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The status of an ongoing research effort to develop a 
geographic information system based on a variant of the 
linear quadtree is presented. This system uses quadtree 
encodings for storing area, point and line features. Recent 
enhancements to the system are presented in detail. This 
includes a new hierarchical data structure for storing linear 

features that represents straight lines exactly and permits 
updates to be performed in a consistent manner. The 
memory management system was modified to enable the 
representation of an image as large as 16 384 x 16 384 
pixels. Improvements were also made to some basic area 
map algorithms which yield significant efficiency speed- 
ups by reducing node accesses. These include windowing, 
set operations with unaligned images, a polygon expansion 
function, and an optimal quadtree building algorithm 
which has an execution time that is proportional to the 
number of blocks in the image instead of the number of 
pixels. 

Keywords: image processing, linear quadtrees, geographic 
information systems 

Hierarchical data structures are important represen- 
tations in geographic information systems, as well as 
in the related domains of computer vision, robotics, 
computer graphics, image processing, pattern recog- 
nition and computational geometry. The advantage of 
hierarchical methods is that their use leads to the aggre- 
gation of pixels thereby resulting in algorithms whose 
execution times are proportional to the number of aggre- 
gated units (e.g. blocks) rather than to the actual size 
of the aggregated units (e.g. the number of pixels in 
a block). One such data structure is the quadtree. Today, 
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the term quadtree is used in a general sense to describe 
a class of data structures whose common property is 
that they are based on the principle of recursive 
decomposition of space. The various elements of the 
class can be differentiated on the basis of the type of 
data that they are used to represent, and on the principle 
guiding the decomposition process. Currently, variants 
of quadtrees are used to store point data, regions, curves, 
surfaces and volumes. The decomposition may be into 
equal-sized parts (termed a regular decomposition), or 
it may be governed by the input. The parts need not 
necessarily be disjoint nor must they be at a fixed 
orientation relative to each other. In the case of spatial 
data, a representation that is related to the quadtree 
is the pyramid, which is a multiresolution data structure. 
In contrast, the quadtree is a variable-resolution 
representation. Figure 1 is an example of a region and 
its corresponding region quadtree. A recent survey of 
the use of hierarchical data structures has been presented 
by Samet’. 

For the past four years, members of the Computer 
Vision Laboratory at the University of Maryland have 
been engaged in a research effort to develop a geographic 
information system (GIS) based on quadtrees. The pro- 
ject has been conducted in four phases. In this paper 
we describe the current state of this effort, but first 
the work that has already been completed is reviewed. 

In phase 12, a quadtree database was built from a 
set of three map overlays representing land use classes, 
terrain elevation contours, and a floodplain boundary 
from a region in Northern California. The overlays were 
hand digitized resulting in three arrays of 400 x 450 
pixels. Labels were associated with the pixels in each 
of the resulting regions, specifying the particular land 
use class or elevation range. The regions were subse- 
quently embedded within a 5 12 x 5 12 grid and quadtree 
encoded. The results are shown in Figures 24. 

0262-8856/87/03187-l 1 $03.00 @ 1987 Butterworth & Co. (Publishers) Ltd 

vol5 no 3 august 1987 187 



a 

Level 3 

Level 2 

Level I 

Level 0 

b 

-----------_ 

7 s 9 IO 15 16 17 I6 

d 

Figure 1. a, region; b, binary array; c, block decomposi- 
tions of the region; d, quadtree representation of the blocks 

Figure 2. Floodplain map 

Algorithms were developed for basic operations on 
quadtree-represented regions - set theoretic operations, 
point-in-region determination, region property compu- 
tation, and submap generation. The efficiency of these 
algorithms was studied theoretically and experimentally. 

In phase 113, a quadtree-based GIS was partially 
implemented, allowing manipulation of images storing 
area, point and line data. This implementation included 
a memory management system to allow manipulation 
of images too large to lit into main memory, a software 

Figure 3. Topography map 

Figure 4. Land use map 

package to allow users to edit and update images, data- 
base management and map manipulation functions, and 
an English-like query language with which to access the 
database. We also extended our testbed by extracting 
point and line data from a geographic survey map of 
the area used in phase I. 

Phase III4 dealt primarily with enhancements and 
alterations to the system, an evaluation of some of the 
design decisions, and the collection of empirical results 
to indicate the utility of the software as well as to justify 
the indicated design decisions. Also included was an 
initial attempt at developing an attribute attachment 
package for storing non-geographic data associated with 
geographic objects, and a survey of appropriate point 
and linear feature data structures for future investiga- 
tion. 

Phase IV’ of the project provided more extensions 
to the system. A new structure was developed for storing 
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linear feature data. The attribute attachment package 
was extended to store attributes of point and linear 
feature data. Existing area map algorithms were 
improved to yield significant efficiency speed-ups by 
reducing node accesses. In this paper we expand further 
on the developments in phase IV. 

