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ABSTRACT 

A discussion is presented of the re la t ionship be tween 
two solid represen ta t ion  schemes: cons t ruc t ive  solid geometry  
(CSG trees) and recursive spat ia l  subdivis ion exemplified by 
the bintree,  a general izat ion of the quadt ree  and octree. 
Detailed a lgor i thms  are developed and analyzed for evaluat ing  
CSG trees by bintree  conversion,  i.e., by de te rmining  explicitly 
which pa r t s  of space are solid and which empty .  These  tech- 
niques enable the addi t ion of the t ime dimension and mot ion  
to the app rox ima te  analysis  of CSG trees in a simple m a n n e r  
to solve p rob lems  such as dynamic  interference detection. For  
"we l l -behaved"  CSG trees, the execution t ime of the conver- 
sion a lgor i thm is directly related to the spa t ia l  complexity of 
the object  represented by the CSG tree (i.e., asymptot ica l ly  it 
is p ropor t iona l  to the n u m b e r  of bintree  nodes as the resolu- 
t ion increases). T h e  set  of well-behaved CSG trees includes all 
t rees t h a t  define mul t id imens iona l  po lyhedra  in a m a n n e r  t ha t  
does not  give rise to tangent ia l  in tersect ions  at C S G  tree 
nodes. 
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solid and object  representa t ions ;  geometric  a lgor i thms  and sys- 
tems; 1.3.3 [ C o m p u t e r  G r a p h i c a l :  P i c t u r e / I m a g e  Genera t ion  
- display a lgor i thms;  viewing a lgor i thms  
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1. I N T R O D U C T I O N  

Cons t ruc t ive  solid geomet ry  (CSG) uses t rees (CSG 
trees) of bui lding block pr imi t ives  (parallelepipeds, spheres ,  
cylinders . . . .  ), combined by geometric t r an s fo r ma t ions  and 
Boolean set opera t ions  as a representa t ion  of three-dimenslonal  
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solid objec ts  [18 I. Each pr imit ive solid can be decomposed in to  
a sub t ree  whose  leaves are hnlfspaces, each described by an 
equat ion  of the form: 

/(x ,y,z)>o. 
S u b s t i t u t i n g  this  sub t ree  for every occurrence of t h a t  pr imit ive 
in the original CSG tree gives rise to an expanded tree having  
only halfspaees as leaves. In the present  article we shall  
a s sume this s imple halfspace formula t ion  of C S G  (see also 
[12,21]). Clearly, the CSG approach  can be used to describe 
objec ts  of any dimensional i ty  and m a n y  in teres t ing solid 
modelers  have been based on it [14]. 

I t  has  been known for some time tha t  oetree-like recur- 
sive subdivis ion can facilitate the evaluat ion of CSG trees; e.g., 
the analysis  [8,20] and display [21] of solid objects  modeled by 
them.  A h a r d w a r e  processor  wi th  such a capabil i ty  is described 
by Meagher  [10]. A bintree represen ts  discrete solid objects  of 
a rb i t r a ry  d imensional i ty  (e.g., b inary  images in two dimen- 
sions) by a b inary  tree defining a recursive subdivis ion of  space 
and recording which pa r t s  are e m p t y  ( W HI TE)  and which are 
solid (BLACK).  The  bintree  is a d imens ion- independen t  vari- 
an t  of the more  famil iar  quadt ree  and octree representa t ions .  
For  example,  Figure  le  is a bintree  cor responding  to a 2- 
d imensional  b inary  image (Figure la) consis t ing of two regions. 
See the  survey of S a m e t  [15] for a comprehens ive  su rvey  and 
b ib l iography of quad t ree  related methods .  Men t ions  of arbi- 
t ra ry  dimensionul i ty  are found in the l i tera ture  [4,5,9,22] b u t  
few concrete appl ica t ions  have been demons t r a t ed .  
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Figure  1. 
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Sample image and its bintree. (a) Image 
(b) Block decomposit ion (c) Bintree. 

T i m e  and mot ion are i m p o r t a n t  e lements  off advanced 
solid modeling.  In par t icular ,  given a mov ing  objec t  we mg,y 
wish to de te rmine  whe the r  it in tersects  a s t a t iona ry  objec t  
(static interference detection) or whe the r  it intersects  ano the r  
mov ing  objec t  {dynamic interference detection). Even t h o u g h  
it appea r s  t h a t  the t ime dimension can be added to CSG trees 
in a conceptual ly  simple fashion,  r a the r  little a t t en t ion  has  
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been focussed on CSG trees  in a dynamic  s i tuat ion.  P e r h a p s  
th is  is due to  the  difficulty of eva lua t ion  in the  now four- 
d imensional  space. 

Stat ic  interference detection is discussed by Boyse [3] 
b u t  only b o u n d a r y  represen ta t ions  are considered. Tilove [19] 
has  provided a good analysis  of  the equivalent  " N U L L  objec t  
de tec t ion"  p rob lem in the CSG set t ing.  O u r  work seems to  
c o m p l e m e n t  t h a t  of Tilove. We do not  repea t  his formal  
analysis  of  the " p r u n i n g "  of CSG trees b u t  show in detail  how 
a CSG tree can be efficiently p runed  agains t  an adap tab le  grid 
(i.e., bintree),  even in the  ease of  non-bounded  halfspace primi- 
tives. We also show t h a t  for "we l l -behaved"  CSG trees, the  
a m o u n t  of  work  involved in p run i ng  the CSG tree aga ins t  all 
the cells of such an adap tab le  grid is asymptot ica l ly  p ropor -  
t ional  to the n u m b e r  of  cells and does no t  depend on the  
n u m b e r  of  nodes  in the C S G  tree representa t ion .  

In the  rest  of th is  pape r  we show how bintree  conver-  
sion provides  an efficient and d imens ion- independen t  tool for 
eva lua t ing  C S G  trees. T h e  t ime dimension is handled w i t h o u t  
ex t ra  conceptua l  overhead.  Our  emphas i s  is on CSG trees 
defined by linear halfspaces  and on mot ion  along a piecewise 
linear t r a jec to ry  b u t  the  techniques  are shown  to extend to the  
non-l inear  case. We present  and analyze the  eva lua t ion  
(conversion)  a lgor i thm and show t h a t  asymptot ica l ly ,  as reso- 
lut ion is increased, the a m o u n t  of work it involves is directly 
related to the  spa t ia l  complexi ty  of the objec t  represented by 
the C S G  tree. Thus ,  despi te  the added dimension,  dynamic  
interference detect ion by bintree conversion is often efficient 
(because the  objec t  s o u g h t  is the null object) .  Finally,  wc 
presen t  some exper imenta l  resul ts  ob ta ined  by using the  
discrete solid modeler  described in [18]. T h e  simplici ty of  the 
a lgor i thms  is s t r ik ing  when  compared  with a lgor i thms  for con- 
ver t ing  b o u n d a r y  r ep resen ta t ions  to bint rees  [17]. 

2 ,  D E F I N I T I O N S  

In ou r  a lgor i thms  we use a l inear tree represen ta t ion  
t h a t  is based on the preorder  t raversa l  of a bintree.  T h e  
t raversa l  yields a s t r ing  over  the a lphabe t  " ( " ,  " 'B", " 'W"  
cor responding  respectively to in terna l  nodes,  B L A C K  leaves, 
and W H I T E  leaves. Th i s  s t r ing  is called a DF-expression [6]. 
Fo r  the image of Figure  I it becomes ( ( ( (BWWW(BW.  Note  
t h a t  b in t rees  are s ize- independent:  i.e., a given tree can define 
an objec t  in a universe  of any size. However ,  we usual ly por- 
t ray  each bintree as embedded  in the  d -d imens iona l  uni t  cube. 
Let us  say t h a t  the resolution of a bintree,  say M, is the maxi- 
mal  n u m b e r  of  un i t s  into which each side of the d -d imens iona l  
universe  of a J - d i m e n s i o n a l  bintree  can be divided. A cube of  
side length 1 / M  is called a voxel. 

A p o i n t  z in a d-d imens iona l  universe  (d-space) is 
represented  by a row vec tor  x0 ,x l , . . . , and  x d of d + l  homo-  

geneous  coord ina tes  wi th  x 0 denot ing  the scale factor.  We 
shall  only consider  the ease wi th  x0----1. In the general  case, 
the d o rd ina ry  Eucl idean coordina tes  are ob ta ined  by dividing 
zl , --- ,z  ~ by z o. Note  t ha t  usually the scale factor  is taken to  

be the last component of z. With our choice, the scale factor 

retains its original index when the time dimension is added. 

A (linear) halfspace in d - space  is defined by an inequal- 
ity on the d + l  homogeneous  coordinates:  

d 
ai "z,i 2 0 (1) 

T h e  halfspace is represented by a column vector  a .  In vector  
no ta t ion  (1) is wr i t t en  as a - x  >_0, wi th  co lumn vector  a 
r ep resen t ing  the haffspaee. Figure  2 shows  the halfspace 
represented  by , - Ix -2y-1  2 0 .  The  point  set  sat isfying th is  rela- 
t ion lies to the r ight  of  the line. (part ial ly shaded) .  Given a 
poin t  x ,  the  value of the left side of (1) at x is called the 
value of halfspaee a at  x .  

Y 

(0,1) 

i 

(o,o) u,o) 
Figure  2. Halfspace cor responding  to 4 x - 2 y - l _ ~ 0 .  

