
Pattern Rect~jnition Vol. 17, No. 6. pp. 647 656, 1984.
Prinled ill (;real i|ritain.

0031 3203/84 $3.00+ .00
Pergamon Press Lid

,I 1984 Pattern Recognition Society

A GEOGRAPHIC INFORMATION SYSTEM
USING QUADTREES*

H A N A N SAMET, f A Z R I E L ROSENFELD, CLIFFORD A. SHAEFER a n d ROBERT E. WEBBER

Computer Science Department and Center for Automation Research, University of Maryland, College Park,
MD 20742, U.S.A.

(Received 13 December 1983; in revised form 28 February 1984; received for publication 15 March 1984)

Abstract--We describe the current status of an ongoing research effort to develop a geographic information
system based on quadtrees. Quadtree encodings were constructed for area, point and line features for a small
area in Northern California. The encoding used was a variant of the linear quadtree. The implementation
used a B-tree to organize the list of leaves and allow management of trees too large to fit in core memory.
Several database query functions have been implemented, including set operations, region property
computations, map editing functions and map subset and windowing functions. A user of the system may
access the database via an English-like query language.

Quadtrees Geographic information systems
Curve representation

Image processing Region representation

I. INTRODUCTION

The quadtree representation of regions, first proposed
by Kiinger, "~ has been the subject of intensive research
over the past several years (for an overview, see the
survey by Samet~2~). Numerous algorithms have been
developed for constructing compact quadtree repre-
sentations, converting between them and other region
representations, computing region properties from
them and computing the quadtree representations of
Boolean combinations of regions from those of the
given regions. Quadtrees have traditionally been im-
plemented as trees which require space for the pointers
from a node to its sons. Recently, there has been a
considerable amount of interest in pointer-less quad-
tree representations ~3"4~ termed linear quc~dtrees. In this
case, the set of regions is treated as a collection of leaf
nodes. Each leaf is represented by use of a locational
code corresponding to a sequence of directional codes
that locate the leaf along a path from the root of the
tree.

In this paper we describe the current status of an
ongoing research effort to develop a geographic infor-
mation system based on quadtrees. Quadtree encod-
ings were constructed for area, point and line features
from maps and overlays representing a small area of
Northern California. The encoding used was a variant
of the linear quadtree. A memory management system
based on B-trees ~5~ was devised to organize the result-
ing collection of leaf nodes, allowing for the use of
arbitrary sized maps within a restricted amount of core

* The support of the U.S. Army Engineer Topographic
Laboratories under Contract DAAK70-81-C-0059 is grate-
fully acknowledged.

"t To whom correspondence should be addressed.
647

memory. Many database functions were implemented,
including map editing capabilities, set operations and
region property functions. Further details about this
effort can be found in two earlier papers. ~6"7~

The system described in this paper is intended
primarily to demonstrate the efficiency of quadtrees as
data structures for handling geographical entities. I t is
a contribution to geographic information system
(GIS) design only on the level of the underlying data
structures. Existing GIS's have been primarily based
on polygon data structures, which do not lend them-

Fig. 1. The landuse map.

6 4 8 H A N A N S A M E T e t al.

• . ~ • . .~-~.~.._ ~ _ _ :" .
;! : , , " ~ [. . . . ,

~_, ~'~ ". . . "~:..,.~
i" i~. !'~i . . "

• . , ; : ~ - ~ . , ~ , h ' ! : . , ..

.~" "~ "'.~.. ..

• y . ¢ . . . , . . ' : ...,'.

•~-'..

Fig. 2. The topography map.

: " . 7 • - ' "

- . . .

/

Fig. 4. The house map.

t .

selves as efficiently as quadtrees to the handling of
many types of basic queries. Some recent examples of
GIS's can be found in a journal special issue ~s~ and
several individual papers. ~9-12)

The database used in the study was supplied by the
U.S. Army Engineer Topographic Laboratory, Ft.
Belvoir, VA. The area data consisted of three registered
map overlays representing landuse classes, terrain
elevation contours and floodplain boundaries. The
overlays were hand-digitized resulting in three arrays
of size 400 x 450 pixels. Labels were associated with

the pixels in each of the resulting regions, specifying the
particular landuse class or elevation range. The regions
were subsequently embedded within a 512 x 512 grid
and quadtree encoded. The results are shown in Figs
1-3. We also made use of a geographic survey map for
this area, from which we extracted point and line data.
The house locations were digitized for a point map
(Fig. 4), and four line maps were constructed cor-
responding to a railroad line, a power line, a city
boundary and the road network from the area (Figs
5-8) .