CZUADTREE MEMORY MANAGEMENT 
SYSTEM 

The quadtree memory management system, described 
in greater detail in phase II of this project3, is based 
on use of a structure termed the ‘linear quadtree’6. The 
leaf nodes making up the quadtree of an image are stored 
in a list. In the variation which we have implemented 
each leaf node consists of two 32-bit words. The first 
word contains a key which is used to order the node 
list. It is formed by interleaving the bits of the binary 
representation for the x and y coordinates of the pixel 
in the upper left corner of the block represented by the 
leaf node. When sorted in ascending order by the value 
of the key, the node list will be in an order identical 
to that in which the leaves would have been visited by 
a depth-first traversal of the original tree. To be able 
to determine the size of the leaf, we must also specify 
the depth. We use four bits of the 32-bit key to denote 
the depth. This means that 14 bits are left for each 
of the x and y coordinates. Thus an image as large 
as 16 384 x 16 384 pixels can be represented. Each leaf 
also contains a 32-bit value field. 

One motivation for using a linear quadtree in contrast 
to a pointer-based quadtree is that it allows for a 
reduction in storage. In particular, a pointer-based 
representation requires that we store with each node 
four pointers to its children. Some implementations also 
store a pointer to its father. This is in addition to the 
value field. We have implemented the linear quadtree 
in conjunction with a disc-based memory management 
system which only needs to maintain a small part of 
the image in core at one time. In our system, the sorted 
list of quadtree leaves is stored in a B-tree7 with a page 
size of 1024 byte, capable of holding up to 120 leaves 
in a page. 

Another consideration for choosing between a 
pointer-based and a linear quadtree representation is 
the speed in the execution time of their primitive opera- 
tions. Current techniques for storing pointer-based trees 
on disc pages are inefficient in comparison with our 
linear quadtree/B-tree implementation. However, our 
characterization of these operations as requiring an 
explicit disc-based implementation may be criticized on 
the basis of the availability of a large virtual memory 
even in relatively small machines. In other words, a large 
pointer-based quadtree could be maintained in ‘core’, 
the operating system controlling the swapping of parts 
of the tree to disc. This approach trades the ability to 
explicitly control which pages are swapped for the 
efficiency of the operating system’s swap operation. 
Empirical tests have shown that when the virtual 
memory system dominates the amount of time required 
to perform an operation on the pointer-based quadtree 
(i.e. for any operation involving large trees), then explicit 
control of the paging system is much more efficient. 

The line representation, described below, may result 

in associating more than one item of info~ation with 
a quadtree block. This requires a variable-size node 
implementation. Since the value field of each linear 
quadtree node consists of just one 32-bit word, we 
choose to store multiple nodes with the same address 
field, one node for each item of information that is 
associated with the block. This is somewhat wasteful 
of space since the information in the address field is 
repeated. However, more importantly, this method is 
compatible with our area and point representations with 
only minor modifications. 

A variable-length quadtree node is processed by locat- 
ing the first record in a B-tree page with the desired 
address, and then visiting successive records until one 
with a greater address is encountered. Functions were 
written for finding the nth record with a given address 
in the B-tree page, for inserting a record with a given 
address into the B-tree, and for deleting a record with 
a given address and specified contents. manipulating 
variable-sized nodes using this scheme is efficient since 
cases where multiple records with a given key are split 
between B-tree pages are rare. This is true because the 
average amount of information associated with a quad- 
tree block in our application is small in comparison to 
that of the B-tree page. 

IMPROVED DATABASE FUNCTIONS 

A number of existing database functions were signifi- 
cantly improved by being reimplemented using new 
algorithms. These include the Within function, the 
raster-to-quadtree conversion function and the map 
windowing function. In addition, the functions that 
implement set operations (e.g. union and intersection) 
were extended to work on unaligned images. The new 
algorithms are described briefly below. 

The Within function 

The Within function generates a map which is ‘black 
at all pixels within a specified radius of the non-‘white’ 
regions of an input map. It is used to answer queries 
such as ‘Find all cities within 5 miles of wheat growing 
regions.’ Such a query would be answered by invoking 
the Within function to operate on a map containing 
wheat growing regions (i.e. the non-white regions), and 
then intersecting the result with a map containing cities. 

The algorithm that we used previously4 worked by 
expanding each non-white block of the input image by 
R units (where R is the radius), and then inserting all 
of the nodes making up this expanded square into the 
output quadtree. This leads to many redundant node 
insertions. In addition, many of the nodes inserted were 
small, and were eventually merged to form larger nodes. 

