
Pattern Rect~jnition Vol. 17, No. 6. pp. 647 656, 1984. 
Prinled ill (;real i|ritain. 

0031 3203/84 $3.00+ .00 
Pergamon Press Lid 

,I 1984 Pattern Recognition Society 

A GEOGRAPHIC INFORMATION SYSTEM 
USING QUADTREES* 

H A N A N  SAMET, f A Z R I E L  ROSENFELD, CLIFFORD A.  SHAEFER a n d  ROBERT E. WEBBER 

Computer Science Department and Center for Automation Research, University of Maryland, College Park, 
MD 20742, U.S.A. 

(Received 13 December 1983; in revised form 28 February 1984; received for publication 15 March 1984) 

Abstract--We describe the current status of an ongoing research effort to develop a geographic information 
system based on quadtrees. Quadtree encodings were constructed for area, point and line features for a small 
area in Northern California. The encoding used was a variant of the linear quadtree. The implementation 
used a B-tree to organize the list of leaves and allow management of trees too large to fit in core memory. 
Several database query functions have been implemented, including set operations, region property 
computations, map editing functions and map subset and windowing functions. A user of the system may 
access the database via an English-like query language. 

Quadtrees Geographic information systems 
Curve representation 

Image processing Region representation 

I. INTRODUCTION 

The quadtree representation of regions, first proposed 
by Kiinger, "~ has been the subject of intensive research 
over the past several years (for an overview, see the 
survey by Samet~2~). Numerous algorithms have been 
developed for constructing compact quadtree repre- 
sentations, converting between them and other region 
representations, computing region properties from 
them and computing the quadtree representations of 
Boolean combinations of regions from those of the 
given regions. Quadtrees have traditionally been im- 
plemented as trees which require space for the pointers 
from a node to its sons. Recently, there has been a 
considerable amount of interest in pointer-less quad- 
tree representations ~3"4~ termed linear quc~dtrees. In this 
case, the set of regions is treated as a collection of leaf 
nodes. Each leaf is represented by use of a locational 
code corresponding to a sequence of directional codes 
that locate the leaf along a path from the root of the 
tree. 

In this paper we describe the current status of an 
ongoing research effort to develop a geographic infor- 
mation system based on quadtrees. Quadtree encod- 
ings were constructed for area, point and line features 
from maps and overlays representing a small area of 
Northern California. The encoding used was a variant 
of the linear quadtree. A memory management system 
based on B-trees ~5~ was devised to organize the result- 
ing collection of leaf nodes, allowing for the use of 
arbitrary sized maps within a restricted amount of core 
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memory. Many database functions were implemented, 
including map editing capabilities, set operations and 
region property functions. Further details about this 
effort can be found in two earlier papers. ~6"7~ 

The system described in this paper is intended 
primarily to demonstrate the efficiency of quadtrees as 
data structures for handling geographical entities. I t is 
a contribution to geographic information system 
(GIS) design only on the level of the underlying data 
structures. Existing GIS's have been primarily based 
on polygon data structures, which do not lend them- 

Fig. 1. The landuse map. 
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Fig. 2. The topography map. 
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Fig. 4. The house map. 
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selves as efficiently as quadtrees to the handling of 
many types of basic queries. Some recent examples of 
GIS's can be found in a journal special issue ~s~ and 
several individual papers. ~9-12) 

The database used in the study was supplied by the 
U.S. Army Engineer Topographic Laboratory, Ft. 
Belvoir, VA. The area data consisted of three registered 
map overlays representing landuse classes, terrain 
elevation contours and floodplain boundaries. The 
overlays were hand-digitized resulting in three arrays 
of size 400 x 450 pixels. Labels were associated with 

the pixels in each of the resulting regions, specifying the 
particular landuse class or elevation range. The regions 
were subsequently embedded within a 512 x 512 grid 
and quadtree encoded. The results are shown in Figs 
1-3. We also made use of a geographic survey map for 
this area, from which we extracted point and line data. 
The house locations were digitized for a point map 
(Fig. 4), and four line maps were constructed cor- 
responding to a railroad line, a power line, a city 
boundary and the road network from the area (Figs 
5-8 ) .  