Fig. 3. The floodplain map. Fig. 5. The railroad map.

A geographic information system 649

Fig. 6. The powerline map.

The rest of this paper is organized as follows. Section
2 describes the quadtree memory management system
for storing and manipulating large quadtrees in exter-
nal storage. Section 3 contains an outline of the
quadtree editor which enables the interactive con-
struction and updating of maps stored as quadtrees.
Section 4 discusses the representations that we use for
points and linear features. Section 5 gives an outline of
the type of operations which we are currently able to
perform on our database, while Section 6 describes the
query language which we use to interact with the
database.

Fig. 8. The road map.

l THE QUADTREE MEMORY MANAGEMENT
SYSTEM

Prior to discussing the memory management sys-
tem, it is appropriate to briefly review the definition o f
a region quadtree. Given a 2" x 2" array of pixels, a
quadtree is constructed by repeatedly subdividing the
array into quadrants, subquadrants until we obtain
blocks (possibly single pixels) which consist of a single
value (e.g. a color). This process is represented by a tree
of out degree four in which the root node corresponds
to the entire array, the four sons of the root node

Fig. 7. The city border map.

j=/-
~ F G

Iolololoi 'I'I'I'I ~""~
oloo1,,,,, - - ~ o o,,,,,,

o o, , p, o o ~M~'/.././~i.Sr]~
0 0 I I I O 0 0 U 0

((:]) Reglon (b) Binaray array (C) Block decomposition
of *.he region in (0)
8Locks in the image
(]re shaded

A

N W ~ s S E

C D E

37 38 39 40 57 58 59 60

(d) Ouadtree representation of [he bl, ocks in (C)

Fig. 9. A region, its binary array, its maximal blocks and
the corresponding quadtree.

PR 17:8-E

650 HANAN SAMET et al.

(o)

7 222. 223

6 22G 221

5 202 203

4 20(] 201

3 022 D23

2 02C 021

I 002 00:3 I

0 OOC 0011

0 I

232 233 322

230 231 32G

212 213 302

2(0 211 30C

032 033 122

030 031 120

012 313 102

010 ~)11 I00

2 3 4

323 332 333

321 330 331

303 312 313

301 310311

123 132 133

121 130 131

!J03 I12 113

I01 I10 III

,5 6 7'

(b) 200

020

000

320 330

~300 t~ 310~i

o32

,,o2 ib3
0 1 0 : " I10
,:!!~: ioo Io,

Fig. 10. An example demonstrating the use of Iocational codes
to address blocks in an image represented by a quadtree.

correspond to the quadrants and the terminal nodes
correspond to those blocks of the array for which no
further subdivision is necessary. The nodes at level k (if
any) represent blocks of size 2 k x 2 k and are often
referred to as nodes of size 2 k. Thus a node at level 0
corresponds to a single pixel in the image, while a node
at level n is the root of the quadtree. For example,
consider the region shown in Fig. 9a, which is repre-
sented by the 23 x 23 binary array in Fig. 9b. The
resulting blocks for Fig. 9b are shown in Fig. 9c and the
tree in Fig. 9d.

Note that the variant of the quadtree that we use
results in a decomposition of space into equal-sized
parts. This is in contrast to the point quadtree "3) and
the k-d tree (~4) where the decomposition is governed by
the input. The advantage of our variant of the quadtree
is that different maps will be in registration, thereby
facilitating set operations such as map overlay.

Our database system can be viewed as being made
up of four levels. The lowest level (henceforth known as
the kernel) controls the interface between the disk file
used to store the quadtree data and the programs that
are used to manipulate the images. This level was
written in the C programming language. (~ 5) The next
level, also written in C, contains the programs which
implement the database algorithms--e.g, editing, set
functions, etc. This level accesses the kernel (and hence
the file system) strictly through a set of primitive
functions. These functions allow the programmer of
the second level to view the quadtree as an abstract
data type, without worrying about the implementation
details. The third level, written in LISP, allows con-

venient access to and composition of the database
functions implemented by the second level. LISP is
well suited to the manipulation of symbolic infor-
mation. It is used here to keep track of the maps known
by the database and information about landuse classes
or elevation levels. User defined names and data items
are maintained at this level. The highest level is the
English-like query language described in Section 6.