We shal l  concen t ra t e  on  CSG trees in the  s imples t  of 
se t t ings ,  t h a t  of  halfspaces  defined by hype rp lanes  (linear 
halfspaces).  A r b i t r a r y  CSG tree can be app rox ima ted  in this  
way  [2,21]. Also, qual i ta t ively,  ou r  me thods  extend to the gen- 
eral ease. 

In this article we define a data structure for CSG trees 

as follows. A CSG tree is a binary tree in which internal nodes 

correspond to geometric transformations and Boolean set 

operations while leaves correspond to haffspaces., A node of a 

CSG tree is described by a record of type csgnodc with six 
fields. The first two fields, LEFT and RIGHT, contain pointers 

to the node's left and right sons respectively. The TYP ficld 

indicates the node's type. There are five node types- UNION, 

INTERSECTION, BLACK, WHITE, and HALFSPACE. Types 

UNION and INTERSECTION correspond to the Boolean set 

operations. HALFSPACE corresponds to a leaf (i.e., halfspace). 

The field HSP contains an identifier for the halfspace. It is an 

index to a table, HS, of d +I element coefficient vectors of the 

different halfspaces involved in the CSG tree. The remaining 

two fields, MIN and MAX, are used for auxiliary data in our 

algorithms. They record the minimum and maximum values, 

respectively, of a halfspace in a given bintree block. 

Note that our definition of a CSG tree allows for leaves 

that arc completely BLACK or WHITE as required in our 

~.Igorithm. In addition, in contrast to the conventional use of 

CSG, we only use the Boolean set operations UNION and 

INTERSECTION, as the effect of the third one, MINUS, can 

be achieved by application of De Morgan's laws to all nodes of 

type UNION and INTERSECTION. The complement of a 

haffspace is obtained by changing the signs of all the 

coefficients (i.e., the direction of its normal). Note that our 

universe is finite, as required by the bintree representation. 

3. C O N V E R T I N G  CSG T R E E S  T O  B I N T R E E S  

O u r  a lgor i thms  t raverse  the universe  in a depth-f i r s t  
m a n n e r  and  evaluate  each successive subun iverse  aga ins t  the 
CSG tree. Th i s  enables  p r un ing  areas of no interest .  Wh en ev e r  

*Our discussion a~umes that the transformations nave been propagat- 
ed to the leaves. We also assume a bounded univeme, 1'or simplicity in the 
form of the unit cube. Actually, so-called regularized versions of the set 
operations must be used [13]. However, we shall not repeat the term regulax- 
ized~ 

122 



SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985 
I 

the  h y p e r p l a n e  of  a ha l f space ,  say  H ,  passes  t h r o u g h  a 

s u b u n i v e r s e  (i.e., a b in t r ee  node),  say  S ,  then  we say  t h a t  H is 
active in S (i.e., t he re  ex i s t s  a po in t  in S such  t h a t  a .x ~ 0 ) .  A 
CSG tree node  is sa id  to  be active in S if b o t h  of i t s  sons  are 

ac t ive  in S .  As  an e xa m ple  of  the  use of these  t e rms ,  cons ide r  
the  convers ion  of  the  t r i a n g l e  given in F igure  3 whose  CSG 
t ree  is g iven in F igure  4. I t  is composed  of the  i n t e r s ec t i on  of 

the  th ree  ha l f spaces  2 x - 1 ~ 0 ,  2 y - 1 ~ 0 ,  and  - 2 x - 2 y - k 3 ~ 0  
labeled A, B, and  C respec t ive ly .  Conve r s ion  s t a r t s  w i t h  the  

u n i t  squa re  universe .  In th i s  case ha l f spaces  A,  B, and C are al l  
ac t ive  and  so is the  CSG  tree (in o t h e r  words ,  i t  is no t  t o t a l l y  
B L A C K  or W H I T E ) .  T h u s  we first  have  to  sp l i t  the  u n i t  
square  in to  t w o  ha lves  (spl i t  a long  the  x coord ina te ) .  Now, 
e v a l u a t i n g  the  C S G  tree a g a i n s t  the  left  ha l f  of the  b in t ree ,  

say  L ,  we find t h a t  A is W H I T E  and t h u s  no t  ac t ive .  There -  
fore, L wi l l  have  to  be W H I T E  since A is c o m b i n e d  w i t h  the  

res t  of the  C S G  t ree  by  an I N T E R S E C T I O N  node  and the  
in t e r sec t ion  of W H I T E  w i t h  a n y t h i n g  is W H I T E .  

VJ 

(o,o 

8 

(0,0) 

Figure 3. Sample triangle image. 

D 

fl,0) x 

B C 

Figu re  4. CSG tree co r r e spond ing  to  F igure  3. 

F i r s t ,  le t  us examine  the  c ons t r uc t i on  of a b i n t r ee  

c o r r e s p o n d i n g  to  a ha l f space  as g iven by (1). T h i s  is ach ieved  
by t r a v e r s i n g  the  un iverse  in the  D F - o r d e r  and  d e t e r m i n i n g  

the  range  of the  left  s ide of (1) in each subun ive r se .  Each  node 
in the  b in t r ee  in wh ich  the  ha l f space  is ac t ive  is decomposed  
i n t o  two  sons  and  the  process  is rccurs ive ly  appl ied  to  t hem.  
T h e  process  s t o p s  w h e n  the  ha l f space  is not  ac t ive  in a b i n t r ee  

node  or if the  b in t r ee  node  co r re sponds  to  a voxel .  Al l  voxels  

in wh ich  the  ha l f space  is ac t ive  are labe led  B L A C K  in the  ver-  
s ion of the a l g o r i t h m  p r e s e n t e d  here.  T h e  r e su l t i ng  b in t r ee  is 

r ep r e sen t ed  us ing  a DF-express ion .  

D e t e r m i n i n g  w h e t h e r  a ha l f space  is ac t ive  in a b i n t r ee  

node  is f a c i l i t a t e d  by ke e p ing  t r ack  of  the  m i n i m u m  and 
maximum values of a ,~ for each bintree node. Whenever the 

maximum is ~0 the bintree node is WHITE and when the 

minimum is _~0 it is BLACK. Otherwise the halfspace is active 

and subdivision is required. Initially, for the unit cube, the 

minimum value of a-x is the constant factor of a plus the 

sum of all negative coefficients in a. The maximum vMue is 

t h e  c o n s t a n t  f ac to r  of a p lus  t he  s u m  of a l l  pos i t ive  
coeff icients  in a .  Fo r  example ,  for F igure  2, the  in i t i a l  
m i n i m u m  va lue  is -3 and  the  in i t i a l  m a x i m u m  va lue  is 3. 

W h e n e v e r  a b i n t r ee  node  is subd i v i ded ,  e i the r  the  max-  
i m u m  or  m i n i m u m  (never  bo th  a t  the  s a m e  t ime)  of a - x  for 
each son node changes  w i t h  respec t  to  t h a t  of the  fa ther .  Le t  
the  subd i v i s i on  be pe r fo rmed  on a h y p e r p l a n e  (e.g., a l ine in 
t wo  d i m e n s i o n s )  p e r p e n d i c u l a r  to  the  ax i s  co r r e spond ing  to  

c o o r d i n a t e  i ( l _ ~ i _ ~ d )  and  let  w i be the  w i d t h  of  the  s ide 

a long  c o o r d i n a t e  i of the  b lock r e su l t i ng  f rom the subd iv i s ion .  

T h e  a m o u n t  of change  is 6 i ~ a  i .w i . For  the  left son,  if 6~ > 0 ,  

t hen  6 i is s u b t r a c t e d  f rom the  m a x i m u m ;  o the rwise ,  6i is sub-  

t r a c t e d  f rom the  m i n i m u m .  For  the  r i gh t  son,  if 6 i ~>0, t hen  

the  m i n i m u m  is i n c r e m e n t e d  by 61; o the rwise ,  6 i is added  to  

the  m a x i m u m .  

As  an example ,  cons ider  aga in  the  ha l f space  g iven by 

4 x - 2 y - l ~ 0  as s h o w n  in F igure  2. A s s u m e  t h a t  the  un iverse  is 
the  u n i t  square .  T h e  m a x i m u m  and  m i n i m u m  va lues  3 and  -3 

are a t t a i n e d  r e spec t i ve ly  a t  (1,0) and  a t  (0,1). S u b d i v i d i n g  
a long  the  x ax i s  y i e lds  t wo  sons.  T h e  m a x i m u m  va lue  of a - x  
in the  left  son has  decreased  by 1 /2  t imes  the coefficient  of the  
x c o o r d i n a t e  (i.e., 2) to  1 and  is a t t a i n e d  a t  (0.5,0), whi le  the  
m i n i m u m  va lue  r e m a i n s  the  same.  T h e  m i n i m u m  va lue  of a .x 

in the  r i gh t  son has  inc reased  by 1 / 2  t imes  the  coefficient  of  

the  x c o o r d i n a t e  (i.e., 2) to  -1 and  is a t t a i n e d  a t  (0.5,1) whi le  

the  m a x i m u m  va lue  r e m a i n s  the  same .  

