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Abstract -Programming languages which use dynamic identification for free variables (i.e., non- 
local referencest are generally implemented with a deep or shallow binding variable access 
strategy. In this paper, variable access through the binding environment is assumed to be desir- 
able. Given this assumption, it is demonstrated that the act of assigning values to variables may 
yield unexpected results for some of the binding strategies when functional arguments and results 
are used. A number of variations of deep and shallow binding strategies are examined along with 
the modifications necessary to implement the assignment operation in the expected manner 

Deep binding Shallow binding Dynamic binding Access environments Functional argu- 
ments Binding environments Activation environments 

1. INTRODUCTION 
CONCURRENT with the growth of the field of artificial intelligence has been the develop- 
ment of special purpose languages [3, 14]. Many of these languages do not use simple 
lexical identification for determining values of non-local (i.e., free) variable references as 
in A L G O L 6 0  [11]. Instead, dynamic identification is used as in LISP [-9] or SNOBOL4  
[7]. Therefore, variable access mechanisms cannot make use of the display [5] of 
ALGOL60.  This has sparked an interest in conflicting binding strategies. In particular, 
attention is focussed on "deep binding" and "shallow binding" [1, 2]. Here, these strate- 
gies are briefly discussed in the context of the pitfalls associated with them when an 
assignment operation is performed. A comparison is also made of the various shallow 
binding implementations. 

At this point it is appropr ia te  to define some terms more closely. The term "environ- 
ment" is used to denote a mapping from variable names to values rather than from 
variable names to locations. All of the examples assume a "call by value" [12] parameter  
transmittal  mechanism with the exception of functional arguments and results (i.e., pro- 
cedure names). Dynamic  identification or dynamic binding stipulates that the most 
recent binding in the calling chain is used. In contrast, lexical identification or static 
binding stipulates that the static structure of the program at compile-time is used to 
determine the non-local environment (e.g. [11]). For  example, consider the program 
fragment in Fig. 1. Of  particular interest is the value of x which will be printed when the 
main program has called procedure P which in turn has called procedure Q. Using a 
static binding method, x has a value of 2 whereas a dynamic binding method yields a 
value of 1 for x. In general, dynamic binding methods are interesting because they 
correspond closely to intuitive ideas of computat ion and thus they are simple to under- 
stand. 

2. ACTIVATION VS BINDING ENVIRONMENT 
Figure 2 contains a set of functions expressed in an ALGOL-l ike  notation for a 

language that uses dynamic identification for non-local variables. The example, similar to 
the one given in [16], is used in the subsequent discussion to illustrate the differences 
between the various binding strategies. In this example, f 4  returns the function f as its 
result and it will eventually be invoked in f6 .  Suppose f is defined as follows: 

procedure f ;  
return (if z = 8 then 1 

else - 1); 
~.l 4 3-4 I 187 
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begin 
local x; 
procedure Q; 
begin 

print(x); 

end; 
procedure P; 
begin 

local x; 
x : = l ;  

O; 

end; 
x: = 2; 
P; 

end; 

Fig. 1. Sample program illustrating dynamic and static binding• 

A key question facing language implementors is to which instance of the variable z 
doesfrefer ? More generally, what bindings are associated with instances of free variables 
in functional arguments and results. Depending on the application, there are two basic 
choices. 

In applications that make use of process communication (e.g. the "blackboard" in the 
Hearsay II system [8]), the activation environment is desirable since it enables making 
use of up-to-date information. In such a case, z = 11 is desired. In many LISP systems 
(e.g. [13]) this is achieved by use of the function QUOTE as shown in the revised 
definition o f f 4  below: 

procedure f 4(v,y,z); 
begin 

return (QUOTE(f)); 

end; 

In applications such as problem solving where remembering a context is important, 
the binding environment is preferable. In such a case, z = 8 is the desired value. This is 
implemented in many LISP systems (e.g. [13] ) by use of the function FUNCTION as 
shown in the revised definition o f f4  below: 

procedure f 4(v,y,z); 
begin 

return(FUNCTION(f)); 

end; 

