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Abstract 

An overview, with an emphasis on recent results, is presented of the use of 
hierarchical spatial data structures such as the quadtree. They are based on the principle 
of recursive decomposition. The focus is on the representation of data used in image 
databases. There is a greater emphasis on region data (i.e., 2-dimensional shapes) and to 
a lesser extent on point, curvilinear, and 3-dimensional data. 
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1. INTRODUCTION 

Hierarchical data structures are important representation techniques in the 
domains of computer vision, image processing, computer graphics, robotics, and 
geographic information systems. They are based on the principle of recursive 
decomposition (similar to divide and conquer methods). The term quadtree is often used 
to describe this class of data structures. In this paper} we focus on recent developments in 
the use of quadtree methods. We concentrate primarily on region data. For a more 
extensive treatment of this subject, see {Same84a, Same88a, Same88b, Same88c, 
Same88d, Same89a, Same89b). 

Our presentation is organized as follows. Section 2 briefly reviews the historical 
background of the origins of hierarchical data structures. Section 3 discusses 
improvements in the performance of some key operations on region data. Sections 4 and 
5 describe hierarchical representations for r~ctangle and line data, respectively 1 as well a:; 

give examples of their utility. Section 6 contains concluding remarks in the context of a 

geographic information system that makes use of these concepts. 

2. HISTORICAL BACKGROUND 

The term quadtree is used to describe a class of hierarchical data structures whose 
common property is that they are based on the principle of recursive decomposition of 
space. They can be differentiated on the following bases: (1) the type of data that they 
are used to represent, (2) the principle guiding the decomposition process, and (3) tlw 
resolution (variable or not). Currently, they are used for points, rectangles, region::;, 
curves, surfaces1 and volumes. The decomposition may be into equal parts on each level 
(termed a regular decomposit£on), or it may be governed by the input. The resolution of 
the decomposition (i.e., the number of times that the decomposition process is applied) 
may be fixed beforehand or it may be governed by properties of the input data. 

The most common quadtree representation of data is the region quadtree. It is 
based on the successive subdivision of the image array into four equal-size quadrants. If 
the array does not consist entirely of ls or entirely of Os (i.e., the region does not cover 
the entire array), it is then subdivided into quadrants, subquadrants, etc., until block:-> 
are obtained (possibly single pixels) that consist entirely of ls or entirely of Os. Thus, tlw 
region quadtree can be characterized as a variable resolution data structure. 

As an example of the region quad tree, consider the region shown in Figure I a 

which is represented by the 23X 23 binary array in Figure lb. Observe that the b 

correspond to picture elements (termed pixels) that are in the region and the Ox 
correspond to picture elements that are outside the region. The resulting blocks for thr 
array of Figure lb are shown in Figure le. This process is represented by a tree of degree 
4. 

In the tree representation, the root node corresponds to the entire array. Each 
son of a node represents a quadrant (labeled in order NW, NE, SW, SE) of the region 
represented by that node. The leaf nodes of the tree correspond to those blocks for which 
no further subdivision is necessary. A leaf node is said to be BLACK or WHITE, 
depending on whether its corresponding block is entirely inside or entirely outside of tlu· 
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Figure 1. A region, its binary array, its maximal blocks, and f.111· 
quadtree. (a) Region. (b) Binary array. (c) Block decomposition of I.Ii 
Blocks in the region are shaded. (d) Quadtree representation of the blod-
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represented region. All non-leaf nodes are said to be GRAY. The quad tree 
representation for Figure le is shown in Figure Id. 

Quadtrees can also be used to represent non-binary images. In this case1 we apply 
the same merging criteria to each color. For example1 in the case of a landuse map 1 we 
simply merge all wheat growing regions, and likewise for corn 1 rice 1 etc. This is the 
approach taken by Samet et al. [Same84bJ. 