A CSG tree is e v a l u a t e d ,  i.e., conver t ed ,  to  a b in t ree  by 
t r a v e r s i n g  the  un ive r se  in dep th - f i r s t  o rde r  and  e v a l u a t i n g  

each s u b u n i v e r s c  a g a i n s t  the  CSG tree. Leaf  nodes  

(ha l fspaces)  are  e v a l u a t e d  us ing  the  m e t h o d  descr ibed  above  
and  the i r  r e su l t s  are  c o m b i n e d  by pruning the  CSG tree to  the 

subun ive r se .  P r u n i n g  m e a n s  t h a t  only  t h a t  p a r t  of the  CSG 
t ree  wh ich  is ac t ive  w i t h i n  the  s u b u n i v e r s e  is r e t a ined  [19,21]. 
Once  p r u n i n g  has  r educed  the  CSG t ree" to  a leaf node  (i.e., a 

h'alfspa~e), the  convers ion  p rocedure  becomes  iden t i ca l  to  t h a t  
desc r ibed  above  for c o n v e r t i n g  a haffspace  to  a b in t ree .  E a c h  

node in the  b in t ree ,  say  B ,  in which  the  CSG t ree  is ac t ive ,  is 
decomposed  in to  two  sons  and  they  are in tu rn  in t e r sec ted  
w i t h  only  t h a t  p a r t  of the  CSG t ree  t h a t  is ac t ive  in B .  T h i s  
process  s t o p s  when  the  CSG tree is no t  ac t ive  in a b in t r ee  
node  or if the  b in t r ce  node  co r re sponds  to a voxel.  Al l  voxeis  

in wh ich  a CSG tree is ac t ive  are labeled by p rocedure  
C L A S S I F Y  V O X E L  which  we do no t  descr ibe  here.  A t  i ts  s im- 
p les t  (as used  in the  e x p e r i m e n t s  desc r ibed  in Sec t ion  6), it 

t r e a t s  all such  voxels  as B L A C K  (or W H I T E ) .  A t  i t s  m o s t  

complex ,  C L A S S I F Y ~ V O X E L  co r r e sponds  to  T i tove ' s  NULL 

ob jec t  a l g o r i t h m  appl ied  to  the  ac t ive  C~G sub t r ee  a t  the  
voxe l  [19]. 

T h e  convers ion  of a C S G  tree to  a b in t r ee  is pe r fo rmed  

by  p rocedu re s  C S G T O _ B I N T R E E ,  I N I T _ H A L F S P A C E S ,  
C S G  T R A V E R S E ,  P R U N E ,  and  H S P E V A L  given below. 
T h e y  m a k e  use of B L A C K  CSG N O D E  and  
W H I T E _ C S G  N O D E  which  are g lobal  po in t e r s  to  B L A C K  
and  W H I T E  C S G  t ree  nodes.  In these  and al l  o t h e r  pro- 
cedures ,  we sha l l  use the  fo l lowing  g lobal  c o n s t a n t s :  D is the 
d i m e n s i o n a l i t y  of the  space,  V O X E L  L E V E L  is the  level  of the  

b i n t r ee  c o r r e s p o n d i n g  ¢o voxels ,  and  E P S I L O N  is the  to le rance  
for dec id ing  w h e n  a b i n t r e e  node  is W H I T E  (i.e., a t  m o s t  a 
p r o p o r t i o n  E P S I L O N  of i t s  " c r i t i c a l "  d i a g o n a l  is c o n t a i n e d  in 

the  ha l f space)  or  B L A C K .  

C S G  T O  B I N T R E E  serves  to in i t ia l ize  the  t r a v e r s a l  
process.  F i r s t ,  i t  i nvokes  I N I T _ H A L F S P A C E S  to t r a v e r s e  the  
C S G  tree to  c o m p u t e  the  m i n i m u m  and  m a x i m u m  va lues  of 

each ha l f space  in the  whole  un ive r se  (i.e., t he  u n i t  cube).  T h e s e  
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values are s tored in the M I N  and M A X  fields of the CSG tree 
node cor responding  to each halfspace. Next, it calls on 
CSG T R A V E R S E  to per form the actual  conversion. 
CSG T R A V E R S E  t raverses  the universe by recursivelY subdi-  
viding it cor responding  to the depth-f i rs t  t raversa l  order  of the 
resul t ing bintree. A t  each subdivis ion step,  P R U N E  is called 
to a t t e m p t  to reduce the size of the CSG tree which will be 
evaluated in the bintree block. P R U N E  traverses  the CSG tree 
in depth- f i r s t  o rder  and removes  inactive CSG nodes wi th  the 
aid of H S P E V A L  which de te rmines  if a haifspace is active 
within a given bintree  block. A s s u m i n g  t h a t  T is CSG node, 
P R U N E  applies the following four  rules to  the CSG tree. 

(1) B L A C K  U N I O N  T ~ BLACK 
(2) W H I T B  U N I O N  T ~ T 
(3) B L A C K  I N T E R S E C T I O N  T -~- T 
(4) W H I T E  I N T E R S E C T I O N  T ~ WH IT E .  

i~i~...!~:~:i:~ . . . . . . . . . . . . .  

4 

I 

/U 

I0 15 14 18 19 21 22 

Figure  5. Bintree cor responding  to the t r iangle in Figure  3 
before collapsing. 

As  an example,  consider the triangle of Figure 3 whose  
CSG tree is given in Figure  4. Figure  5 is the cor responding  
bintree,  with V O X E L _ L E V E L ~ 6 .  The  nodes have been num-  
bered in the  o rder  in which they were ou tpu t .  Initially, the 
entire CSG tree (i.e., Figure 4) is assumed to be active in the 

whole  universe  (i.e., the uni t  square) .  Node 1 is o u t p u t  as  a 

N O N - L E A F  and we process its left son next. Firs t ,  we a t t e m p t  
to p rune  the C S G  tree wi th  respect  to the left half  of the 
universe.  Since halfspace A is inactive here (i.e., it is WHI TE) ,  
we can apply p run ing  rule (4) and there is no need to fu r the r  
process  the  remainder  of  the  CSG tree in Figure  4. We o u t p u t  
node 2 as W H I T E  and process the r ight  son of  node 1 next.  
P r u n i n g  the  CSG tree shows  tha t  halfspaee A is again inactive 
b u t  this  t ime it is BLACK. Since both  halfspaces B and C are 
active here, p run ing  rule (3) leaves us with the CSG tree given 
by  Figure  6. We now o u t p u t  node 3 as N O N - L E A F  and pro- 
cess i ts  left son next.  P run i ng  the CSG tree resul ts  in halfspace 
B being inactive (i.e., it is W H I T E )  and p run i ng  rule (4) means  
t h a t  there is no need to fu r the r  process this  CSG tree. We  o u ~  
p u t  node 4 as W H I T E  and process the  r ight  son of node 3 
next.  Th i s  t ime p r u n i n g  the C S G  tree resul ts  in halfspace B 
being inactive again b u t  now it is BLACK. P r u n i n g  rule (3) 
leaves us wi th  j u s t  halfspaee C. Node 5 is o u t p u t  as NON-  
L E A F  and the  conversion process is applied to its two sons  
next.  

fl 

8 C 

Figure  6. Resul t  of p run ing  the CSG tree of Figure  4 in the 
r ight  half  of  the root  of its bintree.  

Tile remainder  or the conversion is cquivalent  to that 

described earlier for the  conversion of  a hMfspaee as the  CSG 
tree has  been reduced to one halrspace. Tim result  is given in 
Figure  5. Note  t h a t  the sequence of nodes  t ha t  is o u t p u t  is not  
minimal  in the sense tha t  collapsing may  yet have to be per- 
formed (i.e., when two terminal  b ro the r  nodes  are BLACK).  
Appl icat ion of collapsing resul ts  in merging nodes 10 and 11, 
and nodes 18 and lg.  

p r o c e d u r e  C S G _ T O _ B I N T R E E ( P , N , H S ) ;  
/ *  Conve r t  the D-dimensional  CSG tree pointed at by P to a 

biutree.  HS con ta ins  N haffspaces. * /  
b e g i n  

v a l u e  p o i n t e r  e s g n o d e  P; 
g l o b a l  v a l u e  i n t e g e r  N; 
g l o b a l  v a l u e  r e a l  a r r a y  HS[I:N,0:I)]; 
I N I T _ H A L F S P A C E S ( P ) ;  
CSG_~'RAVERSE(P,0 ,1 .0) ;  

e n d ;  

p r o c e d u r e  I N I T _ t t A L F S P A C E S ( P ) ;  
/ .  C o m p u t e  the m i n i m u m  and m a x i m u m  values of each of  the 

halfspaces or the CSG tree P ia the D-dimensional  un i t  
universe. * /  

b e g i n  
v a l u e  p o i n t e r  c s g n o d e  P; 
i n t e g e r  [,J; 
i f  T Y P ( P ) ~ ' H A L F S P A C E '  t h e n  

b e g i n  
I~--HSP(P); 
MIN(P)~--MAX(P)~--HS [I,0]; 
f o r  J+--I s t e p  1 u n t i l  D d o  

b e g i n  
i f  HS[I , J ]>O.0  t h e n  MAX(P)+--M_A_X(P)+HS[I,J] 
e l se  MIN(P)4--MIN(P)-kHS[I,J];  

e n d ;  
e n d  

e lse  
b e g i n  

I N I T  HALF S P A C E S  (LEF T(P  )); 
I N I T _ H A L F S P A C E S ( R I G H T ( P ) ) ;  

e n d ;  
e n d ;  

p r o c e d u r e  CS G TRAVERSE(P,LI~V,W);  
/ *  Conve r t  the por t ion of the CSG tree P t h a t  over laps  the  