Making use of the binding environment can be costly since the most recent binding of 
the variable is not always the one that is desired• This means that active environments 
must be stored and a more complicated search performed• In order to increase the 
efficiency of such a binding method, a concept is proposed in [15] which is used in the 
LISP machine [6] and termed "closure"• In essence, the programmer must specify with 
each functional result (or argument), say f, the variables whose values are to be deter- 
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procedure f l(x);  
begin 

f2(2,3); 

end; 
procedure f2(v,x); 
begin 

f3(4,5); 

end; 
procedure f3(y, w); 
begin 

local t; 

t: = f4(6,7,8); 
f5(9,10,t); 

end; 
procedure f 4(v,y,z); 
begin 

return (f); /*binding environment*/ 

end, 
procedure f 5(y,z, fn); 
begin 

f6(ll,12,fn); 

end; 
procedure f6(z,w,.fm); 
begin 

frn; /*activation environment*/ 

end; 

Fig. 2. Sample program illustrating activation and binding environments. 

mined by the binding environment• All instantiations of other variables within the par- 
ticular instance o f f  default to the activation environment• For example, if the binding 
environment is to be associated with z in f4, then f 4  would have the following definition.: 

procedure f 4(v,y,z); 
begin 

return (CLOSURE((z),f)); 

end; 

The trouble with such a solution is that it is overly restrictive on the programmer• 
Frequently, there is no knowledge of which functions will be subsequently invoked. In 
such a case, values of all of the variables must be saved (this is equivalent to the 
FUNCTION construct)• This is expensive especially in light of the fact that often most of 
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the variables will never be instantiated. For  example, suppose f has the following defini- 
tion: 

procedure f ;  
begin 

if v = 5 t h e n f l ( 1 )  
else if v = 6 then f2(2,3) 
else f3(4,5); 

end; 

The remainder of the discussion assumes that the binding environment is the desired 
one. The following definition of f is used: 

procedure f ;  
return (if x = 0 then 1 

else - 1); 

3. DEEP BINDING 
Deep binding is implemented by the classical association list (also known as an a-list) 

approach of LISP. Briefly, a list of variable bindings is maintained in the form of 
name-value pairs. The list generally grows in a stack-like manner in that as soon as a 
function is entered, the bindings of its arguments are placed at the front of the list. 
Whenever the value of a variable is to be accessed, the list is searched for the most recent 
occurrence of the variable and the corresponding value is returned• Nevertheless, the 
stack is an inappropriate data structure• There are two problems [10]: 

1. When a function is passed to another function as an argument, an environment is also 
transmitted. In the case of a stack, this is a pointer to a location on the stack where 
the search for variables is to commence. If storage for subsequent function calls is 
allocated starting at this location, then valid data of the caller's environment will be 
destroyed. 

2. When a function is returned as the result of another function, an environment pointer 
must also be returned. This environment, at the time of the return, is on top of the 
stack. However, subsequent function calls may overwrite this area. 

In summary, the problem is that the association list, although growing in a stack-like 
manner, must actually be a tree.* Nevertheless, even with tree-like implementations, 
there remain problems with respect to the effect of an assignment operation. In particu- 
lar, in some instances when an assignment operation is performed, there is a question as 
to whether the new value associated with the variable should be subsequently used by the 
saved environment;  or whether the  previous value should be used with saved environ- 
ments. The remainder of the paper focusses on this problem while analyzing various 
binding strategies and implementations. 