The new algorithm is based on a modification of the 
chessboard distance transform&. The algorithm does the 
following for each node of the input image. If the node 
is non-white then it is inserted into the output map. 
If the node is white, and is less than or equal to 
(R + 1)/2 in width, then it must lie entirely within R 
pixels of a non-white node. This is true because one 
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of its siblings must contain a non-white pixel. Thus, 
it is made black and inserted into the tree. If the node 
is white and has a width greater than (R + 1)/2, then 
its chessboard distance transform is computed, i.e. the 
exact distance from the node’s centre to the nearest non- 
white pixel is determined. If this distance is such that 
the node is completely within radius R of a non-white 
pixel, then it is inserted as a black node into the output 
tree. If the node is completely outside the radius, then 
it is inserted as white. Otherwise, the node is quartered, 
and the distance transform calculation is recursively 
reapplied to each quadrant. 

The new algorithm is an improvement over the old 
one in part because only large white nodes need excessive 
computation. Since most nodes in a quadtree are small, 
few nodes generate much work. In addition, there are 
far fewer duplicate node insertions in the new algorithm. 
Table 1 contains a comparison of the two algorithms 
for the floodplain in Figure 2 and the portion of the 
land use class map that only shows class ACC as black 
(see Figure 5). The algorithm is applied to the two maps 
for radius values ranging from 1 to 8 pixels. Notice 
that the execution time speed-up is more than linear. 

An optimal quadtree construction 
algorithm 

The naive algorithm for converting a raster image to 
a linear quadtree (or a pointer-based quadtree) is to 
insert individually each pixel of the raster image into 
the quadtree in raster order. Those pixels making up 
larger nodes are merged together by the quadtree insert 
routine. Previous algorithms9, as well as the one used 
previously in our system’, have worked on this principle. 
Attempts at increasing efficiency concentrated on how 
to improve the insert routine. Table 2 contains the 
execution times of the old algorithm when applied to 
six test maps. The timings are nearly identical for raster 
images with the same number of pixels (i.e node inserts), 

Table 1. Execution times for the Within function 

Figure 5. ACC land use class map 

regardless of the number of nodes in the eventual quad- 
tree, i.e. the number of nodes in the output tree has 

Table 2. Quadtree building algorithm statistics 

Map 
name 

No. of New Old 
nodes 

No. of Time No. of Time 
inserts (s) inserts (s) 

Floodplain 5266 2352 13.8 180000 413.2 
Topography 24859 12400 51.2 180000 429.8 
Land use 28447 14675 56.9 180000 436.7 
Centre 4687 2121 16.1 262144 603.8 
Pebble 44950 20770 111.0 262144 630.8 
Stone 31969 14612 70.2 262144 629.5 

Distance Flood time (s) 

New algorithm Old algorithm 

ACC time (s) 

New algorithm Old algorithm 

1 16.1 
2 21.0 
3 19.3 
4 23.5 
5 35.3 
6 37.2 
7 29.5 
8 30.1 
9 44.4 

10 43.3 
11 57.6 
12 50.8 
13 69.8 
14 66.0 

32.9 11.9 15.3 
24.1 15.5 12.8 
52.9 15.4 27.8 
31.5 18.0 19.7 
68.9 28.4 39.2 
49.4 29.3 31.5 
91.1 26.9 53.3 
53.3 27.2 36.6 
07.5 40.4 63.4 
75.8 39.0 48.0 
27.3 58.1 87.8 
76.6 50.2 53.0 
40.8 66.2 86.4 
99.4 58.0 67.3 

15 57.1 161.4 56.3 106.0 
16 44.4 94.6 45.2 68.5 
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little or no effect on the time required to perform the 
algorithm. Note that for the old building algorithm the 
amount of time needed to read the image data is approxi- 
mately 1% of the time necessary to insert every pixel. 

A new and optimal algorithmrO has been developed 
that makes a single insertion for each node in the quad- 
tree, ‘Optimal’ means that in the worst case the number 
of inserts will be at most the number of nodes in the 
resulting quadtree. It is based on processing the image 
in raster-scan (top to bottom, left to right) order, always 
inserting the largest node for which the current pixel 
is the first (upper leftmost) pixel. Such a policy avoids 
the necessity of merging since the upper leftmost pixel 
of any block is inserted before any other pixel of that 
block. Therefore, it is impossible for four sibling blocks 
to be of the same colour. 

At any point during the quadtree building process 
there is a processed portion of the image and an unpro- 
cessed portion. Both the processed and unprocessed 
portions of the quadtree have been assigned to nodes. 
We say that a node is ‘active’ if at least one pixel, but 
not all pixels, covered by the node has been processed. 
The optimal quadtree building process must keep track 
of all of these active nodes. Given a 2” x 2” image, 
it has been shown” that the number of active nodes 
is bounded by 2” - 1. Using these observations, an 
optimal quadtree building algorithm is outlined below. 
It assumes the existence of a data structure which keeps 
track of the active quadtree nodes. For each pixel in 
the raster scan traversal, do the following. If the pixel 
is the same colour as the appropriate active node, do 
nothing. Otherwise, insert the largest possible, node for 
which this is the first (i.e. upper leftmost) pixel, and 
(if it is not a 1 x 1 pixel node) add it to the set of 
active nodes. Remove any active nodes for which this 
is the last (lower right) pixel. 