Unfortunately, the term quadtree has taken on more than one meaning. The 
region quadtree, as shown above1 is a partition of space into a set of squares whose sides 
are all a power of two long. This formulation is due to .Klinger (Klin71) who used the 
term Q-tree [Klin76L whereas Hunter [Hunt78) was the first to use the term quadtree in 
such a context. A similar partition of space into rectangular quadrants1 also termed a 
quadtree, was used by Finkel and Bentley [Fink74J. It is an adaptation of the binary 
search tree to two dimensions (which can be easily extended to an arbitrary number of 
dimensions). It is primarily used to represent multidimensional point data. 

The origin of the principle of recursive decomposition is difficult to ascertain. 
Below, in order to give some indication of the uses of the quadtree1 we briefly trace some 
of its applications to image data. Morton fMort66J used it as a means of indexing into a 
geographic database. Warnock !Warn69] - implemented a hidden surface elimination 
algorithm using a recursive decomposition of the picture area. The picture area is 
repeatedly subdivided into successively smaller rectangles while searching for areas 
sufficiently simple to be displayed. Horowitz and Pavlidis (Horo76) used the quadtree as 
an initial $tep in a "split and merge" image segmentation algorithm. 

The pyramid of Tanimoto and Pavlidis (Tani75) is a close relative of the region 
quadtree. It is a multiresolution representation which is is an exponentially tapering stack 
of arrays, each one-quarter the size of the previous array. It has been applied to the 
problems of feature detection and segmentation. In contrast1 the region quadtree is a 
variable resolution data structure. 

Quadtree-like data structures can also be used to represent images in three 
dimensions and higher. The octree [Hunt78, Jack801 Meag82, Redd78) data structure is 
the three-dimensional analog of the quadtree. It is constructed in the following manner. 
We start with an image in the form of a cubical volume and recursively subdivide it into 
eight congruent disjoint cubes (called octants) until blocks are obtained of a uniform 
color or a predetermined level of decomposition is reached. Figure 2a is an example of a 

simple three-dimensional object whose raster octree block decomposition is given in 
Figure 2b and whose tree representation is given in Figure 2c. 

One of the motivations for the development of hierarchical data structures such 
as the quadtree is a desire to save space. The original formulation of the quadtrce 
encodes it as a tree structure that uses pointers. This requires additional overhead to 
encode the internal nodes of the tree. In order to further reduce the space requirements1 

two other approaches have been proposed. The first treats the image as a collection of 
leaf nodes where each leaf is encoded by a base 4 number termed a locational code, 
corresponding to a sequence of directional codes that locate the leaf along a path from 
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Figure 2. (a) Example three-dimensional object; (b) its octree block decomposition; and 

(c) its tree representation. 
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Figure 3. Example illustrating the 
neighboring object problem. P is the 
location of the pointing device. The 
nearest object is represented by point B in 
node 6. 
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Figure 4. Correlation between some of the 
nodes of the quadtree correspondi.ng to 
Figure I and the pixels that led to their 
creation. 



the root of the quadtree. It is analogous to taking the binary representation of the x and 
y coordinates of a designated pixel in the block (e.g. 1 the one at the lower left corner) and 
interleaving them (i.e., alternating the bits for each coordinate). It is difficult to 
determine the origin of this method (e.g., [Abe)83 1 Garg821 Klin79, Mort66]). 

The second, termed a DF-expression, represents the image in the form of a 
traversal of the nodes of its quadtree !Kawa80). It is very compact as each node type can 
be encoded with two bits. However1 it is not easy to use when random access to nodes is 
desired. Recently 1 Samet and Webber [Sa.me86) showed that for a static collection of 
nodes, an efficient implementation of the pointer-based representation is often more 
economical spacewise than a locational code representation. This is especially true for 
images of higher dimension. 

