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Correspondence 
Efficient Component Labeling of Images of Arbitrary 

Dimension Represented by Linear Bintrees 

HANAN SAMET AND MARKKU TAMMINEN 

Abstract-An algorithm is presented to perform connected compo- 
nent labeling of images of arbitrary dimension that are represented by 
a linear bintree. The bintree is a generalization of the quadtree data 
structure that enables dealing with images of arbitrary dimension. The 
linear bintree is a pointerless representation. The algorithm uses an 
active border which is represented by linked lists instead of arrays. 
This results in a significant reduction in the space requirements, thereby 
making it feasible to process three- and higher dimensional images. 
Analysis of the execution time of the algorithm shows almost linear 
behavior with respect to the number of leaf nodes in the image, and 
empirical tests are in agreement. The algorithm can be modified easily 
to compute a ( d  - 1)-dimensional boundary measure (e.g., perimeter 
in two dimensions and surface area in three dimensions) with linear 
performance. 

Index Terms-Computer-aided design, computer graphics, con- 
nected component labeling. DF-expressions, hierarchical data struc- 
tures, image processing, linear quadtress, octrees, quadtrees. 

I. INTRODUCTION 
Hierarchical data structures such as the region quadtree [7] and 

the octree [3], [4], 191 have been the subject of much research in 
recent years (for a survey, see [13]). Their variants have found use 
in a number of domains including image processing, computer 
graphics, cartography, and computer-aided design. 

Quadtrees can be implemented in a number of different ways. 
The most common implementation is in the form of an explicit tree 
(Fig. 1) which requires the use of pointers. In the interest of saving 
space, pointerless quadtree representations in the form of lists are 
often used. They can be classified into two categories. The first 
treats the image as a collection of leaf nodes (termed a linear quad- 
tree in [2]) where each leaf is encoded by a base 2d number ( 4  for 
d = 2) ,  termed a location code, corresponding to a sequence of 
directional codes that locate the leaf along a path from the root of 
the tree. The second represents the image in the form of a preorder 
traversal of the nodes of its quadtree (termed a DF-expression 161). 
We shall use the term linear quadtree for the entire class of point- 
erless quadtree representations. 

In our discussion, we are primarily concerned with binary im- 
ages. Two pixels of a two-dimensional image are said to be 4- 
adjacent if they are adjacent to each other in the horizontal or ver- 
tical directions. A BLACK region is a maximal four-connected set 
of BLACK pixels-that is, a set S such that for any pixels, p ,  q .  in 
S ,  there exists a sequence of pixels p = po ,  p , ,  . . . , pn = q in S 
such that p ,  + , is 4-adjacent to pi, 0 5 i < n .  BLACK regions are 
termed components. A pixel is said to have four edges, each of 
which is of unit length. Similar definitions can be formulated in 
terms of blocks for images represented by quadtrees. For example, 
two disjoint blocks P and Q are said to be 4-adjacent if there exists 
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(a) (b) (C) 
Fig, 1. An image, its maximal blocks, and the corresponding quadtree. 

Blocks in the image are shaded; background blocks are blank. (a) Image. 
(b) Block decomposition of the image in (a). (c) Quadtree representation 
of the blocks in (a). 

a pixel p in P and a pixel q in Q such that p and q are 4-adjacent. 
8-adjacency for blocks is defined analogously. 

Now, consider a d-dimensional image represented as an array of 
d-dimensional pixels termed image elements. Each image element 
has 2 . d borders (e.g., an edge in two dimensions and a face in 
three dimensions), each of which has unit size. Two image ele- 
ments are said to be 4-adjacent if they are adjacent in the sense 
that they share a border in its entirety (i.e., it has a nonzero ( d  - 
1 )-dimensional measure). BLACK regions are defined analogously 
as in two dimensions and likewise for blocks. 

Connected component labeling [l  11 is a fundamental task com- 
mon to virtually all image processing applications in two as well 
as in three dimensions. For a binary image, represented as an array 
of d-dimensional pixels (or a collection of d-dimensional blocks in 
the case of quadtrees, octrees, etc.), it is the process of assigning 
the same label to all 4-adjacent BLACK image elements. 

Connected component labeling is also a problem in graph the- 
ory. A connection between the image and graph problems is accom- 
plished by conceptualizing the image as an undirected graph and 
searching the graph for connected image elements. Formally, we 
say that a vertex corresponds to a BLACK image element and an 
edge corresponds to a ( d  - 1 )-dimensional adjacency between two 
BLACK image elements (i.e., they are connected).' Finding the 
connected components of the undirected graph of the image yields 
its connection graph.' The two principal approaches to performing 
connected component labeling correspond loosely to the two ways 
in which a graph can be searched-i.e., depth-first and breadth-first 
They differ in the time at which equivalences between labels of 
adjacent BLACK image elements are propagated. 

The depth-first approach labels each component in its entirety 
one by one. It requires the whole image to be readily accessible. 
If the cost of determining that two BLACK image elements are 
adjacent is constant, then an algorithm employing this approach 
can be devised that runs in time proportional to the product of the 
dimensionality of the image and the number of BLACK image ele- 
ments. 