For  example, consider the set of functions in Fig. 2 and assume that f l ( l )  has been 
called initially. Assume further that x has been set to 0 just prior to the invocation offm 
in f6 .  Invocation offm in f 6  is equivalent to invocation off .  If an activation environment 
binding method is used, then there is no question that faccesses x with a value of 0 and 
thereby returns 1 as its value. However, when a binding environment binding method is 
used, there remains a question as to whether the correct binding of x is 3 or 0. We believe 
that consistencY demands that use of a binding environment result in x having a value of 
3 when accessed by f since this is the value of x in the environment in which the 
functional value was returned. Unfortunately, as will be seen, this is not always the case, 
and in many implementations a value for f of 1 will be returned rather than - 1 .  The 
reason this problem arises here and not in the definition o f f  in Section 2, which accessed 

*But see [4] where the tree is implemented by use of a collection of stacks. 
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variable z, is that here the assignment is made to an instance of x shared by both 
environments, whereas an assignment to z at the same location (i.e., just prior to the 
invocation of fro in f6)  affects a different instance of z than the one accessed by f (i.e., the 
assignment affects z o f f 6  whereas f refers to z off4).  

In an implementation of deep binding which makes use of an association list, a 
destructive assignment operation results in overwriting the old binding. The problem 
arises, in part, from a desire to save storage by use of the following LISP-like implemen- 
tation of an assignment function. Assume that ALISTG corresponds to the current 
environment. .ASSIGN1 results in the assignment of the value of B to variable A. Note 
that ALIST corresponds to the current environment--i.e.,  it is bound to ALISTG. 

procedure ASSIGN 1 (A,B,A LIST); 
begin 

if nulI(ALIST) then error 
else if first (first(ALIST)) eq A then 

rest (first(ALIST)): = B / *  same as rplacd (car(ALIST),B)*/ 
else ASSIGN 1 (A,B,rest(ALIST)); 

end; 

In order to obtain the desired result, whenever an assignment is made to an~ variable, 
a copy must be made of the association list starting at the modified variable. ASSIGN2 
achieves this result. It is invoked in the same manner as ASSIGNI.  Once again, ALISTG 
corresponds to the current environment. A difference between ASSIGN1 and ASSIGN2 
is that the value of ASSIGN2 is the new value of the current environment which must be 
assigned to ALISTG--i .e. ,  the invoking call is of the form "ALISTG: = ASSIGN2 
(A,B,ALISTG);." 

procedure ASSIGN2(A,B,ALIST); 
begin 

if null(ALIST) then error 
else if first(first(ALIST)) eq A then 

addtolist(makepair(A,B), ALIST) 
else addtolist(first(ALIST),ASSIGN2(A,B,rest(ALIST))); 

end; 

The above solution works because the LISP storage allocation mechanism obtains a 
new LISP cell each time a CONS operation is performed (e.g., makepair and addtolist in 
our example). In particular, in the step "addtolist(first(ALIST),ASSIGN2(A,B,rest 
(ALIST)))', the cell corresponding to first(ALIST), which denotes a name-value pair, is 
reused; however, a new cell is obtained by addtolist. This is in contrast with the destruc- 
tive ASSIGN 1 operation where the name-value pair was modified but the list links 
remained the same. 

4. SHALLOW BINDING 
Shallow binding is an attempt to avoid the costly search associated with the variable 

lookup process in deep binding systems. Using such an approach, the value of a variable 
may be obtained in one memory fetch. This relies on a specified location, the value cell, 
in which the current binding of the variable can always be found. The cost of such an 
approach is that, unlike deep binding systems, whenever a function is invoked, the value 
cells of the argument names and locally declared variables must be saved. Similarly, upon 
function exit, they must be restored. Moreover, in the case of a functional argument, an 
entire environment (i.e., the contents of all of the value cells) must be saved and restored. 

There are several implementations for shallow binding. In the remaining sections, a 
number of them are examined with the aid of the example in Fig. 2. Again, assume that 
f l(l) has been called initially. Let E1 denote the environment associated with f when it is 
returned as the value of f4 .  Let E2 denote the environment associated with f 6  when fm is 
invoked (fin is actually bound to f) .  Figure 3 is a tree-like representation [-16] of the state 
of the computation at E2. The term frame is used to denote the collection of formal and 
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Fig. 3. Tree-like representation of Fig. 2. 

local variables associated with each function activation comprising an environment. 
FI,F2,F3,F4,F5, and F6 are the frames in Fig. 3. The set of frames associated with a 
particular environment is said to be a frame chain. F1, F2, F3, F4 and 
FI, F2, F3, F5, F6 are the frame chains associated with environments E1 and E2 re- 
spectively in Fig. 3. 