Nevertheless, depending on the particular implementation of the quadtree we may 
not necessarily save space (e.g., in many cases a binary array representation may still be 
more economical than a quadtree). However, the effects of the underlying hierarchical 
aggregation on the execution time of the algorithms are more important. Most quadtree 
algorithms are simply preorder traversals of the quad tree and, thus, their execution time 
is generally a linear function of the number of nodes in the quadtree. A key to the 
analysis of the execution time of quadtree algorithms is the Quadtree Complexity 
Theorem 1Hunt781 Hunt79] which states that: 

For a quadtree of depth q representing an image space of 2qX 2q pixels where these pix­
els represent a region whose perimeter measured in pixel-widths is p1 then the number of 
nodes in the quadtree cannot exceed 16·q-ll + 16·p. 

Since under all but the most pathological cases (e.g. 1 a small square of unit width 
centered in a large image), the region perimeter exceeds the base 2 logarithm of the width 
of the image containing the region 1 the Quadtree Complexity Theorem means that the 
size of the quadtree representation of a region is linear in the perimeter of the region. 

The Quadtree Complexity Theorem holds for three-dimensional data [Meag80} 
where perimeter is replaced by surface area1 as well as higher dimensions for which it is 
stated as follows. 

The size of the k-dimensional quadtree of a set of k-dimensional objects is proportional 
to the sum of the resolution and the size of the ( k-1 )-dimensional interfaces between 
these objects. 

The Quadtree Complexity Theorem also directly impacts the analysis of the execution 
time of algorithms. In particular, most algorithms that execute on a quadtree 
representation of an image instead of an array representation have an execution time that 
is proportional to the number of blocks in the image rather than the number of pixels. In 
its most general case 1 this means that the application of a quadtree algorithm to a 
problem in d-dimensional space executes in time proportional to the analogous array­
based algorithm in the ( d-1 )-dimensional space of the surface of the original d­
dimensional image. Therefore1 quadtrees act like dimension-reducing devices. 
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3. ALGORITHMS USING QUADTREES 

In this section 1 we describe how a number of basic image processing algorithms 
can be implemented using region quadtrees. In particular1 we discuss point and object 
location, set operations, and quadtree construction. 

3.1. POINT AND OBJECT LOCATION 

The simplest task to perform on region data is to determine the color of a given 
pixel. In the traditional array representation 1 this is achieved by exactly one array access. 
In the region quadtree, this requires searching the quadtree structure. The algorithm 
starts at the. root of the quad tree and uses the values of the x and y coordinates of the 
center of its block to determine which of the four subtrees· contains the pixel. For 
example1 if both the x and y coordinates of the pixel are less than the x and y coordinates 
of the center of the root's block, then the pixel belongs in the southwest subtree of the 
root. This process is performed recursively until a leaf is reached. It requires the 
transmission of parameters so that the center of the block corresponding to the root of 
the subtree currently being processed can be calculated. The color of that leaf is the 
color of the pixel. The execution time for the algorithm is proportional to the level of the 
leaf node containing the desired pixel. 

The object-location operation is closely related to the point-location task. In this 
case1 the x and y coordinates of the location of a pointing device ( e.g. 1 representing a 
mouse1 tablet1 lightpen, etc.) must be translated into the name of a nearby appropriate 
object (e.g., the nearest region corresponding to a specified feature). The leaf 
corresponding to the point is located as described above. If the leaf does not contain the 
f eature1 then we must investigate other leaf nodes. 

Finding the nearest leaf node containing a specific feature (also known as the 
nearest ne£ghbor problem) is achieved by a top-down recursive algorithm. Initially1 at 
each level of the recursion 1 we explore the subtree that contains the location of the 
pointing device 1 say P. Once the leaf containing P has been found, the distance from P to 
the nearest feature in the leaf is calculated (empty leaf nodes have a value of infinity). 
Next, we unwind the recursion and 1 as we do so1 at each level we search the subtrees that 
represent regions that overlap a circle centered at P whose radius is the distance to the 
closest feature that has been found so far. When more than one subtree must be 
searched1 the subtrees representing regions nearer to P are searched before the subtrees 
that are further away (since it is possible that one of them may contain the desired 
feature thereby making it unnecessary to search the subtrees that are further away). 