D-dimens ional  subuniverse  of volume 2 -LEe whose smal les t  
side has  width  W. The  bintree is cons t ruc ted  by evaluat-  
ing the CSG tree in the subuniverse .  The  evaluat ion pro- 
cess consis ts  of p r un ing  the nodes of the C S G  tree t h a t  are 
outs ide  of the subuniverse .  A new copy of the re levant  
pa r t  of the C S G  tree is created as each level is descended 
in the bintree.  Th i s  s torage  is reclaimed once a 
subun ive r se  at  a given level has  been proee~ed .  * /  
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b e g i n  
v a l u e  p o i n t e r  e s g n o d e  P; 
v a l u e  i n t e g e r  LEV; 
value  real W; 
p o i n t e r  csgnode FS; /* Pointer to stack of free nodes */ 
if  TYP(P)~- 'BLACK' or TYP(P)~- 'WHITE'  t h e n  

ou tpu t (TYP(P) )  
else if  LEV~VOXEL_LEVEL t h e n  

output(CLASSIFY_~VOXEL(P)); 
e l s e / *  Subdivide and prune the CSG trees * /  

beg in  
FS*-fi r s t  f r ee (esgnode) ;  

/*  Save pointer to free storage stack */  
o u t p u t (  'NON-LEAF '); 
if LEV rood D = 0  t h e n  W,--W/2;  
CSG TRAVERSE(PRUNE(P ,LEVq-1 ,W,'LEFT'),LEV-kl ,W); 
free(FS); /*  Release storage for CSG tree nodes */  
CSG TRAVERSE(PRUNE(P,LEV-k 1 ,W,'RIGHT'),LEVTI,W); 
free(FS); 

end;  
end; 

p o i n t e r  c s g n o d e  p r o c e d u r e  PRUNE(P,LEV,W,DIR); 
/ .  Evaluate the portion of the CSG tree P that  overlaps the 

D-dimensional subuniversc of volume 2 -LEV whose smallest 
side has width W. The subuniverse corresponds to the DIR 
(LEFT or RIGHT) subtree of its father bintree node. */  

beg in  
v a l u e  p o i n t e r  c s g n o d e  P; 
v a l u e  i n t e g e r  LEV; 
v a l u e  r ea l  W; 
v a l u e  d i r e c t i o n  DIR; 
p o i n t e r  c s g n o d e  T,Q; /*  Auxiliary variables * /  
pointer csgnode L,R; 

/ ,  Auxiliary pointers to left and right pruned subtrees * /  
if TYP(P)-~-'HALFSPACE' t h e n  

return(HSPEVAL(P,LEV,W,DIR))  
else 

beg in  
T+--if T Y P ( P ) ~ ' U N I O N '  t h e n  BLACK CSG NODE 

else if  TYP(P)~ ' INTERSECTION" t h e n  
WHITE_CSG NODE 

else ~ e r r o r ~ ;  /*  Enable a quick application of prun- 
ing rules (1) and (4) * /  

L4--PRUNE(LEFT(P),LEV,W,DIR); 
if  L-~-T t h e n  r e t u r n ( T )  
else 

beg in  
R . - P R U  NE(RIGHT(P),LEV,W,DIR); 
if  R = T  t h e n  r e t u r n ( T )  
else if  TYP(L)-~-OPPOSITE(TYP(T)) t h e n  r e t u r n ( R )  

/*  OPPOSITE of BLACK is WHITE and vice 
vers t  */  

else if  TYP(R)~-OPPOSITE(TYP(T))  t h e n  r e tu rn (L)  
else / ,  Evaluation has not resulted in eliminating */  

b e g i n / *  one of P 's  sons */  
Q~--create(csgnode);  
TYP(Q)*--T'YP(P); 
LEFT(Q)~--L; 
RIGHT(Q)4--R; 
r e tu rn (Q) ;  

end;  
end ;  

end; 
end; 

p o i n t e r  c s g n o d e  p r o c e d u r e  HSPEVAL(P,LEV,W,DIR); 
/ ,  Determine if the D-dimensional subuniversc of volume 

2 -LEV and smallest side of width ~V intersects halfspace P 
or corresponds to a BLACK or WHITE region. Tile 
subuniveme is the DIR (LEFT or RIGHT) subtree of its 
father. If the haffspace intersects the subuniverse, then the 
subuniverse will have to be subdivided again and a new 
CSG tree node is allocated for the halfspace to record the 
new minimum and maximum values of the halfspace. * /  

beg in  
v a l u e  p o i n t e r  c s g n o d e  P; 
v a l u e  i n t e g e r  LEV; 
v a l u e  r ea l  W; 
v a l u e  d i r e c t i o n  DIR; 
i n t e g e r  I,J; 
r ea l  DELTA; 
pointer csgnode Q; 
Q ~ - c r e a t e _ a n d _ c o p y ( P ) ;  
J~--HSP(P); 
I~--LEV rood D; 
DELTA~-HS [J,I-I- 1}* W; 
if DIR-~ 'LEFT'  t h e n  

b e g i n  
if D E L T A S 0  t h e n  MIN(Q)4--MIN(Q)-DELTA 
else M_A_X( Q)~--MAX(Q)- DELTA; 

e n d  
else 

b e g i n  
if D E L T A s 0  t h e n  MIN(Q)~--MIN(Q)+DELTA 
else MAX( Q)~--MAX(Q)÷DELTA; 

end; 
if  MIN(Q) ~ -EPSILON t h e n  re turn(BLACK_CSG_NODE) 
else if  MAX(Q)~EPSiLON t h e n  

re tu rn(WHITE_CSG_NODE)  
else r e tu rn (Q) ;  /* The subuniverse is intersected */  

end;  

4. TIME AND MOTION 

Often a geometric representation, such as CSG, is not 
convenient for a desired computation. The solution that  is fre- 
quently adopted is to transform the object into another 
representation - i.e., one in which the computation is simpler. 
In the previous section we saw how a CSG representation can 
be converted to a bintree. In this section we show how the 
time dimension can be added to a CSG representation so that  
motion can be analyzed using the algorithm of the previous 
section. 

Let T be a solid model described by u CSG tree and 
assume that  it is defined in some model-specific coordinate sys- 
tem. We describe the motion of T in some common world 
coordinate system by a time-varying geometric transformation 
matrix A ( t) .  Each value of A ( t )  is a matrix defining a rigid 
motion from the local coordinates of T to its position and 
orientation in world coordinates at time t .  Note that  if our 
world coordinate system is the unit cube, then we may also 
have to include a scaling in A (t) .  We call A ( t )  the trajectory 
of T.  Let A ( t )  be piecewise linear, meaning that  it can be 
broken down into a series of segments defined by time points 
(to, t1,... ) so that  Ai+l~AiBi ,  where Bi is a transformation 
matrix corresponding to a translation describing the motion 
during tha t  time segment. In the following we discuss the 
motion accomplished in one time segment in a more concrete 
setting. 
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T r a n s l a t i n g  a halfspace,  say given by (1), along a vec- 
tor  v gives rise to the  t rans la ted  halfspace 

d d 
a i "x i -  ~ a i . v  i_>O (2) 

i = 0  i = 0  

If poin t  Z satisfies (1), then the t r ans fo rmed  ( t rans la ted)  point  
z + v  satisfies (2). In order  to  be d imens ional ly-cons is ten t  wi th  
the d -d imens iona l  un i t  cube, our  discussion always a s sumes  a 
un i t  t ime interval .  Mot ion  in a un i t  t ime interval,  and at a 
fixed speed defined by vector  s wi th  s 0 ~ 0 ,  is described by a 
vector  v such t h a t  for all i ,  v i = s i . t .  T h u s  using v to 
t rans la te  halfspace (1) we find t h a t  at each ins tant ,  say t ,  it 
co r responds  to  the halfspace given by (3), below. Le t t ing  t 
vary ,  we obta in  a linear halfspace wi th  an addit ional  variable 

t .  

d d 

i = 0  i = 0  

W h e n  we have a C S G  tree in motion,  t r ans fo rma t ion  (3) can 
be applied to each halfspaee separa te ly  and the tree of Boolean 
set  ope ra t ions  applied to the resul t ing (d -k l ) -d imens iona l  
halfspaces  to define a set  of po in t s  in ( loeat ion, t ime)-space 

sa t i s fy ing the  CSG tree. 

Fo r  dynamic  interference detection,  we m u s t  de te rmine  
w h e t h e r  the intersect ion of two  (location,t ime) objects  is 
e m p t y  while for s ta t ic  interference detection,  we m u s t  check 
whe the r  two s t a t iona ry  objects  intersect  or whe the r  a moving  
objec t  in tersects  a s t a t i ona ry  one. The  intersect ion of two  
different ( locat ion, t ime) C S G  trees, (each derived f rom a 
separa te  mot ion  b u t  wi th  a com m on  " t ime  axis")  is ob ta ined  
by a t t ach ing  them as sons  to a newly created CSG node of 
type I N T E R S E C T I O N .  T h e  actual  evaluat ion of the intersec- 
t ion can be per formed by apply ing  the bintree conversion algo- 
r i t hm of Section 3 in the ( d T l ) - d i m e n s i o n a l  space wi th  t ime 

included. Fo r  s tat ic  interference detect ion there  is no need to 
add t ime as an ex t ra  d imension if we can otherwise  solve for 
the swep t  area  of the moving  object.  Note also t ha t  in the 
case of  interference detect ion there  is often little mot iva t ion  
for s to r ing  the entire resul t ing tree. Ins tead ,  a variable can be 
included in the tree t raversa l  a lgor i thm to indicate the 
min imal  t value of a B L A C K  node encountered  so far in the 
t raversal .  Any  sub t ree  whose m i n i m u m  value of t is greater  
t han  this value need not  be inspected.  