In most applications, we must process images which are much 
bigger than the capacity of internal memory. Thus, the depth-first 
approach is inappropriate and we focus on the breadth-first ap- 
proach. This approach examines each pair of adjacent BLACK im- 
age elements in succession, and constructs an equivalence table 
where initially each BLACK image element is in a separate equiv- 
alence class. For each such pair, a two-stage process (also known 
as UNION-FIND [19]) is applied. It makes use of a tree to repre- 
sent each equivalence class. First, determine the equivalence 
classes associated with both BLACK image elements that comprise 

'In the case of a nonbinary image, it is necessary to redefine the concept 

'Note that in [15], the concepts of an edge and a vertex are different. 
of a vertex and an edge to include color information. 
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Fig. 2. The active border before and after processing block 4 in Fig. 1. 

and the right subtree to positive values. The linear bintree for the 
image of Fig. 7 has ( B  ((( BWWB as its D F  expression. 
lence class on the FIND path is more than one link away from the 
root of its tree. Stage two assigns a final label to each BLACK 
image element (corresponding to the component of which it is a 
member). When path compression is used, the results of Tarjan and 
van Leeuwen [20] let us deduce that the worst case execution time 
of the total (i.e., both stages) task is almost linear. 

Use of a quadtree representation for two-dimensional images re- 
sults in connected component labeling algorithms whose compu- 
tational complexity is on the order of the number of leaf nodes in 
the tree rather than the number of pixels [12]. Similar techniques 
are used in octree systems. One such algorithm using a pointer- 
based quadtree is reported in [ 121. In [ 151, a general framework 
for the computation of geometric properties (including connected 
component labeling) of two-dimensional images represented by 
linear quadtrees is discussed. The basic idea is that at any instant 
(i.e., after processing m leaf nodes), the state of the traversal can 
be visualized as a staircase (termed an active border). In particular, 
given a traversal that visits sons of nonterminal nodes in the order 
SW, SE, NW, NE, the part of the image described by the m leaf 
nodes is to the left and below the staircase. For example, for Fig. 
1, a traversal in the above order (without GRAY nodes) is 6, 7,  I ,  
4, 5, 2, 3.  Fig. 2 shows the active border before and after pro- 
cessing node 4. A heavy line indicates that the adjacent block is 
BLACK, while a light line corresponds to an adjacent WHITE 
block. Assuming a 2" by 2" image, such a framework requires 2 
arrays of 2" records with three fields apiece to represent the active 
border. 

The techniques described above are good for two-dimensional 
data, but for data of three and higher dimensions (e.g., octree), 
direct extensions are not very practical due to large storage require- 
ments. For example, for a 2" by 2" by 2" object, they require three 
arrays of 4" records with three fields apiece for the active border. 
In order to obtain efficient multidimensional algorithms, in this pa- 
per we develop a new representation of the active border. It takes 
advantage of the fact that much of the storage is unnecessary and 
represents the active border with linked lists instead of arrays. As 
can be seen from the algorithm, this is a nontrivial modification. 
The result is a connected component labeling algorithm for data of 
arbitrary dimensions that is very efficient from both the standpoints 
of space and time. A three-dimensional octree implementation of 
the algorithm was used to facilitate the conversion from a boundary 
representation to an octree [18]. In that application, the objects 
were not allowed to have holes. However, the connected compo- 
nent labeling algorithm works in the presence of holes as well. 

11. CONNECTED COMPONENT LABELING USING BINTREES 
The region quadtree is based on the successive subdivision of a 

d-dimensional image into 2* equal-size quadrants until homoge- 
neous blocks (i.e., BLACK or WHITE) are encountered. A binary 
image tree (termed bintree) [17] is defined analogously, except that 
at each stage, we subdivide the image into two parts. Again, as in 
the case of the linear quadtree, when d = 2, at odd stages we par- 
tition along the x coordinate and at even stages on they coordinate. 
In d dimensions, the coordinate axes are similarly cyclically chosen 
for partitioning. Fig. 3 is the bintree corresponding to the image of 
Fig. l(a). We assume that for the x (  y)  partition, the left subtree 
corresponds to the west (south) half of the image and the right sub- 
tree corresponds to the east (north) half. 

(a) (b) 
Fig. 3 .  The bintree corresponding to Fig. 1. (a) Block decomposition. (b) 

Bintree representation of the blocks in (a). 

In our algorithms, we use a linear image representation in the 
form of a preorder traversal of its bintree (i.e., a DF-expression 
[6]). This representation is also applicable to the bintree. The tra- 
versal yields a string, termed a linear bintree, over the alphabet 
"(," "B," and "W" corresponding to the GRAY (i.e., nonleaf), 
BLACK, and WHITE nodes, respectively. For example, the DF- 
expression for the bintree corresponding to the two-dimensional 
image of Fig. l(a) is ( B (  W (  WB. Modifying our algorithms to deal 
with other linear bintree representations is simple. 

We label the connected components of an image represented by 
a bintree by using the breadth-first approach. It requires us to in- 
spect all BLACK border elements. This is done by traversing the 
linear bintree. Again, as in the case of the linear quadtree, when d 
= 2, at any instant (i.e., after processing m leaf nodes), the state 
of the traversal can be visualized as a staircase (termed an active 
border) consisting of active border elements. This set can be fur- 
ther decomposed into d sets of active border elements. For exam- 
ple, when d = 2, a traversal of the bintree such that the western 
and southern halves are traversed before the eastern and northern 
halves, respectively, the m processed leaf nodes describe a portion 
of the image that is to the left and below the staircase. A traversal 
in this order (without GRAY nodes) for Fig. 3 is 1, 2, 3,  4. Each 
active border element must be given the color of the adjacent d- 
dimensional cube that has already been processed. As each leaf in 
the list of nodes in the linear bintree is processed, its d border 
elements adjacent to the active border (the S and W border ele- 
ments in the two-dimensional case) are examined and UNION- 
FIND is applied to any resulting adjacencies between BLACK ele- 
ments. In addition, the active border is updated to reflect the new 
active border elements (i.e., the other d unprocessed border ele- 
ments of the node-the N and E border elements in the two-dimen- 
sional case). Fig. 4 shows the active border before and after pro- 
cessing block 3 of Fig. 3.  A heavy line indicates that the adjacent 
block is BLACK, while a light line corresponds to an adjacent 
WHITE block. 