For example, suppose that the features are points. Consider Figure 3 and the task 
of finding the nearest neighbor of P in node 1. If we visit nodes in the order NW, NE1 

SW1 SE, then as we unwind for the first time, we visit nodes 2 and 3 and the subtrees of 
the eastern brother of 1. Once we visit node 4, there is no need to visit node 5 since node 
4 contained A. Nevertheless, we still visit node 6 which contains point B which is closer 
than A, but now there is no need to visit node 7. Unwinding one. more level finds that 
due to the distance between P and B1 there is no need to visit nodes 81 91 101 11, and 12. 
However, node 13 must be visited as it could contain a point that is closer to P than B. 
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3.2. SET OPERATIONS 

For a binary image1 set-theoretic operations such as union and intersection are 
quite simple to implement jHunt78, Hunt79, Shne81). For example, the intersection of 
two quadtrees yields a BLACK node only when the corresponding regions in both 
quadtrees are BLACK. This operation is performed by simultaneously traversing three 
quadtrees. The first two trees correspond to the trees being intersected and the third tree 
represents the result of the operation. If any of the input nodes are WHITE1 then the 
result is WHITE. When corresponding nodes in the input trees are GRAY, then their 
sons are recursively processed and a check is made for the mergibility of WHITE leaf 
nodes. The worst-case execution time of this algorithm is proportional to the sum of the 
number of nodes in the two input quadtrees. Note that as a result of actions (1) and (3), 
it is possible for the intersection algorithm to visit fewer nodes than the sum of the nodes 
in the two input quadtrees. 

The above implementation assumes that the images are in registration (i.e., they 
are with respect to the same origin). However, at times, being able to perform set 
operations on images that are not in registration is very convenient as it enables the 
execution of many other operations {Same85a). For example, windowing can be achieved 
by treating the image and the window as two distinct images, say 11 and 12, that are not 
in registration and performing a set intersection operation. In this case, I 1 is the image 
from which the window is being extracted and 12 is a BLACK image with the same size 
and origin as the window to be extracted. The quadtree corresponding to the result of the 
windowing operation has the size and position of 12, where each pixel of 12 has the value 
of the corresponding pixel of 11. 

Using the same analogy 1 we can also shift an image. Specifically, shifting an image 
is equivalent to extracting a window that is larger than the input image and having a 

different origin than that of the input image. If the image to be shifted has an origin at. 

(x,y), then shifting it by !:::.x and !:::.y means that the window is a BLACK block with an 
origin at (x-!:::. x,y-!:::. y). Similar paradigms can also be applied to rotations of images by 
arbitrary amounts (not just multiples of 90 °) [Same88c). 

3.3. CONSTRUCTING QUADTREES 

There are many algorithms for building a region quadtree. They differ in part 011 

the representation of the input data. When the data is presented in raster scan order 
(i.e., the image is processed row by row), one algorithm [Same81] uses neighbor-finding 
[Same82, Same88b] to move through the quadtree in the order in which the data is 
encountered. Such an algorithm takes time proportional to the number of pixels in the 
image. Its execution time is dominated by the time necessary to check if nodes should be 
merged. This can be avoided by using a rec~ntly developed predictive technique [Shaf87) 
which assumes the existence of a homogeneous node of maximum size whenever a pixel 
that can serve as an upper left corner of a node is scanned (assuming a raster scan frotn 
left to right and top to bottom). In such a case, the need for merging is reduced and tlH~ 

algorithm's execution time is dominated by the number of blocks in the image ratlrn1 
than by the number of pixels. However, this algorithm does require the use of an 
auxiliary one-dimensional array of size equal to the width of the image. 