Usually p r imary  interest  is no t  in mot ion  along a 
s t r a igh t  vector  b u t  in more  complicated trajectories.  Assume  
t h a t  such t ra jector ies  can be app rox ima ted  by a sequence of 
segments ,  each wi th  mot ion cor responding  to a linear t ransla-  
tion at  a fixed speed.  For  example,  suppose  t h a t  we wish to 
de te rmine  whe the r  two mot ions ,  defined by piecewise linear 
t ra jec tor ies  A l l  and  A ~  of  objec ts  T a and T2, respectively, 
intersect  in the uni t  t ime interval.  Let the t ime intervals  
defining the  n~ and n~ linear pieces of  the t ra jector ies  be 

(tie, t11,..- ) and (t20,tul,...), respectively. Now, dur ing  the t ime 
interval  (0 ,min( tm,  tze)) bo th  mot ions  are linear and their  
in tersect ion can be de te rmined  as discussed above. Th i s  same  
procedure  is applied to the remain ing  intervals  (a m a x i m u m  of 
n l q - n 2 - 1  intervals)  each preceded by an applicat ion of the 
app ropr i a t e  t r a n s f o r m a t i o n s  Aii to  the halfspaces of T~ and 

T 2 • 

In the  general  case, a CSG tree can conta in  non-l inear  
halfspaces  or the mot ion  itself canno t  be described as a series 
of t rans la t ions .  Nevertheless ,  we can still use me thods  s imilar  
to the ones described above.  In par t icular ,  each bintree  node 

cor responds  to a ( d + l ) - d i m e n s i o n a l  interval such t h a t  
Xo~X < x l ,  Yo_<Y <Yl ,  "", to_<t < t r  Interval arithmetic is a 
method  of eva lua t ing  func t ions  f ( x , y , ' " )  in cases where  the 
a r g u m e n t s  are no t  exact values b u t  intervals.  T h e  value of  the 
in terval  funct ion cor responding  to funct ion f is also an inter- 
val - i.e., a range  covering any values  t h a t  f can obta in  given 
as a r g u m e n t s  any values  in the a r g u m e n t  intervals .  I t  should 
be clear t h a t  interval  a r i thmet ic  is appropr i a t e  for the C S G  
tree to b int ree  convers ion process since for an a rb i t r a ry  func- 
t ion the value of the cor responding  interval  funct ion  covers the  
func t ion ' s  possible values  in the bintree  node. If zero does no t  
belong to this range, then  the bintree  block need no t  be subdi-  

vided. 

Fo r  example,  let us apply the above ¢o de te rmine  the  
( locat ion, t ime)  b in t ree  of a l inear halfspace a subjec ted  to 
a rb i t r a ry  mot ion  defined by the mat r ix  funct ion A ( t ) .  Denot-  
ing in tervals  by capi ta l  letters, the interval  funct ion  t h a t  m u s t  
be evaluated  at each node of the bintree is 
F ( X , T ) = ( A - I ( T ) a ) . X  where  X is an in terval  in d -  
d imens iona l  space and T is a t ime interval.  R e m e m b e r  t h a t  
at  each t ime in s t an t  t ,  A ( t )  is a linear t r a n s f o r ma t ion  and the 
image of  a halfspace,  say a ,  is obta ined  by mul t ip ly ing  a by 
the inverse of A ( t ) .  W h e n  A ( t )  conta ins  a ro ta t ion ,  the inter- 
val funct ion  will be a linear composi t ion of  sine and cosine 
func t ions  wi th  respect  to T .  In any sub- in te rva l  of T ,  where  
the  composi te  funct ion is monotonic ,  interval  a r i thmet ic  can 
be applied in a fashion to provide t ight  bounds  for the result-  
ing interval.  

In te rva l  a r i thmet ic  is easy to incorpora te  in ou r  CSG 
tree to b int ree  conversion since we merely need to  recast  pro-  
cedure H S P E V A L  in t e rms  of interval  evaluat ions.  Procedure  
I N T  H S P E V A L  given below achieves this  and can be subs t i -  
t u t ed  for procedure  H S P E V A L  of Section 3 in procedure  
P R U N E .  Notice the use of I N T E R V A L E V A L U A T E  to deter-  
mine  the range of the  funct ion cor responding  to the non-l inear  
halfspace.  I ts  value is a poin ter  to a record of type  interval 
with two fields M I N  and M A X  cor responding  to an interval  
covering the func t ion  values  in the node. 

p o i n t e r  c s g n o d e  p r o c e d u r e  I N T  HS P EVAL( P , LEV,W,DIR) ;  
/ *  Use in terval  a r i thmet ic  to de te rmine  if the D-dimens ional  

subun ive r se  of vo lume 2 -LEV intersects  non-l inear  halfspace 
P or  is B L A C K  or W H I T E .  W is i ts  smal les t  side. T h e  
subun ive r se  is the DIR  sub t ree  of its father.  , /  

b e g i n  
v a l u e  p o i n t e r  c s g n o d e  P; / .  A leaf of the CSG tree * /  
v a l u e  i n t e g e r  LEV; 
v a l u e  r e a l  W; 
v a l u e  d i r e c t i o n  DIR; 
i n t e r v a l  I; 
I + - I N T E R V A L  E 'VALUATE(P ,LEV,W,D IR); 
r e t u r n ( i f  MAX(1)_<EPSILON t h e n  W H I T E  C S G _ N O D E  

e lse  i f  M I N ( I ) ~ - E P S I L O N  t h e n  
B L A C K _ C S G _ N O D E  

e lse  ' H A L F S P A C E ' ) ;  
e n d ;  

In te rva l  a r i thmet ic  has  been applied to the s o m e w h a t  
s imilar  task  of eva lua t ing  curved surfaces  by recursive subdivi-  
sion [1,11]. Nevertheless ,  this  technique should  be used wi th  
caution.  In par t icular ,  in terval  a r i thmet ic  does no t  necessarily 
yield the min imal  range covering the func t ion ' s  values  given 
the domains  of the a rguments ;  instead,  it may  be a wider  
in terval  guaran teed  to cover the func t ion ' s  values. Th i s  
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es t imate  may  somet imes  be very poor, and the poorer  the sub-  
s t i tu te  for the  t rue  range of funct ion values, the more  unneces- 
sary subdivis ion we m u s t  per form in the  bintree  conversion.  
The re  are many  funct ion  t r an s fo rm a t i ons  t ha t  can be applied 
to t ighten the  ranges  [1]. 

Usually we are no t  interested in t ime as such.  Often it 
merely serves  as an auxiliary variable for describing motion.  
For  instance,  the process of  de te rmin ing  the swep t  area for 
s ta t ic  interference detection is equivalent  to a t r ans fo rma t ion  
t h a t  e l iminates  the t ime dimension.  In geometric t e rms  it is a 
project ion parallel to the t -axis .  In general, we do not  know 
how to per form such a projection directly in the CSG 
representa t ion .  Given a CSG tree having  A O P  B as its root,  
we canno t  necessarily d is t r ibute  the  project ion opera t ion  - i.e., 

P R O J ( A  O P  B) ~ P R O J ( A )  OP P R O J ( B )  
For  example,  suppose  we are given two non- in tersec t ing  

objects  as in Figure  7 t ha t  are moving  at  identical speeds in 
the direction of the x-axis .  Clearly, their  swep t  areas intersect  
whereas  the objects  themselves  do not  intersect.  

F igure  7. 

Y 

I t  
× 

Exam pl e  of two  dis joint  objects  A and B whose  
project ion on the y -ax i s  is non-empty .  

Fo r tuna t e ly ,  project ion in the discrete bintree  domain  
is simple. A p p r o x i m a t e  evaluat ion of a CSG tree involving a 
project ion opera t ion  is a two-s tep  process. We  first generate  
the (d -k l ) -d imens iona l  bintree  and then project  it to  d dimen- 
s ions to ob ta in  an evaluat ion of the projected CSG tree as a 
d -d imens iona l  bintree  (see [16]). Project ion consists  of elim- 
ina t ing  one coordinate  and keeping t rack of all occupied loca- 
t ions  in the resul t ing d -d imens iona l  space. In three dimen- 
sions, the project ion a lgor i thm is a lmost  identical to  tha t  for 
viewing a three-d imens ional  bintree  in the  direction of  a coor- 
dinate  axis [18]. T h e  only difference is t h a t  in viewing, some 
shad ing  informat ion  m u s t  be recorded at each 2-d pixel t h a t  is 
"covered" ,  whereas  the project ion discussed here only records 

w h e t h e r  or  no t  such a pixel is covered. 

5. ANALYSIS  

A quick perusal  of procedure  C S G _ T O  B I N T R E E ,  as 
given in Section 3, reveals t h a t  the a m o u n t  of  work  per formed 
in the conversion is p ropor t iona l  to  the  s u m  of the sizes of the  
CSG trees t h a t  are active at  the bintree  nodes  (i.e., blocks) 
t ha t  are evaluated.  Th i s  n u m b e r  can be quite  large even 
though  procedure  CSG T R A V E R S E  a t t e m p t s  to p rune  the  
CSG tree each t ime it descends to a deeper  level in the  tree. 
However ,  in a typical  ease, as we descend in the blntree,  m a n y  
of  the CSG tree nodes are no  longer active thereby reducing 
the n u m b e r  of CSG nodes  t h a t  m u s t  be visited. We  are no t  
interested in the absolute worst-case value of the complexity. 
Instead, we shall focus on the "practical" efficiency of these 
algorithms. Very poor cases can be attained by constructing a 

compl ica ted  CSG tree t ha t  evaluates  to the NULL object  in 
such a way t h a t  the  whole CSG tree is active in a large 
n u m b e r  of nodes. For  example,  consider  the intersect ion of a 
hal fspace wi th  i ts  complement .  In fact, a p ru n ed  C S G  tree 
may  be active in a bintree  block even though  the CSG tree 
defines a NULL object  in the  region cor responding  to  the  
block. Fo r  example,  consider  the CSG tree given in Figure  8a 
consis t ing of  the two circles L1 and R and the halfspaces A 
and B as shown in Figure  8b. The  CSG tree of F igure  8a is 
active in the b int ree  block represented by the dashed square  in 
Figure  8b even though  the object  defined by it does no t  extend 

so far. 
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Figure 8. (a) A CSG tree and (b) its corresponding object. 