Fig. 3. The floodplain map. Fig. 5. The railroad map. 
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Fig. 6. The powerline map. 

The rest of this paper is organized as follows. Section 
2 describes the quadtree memory management system 
for storing and manipulating large quadtrees in exter- 
nal storage. Section 3 contains an outline of the 
quadtree editor which enables the interactive con- 
struction and updating of maps stored as quadtrees. 
Section 4 discusses the representations that we use for 
points and linear features. Section 5 gives an outline of 
the type of operations which we are currently able to 
perform on our database, while Section 6 describes the 
query language which we use to interact with the 
database. 

Fig. 8. The road map. 

l THE QUADTREE MEMORY MANAGEMENT 
SYSTEM 

Prior to discussing the memory management sys- 
tem, it is appropriate to briefly review the definition o f  
a region quadtree. Given a 2" x 2" array of pixels, a 
quadtree is constructed by repeatedly subdividing the 
array into quadrants, subquadrants . . . .  until we obtain 
blocks (possibly single pixels) which consist of a single 
value (e.g. a color). This process is represented by a tree 
of out degree four in which the root node corresponds 
to the entire array, the four sons of the root node 

Fig. 7. The city border map. 
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Fig. 10. An example demonstrating the use of Iocational codes 
to address blocks in an image represented by a quadtree. 

correspond to the quadrants and the terminal nodes 
correspond to those blocks of the array for which no 
further subdivision is necessary. The nodes at level k (if 
any) represent blocks of size 2 k x 2 k and are often 
referred to as nodes of size 2 k. Thus a node at level 0 
corresponds to a single pixel in the image, while a node 
at level n is the root of the quadtree. For example, 
consider the region shown in Fig. 9a, which is repre- 
sented by the 23 x 23 binary array in Fig. 9b. The 
resulting blocks for Fig. 9b are shown in Fig. 9c and the 
tree in Fig. 9d. 

Note that the variant of the quadtree that we use 
results in a decomposition of space into equal-sized 
parts. This is in contrast to the point quadtree "3) and 
the k-d tree (~4) where the decomposition is governed by 
the input. The advantage of our variant of the quadtree 
is that different maps will be in registration, thereby 
facilitating set operations such as map overlay. 

Our database system can be viewed as being made 
up of four levels. The lowest level (henceforth known as 
the kernel) controls the interface between the disk file 
used to store the quadtree data and the programs that 
are used to manipulate the images. This level was 
written in the C programming language. (~ 5) The next 
level, also written in C, contains the programs which 
implement the database algorithms--e.g, editing, set 
functions, etc. This level accesses the kernel (and hence 
the file system) strictly through a set of primitive 
functions. These functions allow the programmer of 
the second level to view the quadtree as an abstract 
data type, without worrying about the implementation 
details. The third level, written in LISP, allows con- 

venient access to and composition of the database 
functions implemented by the second level. LISP is 
well suited to the manipulation of symbolic infor- 
mation. It is used here to keep track of the maps known 
by the database and information about landuse classes 
or elevation levels. User defined names and data items 
are maintained at this level. The highest level is the 
English-like query language described in Section 6. 

Our implementation of the kernel stems from the 
linear quadtree encoding scheme used. In this scheme, 
each pixel is given an address derived from interleaving 
the bits of the binary representation of the pixel 
coordinates. Figure 10a shows a 23 x 23 grid with each 
pixel labelled in this fashion. Figure 10b shows the 
block decomposition of the region from Fig. 9a, with 
each square of the decomposition labelled with the 
address of its lower left pixel. The addresses in Fig. 9 
are shown in base four, i.e. two bits are used for each 
digit. These addresses can also be viewed as a sequence 
of directional codes leading from the root of the tree to 
the node being described. 