338 

c 

( 



are 
I Of 
oth 
1rec 
~rec 

the 
.1Clf 

leaf 
the 
{3)) 
ides 

hey 
set 
the 
ved 
not 
age 

SIZC 

the 
due 

.age 

.g a 
l at 

1 an 
i by 

~on 

rd er 
ling 
a IS 

the 
i be 
f87J 
1ixel 
rom 
the 

th er 
an 

In order to see how the predictive algorithm works, we briefly examine the 
construction of the quadtree corresponding to Figure L We say that a node is active if at 
least one pixel (but not all of the pixels) covered by the node has been processed and it 
differs in color from a node containing it. Assume the existence of a data structure to 
keep track of the active nodes. For each pixel in the raster scan traversal (starting at the 
first row), do the following. If the pixel is the same color as the appropriate active node, 
then do nothing. Otherwise, insert the largest possible node for which this is the first 
(i.e., upper leftmost) pixel, and (if it is not a lX 1 pixel node) add it to the set of active 
nodes. Remove any active nodes for which this is the last (lower right) pixel. 

Table 1 is a trace of the values of the active nodes as the pixels that lead to the 
creation of nodes (or their removal from the active list of nodes) are processed. Each row 
in the table indicates the node that has become active (as well as its size), or the nodes 
that have been removed from the set of active nodes. In addition, the active nodes are 
tabulated according to their level. The pixel identifier ( a,b) means that the pixel is in row 
a and column b relative to an origin at the upper left corner of the image. Figure 4 
illustrates some of the nodes created during the building process by using their names to 
label the pixel that caused their creation. Figures 5a-d indicate in greater detail some of 
the steps in the construction of the quadtree. 

Table 1. Trace of the active nodes as the ouadtree for Fii:rnre la is built. 

Pixel Action Size 
Active Nodes by Level 

3 2 1 

(0,0) insert WHITE node A 8X8 A 
(2,4) insert BLACK node B 2X2 A B 
{2,6) insert BLACK node C 2X2 A BC 
{3,5) remove B from active A c 
{3,7) remove C from active A 
(4,3) insert BLACK node D lXl A 
(4,4) insert BLACK node E 4X4 A E 
(5,2) insert BLACK node F lXl A E 
(5,3) insert BLACK node G lX 1 A E 
(6,2) insert BLACK node H 2X2 A E H 
(6,6) insert WHITE node I 2X2 A E HI 
(7,3) remove H from active A EI 
(7,5) insert WHITE node J lX 1 A EI 
(7 7) remove I E A from active · 

When the first pixel of the array is processed, the entire quadtree is represented 
by a single WHITE node (node A in Figure 5a). No other insertions occur while 
processing rows 0 and 1. When the first BLACK pixel (2,4) is processed, node B of 
Figure Sa becomes active. The insertion of node B causes node A to be split and its NE 
son is split again. When BLACK pixel (2,5) is processed, node B will be located in the 
active node table since it is the smallest active node containing that pixel. 

When BLACK pixel (2,6) is processed, node C of Figure 5b becomes active, since 
only active WHITE node A contains it at that point. As row 3 is processed, nodes B and 

339 



A 

(a) 

A 

:: ) 

A 

• . 

(b) 

A 

•• 
(d} 

Figure 5. Intermediate states of the quadtree as the predictive algorithm is used to build 
the quadtree corresponding to Figure 1. (a) State after processing pixel (2,4); (b) state 
after processing pixel (2,6); (c) state after processing pixel (4,4); (d) state after processing 
pixel (6,6). 
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C are deactivated when their lower right pixels are processed (i.e., pixels (3,5) and (3 17) 
respectively). Pixel (4,3) causes the insertion of node D which resulted in two node 
splitting operations. When pixel ( 4,4) is processed, node E is inserted as shown in Figure 
Sc. The nodes previously labeled B and Care not active. Similarly, pixel-sized node D at 
(4,3) is not active since it contains no unprocessed pixels. Therefore, nodes A and E are 
the only active nodes. 