First ,  let us  examine the n u m b e r  of  halfspaces t h a t  are 
active a t  each node of  voxel size in a bintree of  a polyhedron.  
Th i s  discussion is heurist ic  in t ha t  we speak of  voxels as ff 
they were infinitely small.  A t  each vertex, at  least three  
halfspaces are active. Elsewhere at each edge of  the po lyhedron  
exactly two  halfspaces are active. Elsewhere at  each face, only 
one halfspace is active. We can es t imate  the  tota l  n u m b e r  of 
active halfspaces by count ing  the n u m b e r  of voxels tha t  inter- 
sect the edges, vertices, and faces of the polyhedron.  We know 
that the total number of voxels intersecting faces is propor- 
tional to the surface area [9] while the total number of voxels 
that intersect edges is proportional to the sum of the edge 
lengths at the given resolution [4]. The number of voxels con- 
raining vertices is always bounded by the number of vertices 
irrespective of resolution. Assuming a resolution of M, the 
n u m b e r  of voxeis with more  than  one active halfspace grows 
only linearly wi th  M ,  while the tota l  n u m b e r  of voxels grows 
wi th  M ~. T h u s  the average n u m b e r  of  halfspaces active in a 
node of voxel size approaches one asymptotically in a CSG tree 
that corresponds to a polyhedron. A similar result will hold for 
polyhedron-like objects of arbitrary dimension. 

I t  should  be clear t ha t  the a m o u n t  of work necessary in 
per fo rming  the conversion is a t  least p ropor t iona l  to the 
n u m b e r  of nodes  in the bintree.  It  ha s  been shown  [16] t ha t  
there  exists a class of  C S G  trees for which the  complexi ty  of 
evaluat ion is of the same  order  as the n u m b e r  of  nodes in the 
b int ree  of  the cor responding  object .  Such CSG trees are said 
to be "well-behaved" and this concept applies also to CSG 

trees with non-linear halfspaces. This characteristic is deter- 
mined solely by the way the objects defined by the pair of 
bro the r  sub t r ee s  of the CSG tree intersect  each other .  In a 
well-behaved CSG tree the intersect ions  are no t  allowed to be 
" t angen t i a l " .  In two dimensions,  this  means  t ha t  the 
boundar ies  of the objects  cor responding  to b ro th e r  sub t rees  
intersect  at  only a finite n u m b e r  of points .  In three dimen-  
sions, for polyhcdra ,  the boundar ies  should no t  coincide bu t  
are pe rmi t t ed  to intersect  along one-dimensional  edges. In the  
general case, for d dimensions, the permitted intersection must 
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s i m i l a r l y  be a t  m o s t  ( d - 2 ) - d i m e n s i o n a l  (see [16] for more  

de ta i l s ) .  G e n e r a l i z i n g  H u n t e r ' s  and  M e a g h e r ' s  image  complex-  
i ty  r e su l t s  for po lygons  and p o l y h e d r a  to  d d i m e n s i o n s  leads  
to  a c o m p l e x i t y  of 0 ( M  $-1) b in t r e e  nodes  for b in t r ee s  of reso- 
lu t ion  M .  T h i s  b o u n d  is a t t a i n a b l e  in a m a n n e r  t h a t  does no t  

d e p e n d  on the  n u m b e r  of nodes  in the  C S G  tree.  The  fo l lowing  

t h e o r e m ,  a v a r i a n t  of  whose  proof  can be found  in [16], sum-  

mar i ze s  the  above  d iscuss ion .  

T h e o r e m :  Let T be a we l l -behaved  CSG  t ree  de f in ing  a non-  
d e g e n e r a t e  d - d i m e n s i o n a l  objec t .  The  p r o p o r t i o n  of b i n t r ee  

nodes  whe re  more  t h a n  one C S G  tree node  is ac t ive  

a p p r o a c h e s  zero a s y m p t o t i c a l l y  as the  reso lu t ion  increases .  

T h e  above  resu l t s  lead  us  to  d r a w  the  fo l lowing  unex-  

pec t ed  b u t  p r a c t i c a l  conc lus ions  a b o u t  the  pe r f o r m a nc e  of our  
a l g o r i t h m s  for the  conve r s ion  of  CSG  t rees  to  b i n t r e e s  when  
the  C S G  t rees  are we l l -behaved .  

( I )  T h e  " p r a c t i c a l "  c o m p l e x i t y  of  CSG  t ree  e v a l u a t i o n  is 
0 ( M  d-l)  as r e so lu t ion  M is increased .  

(2) T h e  ave rage  n u m b e r  of ac t ive  CSG  tree nodes  in a bin- 

t ree  b lock  a p p r o a c h e s  one  a s y m p t o t i c a l l y  as reso lu t ion  is 
increased .  

(3) T h e  c o m p u t a t i o n a l  c o m p l e x i t y  of c o n v e r t i n g  a CSG tree 

a p p r o x i m a t i o n  of a g iven o b j e c t  to  a b in t r ee  is a s y m p t o t i -  

ca l ly  i n d e p e n d e n t  of the  n u m b e r  of ha l f spaces  used  in the  

a p p r o x i m a t i o n .  

R e s u l t  (3) m e a n s  t h a t  t he  l inear  a p p r o x i m a t i o n  of  cu rved  

haf f spaces  can  be c o m p u t a t i o n a l l y  p r a c t i c a l  even t h o u g h  i t  

l eads  to  a g r e a t  increase  in the  size of the  CSG  tree.  Of  course,  
the  above  resu l t s  are  a s y m p t o t i c a l  and  t h u s  are  d i r ec t ly  

r e l e v a n t  on ly  when  the  n u m b e r  of ha l f spaces  is no t  large in 
c o m p a r i s o n  to  the  reso lu t ion .  

6.  E M P I R I C A L  R E S U L T S  

In o rde r  to  t e s t  our  p red ic t ions ,  we c o n d u c t e d  a 
n u m b e r  of  e x p e r i m e n t s  w i t h  p o l y h e d r o n - l i k e  ob j e c t s  in severa l  

d imens ions .  O u r  e x p e r i m e n t s  have  beeu pe r fo rmed  w i t h  ver- 
s ions  of  the  a l g o r i t h m s  of Sec t ion  3, as i m p l e m e n t e d  in C in 

t he  s y s t e m  [18] and  e x e c u t e d  on a V A X  11 /750  r u n n i n g  ver- 

s ion  4.2BSD of  UNIX.  N o t e  t h a t  the  c o n t r i b u t i o n  to  C P U  t i m e  
i n c u r r e d  by w r i t i n g  the  p a c k e d  DF-exprcs s ion  in to  a file is 
qu i t e  no t i ceab le .  

A t  each b in t r ee  node  a fixed a m o u n t  of w o r k  is per- 

fo rmed  for each C S G  t ree  node  t h a t  is ac t ive  in it. T h u s  an 

i m p l e m e n t a t i o n - i n d e p e n d e n t  m e a s u re  of w o r k  is t he  t o t a l  

n u m b e r  of CSG t ree  nodes  ac t ive  a t  all  of the  b in t r e e  nodes.  
T h i s  is r e p o r t e d  as  t he  s t a t i s t i c  " C S G  e v a l u a t i o n s "  below.  T h e  

s t a t i s t i c  " 'Halfspace  e v a l u a t i o n s "  fo rms  p a r t  of i t  and  d e n o t e s  
the  n u m b e r  of ha l f space  v a l u e  range  c o m p u t a t i o n s  pe r fo rmed .  

No te  t h a t  the  a l g o r i t h m  can be i m p l e m e n t e d  in a m a n n e r  t h a t  
requi res  on ly  one a d d i t i o n  o p e r a t i o n  for each such  e v a l u a t i o n  

[16]. F r o m  these  va lues  we can  de r ive  the  a ve r a ge  n u m b e r  of 
ac t ive  C S G  tree nodes  (or ha l f spaces )  in a b in t r e e  node  for the  

pu rpose  of c o m p a r i s o n  w i t h  the  t h e o r e t i c a l  analys is .  N o t e  t h a t  
t he  p r o g r a m  t h a t  we i n s t r u m e n t e d  used a po in te r - l e s s  C S G  
t ree  r e p r e s e n t a t i o n ,  wh ich  a l lows  less p r u n i n g  t h a n  the  algo- 

r i t h m  we have  desc r ibed  in Sec t ion  3. T h u s  t he  n u m b e r  of 

C S G  node  e v a l u a t i o n s  r e p o r t e d  be low is an u p p e r  b o u n d  on 
the  t rue  v a l u e  o b t a i n e d  by  the  a l g o r i t h m .  