We represent the active border as a singly linked list of records 
of type borderlist, with fields DATA and NEXT, which contains 
pointers to records corresponding to the active border elements 
comprising it. For example, in Fig. 4, the active-x border is the 
list ( X I ,  X2, X,) and the active-y border is the list (Yl ,  Y2). Each 
active border element is represented as a record of type borderele- 
ment having three fields, SIZ, COL, and LAB, corresponding, re- 
spectively, to the size (length in two dimensions, area in three di- 
mensions, etc.), color, and label (i.e., equivalence class) of the 
side of the block adjacent to the already processed border element. 
Initially, there are d active border elements of all size 2 " ' ( d - ' )  and 
color WHITE. 

Connected component labeling is performed by procedures 
COMPONENTS, TRAVERSE, and INCREMENT. They are given 
in the Appendix using a variant of Algol. Procedure COMPO- 
NENTS is invoked with the DF expression encoding of the bintree. 
First, it initializes the active border. Next, it invokes procedure 
TRAVERSE which controls the traversal of the bintree nodes. Dur- 
ing this process, each BLACK leaf node is assigned a label (i.e., 
equivalence class) and a copy is made of the DF-expression (in 
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Fig. 4. The active border before and after processing block 3 of Fig. 3.  

the pair by using FIND. FIND traverses father links in the tree to 
locate the root. If the classes differ, then they are combined using 
union. UNION merges two trees by making the father of the root 
of one tree point at the root of the other tree. Path compression is 
applied as part of FIND to make sure that after FIND, no equiva- 
reverse order). Finally, it applies procedure PHASEII to adjust the 
component labels to their final values. PHASEII just reverses the 
DF-expression while applying FIND once for each BLACK image 
element. For each leaf node, TRAVERSE calls procedure INCRE- 
MENT d times-i.e., once for each of the d borders to perform the 
actual updating of the active borders and to propagate equivalences 
among labels. If a BLACK leaf node is not identified with any 
existing image component, then a new label (i.e., equivalence 
class) is generated. 

Procedure TRAVERSE is the key to the algorithm. Using list 
pointers ACTIVE-BORDER [O], ACTIVE-BORDER [ 11, . . . , 
ACTIVE-BORDER [ d - 1 1, it keeps track of the heads of the lists 
of the elements of the d active borders. For example, assume that 
d = 2 and let YL and XL correspond to ACTIVElBORDER [O] and 
ACTIVE-BORDER [I] ,  the active-y and active-x borders, respec- 
tively, starting at the node currently being processed. We use Fig. 
5, the state of the active borders (XL and YL) before and after each 
call to TRAVERSE, to illustrate our discussion. 

First, in the case of a nonleaf node, its block is split in two and 
the procedure is applied recursively to the two halves. Parameter 
CURRENT-COORD indicates the direction along which the block 
should be partitioned. CURRENT-COORD cycles through all the 
directions. VOLUME is the DIMENSION-dimensional area of the 
block and WIDTH is the width of the block along directions CUR- 
RENT-COORD through DIMENSION-1; its width along the re- 
maining directions is WIDTH/2. After finishing one half, say the 
first half of a partition on the x (  y)  coordinate, the pointer to the 
active-y (active-x) (note the change in the order of x and y) border 
is reset to point at the element of the active-y (active-x) border it 
pointed at just prior to the partition (although its actual value may 
have changed during processing). It must be reset because we have 
swept through its entire range, while this is not true for the re- 
maining active borders. For example, after processing node 1 and 
before processing node B, the value of YL is reset, but the active- 
y border entry is now different from'what it was when starting with 
node I .  The pointer to the active-x border retains the value it had 
at the end of the first half (e.g., XL after processing node 1 and 
before processing node B). 

Second, in the case of a leaf node, procedure INCREMENT is 
invoked DIMENSION times to process all active border elements 
bordering on the edge of the new leaf. There are three possible 
cases, depending on whether the entering edge is smaller than its 
corresponding active border entry, equal in size, or larger. Fig. 6 
illustrates the effect of each of these cases on the active border 
when d = 2. Note that the list comprising the active border will 
grow in size, stay the same, or shrink, respectively, for the three 
cases. If the new leaf is BLACK, then the connected component 
information is also updated if the corresponding active border entry 
or part thereof is BLACK. Once procedure INCREMENT has been 
applied to all the active borders, TRAVERSE determines if the leaf 
that has just been processed was BLACK and was only adjacent to 
WHITE nodes. If this was the case, then a new label (i.e., equiv- 
alence class) is generated. Just prior to termination, TRAVERSE 
advances the list pointers to elements of the active borders so that 

NODE ENTERING 

X L  

A 1, c,, 
I '- c, 

' LYL 
X L  

X L  

X L  

,% cy, 2 1  

c 1' PYL 

4 1'- PYL 
Fig. 5 .  State of the active borders (XL) and (YL) before and after each 

call to TRAVERSE for d = 2. 

ENTERING LEAVING - ACTIVE BORDER ACTIVE EDGE - 
ACTIVE BORDER - 
ACTIVE EDGE - 
ACTIVE BORDER - 
ACTIVE EDGE - 
ACTIVE BORDER - 

(a) Eniering edge IS larger - ACTIVE BORDER 
(b) Entering edge IS smaller - ACTIVE BORDER 
(c) Entering edge IS equal in sue 

Fig. 6. The state of the active border in procedure INCREMENT. The 
comparisons are between the entering edge and its corresponding active 
border entry. 