Our implementation of the kernel stems from the
linear quadtree encoding scheme used. In this scheme,
each pixel is given an address derived from interleaving
the bits of the binary representation of the pixel
coordinates. Figure 10a shows a 23 x 23 grid with each
pixel labelled in this fashion. Figure 10b shows the
block decomposition of the region from Fig. 9a, with
each square of the decomposition labelled with the
address of its lower left pixel. The addresses in Fig. 9
are shown in base four, i.e. two bits are used for each
digit. These addresses can also be viewed as a sequence
of directional codes leading from the root of the tree to
the node being described.

The key feature of our encoding scheme is that a
preorder traversal of the explicit tree will produce the
nodes in ascending order of the addresses of the pixels
at their lower left corner. We store only the leaf nodes
of the tree, sorted in ascending order of this address
field. Any pixel contained within a node will have an
address greater than that of the leaf's lower left corner,
but less than that of the next node in preorder.
Therefore, given the address of any pixel and a list of
leaves ordered by their addresses, finding the leaf
containing that pixel reduces to searching a sorted list.

Given the linear ordering of leaf nodes and the fact
that we are storing files containing as many as
30,000-40,000 leaves, we decided to organize the
quadtree files using a B-tree structure. The kernel is
primarily a collection of routines that maintain a buffer
pool in core and a B-tree in the disk file. The buffer
pool need only store that portion of the tree in core for
which there is room. We expect that there will be
strong locality of reference--i.e, the leaf for which we
are presently searching will very likely be near the leaf
we last found. Therefore, the buffer pool is maintained
on a schedule that replaces the least recently used
buffers first.

At the level of the kernel, the three types of quadtrees
(for point, line and region data) are identical. A
quadtree node descriptor is composed of two 32-bit
words. The first word contains information on the
leafs position and depth in the tree. In particular, it
contains a 24 bit field which consists of the address of
the lower left corner of the node formed by interleaving
the bits of its x and y coordinates. The remaining eight
bits indicate the depth of the node in the tree. The
second word contains information about the data that
the node represents. The contents of the second word
are not used by the kernel.

A quadtree file is made up of four parts. First, there is
the kernel's fixed-size header, which contains infor-

A geographic information system 651

mation about the size of the file and the B-tree
structure. Second, there is a fixed-size block for the
user's header (further described in Section 3). Typical
usages of the user's header would be to keep track of
whether a quadtree file is to be interpreted as a point
quadtree or a region quadtree, the x and y coordinates
of the lower-left-hand corner of the quadtree (with
respect to some global coordinate system) and the
width of the quadtree in pixels. The third part is a list of
comments. These comments are either generated by
database functions when a new map is created or are
inserted at the request of the database user. In either
case, they serve to document a map. Finally, a quadtree
file contains the list of B-tree pages that contain the
quadtree nodes.

The bulk of the quadtree file is made up ofthe list of
B-tree pages. Each page is 512 bytes long (an optimal
size for the programming language's read and write
routines). We store 60 quadtree leaves in each page.
The remaining space in the page contains information
related to the B-tree organization of the database.
When a leaf is requested, the page containing it is read
into the buffer pool, possibly displacing another
previously used page.

3. THE QUADTREE EDITOR

The quadtree editor exists to facilitate the interactive
construction and updating of maps stored as quad-
trees. Presently, it is a separate program from the
database system, written entirely in C, with its own
command language. Rather than forcing the user to
think in terms of the tree structure, the editor's tree
manipulation commands make references to logical
units of the map (e.g. lines, points or polygons). The
user can perform editing operations such as inserting a
line or poin t, changing the value of a specified polygon
or splitting a specified polygon into more than one
piece.

When many changes are to be made, the user may
wish to see the effects of each step. Commands are
provided to enable him to examine all or part of the
map at a selected location on a display device. This
display is continuously updated as further map man-
ipulation commands are executed. Associated with
each map's quadtree representation is a descriptor
termed the quadtree header. There exist commands
which allow the user to modify this header. The header
contains the size of the map, the tree type (area, point
or line), the coordinate of the lower left corner of the
map in relation to a global coordinate system, the
rotation angle or tilt of the map from the external
horizontal and some information as to the type of data
(i.e. topography, landuse, house) that is being stored. A
command is also provided to enable the user to insert
textual comments for documentation purposes.

In order for the quadtree editor to be useful, a set of
map manipulating functions is needed that permits the
user to create any desired map. The user of a geo-

graphic information system such as ours views the units
of his map in terms of logical units, such as "lines' or
'polygons', and not square 'nodes'. Therefore, for
region maps it is clear that the most natural implemen-
tation is one that permits the modifying commands to
make changes to specified polygons. This means that
the implementation of these commands must enable
modification ofall the nodes which make up a polygon
or group of polygons without affecting nodes of
neighboring polygons. We view each polygon (and
hence each node making up the polygon) as a member
of a 'class'. This class could be an elevation range or a
landuse type, such as'wheatfields'. Class information is
recorded for each node by use of a value field that is
part of the node's descriptor.