Fo r  ou r  f i rs t  e x p e r i m e n t  we a p p r o x i m a t e d  a circle w i t h  
an l l - g o n  and  fo rmed  i t s  b in t r e e  a t  r e so lu t ion  4096. T h i s  

128 

a p p r o x i m a t i o n  p r o d u c e d  a b i n t r ee  w i t h  80828 nodes  a n d  
requ i red  87592 C S G  tree node  and 81823 haffspace  eva lua -  

t ions.  T h u s  on the  ave rage  each b i n t r ee  node  c o n t a i n e d  less 
t h a n  1.1 ac t ive  CSG tree nodes  which  co r re l a t e s  w i t h  our  pred-  

ic t ion.  T h e  C P U  t i m e  requi red  was  19.2 seconds,  i nc lud ing  
a b o u t  6 s econds  necessa ry  to  o u t p u t  the  p a c k e d  DF-express ion .  

T h e  t i m e  requi red  t o  pe r fo rm the  s a m e  t a s k  by a p r o g r a m  
speci f ica l ly  des igned  to  conve r t  convex  p o l y h e d r a  was  17.1 

C P U  seconds  so t h a t  t he  o v e r h e a d  of the  gene ra l  C S G  t ree  

r e p r e s e n t a t i o n  w a s  no t  ve ry  large.  

T h e  second  e x p e r i m e n t  d e m o n s t r a t e s  t h a t  the  complex-  

i ty  of CSG t ree  e v a l u a t i o n  is O ( M  ~-1) as r e so lu t ion  M is 
inc reased .  Fo r  t h i s  e x p e r i m e n t  we t a b u l a t e  in T a b l e  1 the  C P U  

convers ion  t i m e s  for a ser ies  of a p p r o x i m a t i o n s  of a u n i t  circle 
by 5, 11, and  l g  hMfspaces  a t  v a r i o u s  reso lu t ions .  No t i ce  t h a t  
the  e x e c u t i o n  t i m e  doub l e s  w i t h  r e so lu t ion  as  p r ed i c t ed  for 

d ~ 2 .  T h e  d i f ferent  a p p r o x i m a t i o n s  are  no t  c o m p l e t e l y  com- 

p a r a b l e  as they  r e p r e s e n t  d i f ferent  ob jec t s .  T h u s  t he  b i n t r e e  a t  

r e so lu t ion  4096 c o n t a i n s  76294, 80628 and  81410 nodes  for 5, 

11 and  19 ha l f spaces  r e spec t ive ly .  

T a b l e  1. C o n v e r s i o n  t i m e s  ( C P U  seconds)  for d i f ferent  discs.  

N u m b e r  of Reso lu t i on  

Ha l f spaces  256 512 1024 2048 4096 

5 1.2 2.1 4.2 8.5 16.2 
11 1.7 2.9 4.7 9.4 17.1 

19 2.5 3.8 6.1 10.8 18.6 

T h e  t h i r d  e x p e r i m e n t  shows  t h a t  the  size of the  three-  

d i m e n s i o n a l  b i n t r e e  of a p o l y h e d r o n  is p r o p o r t i o n a l  to  the  

s q u a r e  of the  r e so lu t ion  and  a f o u r - d i m e n s i o n a l  b i n t r e e  is pro-  

p o r t i o n a l  to  the  t h i rd  p o w e r  of  the  reso lu t ion .  T h e  execu t ion  
t i m e s  for l a rge  v a l u e s  of r e so lu t ion  exh ib i t ed  s i m i l a r  behav io r .  

Fo r  th i s  we mode l ed  the  m o t i o n  of  t wo  i d e n t i c a l  squa re  b locks  
s i t u a t e d  a t  o p p o s i t e  co rne r s  of the  u n i t  square ,  m o v i n g  

t o w a r d s  each o ther ,  so t h a t  a t  t i m e  t = 1  t h e y  ove r l ap  on an 

a rea  of size 0.05 by 0.05. W e  also p e r f o r m e d  an  i d e n t i c a l  

t h r e e - d i m e n s i o n a l  e x p e r i m e n t  ( two  m o v i n g  boxes)  r e s u l t i n g  in 
a f o u r - d i m e n s i o n a l  b in t ree .  In the  first  case (F igu re  9) we h a v e  

a t o t a l  of 8 ha l f spaces  and  in the  second case we h a v e  a t o t a l  
of  12 ha l f spaces .  T a b l e s  2 and  3 con t a i n  the  resu l t  of  the  

e v a l u a t i o n  of the  t h r e e - d i m e n s i o n a l  and  f o u r - d i m c n s i o n a l  t rees  
a t  v a r y i n g  re so lu t ions .  No te  t h a t  for these  example s ,  t he  max-  
i m u m  sizes  of the  un ive r se s  are  233 and  2 se voxels  r e spec t ive ly .  

Y, 

0.25 

Y 
[] 

0.25 

F i g u r e  g. I n t e r s e c t i o n  of t wo  m o v i n g  ob jec t s .  
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Table  2. In tersec t ing  two moving  2-d blocks. 

CPU 
Resolution 

seconds 

64 0.7 
128 1.3 

256 3.2 
512 10.3 

1024 37.6 
2048 144.1 

BIN 
nodes 

826 

2898 
10866 
42514 

172802 
699362 

Halfspace 
evaluations 

1641 

4357 

13552 

47684 

183335 

720631 

CSG 
evaluat ions  

3124 
7300 

19358 
59254 

207248 
769768 

(0.25, 0.25), (0.5,0.5), (0.75,0.75) and (1.0,1.0). The  CSG tree 
t h a t  describes the union of these five circles within the uni t  
square  was  of  dep th  6 and contained 30 leaves and 29 internal  
nodes  (see Figure  11). Tab le  4 conta ins  the resul ts  on a V A X  
11/780. 

Table  3. In te rsec t ing  t w o  moving  3-d blocks. 

Resolut ion 

16 
32 
64 

128' 
256 
512 

C P U  
seconds 

0.8 
1.2 
3.1 

12.5 
67.4 

428.0 

BIN 
nodes 

370 
898 

4658 
31458 

231570 
1826466 

Halfsp~ce 
evalua t ions  

1846 
3354 

10471 
49969 

295662 
2071158 

C S G  
evaluat ions  

3900 
7008 

21326 
90614 

430730 
2695692 

2.0  

w Z  

~ t g  

! 

\ 

I I I i l I 
6 4  128 256 51Z 1024 

R E S O L U T I O N  

Figure 10. T h e  n u m b e r  of halfspace evaluat ions  per  bintree  
node as a funct ion of resolution for Table  2. 

F igure  10 shows  the n u m b e r  of halfspace evaluat ions  
per bintree  node as a funct ion  of resolution in the exper iment  
of Table  2. Notice t ha t  the asympto t ica l  bound  does hold in 
th is  case. Nevertheless ,  inspection of  Tables  2 and 3 shows  
t h a t  the convergence to th is  bound  is not  necessarily very fast  
in the  high d imensional  ( location,t ime)-space.  Therefore  this  
me thod  should be used pr imari ly  when the CSG tree is 
expected to evaluate  to NULL. Fu r the rmore ,  it is much  more  
efficient to de te rmine  j u s t  the first m o m e n t  of intersection.  In 
order  to i l lustrate this  point ,  we modified the coefficient of  
t ime in the exper iment  repor ted  in Table  3 so t h a t  the t rue 
intersect ion was  localized wi th in  eight three-dimensional  vox- 
els. T h e  resul t ing four-d imensional  evaluat ion a t  resolut ion 512 
produced 530 bintree  nodes  (of which 8 were BLACK),  
evaluated 2765 haffspaces and 5884 CSG tree nodes, and 
required 1.2 C P U  seconds.  

The  above exper iments  have only deal t  wi th  convex 
objec ts  (i.e., in tersect ions  of halfspaces).  T o  s tudy  the perfor- 
mance  of  ou r  a lgor i thms  with  a U N I O N  operat ion,  we per- 
formed one more  s imple exper iment .  We used hexagons  to 
app rox ima te  five disks wi th  radii  0.3 and centers  at (0.0,0.0), 

F igure  11. Union of  five hexagons  wi th in  the uni t  cube. 

Tab l e  4. Union of five disks app rox ima ted  as hexagons.  

C P U  BIN Halfsp ace 
Resolut ion  

seconds nodes evalua t ions  

1024 2.I 14418 17748 

2048 3.9 28828 29489 
4096 7.1 57654 58353 

7. C O N C L U D I N G  R E M A R K S  

The  analysis  of  the  execution t ime of CSG to bintree 
conversion was  based on our  definition of well-behaved which 
el iminated certain objects.  If  we expect  such objects  (beside 
the extensions  repor ted  below), the more complicated CSG tree 
r edundancy  checking a lgor i thms  of Tilove [19] should be used 
once the p runed  tree has reached a certain (small) size. Note, 
however ,  t h a t  if we apply as CLASSIFY V O X E L  a CSG 
evaluat ion at the center  of  the  voxel, no incorrect "false posi- 
t ive"  bintree nodes result  (i.e., nodes t ha t  should be com- 
pletely W H I T E  but  are classiflcd as BLACK).  

As  presented ,  the  a lgor i thm of Section 3 does not  han- 
dle the case t h a t  bo th  a halfspace and its complemen t  are 
leaves of the CSG tree. Th i s  case is actually quite c o m m o n  
when  a CSG tree is composed  of a union of  convex com- 
pone n t s  (e.g., a t r iangula t ion) .  Nevertheless ,  the pe r fo rmance  
of our  a lgor i thms,  as well as the analyt ical  resul ts  of Section 5, 
remain valid by adding  the  following rule to the CSG evalua- 
tion in procedure  F R U N E :  

If in a b int ree  node only a haffspace and its comple- 
m e n t  are active, then the node is BLACK if the root  
of the active CSG tree is UNION,  and W H I T E  other-  
wise. 