4.1 Indirect value 

This method 1-16] associates with each variable a value cell whose contents is a pointer 
to the variable's binding in the current environment--i.e., a pointer to the variable's 
location in the frame in which its current binding is found. Figure 4 shows the appli- 
cation of this method to Fig. 3 when environment E2 is active. 

Environment switching requires updating the value cells and is accomplished by tra- 
versing the frame chain of the new environment until all entries in the value cells have 
been updated (e.g. F4, F3, and F2 when switching from E2 to El). 

One improvement to the above environment switching strategy is a variation on a 
scheme of[4] which updates a value cell only when a reference occurs. In such a case, 
when searching for a variable's binding, update the value cells of all variables encoun- 
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Fig. 4. Environment E2 using the indirect value method. 
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Fig. 5, Figure 4 after the assignment of 0 to x. 

tered during the search for which the value cells do not contain the appropriate values. 
The next time a reference to an improperly bound variable occurs in the same frame, the 
search for its current binding resumes at the frame in which it was terminated during the 
previous search. Otherwise, the search must be restarted in the current frame. For still 
another more efficient implementation of the indirect value method see [16] where all 
frames in which a variable is bound are linked. 

Unfortunately, assignment statements are destructive in the sense that a variable's 
frame entry in the current environment will be overwritten. Thus the method is plagued 
by the same problem associated with the classical deep binding implementation exam- 
ined earlier. For  example, the assignment x: = 0 in f 6  just prior to invocation of fro in f 6  
will result in f returning a value of 1 instead of the desired - 1. The problem can be 
alleviated by using the same technique that was employed in the deep binding scheme, 
i.e., a copy is made of all frames invoked in the current environment subsequent to, and 
including, the frame associated with the variable whose value is being changed (e.g. 
F2, F3, F5 and F6). In addition, the links in the value cells pointing at frames F2,  
F3, F5,  and F 6  must be changed to point at frames F2',F3',F5', and F6'. Figure 5 
shows how Fig. 4 would be modifed to reflect the assignment of 0 to x. Note that if 
copies of frames F3, F5, and F6  were not made (i.e., because none of their components 
changed in value), then a problem may arise should frame F5 be the current frame in a 
previously saved environment. In this case, F 5 will be invoked with x incorrectly being 0 
(because F5 is linked to F3 which is linked to F2'  rather than to F2) whereas t-he 
environment was saved with x being 3. 

4.2 Direct value 

In this method [13, 16], the value cell always contains the current value of the variable. 
All frames along the current frame chain contain the name of the variable that is bound 
by the frame and its immediately previous value. Whenever a variable is bound (i.e., a 
new frame is entered), the name of the variable and its current value (i.e., the value in the 
value cell) are placed in the frame and the new value is placed in the value cell. When a 
frame is exited, the appropriate value cells are set to the contents of the frame. Figure 6 
shows the application of this method to Fig. 2 when environment E2 is active. 

Environment switching requires saving the value cells in the appropriate locations and 
restoring the desired environment. This is accomplished by "unwinding" (see the defini- 
tion below) the frame chain of the current environment until a frame (termed the "inter- 
secting frame") is reached which is common to both environments (e.g. frame F3 when 
switching from E2 to E1 and unwinding the chain consisting of F6, F5, and F3). For all 
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Fig. 6. Environment E2 using the direct value method. 
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frames other than the intersecting frame, unwinding means the exchange of the contents 
of the value cells with the variable bindings in the frames. Once the intersecting frame is 
reached (its identity can be determined from the frame chains associated with each 
environment), the process is reversed in the sense that the frame chain of the switched-to- 
environment is traversed, starting with the successor of the intersecting frame, and in the 
process the contents of the value cells are exchanged with the variable bindings in the 
frames (e.g. starting at frame F3, traverse the frame chain consisting of F4 when switch- 
ing from E2 to El). Figure 7 shows the result of switching from E2 to El. This technique 
is attributed to R. Greenblatt by [16]. 