The editor is an interpretive system--i.e, the user
gives a command and it is executed, after which the
system is ready to execute the next command. There is
no notion of composing functions, as there is in the
quadtree database language. Area maps are updated
by use of the REPLACE, CHANGE and SPLIT
commands, which replace all polygons of a given value
with a new value, change the value of a given polygon
or split a polygon into multiple polygons, respectively.
Line and point maps are updated by use of the
INSERT and DELETE commands, which insert or
delete lines or points, respectively. In order that the
user may see what he is editing, there are commands
that draw all or part of the map onto a selected section
of a display device. The user may also alter the header
of the map.

When the editor is invoked, the user gives the name
of the file to be edited. A temporary disk file is created
on which all editing is to be done. Another file is
created to store the commands given by the user. These
files help protect the user from serious loss due to
system crashes or his own errors, such as mistyped or
unwanted commands. They also enable him to abort
the editing session without damaging the original
copy. If the file to be edited is an old one, a copy is made
in the temporary file, Ira new map is to be created, then
a default header is installed and the map is initialized
to be one WHITE region.

Changes to region maps are made by use of the
REPLACE, CHANGE and SPLIT commands, as
described below. Section 4 discusses the modification
of line and point maps. The REPLACE command is
executed by traversing the entire quadtree. Those
nodes with the old (class) value have that value
replaced by the new. For this command it is not
necessary to distinguish between polygons of the same
class, since they are all processed in the same way.

The CHANGE command is more complicated. It
should manipulate only one polygon ; however, other
polygons of that class may also exist. After the
command line has been parsed, a recursive function is
called which actually performs the desired work. This
function takes a node as its parameter. This node is
checked to see that it has the old value (the one to be

652 HANAN SAmI~T et at.

changed). If so, then its value is changed to the new one

and the function is recursively applied to all of the
node's neighbors. In this way, all nodes of a polygon
will eventually be reached and only nodes in the
polygon will have their values changed (since only
four-neighbors of nodes in the desired polygon are ever
candidates for processing).

The SPLIT command allows the user to impose an
arbitrary line, one pixel wide, of a designated value
onto the map. It assumes that the arbitrary line is
specified as a chain code. The intended use of the
command is to split a polygon into two or more
separate parts. One of these parts would then become a
polygon of the same class as the pixels representing
the arbitrary line via subsequent invocation of the
CHANGE command. The pixels representing the
arbitrary line would then be part of this new polygon.
Alternatively, the SPLIT commands can be used to
make slight modifications of only a very few pixels,
such as correcting a slightly misplaced border of a
polygon. This type of correction could not be applied
in any other way with the available command set.

The SPLIT command operates by first inserting a
one pixel node into the tree corresponding to the first
coordinate given and then following the chaincode
inserting nodes as it reads the code. As the user types
the code, the code is also inserted into the command
file. Allowing the user to observe the progress of the
chaincode as he is inputting it is a key feature of our
implementation of the SPLIT command. Typing an
incorrect chaincode was judged to be a very common
source of error when the implementation was de-
signed. Enabling the user to see the line displayed as he
inputs it allows the rapid detection and correction of
errors. When the backspace key is typed, the chaincode
is backed up one pixel. This is accomplished by
examining the end of the comm~'.nd file. The last
direction of the code is read to determine the coord-
inates of the previous pixel of the chaincode and then
both the map and the command file are updated to
reflect the backup.

By repeated use of the three commands REPLACE,
CHANGE and SPLIT, it is possible to make any
desired changes to a region map. Clearly this is true,
since in the worst case the user could construct a n
entire map from one pixel chaincodes.

4. POINT AND LINE REPRESENTATIONS

Quadtree representations for point and line data
were also developed. It should be noted that the same
kernel (described in Section 2) is used for manipulating
quadtrees of all three data types. When storing area
data in region quadtrees, the value of a leaf cor-
responds to the color of the region that contains the
leaf. Since there is no notion of color associated with
either point or line data, other interpretations are
placed on the information stored in the value portion
of the leaf descriptor. The interpretation that a partic-

ular routine makes of a leaf's vah,e is dependent on
the type of data that is being stored in the quadtree.
The database system stores the data type of the map in
the user header, which was described in Section 3.

