Maryland, College Park, Md., July 1979.

16. H. Samet, Region representation: Quadtrees from boundary codes, Comm. ACM 23, No. 3 (1980).
163-170.

17. H. Samet, Region representation: Quadtrees from binary arrays, Comput. Graphics Image Process.,
13, No. 1 (1980) 88-93.

18. H. Samet, An algorithm for converting rasters to quadtrees, IEEE Trans. Pattern Anal. Mach. Infell.
3, No. 1 (1981), 93-95.

19. H. Samet, Connected component labeling using quadtrees, J. Assoc. Comput. Much. 28, No. 3
(1981) 487-501.

20. H. Samet, Computing perimeters of images represented by quadtrees, IEEE Trans. Pattern Anal.
Mach. InteN. 3, No. 6 (1981), 683-687.

21. H. Samet, Neighbor finding techniques for images represented by quadtrees, Comput. Graphics Image
Process. 18, No. 1 (1982) 37-57.

328 HANAN SAMET

22. H. Samet, Distance transform for images represented by quadtrees, IEEE Truns. Pattern Anal.
Much. Intel 4, No. 3 (1982), 298-303.

23. H. &met, A top-down quadtree traversal algorithm, IEEE Trans. Pattern Anal. Math. Intell., in
press; Computer Science TR-1237, University of Maryland, College Park, Md., December 1982.

24. H. Samet, A quadtree medial axis transform, Comm. ACM 245, No. 9 (1983), 680-693.
25. H. Samet, A. Rosenfeld, C. Shafer, and R. E. Webber, Quadtree region representation in cartogra-

phy: Experimental results, IEEE Trans. Systems Man Cyberner. 13, No. 6 (1983), 1148-1154.
26. H. Samet, The quadtree and related hierarchical data structures, ACM Comput. Surveys 16, No. 2

(1984).
27. H. Samet, Algorithms for the conversion of quadtrees to rasters, Comput. Vision Graphics Image

Process. 26, No. 1 (1984) l-16.
28. H. Samet and C. A. Shaffer, A model for the analysis of neighbor finding in pointer-based quadtrees,

Computer Science TR-1432, University of Maryland, College Park, Md., August 1984.
29. M. Shneier, Calculations of geometric properties using quadtrees, Comput. Graphics Image Process.

16, No. 3 (1981), 296-302.
30. M. Yau and S. N. Srihari, A hierarchical data structure for multidimensional digital images, Comm.

ACM 26, No. 7 (1983), 504-515.