The key feature of our encoding scheme is that a 
preorder traversal of the explicit tree will produce the 
nodes in ascending order of the addresses of the pixels 
at their lower left corner. We store only the leaf nodes 
of the tree, sorted in ascending order of this address 
field. Any pixel contained within a node will have an 
address greater than that of the leaf's lower left corner, 
but less than that of the next node in preorder. 
Therefore, given the address of any pixel and a list of 
leaves ordered by their addresses, finding the leaf 
containing that pixel reduces to searching a sorted list. 

Given the linear ordering of leaf nodes and the fact 
that we are storing files containing as many as 
30,000-40,000 leaves, we decided to organize the 
quadtree files using a B-tree structure. The kernel is 
primarily a collection of routines that maintain a buffer 
pool in core and a B-tree in the disk file. The buffer 
pool need only store that portion of the tree in core for 
which there is room. We expect that there will be 
strong locality of reference--i.e, the leaf for which we 
are presently searching will very likely be near the leaf 
we last found. Therefore, the buffer pool is maintained 
on a schedule that replaces the least recently used 
buffers first. 

At the level of the kernel, the three types of quadtrees 
(for point, line and region data) are identical. A 
quadtree node descriptor is composed of two 32-bit 
words. The first word contains information on the 
leafs position and depth in the tree. In particular, it 
contains a 24 bit field which consists of the address of 
the lower left corner of the node formed by interleaving 
the bits of its x and y coordinates. The remaining eight 
bits indicate the depth of the node in the tree. The 
second word contains information about the data that 
the node represents. The contents of the second word 
are not used by the kernel. 

A quadtree file is made up of four parts. First, there is 
the kernel's fixed-size header, which contains infor- 
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mation about the size of the file and the B-tree 
structure. Second, there is a fixed-size block for the 
user's header (further described in Section 3). Typical 
usages of the user's header would be to keep track of 
whether a quadtree file is to be interpreted as a point 
quadtree or a region quadtree, the x and y coordinates 
of the lower-left-hand corner of the quadtree (with 
respect to some global coordinate system) and the 
width of the quadtree in pixels. The third part is a list of 
comments. These comments are either generated by 
database functions when a new map is created or are 
inserted at the request of the database user. In either 
case, they serve to document a map. Finally, a quadtree 
file contains the list of B-tree pages that contain the 
quadtree nodes. 

The bulk of the quadtree file is made up ofthe list of 
B-tree pages. Each page is 512 bytes long (an optimal 
size for the programming language's read and write 
routines). We store 60 quadtree leaves in each page. 
The remaining space in the page contains information 
related to the B-tree organization of the database. 
When a leaf is requested, the page containing it is read 
into the buffer pool, possibly displacing another 
previously used page. 

3. THE QUADTREE EDITOR 

The quadtree editor exists to facilitate the interactive 
construction and updating of maps stored as quad- 
trees. Presently, it is a separate program from the 
database system, written entirely in C, with its own 
command language. Rather than forcing the user to 
think in terms of the tree structure, the editor's tree 
manipulation commands make references to logical 
units of the map (e.g. lines, points or polygons). The 
user can perform editing operations such as inserting a 
line or poin t, changing the value of a specified polygon 
or splitting a specified polygon into more than one 
piece. 

When many changes are to be made, the user may 
wish to see the effects of each step. Commands are 
provided to enable him to examine all or part of the 
map at a selected location on a display device. This 
display is continuously updated as further map man- 
ipulation commands are executed. Associated with 
each map's quadtree representation is a descriptor 
termed the quadtree header. There exist commands 
which allow the user to modify this header. The header 
contains the size of the map, the tree type (area, point 
or line), the coordinate of the lower left corner of the 
map in relation to a global coordinate system, the 
rotation angle or tilt of the map from the external 
horizontal and some information as to the type of data 
(i.e. topography, landuse, house) that is being stored. A 
command is also provided to enable the user to insert 
textual comments for documentation purposes. 