Assignment statements pose the same problem as in the indirect value method. The 
only appropriate solution is to make a copy of the frames in the current frame chain 
starting with the current frame up to and including the frame in which the variable was 
most recently bound. This process is analogous to the unwinding step of environment 
switching, where the analogue of the "intersecting frame" is the frame prior to the most 
recent frame in which the variable was bound. However, as a frame is copied, it is 
unwound. Once the frame in which the variable was most recently bound is reached (e.g. 
F2 in Fig. 6), the direction of the unwinding process is reversed and the new chain is 
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F2 ~ V 6 
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F4 V 2 F5 

Y 
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E2 
Fig. 7. Result of switching from environment E2 to E1 using the direct value method. 
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traversed starting with that frame (e.g. F2 in Fig. 6). Figure 8 shows how Fig. 6 is 
modified to reflect the assignment of 0 to x just prior to the invocation offm in f6  (e.g. in 
environment E2). For each frame that is being traversed, its initial contents and its new 
contents (labeled old and new) are shown--i.e., frames F6, F5, F3, F2, F2', F3', F5', and 
F6' have been traversed in the designated order. 

Two additional items are worthy of note. First, in the unwinding process the value 
cells will be changed. However, once the environment has been unwound (e.g. E2), the 
value cells will be restored to their contents prior to the unwinding step (with the 
exception of the variable whose value was changed by the assignment statement) by 
virtue of the traversal of the new frame chain. Second, when switching environments, the 
unwinding process leaves the "intersecting" frame unchanged because its values refer to 
instances of variables occurring in previous frames. Note that in the case of an assign- 
ment statement, the frame corresponding to the most recent binding of the variable is 
modified because it must be set to the value which the assignment statement has just 
overwritten (e.g., 3 in frame F 2 in Fig. 8) since this environment is no longer the current 
environment (e.g., environment E2 in Fig. 8). 

4.3 Frame table method 

In [17] a method is presented which makes use of frame tables i.e., one table for each 
variable. Entries in the frame table are frame-value pairs i.e., one pair for each frame in 
which the variable is bound. Figure 9 shows the application of this method to Fig. 2 just 
prior to the invocation of fro in f6  (e.g. in environment E2). In addition to the frame table 
there exist value cells for the various variables. Each value cell contains a frame tag 
indicating the frame with which the current value cell entry is associated. Accessing a 
variable may be a costly process if its current binding is not in the value cell. In such a 
case, the frame table associated with the variable is searched for a binding with the 
current frame. If none is found, then the table is searched again for a binding with the 
dynamically preceding frame, etc. (it is assumed that the table is not sorted), Switching 

V W X Y Z Volue cell of Contents Frame tog 
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F4 7 FSI I0 Y 9 F5 
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Fig. 9. Environment E2 using the frame table method. 
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Fig. 10. Figure 9 after the assignment of 0 to x. 
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environments, as in deep binding methods, requires no extra work other than use of a 
different frame chain. 

Unlike other binding implementations, the assignment statement poses no problem 
when using the frame table method. A new frame is created to replace the frame in which 
the variable was previously bound and a new value pair entry is added to the variable's 
frame table. The same process must be performed for the remaining variables bound in 
the frame of the variable whose value has changed. Figure 10 shows how Fig. 9 would be 
modified to reflect the assignment of 0 to x just prior to the invocation of fro in f6 (e.g. in 
environment E2). Note that a new frame, F2', has been created and the frame tables of x 
and v have been modified accordingly. Of course, the current frame chain must be 
modified to contain F2' instead of F2 i.e., the current frame chain becomes 
F1, F2', F3, F5, and F6 instead ofF1,  F2, F3, F5, and F6. Also observe that the assign- 
ment statement causes the frame chain to become unsorted (i.e., the new frame will 
generally have a higher internal number associated with it for identification purposes 
than all previously generated frames) thereby requiring a full search through the frame 
table when attempting to access variables. 