Pixels (5,2) and (5,3) cause the insertion of nodes F and G. Node H becomes 
active after processing pixel (6,2). Pixel (6,6) is WHITE and since the smallest node 
containing it had been BLACK, a WHITE node1 I, has been inserted as well as made 
active (see Figure 5d). When processing pixel (6,7) we find that three active nodes (i.e~, 
A, E, and I) contain it, with the smallest being node I. Pixel (7,3) causes node H to be 
removed from the set of active nodes. Pixel (7,5) results in the insertion of node J. Since 
pixel (717) is the lower rightmost pixel in the image, it causes the removal of all active 
nodes from the active node list (i.e., nodes I, E, and A). The final result of the quadtree 
building process is shown in Figure 4. 

Use of the predictive quad tree construction algorithm for 512X 512 images 
resulted in execution time speedups of factors as high as 40 and usually at least one order 
of magnitude [Shaf87]. This is a very important result because it means that like all 
other quadtree operations, the execution time of building a quadtree is also proportional 
to the complexity of the image. In other words, the building time is competitive with the 
time necessary to perform a set operation. 

4. RECTANGLE DATA 

The rectangle data type lies somewhere between the point and region data types. 
Rectangles are often used to approximate other objects in an image for which they serve 
as the minimum rectiHnear enclosing object. For example, bounding rectangles can be 
used in cartographic applications to approximate objects such as lakes, forests, hills, etc. 
[Mats84). In such a case, the approximation gives an indication of the existence of an 
object. Of course, the exact boundaries of the object are also stored; but they are only 
accessed if greater precision is needed. For such applications, the number of elements in 
the collection is usually small, and most often the sizes of the rectangles are of the same 
order of magnitude as the space from which they ·are drawn. 

Rectangles are also used in VLSI design rule checking as a model of chip 
components for the analysis of their proper placement. Again, the rectangles serve as 
minimum enclosing ~bjects. In this application, the size of the collection is quite large 
(e.g., millions of components) and the sizes of the rectangles are several orders of 
magnitude smaller than the space from which they are drawn. Regardless of the 
application, the representation of rectangles involves two principal issues [Same88a). The 
first is how to represent the individual rectangles and the second is how to organize the 
collection of the rectangles. . 

The representation that is used depends heavily on the problem environment. If 
the environment is static, then frequently the solutions are based on the use of the 
plane-sweep paradigm [Prep85], which usually yields optimal solutions in time and space. 
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However, the addition of a single object to the database forces the re-execution of the 
algorithm on the entire database. We are primarily interested in dynamic problem 
environments. The data structures that are chosen for the collection of the rectangles are 
differentiated by the way in which each rectangle is represented. 

One representation reduces each rectangle to a point in a higher dimensional 
space, and then treats the problem as if we have a collection of points. This is the 
approach of Hinrichs and Nievergelt IHinr83, Hinr85j. Each rectangle is a Cartesian 
product of two one-dimensional intervals where each interval is represented by its 
centroid and extent. The collection of rectangles is1 in turn, represented by a grid file 
[Niev84L which is a hierarchical data structure for points. 

The second representation is region-based in the sense that the subdivision of the 
space from which the rectangles are drawn depends on the physical extent of the 
rectangle - not just one point. Representing the collection of rectangles, in turn 1 with a 
tree-like data structure has the advantage that there is a relation between the depth of 
node in the tree and the size of the rectangle(s) that are associated with it. Interestingly, 
some of the region-based solutions make use of the same data structures that are used in 
the solutions based on the plane-sweep paradigm. In the remainder of this section, we 
give an example of a pair of region-based representations. 