In order for the quadtree editor to be useful, a set of 
map manipulating functions is needed that permits the 
user to create any desired map. The user of a geo- 

graphic information system such as ours views the units 
of his map in terms of logical units, such as "lines' or 
'polygons', and not square 'nodes'. Therefore, for 
region maps it is clear that the most natural implemen- 
tation is one that permits the modifying commands to 
make changes to specified polygons. This means that 
the implementation of these commands must enable 
modification ofall the nodes which make up a polygon 
or group of polygons without affecting nodes of 
neighboring polygons. We view each polygon (and 
hence each node making up the polygon) as a member 
of a 'class'. This class could be an elevation range or a 
landuse type, such as'wheatfields'. Class information is 
recorded for each node by use of a value field that is 
part of the node's descriptor. 

The editor is an interpretive system--i.e, the user 
gives a command and it is executed, after which the 
system is ready to execute the next command. There is 
no notion of composing functions, as there is in the 
quadtree database language. Area maps are updated 
by use of the REPLACE, CHANGE and SPLIT 
commands, which replace all polygons of a given value 
with a new value, change the value of a given polygon 
or split a polygon into multiple polygons, respectively. 
Line and point maps are updated by use of the 
INSERT and DELETE commands, which insert or 
delete lines or points, respectively. In order that the 
user may see what he is editing, there are commands 
that draw all or part of the map onto a selected section 
of a display device. The user may also alter the header 
of the map. 

When the editor is invoked, the user gives the name 
of the file to be edited. A temporary disk file is created 
on which all editing is to be done. Another file is 
created to store the commands given by the user. These 
files help protect the user from serious loss due to 
system crashes or his own errors, such as mistyped or 
unwanted commands. They also enable him to abort 
the editing session without damaging the original 
copy. If the file to be edited is an old one, a copy is made 
in the temporary file, Ira new map is to be created, then 
a default header is installed and the map is initialized 
to be one WHITE region. 

Changes to region maps are made by use of the 
REPLACE, CHANGE and SPLIT commands, as 
described below. Section 4 discusses the modification 
of line and point maps. The REPLACE command is 
executed by traversing the entire quadtree. Those 
nodes with the old (class) value have that value 
replaced by the new. For this command it is not 
necessary to distinguish between polygons of the same 
class, since they are all processed in the same way. 

The CHANGE command is more complicated. It 
should manipulate only one polygon ; however, other 
polygons of that class may also exist. After the 
command line has been parsed, a recursive function is 
called which actually performs the desired work. This 
function takes a node as its parameter. This node is 
checked to see that it has the old value (the one to be 
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changed). If so, then its value is changed to the new one 

and the function is recursively applied to all of the 
node's neighbors. In this way, all nodes of a polygon 
will eventually be reached and only nodes in the 
polygon will have their values changed (since only 
four-neighbors of nodes in the desired polygon are ever 
candidates for processing). 

The SPLIT command allows the user to impose an 
arbitrary line, one pixel wide, of a designated value 
onto the map. It assumes that the arbitrary line is 
specified as a chain code. The intended use of the 
command is to split a polygon into two or more 
separate parts. One of these parts would then become a 
polygon of the same class as the pixels representing 
the arbitrary line via subsequent invocation of the 
CHANGE command. The pixels representing the 
arbitrary line would then be part of this new polygon. 
Alternatively, the SPLIT commands can be used to 
make slight modifications of only a very few pixels, 
such as correcting a slightly misplaced border of a 
polygon. This type of correction could not be applied 
in any other way with the available command set. 