4.4 Comparison 
At this point it is appropriate to compare the various binding strategies. The relative 

merits of deep and shallow binding have been discussed earlier. With respect to the 
shallow binding methods, the following observations can be made. 

For variable access, the direct and indirect value methods are superior to the frame 
table method since the value cell always contains the current binding. When using the 
frame table method, the value cells do not always contain the current binding of all 
variables. In such a case, the frame table associated with the specific variable must be 
searched. If there are many instances of a variable (i.e., it has been rebound or reassigned 
many times), then the table may be large and unless it is sorted, the search may be time 
consuming. 

The indirect value and frame table methods require more work to restore the value 
cells when a frame is exited than does the direct value method. Recall, in the direct value 
method such information is immediately accessible while the other methods require a 
search. }towever, this deficiency can be alleviated in both the indirect value and frame 
table methods by only restoring value cells when their values are actually needed [4]. 
Alternatively, the indirect value method can be improved by adding a link field to each 
variable's frame entry pointing at its previous binding [16]. 

Environment switching is achieved most efficiently by the frame table method. How- 
ever, a high price must be paid for subsequent variable accesses. When environment 
switching and general function exit are taken into account, the indirect value method is 
more efficient than the direct value method. There are a number of reasons. First, the 
value cells need not be immediately updated to their new values when the indirect value 
method is used. Instead, the value cells need only be updated when their values are 
needed. Similarly, link fields may be used to speed up the search. Second, when the direct 
value method is used, the current environment must be unwound to an intersecting frame 
followed by a reversal of the process in the new environment. This is in contrast with the 
indirect value method where only one unwinding step needs to be performed. Neverthe- 
less, there are cases where the direct value method is more efficient than the indirect 
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value method. In particular, if there aren't too many frames to unwind, as in Fig. 11 
(F I - F 8  are frames), then a switch from environment E2 to E1 might be faster when using 
the direct value method. Finally, note that updating value cells only when a binding is 
needed is not very practical for switching environments when using the direct value 
method since the unwinding and winding process can not be avoided--i.e., one must still 
traverse all of the frames in which the variable is bound. This is true even if successive 
frames containing bindings for the desired variable are linked (in such a case, the list of 
bindings for the variable must be traversed). 

With respect to the assignment statement, the frame table method is the most efficient. 
In this case, only the frame containing the variable whose binding is being modified 
needs to be copied (equivalently, the frame tables of all variables bound in this frame 
must have an additional frame-value pair). The indirect value method is more efficient 
than the direct value method since, although in both cases the frames between the 
current frame and the frame in which the newly assigned to variable was previously 
bound need to be copied, the direct value method requires retraversing the frames 
between the current frame and the frame where the variable was most recently bound. 
The key to the frame table method is that the frame chain is separated from the data. 
Thus there is no need to copy the frames as is the case when the indirect and direct value 
methods are used. Note that if the indirect value method is implemented with a frame 
chain instead of direct links, the need to copy frames can be avoided and then the 
indirect value method becomes very similar to the frame table method. 

5. C O N C L U S I O N  

In summary, it appears that the frame table method is the most efficient shallow 
binding implementation method provided variable accesses are infrequent--i.e., whenever 
environment changes occur, not all variables are accessed. Introduction of the assign- 
ment statement and its subsequent solution demonstrated the superiority of the indirect 
value method to the direct value method. Given little information about a program to be 
executed, the indirect value method with modifications such as an extra link field linking 
frames in which a variable is bound is probably the most efficient since the presence of 
the frame chain with the data avoids costly searches. 
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