O u r  a lgor i thms  have several  useful  appl ica t ions  aside 
f rom volume-l ike c o m p u t a t i o n s  and interference checking. 
Viewing three-d imens iona l  CSG models  is a pr ime appl icat ion 
[7]. In this  case bintree  conversion would be" per formed solely 
for  the sake of genera t ing  shaded  o u t p u t .  T h e  me thod  of view- 
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ing  t h r e e - d i m e n s i o n a l  b in t r ees  in t he  d i rec t ion  of  a coo rd ina t e  
axis  descr ibed  in [18] can  be used  in th i s  case because  t h e  eye- 
po in t  d e p e n d e n t  o p e r a t i o n s  (e.g., pe r spec t ive  t r a n s f o r m a t i o n  of  
ha l fspa~es ,  etc.)  can  precede  b in t ree  convers ion .  S h a d i n g  
wou ld  be g e n e r a t e d  f rom t h e  n o r m a i s  of  the  ha l f spaces  ac t ive  
a t  each vis ible  node  a t  voxel  level. E v a l u a t i o n  wou l d  proceed  
f r o m  f ron t  to back  a n d  be c o m b i n e d  wi th  p ro jec t ion  so t h a t  
t h e  nodes  k n o w n  to  be covered would  no t  be g e n e r a t e d .  T h e  
efficiency of  ou r  convers ion  a l g o r i t h m  is s u c h  t h a t  t h i s  m i g h t  
be a p rac t i ca l  a l t e r n a t i v e  as a s y s t e m  for v iewing  face ted  
t h r e e - d i m e n s i o n a l  C S G  t rees  [2]. 

A C K N O W L E D G E M E N T S  

T h i s  work  w a s  s u p p o r t e d  in p a r t  by the  N a t i o n a l  Science 
F o u n d a t i o n  u n d e r  G r a n t  DCR-8302118  and  in p a r t  by the  F in-  
n i sh  A c a d e m y ,  W e  t h a n k  J a r m o  Alande r ,  Olli K a r o n e n ,  P e t r i  
K o i s t i n e n ,  W a l t e r  K r o p a t s c h ,  M a r t t i  M a n t y l a ,  Rei jo  Su lonen ,  
a n d  R o b e r t  E. W e b b e r  for c o m m e n t s .  

R E F E R E N C E S  

[1] J. A lande r ,  I n t e r v a l  a r i t h m e t i c  m e t h o d s  in t he  p rocess ing  
of  c u r v e s  and  s c u l p t u r e d  su r faces ,  Proceedings of the Sixth 
International Symposium on CAD/CAM, Zagreb ,  Yugos l a -  
v ia  (1084). 

[~] P .R .  A t h e r t o n ,  A scan- l ine  h i dden  sur face  r e m o v a l  pro-  
cedure  for c o n s t r u c t i v e  solid geome t ry ,  Computer Graph- 
ics 17, 3(t983) ,  73-82. 

[31 J .W.  Boyse ,  In t e r f e rence  de t ec t i on  a m o n g  sol ids  and  sur-  
faces,  Communications off the ACM 22, 1 ( J a n u a r y  1979), 
3-9. 

[4] G.M.  H u n t e r ,  Eff icient  c o m p u t a t i o n  and  d a t a  s t r u c t u r e s  
for  g raph ics ,  Ph .D .  d i s se r t a t i on ,  D e p a r t m e n t  of  Elect r ica l  
E n g i n e e r i n g  and  C o m p u t e r  Science,  P r i n c e t o n  Un i ve r s i t y ,  
P r i n c e t o n ,  N J, 1978. 

[5] C. J a c k i n s  and  S.L. T a n i m o t o ,  Q u a d - t r e e s ,  oc t - t rees ,  and  
k - t r ee s  - a genera l ized  a p p r o a c h  to  recurs ive  decompos i -  
t ion of  E u c l i d e a n  space ,  IEEE Transactions on Pattern 
Analysis and Machine Intelligence 5, 5 ( S e p t e m b e r  1983), 
533-539.  

[61 E. K a w a g u e h i  a n d  T .  Endo ,  O n  a m e t h o d  of  b ina ry  pic- 
tu re  r e p r e s e n t a t i o n  and  its app l i ca t ion  to  d a t a  compre s -  
s ion,  IEEE Transactions on Pattern Analysis and Machine 
Intelligence 2, l ( J a n u a r y  1980), 27-35. 

[~] P.  K o i s t i n e n ,  M.  T a m m i n e n ,  and  H. S a m e t ,  V i ewi ng  solid 
m o d e l s  by b in t ree  convers ion ,  to appea r  in Proceedings of 
the EUROGRAPHICS '85 Conference, Nice, S e p t e m b e r  
1985. 

[8] Y .T .  Lee and  A .A .G .  R e q u i c h a ,  A l g o r i t h m s  for c o m p u t i n g  
t h e  v o l u m e  a n d  o t h e r  in t eg ra l  p rope r t i e s  of  solids. I and  
II, Communications of the ACM 25, 9 ( S e p t e m b e r  1982), 
635-650. 

[9] D. Meaghe r ,  Oc t r ee  encoding:  a new t echn i que  for t he  
r e p r e s e n t a t i o n ,  m a n i p u l a t i o n  and  d i sp l ay  o f  a r b i t r a r y  3-D 
ob j ec t s  by c o m p u t e r ,  R e p o r t  IPL-TR-80-111 ,  R ens se l ae r  
P o l y t e c h n i c  I n s t i t u t e ,  T r o y ,  New York,  1980. 

[10] 

[11] 

[12] 

[131 

[141 

[151 

[161 

[17l 

[18] 

[19] 

[20] 

[21] 

[2e1 

D. M e a g h e r ,  T h e  Solids engine:  a processor  for  i n t e rac t ive  
solid mode l ing ,  Proceedings of the NICOGRAPH '84 
Conference, T o k y o ,  N o v e m b e r  1984. 

S.P.  M u d u r  and  P .A .  K o p a r k a r ,  I n t e rva l  m e t h o d s  for pro-  
eess ing  geome t r i c  ob jec ts ,  IEEE Computer Graphics and 
Applications 4, 2 ( F e b r u a r y  1984), 7-17. 

N. Okino ,  Y. K a k a z u ,  and  H. K u b o ,  T I P S - l :  T e c h n i c a l  
i n f o r m a t i o n  p rocess ing  s y s t e m  for c o m p u t e r  a ided des ign ,  
d r a w i n g  a n d  m a n u f a c t u r i n g ,  in Computer Languages for 
Numerical Control,, J. H a t v a n y ,  Ed. ,  N o r t h  Hol land ,  
A m s t e r d a m ,  1973, 141-150. 

A .A .G .  R e q u i c h a ,  R e p r e s e n t a t i o n s  of  rigid solids: t heo ry ,  
m e t h o d s ,  a n d  s y s t e m s ,  ACM Computing Surveys 12, 
4 ( D e c e m b e r  1980), 437-464.  

A .A .G .  R e q u i c h a  and  H.B. Voelcker ,  Solid mode l ing :  
c u r r e n t  s t a t u s  and  research  d i rec t ions ,  IEEE Computer 
Graphics and Applications 3, 7(1983), 25-37. 

H. S a m e t ,  T h e  q u a d t r e e  and  re la ted  h ie ra rch ica l  d a t a  
s t r u c t u r e s ,  ACM Computing Surveys 16, 2( June  1084), 
187-280. 

H. S a m e t  and  M. T a m m i n e n ,  A p p r o x i m a t i n g  C S G  t rees  of  
m o v i n g  ob jec t s ,  C o m p u t e r  Science T R - 1 4 7 2 ,  U n i v e r s i t y  o f  
M a r y l a n d ,  Col lege P a r k ,  MD,  J a n u a r y  1985. 

M.  T a m m i n e n  and  H. S a m e t ,  Eff ic ient  oc t ree  conve r s ion  
by c o n n e c t i v i t y  label ing,  Computer Graphics 18, 3(Ju ly  
1984), pp.  43-51 (also Proceedings of the SIGGRPAH '84 
Conference, Minneapo l i s ,  Ju ly  1984). 

M.  T a m m i n e n ,  P .  Ko i s t i nen ,  J. H u m a l a i n e n ,  O. K a r o n e n ,  
P .  K o r h o n e n ,  R. R a u n i o ,  and  P .  Reko la ,  Bin t ree :  a d i m e n -  
s ion  i n d e p e n d e n t  image  p roces s ing  s y s t e m ,  R e p o r t -  
H T K K - T K O - C 9 ,  He is ink i  U n i v e r s i t y  o f  T e c h n o l o g y ,  1984. 

R.B.  Ti love ,  A nu l l -ob jec t  de t ec t i on  a l g o r i t h m  for con-  
s t r u c t i v e  solid g e o m e t r y ,  Communications of the ACM 27, 
7(Ju ly  lg84) ,  684-694. 

A.F.  Wal l i s  a n d  J .R.  W o o d w o r k ,  C r e a t i n g  large  solid 
m o d e l s  for N C  t o o l p a t h  ver i f icat ion,  Proceedings of CAD 
84, 1984. 

J .R.  W o o d w o r k  and  K.M.  Q u i n l a n ,  R e d u c i n g  t he  effect of  
c o m p l e x i t y  on v o l u m e  mode l  eva lua t ion ,  Computer-aided 
Design I4, 2(1082), 89-95. 

M. Y a u  and  S.N. Sr ihar i ,  A h ie ra rch ica l  d a t a  s t r u c t u r e  for  
m u l t i d i m e n s i o n a l  d ig i ta l  images ,  Communications of the 
ACM P6, 7(Ju ly  1983), 504-515.  

130 