A. 
! 2 3  

(a) (b) (c) 
Fig. 7 .  An object, its maximal blocks, and the corresponding bintree. 

Blocks in the object are shaded. (a) Object. (b) Block decomposition of 
the object in (a). (c) Bintree representation of the blocks in (b). 

they point to the edges corresponding to the block associated with 
the node to be processed next. 

The equivalence classes are represented by trees. The root of 
each tree is the representative element of the class. The links be- 
tween the remaining nodes in the tree reflect equivalences. Each 
node in the tree corresponds to a record of type eq-class with one 
field called FATHER. The nodes in the tree are pointed at by the 
LAB field of the active border elements and the leaf nodes. 

As another example of the use of our algorithm, consider a three- 
dimensional image (i.e., d = 3) in the form of a bintree (e.g., Fig. 
7). Assume that the first partition is in the z direction, followed by 
y and z ,  alternating among the three directions thereafter. Using 
the coordinate system of Fig. 8,  we say that the left subtree cor- 
responds to the negative x, y, and z directions relative to the origin 
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Z 

Fig. 8. Bintree coordinate system. 

NODE XYL X Z L  Y ZL 

ENTERING LEAVING ENTERING LEAVING ENTERING LEAVING , 

2 

3 

4 

5 

Fig. 9. The state of the active borders (XYL, XZL, and YZL) at selected 
calls to TRAVERSE for d = 3.  The actual arrows designate the value 
of XYL, XZL, and YZL as is appropriate. BLACK blocks in the image 
are shaded. 

and the right subtree to positive values. The linear bintree for the 
image of Fig. 7 has (B(((BWWB as its DF-expression. 

The algorithm for labeling connected components of a three-di- 
mensional bintree is almost identical to that presented for the two- 
dimensional case. The main difference is that we now have an ac- 
tive-xy, active-xz, and active-yz border consisting of active border 
elements which correspond to faces instead of edges. As an ex- 
ample of the application of the algorithm, let YZL, XZL, and XYL 
correspond to ACTIVE-BORDER [O], ACTIVEBORDER [ 11, and 
ACTIVEBORDER [2], the active-yz, active-xz, and active-xy bor- 
ders, respectively. Fig. 9 shows the state of the active-xy, active- 
xz, and active-yz borders before and after each call to TRAVERSE 
corresponding to the leaf nodes in Fig. 7. 

111. ANALYSIS 
A .  Theoretical 

A theoretical analysis of the worst case running time of the al- 
gorithm finds that it is Q ( B  + ( 2 E  + B) . a ( B ,  2B + 2 E ) )  where 
B is the number of BLACK image elements and E is the number of 
adjacencies between them. a is the inverse of the Ackermann func- 
tion and grows very slowly. These bounds are a direct result of 
using the UNION-FIND method to process equivalences. See [20] 
for more details on the exact formulation. In most practical cases, 
a (  V, 2V + 2 E )  < 3, and thus the algorithm is “almost” linear. 
Its worst-case storage requirements are 0 ( B ) .  

B. Empirical 
Ignoring the contribution of UNION-FIND (given in Section 

111-A), the time to traverse a d-dimensional linear bintree is directly 
proportional to the number of leaf nodes. This is better than results 
obtained when using neighbor finding methods [I21 and is com- 
parable to techniques which transmit neighbors as parameters to 
the traversal algorithm [5], [14]. The space requirements of the 
algorithms reported here are generally better than of those used in 
[15] by virtue of using linked lists instead of arrays. However, the 
worst cases are still the same (i.e., a checkerboard image). 

In order to gain some more insight into the performance of our 
algorithms we conducted experiments. The first series of tests helps 
to understand the behavior of the algorithm for “simple” (i.e., 
highly aggregated) images. The test images consisted of two-di- 
mensional and three-dimensional digital balls of varying diameters 
(i .e. ,  M). Each ball was generated so that each pixel (voxel) in- 
tersecting the boundary is BLACK, as are the elements totally con- 
tained in the ball. Programs were written in the C programming 
language and were executed on a VAX 111750. Three experiments 
were performed with balls having a diameter, say M, which was a 
power of two and the ball was embedded in a d-dimensional cube 
of side length M. 

1) The connected components of a two-dimensional ball (i.e., 
disk) with M = 512, 1024, 2048, and 4096. 

2) The perimeter of a two-dimensional ball with diameters iden- 
tical to those used in 1). This helps determine the effect of the 
UNION-FIND algorithm because perimeter computation is closely 
related to connected component labeling when the step of merging 
equivalence classes is omitted. 

3) The connected components of a three-dimensional ball with 
M = 32, 64, and 128. 

Table I shows the results of the first two experiments. “Leaf 
nodes” denotes the number of BLACK and WHITE leaf nodes in 
the bintree. “Labels” corresponds to the number of different 
equivalence classes that were generated (i.e., the number of nodes 
that could not be directly labeled from their neighbors that had 
already been processed). “Max edges” indicates the maximum 
number of records of type borderelement that were required in the 
active border lists. It is useful for determining the space require- 
ments and comparing to the case when the active border is repre- 
sented as an array [ 151. It is interesting to note that for M = 4096, 
the method of [I51 required 8192 edge records, whereas the method 
described here only required a maximum of 382 edge records. Ex- 
ecution times are given in CPU seconds. The programs imple- 
mented were not optimized; subroutine calls alone accounted for 
about 50 percent of the processing time. We see that for this class 
of images, the space requirements are small. Table I1 shows the 
results of the third experiment. Column headings are analogous to 
those used in Table I, except that in three dimensions, perimeter 
means surface area. 