To implement the new algorithm, we need to keep 
track of the list of active nodes. This list is represented 
by a table, called ‘Table’, with a row for each level 
of the quadtree (except for level 0 which corresponds 
to the single pixel level; these nodes cannot be active). 
Row i of the table contains 2”-’ entries, with row n 
corresponding to the full image. Given a pixel in column 
j, the value of the active node at row i of the table 
is found at position j/2’. Note that shift operations can 
be used instead of divisions if speed is important. 

The only remaining problem is how to locate the 
appropriate active node corresponding to each pixel. 
In particular, for a given pixel in a 2” x 2” image, 
as many as n active nodes could exist. Multiple active 
nodes for a given pixel occur whenever a new node 
is inserted, as illustrated in Figure 6. Each pixel will 
have the colour of the smallest of the active nodes which 
covers it, since the smallest node will have been the 
most recently inserted. Finding the smallest active node 
that contains a given pixel can be done by searching 
from the lowest level in the table upwards until the first 
non-empty entry is found. However, this is time consum- 
ing since it might require n steps. Therefore, an addi- 
tional one-dimensional array, called List, is maintained 
to provide an index into Table. List is of size 2”-’ since 
single-pixel sized nodes need not be stored. For any 
pixel in column j, the List entry at j/2 indicates the 
row of Table corresponding to the smallest active node 
containing the pixel. At the beginning of the algorithm, 
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Figure 6. Node insertion can create multiple active nodes. 
a, node A is active after inserting a single pixel of co/our 
C; b, the first two pixels have colour C; pixel 3 has colour 
D and its insertion creates active node B; node A is still 
active 

each entry of List points to the entry of Table corres- 
ponding to the root (i.e. row n for a 2” x 2” image). 
As active nodes are inserted or completed (and are to 
be deleted from the active node table), Table and List 
are updated. 

Table 2 compares timing results for the new and old 
algorithms. As indicated in Table 2, the new algorithm 
often requires far fewer calls to the insert routine than 
the number of nodes in the resulting output tree. This 
is because some calls to insert may cause several node 
splits to occur thereby increasing the number of nodes 
in the tree. For example, in Figure 6, inserting node 
B into the quadtree containing a single node causes seven 
nodes to result. If the first pixel inserted into node X 
happens to be the same colour as the original node 
(A of Figure 6a), then no insertion is required. 

To understand why the new algorithm is an improve- 
ment over the old one, the cost of both algorithms should 
be analysed in terms of the number of insert operations 
that they perform. The naive algorithm examines each 
pixel and inserts it into the quadtree. Assuming a cost 
of Z for each insert operation, and a cost of c for the 
time spent examining a pixel, the total cost is then 
2’“.(c + I). The new algorithm must also examine each 
pixel. However, there will be at most one insert operation 
for each of the N nodes in the output quadtree. There- 
fore, the cost of the new algorithm is ~2~ + IN, where 
c is relatively small in comparison to Z, and N is usually 
small in comparison to 22”. In other words, the quantity 
IN dominates the cost of the new algorithm. The result 
is that using the new algorithm reduces the execution 
time from being O(pixels) to O(nodes). Thus the new 
algorithm is optimal to within a constant factor. Of 
course, this is achieved at the cost of an increase in 
storage requirements due to the need to keep track of 
the active nodes (approximately 2”+’ for a 2” x 2 
image). 

Set operations for unaligned maps 

In many applications, including geographic information 
systems, it is desirable to compute set operations on 
a pair of images. For example, suppose a map is desired 
of all wheatfields above 30 m in elevation. This can be 
achieved by intersecting a wheatfield map and an ele- 
vation map whose pixel values are non-white if they 
represent an area whose elevation is above 30m. The 
resulting map would have non-white pixels wherever the 
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corresponding pixels of the input maps are both non- 
white. 

In this section we will consider only the case of map 
intersection - other set operations such as union or 
difference are handled in an analogous manner. Inter- 
section of quadtrees representing images with the same 
grid size, same map size and same origin is accomplished 
by traversing the two trees in parallel. Each node of 
the first image is compared with the corresponding 
node(s) in the second image. On the other hand, little 
work has been done on set operations between unaligned 
quadtrees (i.e. quadtrees which have the same grid size 
and map size, but differing origins). In particular, the 
only prior mentions of algorithms for intersecting 
unaligned quadtrees involved translating one of the 
images to be aligned with the other, and then performing 
an aligned intersection ” In this section, the principles . 
underlying an optimal algorithm for the intersection of 
unaligned maps are described. ‘Optimal’ means that each 
node of the input images is visited only once, and at 
most one insertion into the output tree is performed 
for each output tree mode. 