The value field of a quadtree node is made up of a
single word 32 bits long. For area quadtrees there is
simply a numeric value which can be interpreted as
BLACK/WHITE, a color value, or as representing a
symbolic item, such as landuse or elevation classes. In
this last case, further information describing the item
might be part of the database.

For point data, nodes containing data points are
interpreted as containing the x coordinate (in the
upper half of the word) and the y coordinate (in the
lower half of the word). This coordinate pair is always
in relation to the lower left corner of the map. If the
coordinate of the data point in relation to a global
coordinate system is desired, we simply add this offset
to the coordinate of the lower left corner of the map,
obtainable from the quadtree header. A single word 32
bits long is sufficient to describe a coordinate point, as
the kernel limits the tree to a depth of twelve (i.e. a
4096 x 4096 pixel image). Nodes that do not contain a
data point are represented by the value WHITE.

The above interpretation of the value field of a leaf
descriptor has the following consequences with respect
to quadtree algorithms that handle point data. No
more than one data point can be stored in a quadtree
leaf. Insertion of a point in a point data quadtree works
as follows. First, we find the leaf that contains the
point's location. If the leaf is empty, then the point's x
and y coordinates are entered in the leafs descriptor.
Otherwise, the leaf is split into its four sons, the old
leaf's point value is copied into the appropriate son and
insertion is re-attempted. Deletion of a point in a point
data quadtree is a matter of finding the leaf that
contains the point and then changing the leafs de-
scriptor to that of an empty leaf. Next, we check to see
if it is possible to merge the new empty leaf with its
siblings.

The point data quadtree described above is termed a
PR quadtree 12~ and is also described by Orenstein. "6~ It
differs from the original point quadtree of Finkel and
Bentley "31 in that the structure of the PR quadtree is
independent of the order of point insertion. This is a
result of the fact that leaves are always split by the
kernel into four congruent squares (conforming to an
area quadtree decomposition). In contrast, the split-
ting points for the point quadtree are the data points
themselves, thereby resulting in four rectangles that are
not necessarily equal in size.

When implementing line data, we decided that it
would be desirable to be able to use the same kernel
software as for area and point trees. This means that
the node value field remains limited to 32 bits. We
developed a variant of the edge quadtree of Shneier tt 71
which can cope with these limitations. We use the term
edge quadtree in our discussion. Non-WHITE edge
nodes contain exactly one line segment which inter-

A geographic information system 653

sects two of the node's edges. When inserting a new
line into the tree, nodes which would not conform to
this requirement are quartered and re-inserted as
appropriate. There are two special cases which must be
handled. First, when two or more lines intersect, the
point of intersection will never contain only one line
segment. Special consideration must therefore be
made for single pixel nodes (in this case the intersect
point). Second, ira line only passes through one edge of
a leaf node (i.e. it does not join with another edge), then
we subdivide the node. In the worst case, the node may
need to be subdivided to the sinRle oixel level.

The value field of the edge quadtree leaf descriptor
has four subfields. The first subfield (one bit) indicates
error values. The second subfield (one bit) is off if the
node is either WHITE or contains a single pixel. The
bit is on if the node contains a line segment. The third
subfield (two bits) for all non-WHITE nodes tells
which son a node is with respect to its father. By setting
this field, we guarantee that the leaf will not be
automatically merged with its brothers by the kerners
insert routine. As this field is not set when the leaf
contains no line segments, four empty quadrants are
automatically merged together.

The fourth subfield (28 bits) of the value field of the
edge quadtree's leaf descriptor contains different infor-
mation depending on whether or not the leaf cor-
responds to a single pixel in the map. If the leaf
corresponds to a single pixel, then the fourth subfield
indicates how many lines pass through that pixel. Non-
WHITE nodes of a larger region contain exactly one
line segment and the intercepts of the line segment with
the leaf's region are stored here. We have 14 bits to
encode each of the intercepts of the line with the edges
of the block in which it is contained. We use two bits to
indicate which of the four edges of the block the line
intersects. The remaining 12 bits indicate the distance
from a corner of the block to the intercept (the left
corner for the north and south edges, the lower corner
for the east and west edges). Thus we are able to handle
maps containing blocks as large as 4096 x 4096 pixels.

The insertion and deletion algorithms for our line
representation assume that line segments will be
treated as indivisible atomic units. This avoids prob-
lems arising from roundoff errors caused by the
endpoints of a line segment being changed. This is
important, as our representation does not explicitly
store the endpoints of a line segment, but rather stores
a compact form of the digitization of the line segment.
A line segment which originally was long might have a
slightly different slope when part of it is deleted. If the
entire line segment is deleted and the desired re-
mainder is then re-inserted, consistency of the repre-
sentation can be insured.