The SPLIT command operates by first inserting a 
one pixel node into the tree corresponding to the first 
coordinate given and then following the chaincode 
inserting nodes as it reads the code. As the user types 
the code, the code is also inserted into the command 
file. Allowing the user to observe the progress of the 
chaincode as he is inputting it is a key feature of our 
implementation of the SPLIT command. Typing an 
incorrect chaincode was judged to be a very common 
source of error when the implementation was de- 
signed. Enabling the user to see the line displayed as he 
inputs it allows the rapid detection and correction of 
errors. When the backspace key is typed, the chaincode 
is backed up one pixel. This is accomplished by 
examining the end of the comm~'.nd file. The last 
direction of the code is read to determine the coord- 
inates of the previous pixel of the chaincode and then 
both the map and the command file are updated to 
reflect the backup. 

By repeated use of the three commands REPLACE, 
CHANGE and SPLIT, it is possible to make any 
desired changes to a region map. Clearly this is true, 
since in the worst case the user could construct a n  
entire map from one pixel chaincodes. 

4. POINT AND LINE REPRESENTATIONS 

Quadtree representations for point and line data 
were also developed. It should be noted that the same 
kernel (described in Section 2) is used for manipulating 
quadtrees of all three data types. When storing area 
data in region quadtrees, the value of a leaf cor- 
responds to the color of the region that contains the 
leaf. Since there is no notion of color associated with 
either point or line data, other interpretations are 
placed on the information stored in the value portion 
of the leaf descriptor. The interpretation that a partic- 

ular routine makes of a leaf's vah,e is dependent on 
the type of data that is being stored in the quadtree. 
The database system stores the data type of the map in 
the user header, which was described in Section 3. 

The value field of a quadtree node is made up of a 
single word 32 bits long. For  area quadtrees there is 
simply a numeric value which can be interpreted as 
BLACK/WHITE, a color value, or as representing a 
symbolic item, such as landuse or elevation classes. In 
this last case, further information describing the item 
might be part of the database. 

For point data, nodes containing data points are 
interpreted as containing the x coordinate (in the 
upper half of the word) and the y coordinate (in the 
lower half of the word). This coordinate pair is always 
in relation to the lower left corner of the map. If the 
coordinate of the data point in relation to a global 
coordinate system is desired, we simply add this offset 
to the coordinate of the lower left corner of the map, 
obtainable from the quadtree header. A single word 32 
bits long is sufficient to describe a coordinate point, as 
the kernel limits the tree to a depth of twelve (i.e. a 
4096 x 4096 pixel image). Nodes that do not contain a 
data point are represented by the value WHITE. 

The above interpretation of the value field of a leaf 
descriptor has the following consequences with respect 
to quadtree algorithms that handle point data. No 
more than one data point can be stored in a quadtree 
leaf. Insertion of a point in a point data quadtree works 
as follows. First, we find the leaf that contains the 
point's location. If the leaf is empty, then the point's x 
and y coordinates are entered in the leafs descriptor. 
Otherwise, the leaf is split into its four sons, the old 
leaf's point value is copied into the appropriate son and 
insertion is re-attempted. Deletion of a point in a point 
data quadtree is a matter of finding the leaf that 
contains the point and then changing the leafs de- 
scriptor to that of an empty leaf. Next, we check to see 
if it is possible to merge the new empty leaf with its 
siblings. 

The point data quadtree described above is termed a 
PR quadtree 12~ and is also described by Orenstein. "6~ It 
differs from the original point quadtree of Finkel and 
Bentley "31 in that the structure of the PR quadtree is 
independent of the order of point insertion. This is a 
result of the fact that leaves are always split by the 
kernel into four congruent squares (conforming to an 
area quadtree decomposition). In contrast, the split- 
ting points for the point quadtree are the data points 
themselves, thereby resulting in four rectangles that are 
not necessarily equal in size. 