As with the quadtree building algorithm above, the 
intersection algorithm maintains a table of the active 
output tree nodes to minimize insertions into the output 
tree. We will call this table OUT-TABLE. Unlike the 
building algorithm, there are two input quadtrees (call 
them 11 and 12) to be considered as well. The basic 
algorithm is as follows. 11 is processed in depth-first 
traversal order. For each node N of 11, the various nodes 
of 12 which cover N are located. Starting with the upper 
left pixel of N, the node of 12 which covers that pixel 
is located. Next, the largest block contained within both 
nodes is computed. The set function is evaluated on 
the values of these two nodes, and OUT-TABLE is 
queried to determine if the new node should be inserted. 
This step is repeated on subsequent portions of N in 
depth-first order until all pixels of N are processed. 
Figure 7 provides an example. 

OUT-TABLE is easily implemented, since nodes will 
always be inserted in depth-first order (matching the 
progress made in tree 11). During the traversal of the 
output tree, the second, third .and fourth subquadrants 
of a block at level i will not be processed until the 
previous subquadrants are completed (e.g. the SW sub- 
quadrant will not be processed until the NW and NE 
subquadrants are complete). Thus, at most one node 
at each level of the tree can be active. This means that 

b 

Figure 7. An example of intersection: a, node N (dashed 
lines) from the first input tree is intersected with an image 
corresponding to the second input tree and compared 
against those nodes which it intersects in the second input 
tree; b, the decomposition and order of processing for 
node N as directed by the image decomposition 

for a 2” x 2” image, a table of only n entries is needed 
to represent the active nodes. Each entry of OUT_ 
TABLE contains the location and value of the current 
active node at the corresponding level, along with a 
field to indicate the quadrant relative to its father in 
which the node lies. In addition, a variable is needed 
to keep track of the current depth. 

The final requirement for the unaligned set function 
algorithm is a method for keeping track of the active 
nodes of the second input tree. Consider the border 
of the nodes of 11 which have been processed at any 
given instant. Since these nodes are processed in depth- 
first traversal order, the border will be in the form of 
a staircase (see Figure 8). The active border, as it crosses 
an output map of size 2” x 2”, will form horizontal 
and vertical segments such that the sums of the horizon- 
tal and vertical segments will each be 2” pixels in length. 
The active nodes of 12 will be those nodes which, at 
any given instant, straddle the active border. The active 
border table for the intersection algorithm is a moditi- 
cation of the active border table used by Samet and 
Tamminen”. It is composed of two arrays each 2 
records wide. Each record contains the location, size 
and value of the active node at that position. 

As an example of how the unaligned intersection 
algorithm operates, Table 3 shows the contents of the 
active border tables after processing selected pixels of 
node N from Figure 7. N is assumed to be 11’s first 
(upper-leftmost) block. In Table 3, records marked with 
an asterisk indicate a node that has been located in 
12 (i.e. a Find operation has been performed). For exam- 
ple, when processing pixel (O,O), no records are initially 
in the table. The record for node F (the node containing 
pixel (0,O)) is therefore read into Y_EDGE[O] and X_ 
EDGE[O]. A minus sign in the column marked Y_ 
EDGE (X-EDGE) means that the indicated position 
in the table did not contain a record covering current 
pixel (CY,CX) and that the record was copied from 
X-EDGE (Y-EDGE). A plus sign indicates the record 
from X-EDGE (Y-EDGE) that was copied to the 

Figure 8. Active border after processing node R in the 
first input tree II 
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Table 3. Trace table for intersection active nodes Windowing 

Pixel 
processed 

Active node tables 

Y-EDGE X-EDGE 

(W 
(031) 

(1,O) 

(171) 

(092) 

Gm 

Cl) 

(390) 

(331) 

(252) 

~2~3) 

~3~2) 

(353) 

0: F* 
0: B* 

0: B 
1: I* 
0: B 
1: B- 
0: B+ 
1: B 

0: B 
1: B 
2: K* 
0: B 
1: B 
2: B- 
0: B 
1: B 
2: B 
3: c* 
0: B 
1: B 
2: B 
3: D* 
0: B 
1: B 
2: B 
3: D 
0: B 
1: B 
2: B+ 
3: D 
0: B 
1: B 
2: B 
3: D+ 
0: B 
1: B 
2: B 
3: D+ 

0: F* 
0: F 
1: B* 
0: 1* 
1: B 
0: I 
1: B-t 
0: I 
1: B 
2: B- 
0: K* 
1: B 
2: B 
0: K 
1: B+ 
2: B 
0: c* 
1: B 
2: B 

0: c 
1: D* 
2: B 

0: c 
1: D 
2: B 

0: c 
1: D 
2: B 
3: B- 
0: c 
1: D 
2: D- 
3: B 
0: c 
1: D 
2: D 
3:D- 

* Indicates a node that has been located in 12 (i.e. a Find operation 
has been performed) 