Insertion and deletion algorithms for edge quad-
trees are analogous to those of region or point quad-
trees. Insertion of a second line segment into a region
described by a leaf that already contains one line
segment causes the leaf to be quartered. The infor-

mation that was in the original leaf is distributed
among the new leaves and the insertion attempt is
repeated. Deletion of line segments is simply a matter
of deleting all the information that is specific to that
line segment. This means that nodes containing the
line segment are given the value WHITE and merged
with their siblings if possible. Single pixel nodes have
the number of lines passing through them decremented
(with the value becoming WHITE if only the delected
line passed through the node).

5. DATABASE FUNCTIONS

One of the basic functions of a geographic infor-
mation system is to indicate what class or polygon
contains a given point. Finding the quadtree node
containing the point is, of course, a primitive function
of the kernel. For most purposes, it is sufficient to
describe a polygon simply by listing any point con-
tained within it and its class value. Thus one of the
basic database functions is to return a polygon de-
scriptor corresponding to a given point. At times, it is
necessary to be able to determine if two points which
have the same class value are indeed within the same
polygon. For this situation, the user can invoke a
function which creates a unique polygon descriptor
from a point. This function uses a modified version of
the polygon-walking function described in Section 3,
examining all of the nodes in the polygon and de-
termining which node has the lowest address. The
lower left coordinate of this node is used to describe the
polygon. This is an expensive algorithm and would
only be used when necessary. Given a polygon de-
scriptor, the class can be determined directly.

The database language allows the formation of a
map that corresponds to the extraction of a set of
regions from another map. This operation is triggered
in the query language (see Section 6) by the key word
map, and will be referred to henceforth as the SUBSET
function. The SUBSET function builds a map which
only includes the classes and polygons specified by the
user. Alternatively, the user can specify which classes
and polygons are to be excluded. The SUBSET
function has two phases--one for the class list and one
for the polygon list. The class list phase simply
traverses the input tree, placing in the output tree any
nodes whose class value is on the list. The polygon
phase performs a polygon-walking function over each
polygon in the polygon list, putting nodes from these
polygons into the output tree. The algorithm for the
complement of a list of classes and polygons is similar.

At the present we have implemented functions that
compute region properties, such as area and perimeter.
In addition, we can compute a minimum enclosing
rectangle for a given subset of the map, as well as
extract a square window from the map. A list of all the
classes or polygons from a map can be generated. As an
example, such a list could be used to compute the area
of every polygon on the map.

654 HANAN SAME'r e t al.

Point and line maps can also be used in conjunction
with some of these functions, although they may have
slightly different definitions. For example, there is no
notion of class or polygon. Given the coordinate values
of a point, functions are provided to indicate if it lies on
a data point or line of the input map. The area of a
point map is the number of points contained within it.
The area of a line map is the length of the lines within it.
A special region search function is provided, similar to
the window function, which yields a map containing all
of the points within a given radius of a given point from
the input point map. The window and enclosing
rectangle functions may also be applied to point and
line maps.

We have also implemented set operations, such as
union and intersection. Both union and intersection
may be applied to any two maps of the same type (i.e.
both area, line or point). In addition, a line or point
map may be intersected with an area map, yielding a
line or point map containing those points or lines
contained within the non-WHITE regions of the area
map.

6. THE QUERY LANGUAGE

The query language provides an English-like
keyword-based interface between the database user
and the database system. It allows a non-
programming oriented user to access the database
with a more natural command language than LISP,
thereby enabling him to manipulate maps via the
database functions, enter new maps into the system,
give names to data items and access the quadtree

editor.
The query language is embedded in the University of

Maryland version of FRANZ LISP. (18"19) The data-
base system can be viewed operationally as a query
language that is interpreted by LISP as LISP func-
tions, which in turn invoke C functions to actually
process the maps. In other words, the algorithms of the
database are coded in C and LISP merely serves as
a convenient front end for translating the query
language into calls to C functions.

The query language is keyword-based. It operates
by translating a query into LISP function calls,
ignoring any words not in its vocabulary. This has the
advantage that one can insert noise words and phrases
(e.g. articles like 'the' and 'an') to give the command a
more natural appearance. Alternatively, one can ig-
nore unnecessary phrases and just type the minimum
to cause the appropriate commands to be executed.
This added flexibility is bought at the cost of more
obscure error messages resulting from the misspelling
of a keyword. In order to allow the user to customize
his interface with the database, there are commands
that allow keywords to be changed.