When implementing line data, we decided that it 
would be desirable to be able to use the same kernel 
software as for area and point trees. This means that 
the node value field remains limited to 32 bits. We 
developed a variant of the edge quadtree of Shneier tt 71 
which can cope with these limitations. We use the term 
edge quadtree in our discussion. Non-WHITE edge 
nodes contain exactly one line segment which inter- 



A geographic information system 653 

sects two of the node's edges. When inserting a new 
line into the tree, nodes which would not conform to 
this requirement are quartered and re-inserted as 
appropriate. There are two special cases which must be 
handled. First, when two or more lines intersect, the 
point of intersection will never contain only one line 
segment. Special consideration must therefore be 
made for single pixel nodes (in this case the intersect 
point). Second, ira line only passes through one edge of 
a leaf node (i.e. it does not join with another edge), then 
we subdivide the node. In the worst case, the node may 
need to be subdivided to the sinRle oixel level. 

The value field of the edge quadtree leaf descriptor 
has four subfields. The first subfield (one bit) indicates 
error values. The second subfield (one bit) is off if the 
node is either WHITE or contains a single pixel. The 
bit is on if the node contains a line segment. The third 
subfield (two bits) for all non-WHITE nodes tells 
which son a node is with respect to its father. By setting 
this field, we guarantee that the leaf will not be 
automatically merged with its brothers by the kerners 
insert routine. As this field is not set when the leaf 
contains no line segments, four empty quadrants are 
automatically merged together. 

The fourth subfield (28 bits) of the value field of the 
edge quadtree's leaf descriptor contains different infor- 
mation depending on whether or not the leaf cor- 
responds to a single pixel in the map. If the leaf 
corresponds to a single pixel, then the fourth subfield 
indicates how many lines pass through that pixel. Non- 
WHITE nodes of a larger region contain exactly one 
line segment and the intercepts of the line segment with 
the leaf's region are stored here. We have 14 bits to 
encode each of the intercepts of the line with the edges 
of the block in which it is contained. We use two bits to 
indicate which of the four edges of the block the line 
intersects. The remaining 12 bits indicate the distance 
from a corner of the block to the intercept (the left 
corner for the north and south edges, the lower corner 
for the east and west edges). Thus we are able to handle 
maps containing blocks as large as 4096 x 4096 pixels. 

The insertion and deletion algorithms for our line 
representation assume that line segments will be 
treated as indivisible atomic units. This avoids prob- 
lems arising from roundoff errors caused by the 
endpoints of a line segment being changed. This is 
important, as our representation does not explicitly 
store the endpoints of a line segment, but rather stores 
a compact form of the digitization of the line segment. 
A line segment which originally was long might have a 
slightly different slope when part of it is deleted. If the 
entire line segment is deleted and the desired re- 
mainder is then re-inserted, consistency of the repre- 
sentation can be insured. 

Insertion and deletion algorithms for edge quad- 
trees are analogous to those of region or point quad- 
trees. Insertion of a second line segment into a region 
described by a leaf that already contains one line 
segment causes the leaf to be quartered. The infor- 

mation that was in the original leaf is distributed 
among the new leaves and the insertion attempt is 
repeated. Deletion of line segments is simply a matter 
of deleting all the information that is specific to that 
line segment. This means that nodes containing the 
line segment are given the value WHITE and merged 
with their siblings if possible. Single pixel nodes have 
the number of lines passing through them decremented 
(with the value becoming WHITE if only the delected 
line passed through the node). 

5. DATABASE FUNCTIONS 

One of the basic functions of a geographic infor- 
mation system is to indicate what class or polygon 
contains a given point. Finding the quadtree node 
containing the point is, of course, a primitive function 
of the kernel. For most purposes, it is sufficient to 
describe a polygon simply by listing any point con- 
tained within it and its class value. Thus one of the 
basic database functions is to return a polygon de- 
scriptor corresponding to a given point. At times, it is 
necessary to be able to determine if two points which 
have the same class value are indeed within the same 
polygon. For this situation, the user can invoke a 
function which creates a unique polygon descriptor 
from a point. This function uses a modified version of 
the polygon-walking function described in Section 3, 
examining all of the nodes in the polygon and de- 
termining which node has the lowest address. The 
lower left coordinate of this node is used to describe the 
polygon. This is an expensive algorithm and would 
only be used when necessary. Given a polygon de- 
scriptor, the class can be determined directly. 