- Indicates position in the table did not contain a record covering 
current pixel (CY, CX). Record was copied from LEDGE 
(Y-EDGE) 

+ Indicates the record from LEDGE (Y-EDGE) that was copied 
to the position marked with ( - ) in Y-EDGE (LEDGE) 

position marked with a minus sign in Y-EDGE (X_ 
EDGE) e.g. when processing pixel (2,l) relative to N’s 
origin (labelled as block 7 in Figure 7b), the active border 
table shown in Table 3 contains the record for block 
K in Y_EDGE[2] and block B in X_EDGE[l]. Since 
block B actually corresponds to pixel (2,1), the record 
for B is copied from X_EDGE[l] to Y_EDGE[2], as 
indicated by Table 3. Columns two and three are of 
the format Position:Node where Node indicates the node 
of 12 being stored at position Position. All coordinates 
are relative to 11’s origin. 
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Interestingly, a variant of the unaligned intersection 
algorithm described above can also be used to perform 
windowing. Windowing is the name given to a function 
which extracts a window from an image. A window 
is simply any rectangular subsection of the image. Typi- 
cally, the window will be smaller than the image, but 
this is not necessarily the case as the window could also 
be partly off the edge of the image. More importantly, 
the origin (or upper left corner) of the window could 
potentially be anywhere in relation to the origin of the 
input map. This means that large blocks from the input 
quadtree must be broken up, and possibly recombined 
into new blocks in the ouput quadtree. 

Shifting an image represented by a quadtree is a 
special case of the general windowing problem; taking 
a window equal to or larger than the input image but 
with a different origin will yield a shifted image. Shifting 
is important for operations such as finding the quadtree 
of an image which has the fewest nodes. It can also 
be used to align two images represented by quadtrees. 
To simplify the following presentation, we will assume 
a window of size 2” x 2” taken from an image of size 
2” x 2” where m < n. 

To see the analogy between windowing and the inter- 
section of two unaligned images, let 11, corresponding 
to the first image, be a black block with the same size 
and origin as the window. Let 12, corresponding to the 
second image, be the image from which the window 
is extracted. The resulting image would have the size 
and position of 11, with the value of the corresponding 
pixel of I2 at each position. The equivalence between 
windowing and unaligned set intersection should be 
clear. In fact, the windowing algorithm would be 
simpler, since a single black node of the appropriate 
size would take the place of 11 in the algorithm. Such 
an algorithm is optimal in the sense that it locates (only 
once) those nodes of the input tree which cover a portion 
of the window, and performs at most one insert opera- 
tion for each output node. 

REPRESENTATION OF LINEAR FEATURES 

One of the goals of the research effort described here 
was the development of a uniform representation for 
data corresponding to regions, points and vector 
features. Uniformity facilitates the performance of set 
operations such as intersecting a vector feature with an 
area. Use of a linear quadtree for point and region data 
is well understood, but this is not the case for vector 
features. For vector features, a good linear quadtree 
representation must also have the following three 
properties. First, straight line segments should be repre- 
sented exactly (not in a digitized representation). Second, 
updates must be consistent, i.e. when a vector feature 
is deleted, the database should be restored to a state 
identical (not an approximation) to that which would 
have existed if the deleted vector feature had never been 
added. Third, the structure should allow the efficient 
performance of primitive operations such as insertion 
and deletion of vector data elements, and should 
facilitate the performance of more complex operations 
such as edge following, intersection with a region and 
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point-in-polygon, though these are somewhat applica- 
tion dependent. 

In phase II of this project we implemented a variation 
of the edge quadtree of Shneier13, termed ‘linear edge 
quadtree’. In our implementation of the edge quadtree, 
the leaf nodes of the quadtree are stored as single records 
in the B-tree. Each node contains three fields: an address, 
a type and a value field. The address field describes 
the size of the node and the coordinates of one of the 
corners of its corresponding block, as in our area rep- 
resentation. The type field indicates whether the node 
is empty (i.e. white), contains a single vertex, or contains 
a line segment. The value field of a line segment indicates 
the coordinates of its intercepts with the borders of its 
containing node. Vertices are represented by pixel-sized 
nodes with the degree of the vertex stored in the value 
field. Unlike Shneier’s formulation, a line segment may 
not end within a node since in our existing implemen- 
tation the value field is not large enough to contain 
the location of an interior point as well as the intercepts. 
Thus endpoints and intersection points are represented 
by single pixel-sized point nodes. Figure 9 illustrates 
the linear edge quadtree representation. 

Figure 9. Linear edge quadtree 

A serious drawback of the edge quadtree is its inability 
to handle the meeting of two or more edges at a single 
point (i.e. a vertex) except as a pixel corresponding to 
an edge of minimal length. This means that all vertices 
are stored at the lowest level in the digitization i.e. in 
deep nodes in the tree. Thus, vertices cannot be 
distinguished from short line segments. Moreover, 
boundary following and deletion of line segments cannot 
be handled properly in the vicinity of a vertex at which 
several edges meet. 