The data of Tables I and I1 are revealing from several standpoints. 
First, they illustrate Hunter’s theorem [3] for two-dimensional im- 
ages that as the resolution is doubled, the quadtree grows linearly 
in the number of nodes. Furthermore, for three-dimensional im- 
ages, the number of nodes in the octree grows with the second 
power (i.e., proportionally to the boundary of the image [9]). In 
our experiments, these results also hold for the number of labels 
(i.e., equivalence classes) that are generated. However, no such 
easy conclusions can be drawn about the maximum number of edges 
(faces) whose number seems to grow more slowly. Nevertheless, 
it is interesting to note that in Table 11, the maximum number of 
faces for M = 128 was 2514, whereas in actuality, were we to 
apply an array method similar to [15], then 49,152 array entries 
(border elements) would be required to represent the active border. 

Second, our data show that the execution time of our connected 
component labeling algorithm is approximately linearly related to 
the number of leaf nodes in the tree. By measuring separately the 
amount of time necessary for computing the perimeter, we saw that 
the contribution of the equivalence class merging task (i.e., 
UNION-FIND) to connected component labeling is relatively 
small. We also measured the contribution of PHASE11 and found 
it to be approximately 10 percent of the time. Of course, program 
optimizations will increase the relative contribution of the UNION- 
FIND step. 

Third, from the limited data that we have, it seems that for a 
given image size (i.e., in terms of leaf nodes), the three-dimen- 
sional case requires approximately 30 percent more time than the 
two-dimensional case. This is not surprising since the active border 
now has three lists instead of two and INCREMENT must process 
each of these lists. 
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Image Size 

NBANDS Voxels Nodes Nodes Components 
Leaf BLACK 

583 

Storage Requirements 
CPU Time (seconds) (New Method) 

Method of [8] New Maximum 
(VAX 11 /780) (VAX 11 /750) Labels Faces 

TABLE I 
TWO-DIMENSIONAL CONNECTED COMPONENT LABELING (CCL) A N D  PERIMETER 

72.8 7.5 
145.0 14.5 
290.7 28.5 
582.3 56.1 

1147.5 111.7 

Leaf BLACK Max CCL Perimeter 
M Nodes Nodes Labels Edges (seconds) (seconds) 

653 325 
912 553 

1321 1065 
2248 2331 
3993 4873 

512 2840 1524 86 157 1.8 1.6 
1024 5840 3028 178 21 1 3.4 3.1 
2048 11 740 5916 343 287 6.8 5.9 
4096 23 680 11 928 687 382 13.7 12.2 

TABLE I1 
PERFORMANCE OF THREE-DIMENSIONAL CONNECTED COMPONENT LABELING (CCL) 

Leaf BLACK Max CCL Perimeter 
M nodes Nodes Labels Faces (seconds) (seconds) 

32 3296 1656 50 57 1 2.9 2.7 
64 13 960 6896 189 1187 11.3 10.6 

128 58 712 29 676 755 25 14 46.8 43.1 

2 20 000 10 806 4837 214 
4 40 000 20 114 9903 312 
8 80 000 39 329 19 577 410 

16 160000 78 988 39 383 704 
32 320000 157 479 78 537 1194 

In order to get a more complicated benchmark, we used images 
similar to those used in a study performed by Lumia [8] of a dif- 
ferent connected component labeling algorithm for three-dimen- 
sional images that are represented by arrays. Using these tests to 
compare the two algorithms is not fair as they are different. In par- 
ticular, Lumia’s method does not use the UNION-FIND algo- 
rithm. Also, Lumia’s method makes use of a matrix-like represen- 
tation, whereas we use a three-dimensional bintree. Nevertheless, 
the results are worth noting from a qualitative standpoint. The test 
images consist of a number, NBANDS, of two-dimensional 100 X 
100 checkerboard sections as described in more detail in [SI. For 
the purpose of building a bintree, we embedded each image into a 
128 X 128 space with the checkerboard sections as yz planes. In 
contrast to the previous series, the test images exhibited almost no 
aggregation-an average leaf node of the bintree contained only 
two voxels. Thus, these images are a “bad case” for our algo- 
rithm. Table I11 summarizes our results and also contains a column 
describing the performance of Lumia’s algorithms (on a VAX 
11 /780). Table I11 verifies the conclusions of Table I1 in that pro- 
cessing time is approximately proportional to the number of leaf 
nodes and storage requirements are small. Processing times of the 
new algorithm compare very favorably to those reported by Lumia, 
even when the new method is applied without the two voxel/leaf 
compression that results from use of the bintree (in this case, pro- 
cessing times would be approximately doubled). 

To help interpret Table I11 further, we note some more details. 
1) PHASE11 requires approximately 10 percent of the processing 
time as does image input. 2) We generated the bintree procedurally 
from Lumia’s description. This required more than twice the CPU 
time necessary for connected component labeling. 