Table 1 presents a brief syntax of the query language
in its present form. The Please command is used to

Fig. 11. The intersection of land with the map formed from
levell in top.

learn about the system. The Use command changes the
display device usage area. The Measure command lets
the user indicate whether coordinates will have the
referred map's lower left corner as origin or use the
global coordinate system's origin. The Enter command
allows the user to inform the system of new data files.
The Display command enables the display of a map on
the display device. It is also used to show the results of
any computed function. The Let, Describe and Forget
commands manipulate" names of entities in the
system--e.g, to rename items, describe items or to
remove items from the system, respectively. Let and
Forget allow the user to name or forget a data item (e.g.
assigning a name to a polygon description) as well as
renaming keywords of the query language. List returns
a list of polygons or classes from a map. Edit accesses
the quadtree editor. Move displays a cursor at a given
point on the display device.

One of the key features of the implementation of our
query language is the ability to compose functions.
Thus, where theDisplay command requires a map, this
could be either a map name or an expression which
yields a map. For example, if we want to display the
intersection of the landuse class map with the region
below 100 feet elevation, it could be done with the
following command:

Display the intersection of land with the map formed
from level 1 in top on the Grinnell

where ' land' is the name of the landuse map, ' top' is the
name of the topography map, 'levell ' is the elevation
class from 0 to 100 feet and'Grinnell ' is the name of our
display device. The result of this command is shown in
Fig. 11.

A geographic information system

Table 1. The syntax of the query language

655

Commands :

Please {explain} (syntactic_unit) {}
Use {the Grinnell at} (window) {}
Measure {points from the lower left corner of} map {}
Measure {points from the} global {origin}
Enter (file_name) {into database}
Display (map) {on Grinnell}
Display (map) {on Grinnell starting from} (point) {}
Display {the} value {of} (number) {}
Let (name) {} denote {} (object) {}
Let (name) {} rename {} (map) {}
Describe {the type of this} (name) {}
Forget {about the meaning of this} (key_word) {}
List {all the} classes {on} (map) {}
List {all the} polygons {on} (map) {}
Edit {} (map) {with the database editor}
Move {to} (point) {}

Other syntactic units:

(number) :: = {the} area {of} (map)
{the} perimeter {of} (map)

(point) :: = {where x = } (number) {and y = } (number)
{the point at the} cursor

(window)::= (point) {extending} (number) {by} (number)
{the smallest} window {for} (map)

(map) : := {the} intersection {of} (map) {with} (map)
{the} union {of} (map) {with} (map)
{the} windowing {of} (map) {with} (window)
{the} map {formed from} (cplist) {in} (map)

(class)::= {the} class {of} (polygon)
{the} class {at} (point) {on} (map)

(polygon) : := {the} polygon {at} (point) {on} (map)
{the} unique polygon {at} (point) {on} (map)

(cplist):: = (a list of polygons and classes)

Words enclosed in curly braces {} are noise words and may be removed or replaced with any other non-
keyword. Words enclosed in angle brackets () are syntactic units and are replaced by words or phrases
matching their definition. In addition to a variable name or integer value which corresponds to the requested
syntactic unit in a command, some syntactic units have further definitions, as listed above. For example,
where (number) is requested, a number may be typed. Alternatively, one of the two definitions given above
for (number) may be used (with the first definition resulting in the area of the map, the second definition
resulting in the perimeter of the map).

7. CONCLUDING REMARKS

Our experience in developing a geographic infor-
mation system based on quadtrees demonstrates that
such a system is feasible. The potential advantage of
using quadtrees, rather than conventional data struc-
tures, lies in the efficiency with which many types of
queries can be handled. In its current state, our system
can handle a wide range of queries. More capabilities
will be added in the future. The system places no
restriction on the number of maps which can be placed
in the database. For the operations that we have
implemented so far, we never use more than two input
maps and one output map at the same time. The map
size is limited by the address space available, which is a
function of the node size. In the current implemen-
tation, an individual map may not be larger than
4096 × 4096 pixels. Larger regions can represented by
breaking them up into smaller maps.

REFERENCES
i. A. Klinger, Patterns and search statistics, Optimizing

Methods in Statistics, J. S. Rustagi, ed., pp. 303-337.
Academic Press, New York (1971).