The MX-GIF quadtree of Kedem (Kede81} (see also Abel and Smith [Abel83}) is a 

region-based representation where each rectangle is associated with the quadtree node 
corresponding to the smallest block which contains it in its entirety. Subdivision ceases 
whenever a node>s block contains no rectangles. Alternatively, subdivision can also cease 
once a quadtree block is smaller than a predetermined threshold size. This threshold is 
often chosen to be equal to the expected size of the rectangle [Kede81}. For example, 
Figure 6 is the Ivrx-OIF quadtree for a collection of rectangles. Note that rectangle F 
occupies an entire block and hence it is associated with the block 1s father. Also rectangles 
can be associated with both terminal and non-terminal nodes. 

It should be clear that more than one rectangle can be associated with a given 
enclosing block and, thus, often we find it useful to be able to differentiate between them. 
Kedem proposes to do so in the following manner. Let P be a quadtree node with centroid 
(eX,CY), and let S be the set of rectangles that are associated with P. Members of Sare 
organized into two sets according to their intersection (or collinearity of their sides) with 
the lines passing through the centroid of P's block - i.e., all members of S that intersect 
the line X= ex form one set and all members of s that intersect the line y= CY form the 
other set. 

If a rectangle intersects both lines (i.e., it contains the centroid of P's block)1 then 
we adopt the convention that it is stored with the set associated with the line through 
x= ex. These subsets are imp1emented as binary trees (really tries), which in actuality 
are one-dimensional analogs of the .MX-CIF quadtree. For example1 Figure 7 illustrates 
the binary tree associated with the y axes passing through the root and the NE son of the 
root of the MX-CIF quadtree of Figure 6. Interestingly, the MX-CIF quadtree is a two­
dimensional analog of the interval tree [Edel80, McCr80], which is a data structure that 
is used to support optimal solutions based on the plane-sweep paradigm to some 
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Figure 6. 1v1X-CIF quadtree. (a) Collection of rectangles and the block decomposition 
induced by the :tvIX-CIF quadtree. (b) The tree representation of (a). 
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Figure. 7. Binary trees for the y axes passing through (a) the root of the :MX-CIF 
quadtree in Figure 6 and (b) the NE son of the root of the :tvfX-CIF quadtree in Figure 6. 
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rectangle problems. 

The R-tree [Gutt84] is a hierarchical data structure that is derived from the B­
tree f Come79}. Each node in the tree is a d-dimensional rectangle corresponding to the 
smallest. rectangle t.hat encloses its son nodes which are also d-dimensional rectangles, 
The leaf nodes are the actual rectangles in the database. Often, the nodes correspond to 
disk pages and 1 thus, the parameters defining the tree are chosen so that a small number 
of nodes is visited during a spatial query. Note that rectangles corresponding to different 
nodes may overlap. 

Also, a rectangle may be spatially contained in several nodes, yet it can only be 
associat.ed with one node. This means that a spatial query may often require several 
nodes to be visited before ascertaining the presence or absence of a particular rect.angle. 
This problem can be alleviated by using the R+ -tree {Falo87 1 SeB87} for which aff 
bounding rectangles (i.e., at levels other than t.he leaf) are non-overlapping. This means 
that a given rectangle will often be associated with several bounding rectangles. In this 
case 1 retrieval time is sped up at the cost of an increase in the height of the tree. Note 
that B-tree performance guarantees are not valid for the R+ -tree - i.e., pages are not. 
guaranteed to be 50% fuH without very complicated record update procedures. 

5. LINE DATA 

Section 3 was devoted to the region quadtree, an approach to region 
representation that is based on a description of the region's interior. In this section, we 
focus on a representation that specifies the boundaries of regions. We concentrate on use 
of the PM qua<ltree family (Same85b, Nels86J (see also edge-EXCELL (Tamm81}) in the 
represent.ation of collections of polygons (termed polygonal rnaps). There are a number of 
variants of the PM quad tree. These variants are either vertex-based or edge-based. They 
are all built by applying the principle of repeatedly breaking up the coHection of vertices 
and edges (forming the polygonal map) until obtaining a subset that is sufficiently simple 
so that it can be organized by some other data structure. 