IV. CONCLUDING REMARKS 

We have presented a general algorithm for labeling connected 
components of d-dimensional images represented by linear bin- 
trees. Our implementation was for a linear quadtree in the form of 
a DF-expression. However, the same algorithm can be used for a 
linear quadtree in the form of a set of location codes. We used a 
generalized data structure, termed a bintree, which can be easily 
adapted to any d-dimensional image. The algorithm is an improve- 
ment over a previous method described in [15] in that it has been 
formulated to treat images of arbitrary dimensionality. Also, it re- 
quires considerably less space, and hence is feasible for such im- 
ages. Nevertheless, the approach described in [15] still has merit. 
It is a general method for computing geometric properties of two- 
dimensional images represented by linear quadtrees. These prop- 
erties included perimeter and genus (i.e., Euler number) as well as 
connected component labeling. The perimeter could be easily com- 
puted within the framework presented here. However, it is not im- 
mediately clear how the d-dimensional genus could be computed 
using the methods presented here. The problem is that to compute 
the genus in two dimensions for quadtrees [ l ] ,  we can make use of 
the method of Minsky and Papert [ lo ]  which, unfortunately, is not 
easily generalizable to images of higher dimensions. On the other 
hand, genus computation is not a very critical operation in image 
processing systems. For other work involving the application of 
hierarchical methods to images of arbitrary dimension see [21], 

It is difficult to compare our techniques to existing methods since 
the efficiency of our algorithms is directly proportional to the 
amount of aggregation that exists in the image. Our largest three- 

PI. 
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dimensional image contained over 2 million voxels, yet its labeling 
required less than 47 s of CPU time (Table 11), while an image 
containing 320 000 voxels required about 112 s of CPU time (Ta- 
ble 111). The strength of our techniques lies in the ability to take 
advantage of homogeneity. The results reinforce our earlier obser- 
vation that quadtree methods derive their significance from the sav- 
ing in execution time that they yield, which is also directly pro- 
portional to the space saving. 

Our method requires an equivalence table which may have as 
many elements as there are BLACK blocks in the entire image. 
However, this problem can be easily overcome by making use of 
the concept of active equivalence classes. This concept has been 
analyzed in great detail in [ 161. In particular, we say that an equiv- 
alence class E is active as long as there is at least one image ele- 
ment, which refers to it, in the active border. Whenever no element 
of the active border refers to E ,  then we reuse E by associating its 
storage space with another component. Using such a method means 
that the number of different labels (i.e., equivalence classes) is 
bounded by the maximum number of active border elements. A 
general algorithm, applicable to array as well as hierarchical image 
representations and employing this concept, is given in [16], and 
its incorporation in the procedures of this paper is straightforward. 
In particular, the only required change is that with each equiva- 
lence class, a count is maintained of the number of active border 
elements that refer to it. The control structure of the modified al- 
gorithm remains the same. 

APPENDIX. 
CODE FOR THE ALGORITHM 

procedure COMPONENTS (DIMENSION, WIDTH-OF-UNI- 
VERSE, DF); 
/*  Label the connected components of a WIDTH-OF-UNIVERSE 

VERSE (WIDTH-OF-UNIVERSE = 2”) DIMENSION-di- 
mensional image represented by DF, a preorder traversal of its 
bintree. PHASEII-NODES points to the start of the list of nodes 
used in the second phase of the algorithm. Each node is repre- 
sented by a record of type node having two fields, COL and 
LAB, corresponding to its color and the equivalence class which 
is assigned to it. * I  

global value integer DIMENSION; 
value integer WIDTH-OF-UNIVERSE; 
global value pointer dfnodelist DF; 
global pointer nodelist PHASEII-NODES; 
pointer borderlist array ACTIVE-BORDER 

integer J; 
I* Initialize each element of ACTIVE-BORDER to represent 

one active borderelement of size WIDTH-OF-UNI- 
VERSEDIMENSION- I and adjacent to WHITE blocks in each of 
the DIMENSION directions: * I  

begin 

by WIDTH-OF-UNIVERSE by . . . by WIDTH-OF-UNI- 

begin 

[O:DIMENSION-11; 

for J + 0 step 1 until DIMENSION-1 do 

ACTIVE-BORDER[J] + create(border1ist): 
DATA(ACT1VE-BORDER[J]) +- create(border 
element); 
sIZ(DATA(ACT1VE-BORDER[J])) + WIDTH- 

COL(DATA(ACTIVEBORDER[J])) + ‘WHITE’; 
LAB(DATA(ACT1VE-BORDER[J])) + NIL; 

OF-UNIVERSE T (DIMENSION-1); 

end; 

begin 
if not empty (DF) then 

PHASEII-NODES + NIL; 
TRAVERSE (WIDTH-OF UNIVERSE t DIMENSION, 

ACTIVE-BORDER, 0, 
WIDTH-OF-UNIVERSE); 

PHASEII(PHASEI1-NODES); /*  Set the final label of 
each leaf using FIND */ 

end; 
end; 
procedure TRAVERSE(VOLUME, ACTIVE-BORDER, CUR- 
RENT-COORD, WIDTH); 
I* Compute the contribution of a node whose corresponding DI- 

MENSION-dimensional rectangular parallelepiped has volume 
VOLUME. CURRENT-COORD of its sides have width 
WIDTH/2 and the remaining DIMENSION-CURRENT- 

COORD sides are of width WIDTH. For each nonterminal 
node, CURRENT-COORD indicates the direction along which 
the corresponding block should be partitioned and TRAVERSE 
is recursively applied to the two halves. ACTIVE-BORDER 
contains pointers to the active borders in the DIMENSION di- 
rections. ACTIVE-BORDER [O], ACTIVE-BORDER [ 11, 
. . .  , and ACTIVE-BORDER [DIMENSION-11 point to the 
part of the active border that is adjacent to the parallelepiped 
currently being processed. * I  ~ 

value real VOLUME, WIDTH; 
reference pointer borderlist array ACTIVE-BORDER 

value integer CURRENT-COORD; 
global integer DIMENSION; 
global pointer dfnodelist DF; 
global pointer nodelist PHASEII-NODES; 
pointer borderlist TEMP; 
pointer node CURRENT-NODE; 
integer J;  
CURRENT-NODE + create (node); 
COL (CURRENT-NODE) + NEXT (DF); 

LAB (CURRENT-NODE) + NIL; 
if COL(CURRENT-NODE) = ‘GRAY’ then 

begin 

[O: DIMENSION- 11; 