2. H. Samet, The quadtree and related hierarchical data
structures, Ass. comput. Mach. Comput. Surv. 16 (1984).

3. I. Gargantini, An effective way to represent quadtrees,
Communs Ass. comput. Mach. 25, 905-910 (1982).

4. D.J. Abel and J. L. Smith, A data structure and algorithm
based on a linear key for a rectangle retrieval problem,
Comp. Vision Graphics Image Process. 24, 1-13 (19831.

5. D. Comer, The ubiquitous B-tree, Ass. comput. Math.
comput. Surv. 11, 121-137 (1979).

6. A. Rosenfeld, H. Samet, C. Shaffer and R. E. Webber,
Application of hierarchical data structures to geographical
information systems, Computer Science TR-1197, Un-
iversity of Maryland, College Park, MD (1982).

7. A. Rosenfeld, H. Samet, C. Shaffer and R. E. Webber,
Application of hierarchical data structures to geographi-
cal information systems phase II, Computer Science TR-
1327, University of Maryland, College Park, MD (1983).

8. S. K. Chang, Guest ed., Pictorial information systems,
Computer 14(11), 10-67 (1981).

656 HANAN SAMET et al.

9. R. Barrera and A. Buchmann, Schema definition and
query language for a geographical database system,
IEEE Computer Society Workshop on Computer Ar-
chitecture for Pattern Analysis and Image Database
Management. pp. 250-256 (1981).

10. A. Meier and M. IIg, Consistent operations on a spatial
data structure, I EEE Computer Society Conference on
Pattern Recognition and Image Processing, pp. 432-440
(1982).

I I. D. M. McKeown, Jr, Concept maps, DARPA Image
Understanding Workshop. pp. 142-153 (1982).

12. P. D. Vaidya, L. G. Shapiro, R. M. Haralick and G. J.
Minden, Design and architectural implications of a
spatial information system, IEEE Trans. Comput. C-31,
1025-1031 (1982).

13. R. A. Finkel and J. L. Bentley, Quad trees: a data
structure for retrieval on composite keys, Acta inf. 4, 1-9

(1974).
14. J. L. Bentley, Multidimensional binary search trees used

for associative searching Communs Ass. comput. Mach.
18, 509-517 (1975).

15. B.W. Kernighan and D. M. Ritchie, The C Programming
Language. Prentice-Hall, In~, New Jersey (1978).

16. J. A. Orenstein, Multidimensional tries used for asso-
ciative searching, Inf. Process. Lett. 14, 150-157 (1982).

17. M. Shneier, Two hierarchical linear feature represen-
tations: edge pyramids and edge quadtrees, Comp.
Graphics Image Process. 17, 211-224 (1981).

18. J. K. Foderaro, The Franz Lisp Manual. The Regents of
the University of California (1980).

19. E. Allen, R. Trigg and R. Wood, Maryland artificial
intelligence group Franz Lisp environment, Computer
Science TR-1226, University of Maryland, College Park,
MD (1982).

About the Author--HANAN SAMET received a B.S. degree in Engineering from the University of California,
Los Angeles, and an M.S. degree in Operations Research and M.S. and Ph.D. degrees in Computer Science
from Stanford University, Stanford, CA.

In 1975 he joined the University of Maryland as an Assistant Professor of Computer Science. In 1980 he
became an Associate Professor. His research interests are data structures, image processing, programming
languages, artificial intelligence and data base management systems.

Dr. Samet is a member of the Association for Computing Machinery, SIGPLAN, Phi Beta Kappa and Tau
Beta Pi.

About the Author--AzglEL ROSENFELD received a Ph.D. in Mathematics from Columbia University in 1957.
After ten years in the defense electronics industry, in 1964 he joined the University of Maryland, where he is
Research Professor of Computer Science and Director of the Center for Automation Research. He is an
editor of the journal Computer Graphics and Image Processing, an associate editor of several other journals, a
past president of the International Association for Pattern Recognition and president of the consulting firm
lmTech, Inc. He has published 15 books and over 300 papers, most of them dealing with the computer
analysis of pictorial information.

About the Author--CLtFFOgD A. SHAFFER received B.S. and M. S. degrees in Computer Science from the
University of Maryland at College Park in 1980 and 1982, respectively. At present he is working towards a
Ph.D. degree in Computer Science at Maryland. His research interests include data structures and image
processing.

About the Author--RoBert E. Wearer received B.S., M.S. and Ph.D. degrees in Computer Science from the
University of Maryland at College Park in 1978, 1980 and 1983, respectively. At present he is an Assistant
Professor of Computer Science at Rutgers University, New Brunswick, New Jersey. His research interests
include geometric complexity, digital geometry and analysis of algorithms.