To overcome these shortcomings we developed a new 
representation, termed a ‘PMR quadtree’, which is a 
variation on the PM quadtree14. The PMR quadtree 
makes use of probabilistic splitting and merging rules, 
one for splitting and one for merging, to organize the 
data dynamically. The splitting rule is invoked whenever 
a line segment is added to a node. The node is split 
once into four quadrants if the number of segments it 
contains exceeds n (four in our implementation). Note 
that this rule does not guarantee that each subquadrant 
will contain at most n line segments. The corresponding 
merging rule is invoked whenever a segment is deleted. 
The node is merged with its siblings if together they 
contain fewer than n distinct line segments. The merge 
operation can be performed more than once. This 
scheme differs from our other quadtree structures in 
that the tree for a given data set is not unique, but 
depends on the history of manipulations applied to the 
structure. Certain types of analysis are thus more diffi- 
cult than with uniquely determined structures. On the 
other hand, this structure allows the decomposition of 
space to be based directly on the linear feature data 
stored locally. Figure 10 shows an example of PMR 
quadtree construction. 

The PMR quadtree makes use of variable-size nodes 
(the implementation of variable-size nodes in our 
memory management system was described above). 
When the graph represented by the set of line segments 
is planar (which is the case for polygonal maps and 
most geographical situations), the average number of 
segments per node in the PMR decomposition is limited 
by topological considerations to some small number (for 
our map data, the average is less than three). This makes 
practical an implementation of the node as a list. In 
an application where this is not the case, other splitting 
rules can ensure that the number of segments in a node 

a b 
Figure IO. Building a PMR quadtree from the segments of Figure 8 with threshold = 2: a, three segments have 
been inserted causing the plane to be quartered once as indicated by the small circle; b, segments l-7 inserted causing 
three blocks to split; c, segments 8 and 9 inserted causing five more blocks to split 
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does not become too high. For linear quadtrees, where 
an address is calculated for each quadrant and used 
to order it in the list, the simplest way of implementing 
variable node sizes is simply to duplicate the addresses, 
as described above. 

The PMR quadtree induces a decomposition of the 
space that may split a line segment into many portions. 
Each portion that lies within a quadtree node is termed 
a q-edge. The q-edges that are stored with each node 
are represented by a pointer to a record corresponding 
to the entire line segment of which they are a part. 
This solves the problem of how to represent accurately 
the intersection of a q-edge with a quadrant boundary 
without loss of precision. Since each node containing 
a q-edge of a given line segment stores the same descrip- 
tor, tracking the line from block to block is simple and 
operations such as deletion can be easily implemented. 
Note that using a pointer to a record describing each 
line segment leads to more flexibility since it allows stor- 
ing an arbitrary amount of information about the line 
segment without increasing the size of the B-tree record. 
It also enables this information to be concentrated in 
one place rather than repeated in every node which refers 
to the line segment. 

The problem of how to represent a line segment that 
has been broken into fragments must also be addressed. 
This situation arises in a geographical application when 
a line map is intersected with an area. Since the borders 
of the area may not correspond exactly with the end- 
points of the segments defining the line data, certain 
segments may be cut off (e.g. Figure 11). Such a partial 
line segment is referred to as a ‘fragment’ ahd the artifi- 
cial endpoints produced by such an intersection are 
referred to as ‘cut points’. The locations of such cut 
points must be represented in some fashion. One idea 
is to introduce an intermediate point at the node inter- 
cept. In continuous space, the remaining line segment 
can then be exactly represented as a new line segment 
which is collinear with the original one, but has at least 
one different endpoint. In discrete space, however, this 
is not always possible because the continuous coordi- 
nates at the intercept do not, in general, correspond 
exactly with any coordinates in the discrete space. If 
the new line segments are represented approximately in 
the discrete space, then the original information is 
degraded, and the pieces cannot be rejoined reliably. 
Note that these were precisely the problems that were 
encountered with the linear edge quadtree. Moreover, 
if an intermediate point were to be introduced to produce 
new segments, then the line segment descriptor would 
have to be propagated to all quadrants containing the 
original statement. This is likely to be a time-consuming 
operation. 