I* Get the next element in the preorder traversal */ 

begin I* Nonleaf node * I  
I* Add CURRENT-NODE to the front of PHASE- 

11-NODES so that the second phase can update the 
labels to their final equivalence classes. */ 

addtolist (PHASEII-NODES, CURRENT-NODE); 
TEMP +- ACTIVE-BORDER [CURRENT-COORD]; 

/* Save pointer to start of ACTIVE-BORDER 

if (CURRENT-COORD + 1) mod DIMENSION = 0 
then WIDTH + WIDTH/2; 
VOLUME +- VOLUME/2; 
TRAVERSE (VOLUME, ACTIVE-BORDER, 

[CURRENT-COORD] *I 

(CURRENT-COORD + 1) mod DIMEN- 
SION, WIDTH); 

I* Partition on CURRENT-COORD *I 
ACTIVE-BORDER [CURRENT-COORD] + TEMP; 
TRAVERSE (VOLUME, ACTIVEBORDER, 

(CURRENT-COORD + 1) mod DIMEN- 
SION, WIDTH); 

end 

begin I* Leaf node * I  
else 

I* Compute each border element’s contribution to the ac- 
tive border. In computing the “size” parameter we 
must distinguish between active borders 0 . 
CURRENT-COORD-1 and CURRENT-COORD 
. . . DIMENSION-1. */ 

for J + 0 step 1 until DIMENSION-1 do 
INCREMENT (CURRENT-NODE, ACTIVE-BOR- 
D W J I ,  
if J 2 CURRENT-COORD then VOLUMEIWIDTH 
else 2*VOLUME/WIDTH; 

if COL(CURRENT-NODE) = ‘BLACK’ then 
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begin 
I* Assign CURRENT-NODE’S equivalence class 
to its corresponding active border elements * I  
if null (LAB (CURRENT-NODE)) then I* New 
equivalence class * I  

begin 
LAB (CURRENT-NODE) + create 
(eq-class); 
FATHER (LAB (CURRENT-NODE)) + NIL; 

end; 

LAB (DATA (ACTIVE-BORDER [ J ] ) )  + LAB 
(CURRENT-NODE); 

for J + 0 step 1 until DIMENSION-1 do 

end; 
/* Advance the pointer to the start of the appropriate ac- 
tive border: * I  
for J + 0 step I until DIMENSION-1 do 

ACTIVE-BORDERIJ] t NEXT 
(ACTIVE-BORDER [ 51); 

I* Add CURRENT-NODE to the front of PHASE- 
11-NODES so that the second phase can update the 
labels to their final equivalence classes. */ 

addtolist (PHASEII-NODES, CURRENT-NODE); 
end; 

end; 
procedure INCREMENT (LEAF, ACTIVE-BORDER, SIZE); 
I* Update the active border for a side of leaf node LEAF having 

size SIZE. SIZE corresponds to width in the two-dimensional 
case and to area in the three-dimensional case. ACTIVE-BOR- 
DER is a pointer to a list of border elements constituting the 
active border in the present direction. LEAF is adjacent to the 
first border element in ACTIVE-BORDER. */ 

value pointer node LEAF; 
value pointer borderlist ACTIVE-BORDER; 
value integer SIZE; 
pointer borderlist NEIGHBOR, Q; I* Auxiliary variables * I  
integer I; 
if SIZE > SIZ (DATA (ACTIVE-BORDER)) then 

begin 

begin /*  Neighbor is a nonleaf node-case (a) of Fig. 6 * I  
I + 0; 
NEIGHBOR + ACTIVE-BORDER; 
while I NEQ SIZE do 

begin 
I* Update the active border for all border elements 

that are adjacent to the side of LEAF that is being 
processed. *I 

if COL(LEAF) = ‘BLACK’ and COL 
(DATA(NEIGHB0R)) = ‘BLACK’ then 

LAB (LEAF) + UNION (LAB (LEAF), FIND 
(LAB (DATA (NEIGHBOR)))); 

I + I + SIZ(DATA(NEIGHB0R)); 
NEIGHBOR + NEXT (NEIGHBOR); 

end: 
Q + NEXT(ACT1VE-BORDER); 
NEXT (ACTIVE-BORDER) + NEIGHBOR; 
borderlist-dispose (Q, NEIGHBOR); 
I* Reclaim storage for active border elements starting 

at Q up to but not including NEIGHBOR */ 
end 

else /* Neighbor is a leaf-cases (b) and (c) of Fig. 6 
* I  

begin 
if COL(LEAF) = ‘BLACK’ and COL 
(DATA(ACT1VE-BORDER)) = ‘BLACK’ then 

LAB (LEAF) + UNION (LAB (LEAF), FIND 
(LAB (DATA (ACTIVE-BORDER)))); 

I* Neighbor is larger-case (b) of Fig. 6 * I  
if SIZE < SIZ (DATA (ACTIVE-BORDER)) then 

begin I* Update the active border * I  
NEIGHBOR + create(border1ist; I* Add a new 
border element * I  
DATA (NEIGHBOR) + create (borderelement); 
I* Compute unprocessed portion of the active bor- 

der: *I 
SIZ (DATA (NEIGHBOR)) t SIZ 

COL (DATA (NEIGHBOR)) + COL 
(DATA (ACTIVE-BORDER))-SIZE; 

(DATA (ACTIVE-BORDER)); 
LAB (DATA (NEIGHBOR)) t LAB 
(DATA (ACTIVEBORDER)); 
NEXT (NEIGHBOR) + NEXT (ACTIVE-BOR- 
DER) ; 
/* Update head of active border list: */ 
NEXT ( ACTIVE-BORDER) + NEIGHBOR; 

end; 
end; 