The database language allows the formation of a 
map that corresponds to the extraction of a set of 
regions from another map. This operation is triggered 
in the query language (see Section 6) by the key word 
map, and will be referred to henceforth as the SUBSET 
function. The SUBSET function builds a map which 
only includes the classes and polygons specified by the 
user. Alternatively, the user can specify which classes 
and polygons are to be excluded. The SUBSET 
function has two phases--one for the class list and one 
for the polygon list. The class list phase simply 
traverses the input tree, placing in the output tree any 
nodes whose class value is on the list. The polygon 
phase performs a polygon-walking function over each 
polygon in the polygon list, putting nodes from these 
polygons into the output tree. The algorithm for the 
complement of a list of classes and polygons is similar. 

At the present we have implemented functions that 
compute region properties, such as area and perimeter. 
In addition, we can compute a minimum enclosing 
rectangle for a given subset of the map, as well as 
extract a square window from the map. A list of all the 
classes or polygons from a map can be generated. As an 
example, such a list could be used to compute the area 
of every polygon on the map. 
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Point and line maps can also be used in conjunction 
with some of these functions, although they may have 
slightly different definitions. For example, there is no 
notion of class or polygon. Given the coordinate values 
of a point, functions are provided to indicate if it lies on 
a data point or line of the input map. The area of a 
point map is the number of points contained within it. 
The area of a line map is the length of the lines within it. 
A special region search function is provided, similar to 
the window function, which yields a map containing all 
of the points within a given radius of a given point from 
the input point map. The window and enclosing 
rectangle functions may also be applied to point and 
line maps. 

We have also implemented set operations, such as 
union and intersection. Both union and intersection 
may be applied to any two maps of the same type (i.e. 
both area, line or point). In addition, a line or point 
map may be intersected with an area map, yielding a 
line or point map containing those points or lines 
contained within the non-WHITE regions of the area 
map. 

6. THE QUERY LANGUAGE 

The query language provides an English-like 
keyword-based interface between the database user 
and the database system. It allows a non- 
programming oriented user to access the database 
with a more natural command language than LISP, 
thereby enabling him to manipulate maps via the 
database functions, enter new maps into the system, 
give names to data items and access the quadtree 

editor. 
The query language is embedded in the University of 

Maryland version of FRANZ LISP. (18"19) The data- 
base system can be viewed operationally as a query 
language that is interpreted by LISP as LISP func- 
tions, which in turn invoke C functions to actually 
process the maps. In other words, the algorithms of the 
database are coded in C and LISP merely serves as 
a convenient front end for translating the query 
language into calls to C functions. 

The query language is keyword-based. It operates 
by translating a query into LISP function calls, 
ignoring any words not in its vocabulary. This has the 
advantage that one can insert noise words and phrases 
(e.g. articles like 'the' and 'an') to give the command a 
more natural appearance. Alternatively, one can ig- 
nore unnecessary phrases and just type the minimum 
to cause the appropriate commands to be executed. 
This added flexibility is bought at the cost of more 
obscure error messages resulting from the misspelling 
of a keyword. In order to allow the user to customize 
his interface with the database, there are commands 
that allow keywords to be changed. 