The approach that we took retains the original 

I- tl 
a b C 

Figure 11. Intersection ofi a, a region; 6, a line segment, 
producing c, a fragment with one cut point 
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pointers, and uses the spatial properties of the quadtree 
to specify what parts of the corresponding segments (i.e. 
q-edges) are actually present. We observe that even 
though a node contains a pointer to a line segment, 
it is not necessarily true that the entire line segment 
is present as a linear feature. Instead, the line segment 
descriptor contained in a node is interpreted as only 
implying the presence of the corresponding q-edge. The 
original line segment of which the q-edge is a part is 
termed the ‘parent segment’. The fragments, therefore, 
may be represented by a collection of q-edges. The pres- 
ence or absence of a particular q-edge is completely 
independent of the presence or absence of those q-edges 
representing other parts of the line segment. Hence, 
linear features corresponding to partial segments can 
be represented simply by inserting the appropriate collec- 
tion of q-edges. Since the original pointers are retained, 
a linear feature can be broken into pieces and rejoined 
without loss or degradation of information. Within the 
quadtree structure, q-edges may represent arbitrary frag- 
ments of line segments. Since all the q-edges bear the 
same segment descriptor, they are easily recognizable 
as deriving from the same parent segment. This solves 
the problem of how to split a line or a map in an easily 
reversible manner. The use of this principle to represent 
the linear feature produced by the intersection of Figure 
11 is shown in Figure 12. 

Properly dealing with entities such as cut points and 
fragments requires that the splitting and merging rules 
of the PMR quadtree are modified in the following 
manner. Nodes are split until no block contains a cut 
point in its interior, and then once more if a quadrant 
contains more than four q-edges. The merge condition 
is invoked both when a q-edge is deleted and when a 
q-edge is inserted (since a fragment may be inserted 
which restores a larger piece). Merges occur when there 
are four or fewer distinct line segments among the 
siblings and the q-edges are compatible. 

To evaluate the performance of the PMR quadtree 
we compared it with three other data structures for 
handling linear features using the road network of Figure 
13. This network has 684 vertices and 764 edges. The 
three data structures used in the comparison are the 
MX quadtree15, the edge quadtree, and the PM, quad- 
tree14. For a 2” x 2” image, the MX quadtree for a 
collection of line segments treats every pixel that is inter- 
sected by a line as black and all remaining pixels as 
white. Merging is applied to the white pixels to create 
larger nodes. The MX quadtree, like the edge quadtree, 
is really not suitable for our applications but it is useful 
for comparison purposes. The PM, quadtree is based 
on the principle that the space is decomposed until there 
is only one vertex in each quadrant. To deal with cut 
points and fragments, this decomposition rule is modi- 
fied by splitting until no block contains a cut point (i.e. 
all cut points must lie on the boundaries of blocks) and 
no block contains more than one segment endpoint 
attached to a q-edge. The PM, and the PMR quadtrees 
are closely related. Table 4 shows the building times 
for the various quadtrees, the total number of leaf nodes, 
and the number of q-edges (termed q-nodes in the table 
and meaningless for the MX and edge quadtrees). Note 
that the storage requirements for the PMR quadtree 
are smaller than for the PM, quadtree as is the quadtree 
building time. This is not surprising since the PMR quad- 
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Figure 12. The quadtree representation of a fragment: 
a, a region decomposition with a line segment super- 
imposed; b, the minimal set of five q-edges which make 
up the fragment of Figure IO 

tree will not be as deep as the PM, quadtree, nor as 
deep as the MX and edge quadtrees. 

We also compare the performance of the four data 
structures for line-area intersections. The road network 
map was intersected with several area maps. Once again, 
the PMR quadtree required the least amount of space. 
However, depending on the complexity of the maps, 
the execution times for the PMR quadtree were slower 
than those for the PM3 representation by factors of up 
to 50%. The MX and edge quadtrees were more efftcient 
from the standpoint of execution time than either PM 
representation. Again, this is not surprising since by 
having fewer nodes, the PMR quadtree reduces the op- 
portunity for pruning and also has a more complex node 
structure. To summarize, since the PMR quadtree 
enables correct execution of the intersection operation, 

Figure 13. Road network 

Table 4. Building times and sizes for the road network 

Type of quadtree Time (s) Leaves Q-nodes 

MX 31.5 19699 _ 

Edge 27.4 7723 - 
PM, 39.0 3939 2350 
PMR 25.8 2078 874 

the fact that it is slower than the edge and MX quadtrees 
for certain operations is irrelevant. The relative slowness 
of the PMR quadtree with respect to the PM3 quadtree 
is a direct result of the time-against-space trade-off 
between the two representations. 

CONCLUDING REMARKS 

Our goal was to demonstrate the utility of hierarchical 
data structures for use in the domain of geographic infor- 
mation systems. To accomplish this goal we have built 
a prototype geographic information system which repre- 
sents images with a linear quadtree. This system is 
capable of manipulating area, point and linear feature 
data in a reasonably efficient manner. All of these 
features are implemented in a consistent manner. Our 
experience has been that while area and point data are 
easily handled by an area-based representation, the 
correct treatment of linear feature data is considerably 
more difficult. We have developed a new data structure 
termed a PMR quadtree which meets our requirements, 
and have incorporated it into our system. Future work 
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includes more research into facilities for dealing with 
attribute data as well as larger images and faster 
quadtree memory management systems. 
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