/ *  Update the active border to reflect the new leaf */  
SIZ (DATA (ACTIVE-BORDER)) + SIZE; 
COL (DATA (ACTIVE-BORDER)) + COL (LEAF); 

end; 

pointer nodelist procedure PHASE11 (OLD-NODE-LIST); 
/* Update the equivalence classes of all elements of list NODES 

that are leaf nodes (i.e., their LAB field) to the correct equiv- 
alence class by using FIND. During this process, list NODES 
will be reversed and the original order of the DF expression will 
be restored. nodelist has two fields, DATA and NEXT. */ 

value pointer nodelist OLD-NODE-LIST; 
pointer nodelist NEW-NODE-LIST 
NEW-NODE-LIST + NIL; 
while not null (OLD-NODE-LIST) do 

begin 

begin 
if COL(DATA(0LD-NODE-LIST)) NEQ ‘GRAY’ then 

LAB(DATA(0LD-NODE-LIST)) + FIND 
(LAB (DATA (OLD-NODE-LIST))); 

addtolist (NEW-NODE-LIST, DATA (OLD-NODE- 
LIST)); 
OLD-NODE-LIST + NEXT (OLD-NODE-LIST); 

end; 
return (NEW-NODE-LIST); 

end; 

pointer eq-class procedure UNION (LABEL1, LABEL2); 
/*  Merge equivalence class LABELl with equivalence class 

LABEL2. If LABEL1 is not NIL and if LABEL1 is not equal 
to LABEL2, then set the FATHER field of LABELl to 
LABEL2. * I  

value pointer eq-class LABEL 1, LABEL2; 
if not null(LABEL1) and LABELl NEQ LABEL2 then 

return(LABEL2); 

begin 

FATHER(LABEL1) + LABEL2: 

end; 

pointer e p c l a s s  procedure FIND (LABELl); 
I* Determine the equivalence class containing equivalence class 

LABELl. Perform path compression at the same time-i.e., 
when an equivalence class requires more than one link to reach 
the head of the class. In this case, the appropriate link is set. */ 

value pointer e p c l a s s  LABEL1; 
pointer eq-class R, TEMP; 
if null (FATHER (LABELl)) then return (LABELl) 
else 

begin 

begin 
R + LABELl; 
do R + FATHER (R) until null (FATHER (R)); 
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do 
begin I* Short circuit the path by linking LABELl to 
R */ 

TEMP + FATHER(LABEL1); 
FATHER(LABEL1) + R; 
LABELl +- TEMP; 

end 
until null (FATHER(LABEL1)); 

return (R); 
end; 

end; 
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A Multilevel Parallel Processing Approach to Scene 
Labeling Problems 

HSI-HO LIU, TZAY Y. YOUNG, AND AMITAVA DAS 

Abstract-A parallel tree search procedure and multilevel array ar- 
chitectures are presented for scene labeling problems. In the scene la- 
beling problem, when the number of variables is not large, e.g., less 
than 100, its solutions and search space are not expected to increase 
very fast with problem size. The multilevel arrays only use a polynom- 
ial number of processors at each level and a bus or mesh connection 
for interlevel communication. This approach is very efficient compared 
to the binary-tree machine if the number of nodes in the search tree of 
labeling problem increases polynomially with the number of variables. 
Because of its regular and simple structure, the multilevel array is par- 
ticularly suitable for VLSI implementation. 

Index Terms-Multilevel array, parallel processing, scene labeling, 
tree search. VLSI. 

I .  INTRODUCTION 
The labeling problem plays an important role in scene labeling 

[2], [12] and matching [I]  of the computer vision, and many other 
problems such as graph coloring and graph homomorphisms [2]. 
In this correspondence, we present a parallel processing approach 
for the scene labeling problem. The number of applicable labels in 
the scene labeling problem is usually a small constant, and each 
variable is also constrained by a small number of variables. From 
our experience in several medium-size problems (e.g., problems 
with 100 variables), the number of solutions and search effort did 
not increase very fast. 

The labeling algorithms can generally be divided into three 
groups [lo]: basic tree search such as backtracking, filtering [14], 
or discrete relaxation [12], and hybrid approach 131. Backtracking 
algorithms are guaranteed to find any solutions, but are extremely 
inefficient. Filtering can reduce the number of applicable labelings 
for each variable, yet a tree search is still needed to find out which 
labeling is compatible with which, and that can be very time con- 
suming. Some hybrid algorithms such as forward checking have 
been shown to be very efficient [3]. However, it needs to pass a lot 
of information from node to node along every tree path, which 
makes it not a good candidate for parallel, particularly VLSI, im- 
plementation. The approach we adopt here applys filtering first and 
then uses the multilevel parallel tree search to find the solutions. 

PROCESSING 
11. THE CONSISTENT LABELING PROBLEM A N D  PARALLEL 

A .  Problem Definition 
Let A = { U , ,  . . . , a,}  be a set of units or variables to be 

labeled, L = { I , ,  . . . , l , , , )  a set of labels, T a set of variable 
constraint relations, and R a set of label compatibility relations. 
The labeling problem is to find all consistent labelings where a 
labeling of variables ( a , ,  . . - , a,) is an n tuple ( l , , ,  . . . , 
I,, E Lj ,  i = 1, . . . , n,  and a consistent labeling is a labeling which 
satisfies all compatibility relations. Let Lj E L be the set of labels 
applicable to variable U ; ,  and let d, be the number of labels in L,, i 
= 1, . . . , n .  The variable constraint relation Tcan be represented 
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