Table 1 presents a brief syntax of the query language 
in its present form. The Please command is used to 

Fig. 11. The intersection of land with the map formed from 
levell in top. 

learn about the system. The Use command changes the 
display device usage area. The Measure command lets 
the user indicate whether coordinates will have the 
referred map's lower left corner as origin or use the 
global coordinate system's origin. The Enter command 
allows the user to inform the system of new data files. 
The Display command enables the display of a map on 
the display device. It is also used to show the results of 
any computed function. The Let, Describe and Forget 
commands manipulate" names of entities in the 
system--e.g, to rename items, describe items or to 
remove items from the system, respectively. Let and 
Forget allow the user to name or forget a data item (e.g. 
assigning a name to a polygon description) as well as 
renaming keywords of the query language. List returns 
a list of polygons or classes from a map. Edit accesses 
the quadtree editor. Move displays a cursor at a given 
point on the display device. 

One of the key features of the implementation of our 
query language is the ability to compose functions. 
Thus, where theDisplay command requires a map, this 
could be either a map name or an expression which 
yields a map. For  example, if we want to display the 
intersection of the landuse class map with the region 
below 100 feet elevation, it could be done with the 
following command: 

Display the intersection of land with the map formed 
from level 1 in top on the Grinnell 

where ' land' is the name of the landuse map, ' top' is the 
name of the topography map, 'levell '  is the elevation 
class from 0 to 100 feet and'Grinnell '  is the name of our 
display device. The result of this command is shown in 
Fig. 11. 
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Commands : 

Please {explain} (syntactic_unit) {} 
Use {the Grinnell at} (window) {} 
Measure {points from the lower left corner of} map {} 
Measure {points from the} global {origin} 
Enter (file_name) {into database} 
Display (map) {on Grinnell} 
Display (map) {on Grinnell starting from} (point) {} 
Display {the} value {of} (number) {} 
Let (name) {} denote {} (object) {} 
Let (name) {} rename {} (map) {} 
Describe {the type of this} (name) {} 
Forget {about the meaning of this} (key_word) {} 
List {all the} classes {on} (map) {} 
List {all the} polygons {on} (map) {} 
Edit {} (map) {with the database editor} 
Move {to} (point) {} 

Other syntactic units: 

(number) :: = {the} area {of} (map) 
{the} perimeter {of} (map) 

(point) :: = {where x = } (number) {and y = } (number) 
{the point at the} cursor 

(window)::= (point) {extending} (number) {by} (number) 
{the smallest} window {for} (map) 

(map) : :=  {the} intersection {of} (map) {with} (map) 
{the} union {of} (map) {with} (map) 
{the} windowing {of} (map) {with} (window) 
{the} map {formed from} (cplist) {in} (map) 

(class)::= {the} class {of} (polygon) 
{the} class {at} (point) {on} (map) 

(polygon) : := {the} polygon {at} (point) {on} (map) 
{the} unique polygon {at} (point) {on} (map) 

(cplist):: = (a list of polygons and classes) 

Words enclosed in curly braces {} are noise words and may be removed or replaced with any other non- 
keyword. Words enclosed in angle brackets ( )  are syntactic units and are replaced by words or phrases 
matching their definition. In addition to a variable name or integer value which corresponds to the requested 
syntactic unit in a command, some syntactic units have further definitions, as listed above. For example, 
where (number) is requested, a number may be typed. Alternatively, one of the two definitions given above 
for (number) may be used (with the first definition resulting in the area of the map, the second definition 
resulting in the perimeter of the map). 

7. CONCLUDING REMARKS 

Our experience in developing a geographic infor- 
mation system based on quadtrees demonstrates that 
such a system is feasible. The potential advantage of 
using quadtrees, rather than conventional data struc- 
tures, lies in the efficiency with which many types of 
queries can be handled. In its current state, our system 
can handle a wide range of queries. More capabilities 
will be added in the future. The system places no 
restriction on the number  of maps which can be placed 
in the database. For  the operations that we have 
implemented so far, we never use more than two input 
maps and one output  map at the same time. The map 
size is limited by the address space available, which is a 
function of the node size. In the current implemen- 
tation, an individual map may not  be larger than 
4096 × 4096 pixels. Larger regions can represented by 
breaking them up into smaller maps. 
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