The Plvf quadtrees of Samet and Webber (Same85b} are vertex-based. We 
iJJustrate the P1v11 quadtree. It is based on a decomposition rule stipulating that, 
partitioning occurs as long as a block contains more than one line segment unless the line 
segments are all incident at the same vertex which is also in the same block (e.g., Figure 
8). 

Samet, Shaffer, and Webber fSame87J show how to compute the maximum depth 
of the PM1 qua,<ltree for a polygonal map in a Jimited, but typical 1 environment. They 
consider a polygonal map whose vertices are drawn from a grid (say 2nx 2n)1 and do not. 
permit edges to intersect at points other than the grid points (i.e. 1 vertices). In such a 
case, the depth of any leaf node is bounded from above by 4n+ 1. This enables a. 
determination of t.he maximum amount of storage that will be necessary for each node. 

A similar representation has been devised for three-dimensional images (Ayal85, 
Carl851 Fuji85, Hunt81, Nava86, Quin82 1 Tamm8l 1 Vand84). The decomposition criteria 
are such that no node contains more than one face, edge 1 or vertex unless the faces all 
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Figure 9. (a) Example three-dimensional object; and (b) its corresponding PM1 octree. 



meet at the same vertex or are adjacent to the same edge. For example, Figure 9b is a 
PM1 octree decomposition of the object in Figure 9a. This representation is quite useful 
since its space requirements for polyhedral objects are significantly smaller than those of 
a conventional octree. 

The PMR quadtree 1Nels86) is an edge-based variant of the PM quadtree. It. 
makes use of a probabilistic splitting rule. A node is permitted to contain a variable 
number of line segments. A line segment is stored in a PMR quadtree by inserting it int.o 
the nodes corresponding to all the blocks that it intersects. During this process, the 
occupancy of each node that is intersected by the line segment is c,-iecked to see if thr 
insertion causes it to exceed a predetermined splitting threshold. If the splitting threshold 
is exceeded, then the node's block is split once, and only once, into four equal quadrants. 

On the other hand, a line segment is deleted from a PMR quadtree by removing ii 
from the nodes corresponding to all the blocks that it intersects. During this process, the 
occupancy of the node and its siblings is checked to see if the deletion causes the total 
number of line segments in them to be less than the predetermined splitting threshold. H 
the splitting threshold exceeds the occupancy of the node and its siblings, then they ari· 

merged and the merging process is reapplied to the resulting node and its siblings. Notin 
the asymmetry between the splitting and merging rules. 

Members of the PM quadtree family can be easily adapted to deal with fragments 
that result from set operations such as union and intersection so that there is no dat,a 
degradation when fragments of line segments are subsequently recombined. Their us1· 

yields an exact representation of the lines - not an approximation. To see how this is 
achieved, let us define a q-edge to be a segment of an edge of the original polygonal map 
that either spans an entire block in the PM quadtree or extends from a boundary of :i 

block to a vertex within the block (i.e. 1 when the block contains a vertex). 

Each q-edge is represented by a pointer to a record containing the endpoints of 
the edge of the polygonal map of which the q-edge is a part (Nels86J. The line segment 
descriptor stored in a node only implies the presence of the corresponding q-edge - it 
does not mean that the entire line segment is present as a lineal feature. The result is :1 

consistent representation of line fragments since they are stored exactly and1 thus, they 
can be deleted and reinserted without worrying about errors arising from the roundoffs 
induced by approximating their intersection with the borders of the blocks through which 
they pass. 

6. CONCLUDING REMARKS 

The use of hierarchical data structures in image databases enables the focussing of 
computational resources on the interesting subsets of data. Thus, there is no need to 
expend work where the payoff is small. Although many of the operations for which they 
are used can often be performed equally as efficiently, or more so, with other data 
structures, hierarchical data structures are attractive because of their conceptual clarity 
and ease of implementation. 
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When' the hierarchical ,data structures 'are, based on the principle of regular 
decomposition, we have the added benefit of a spatial index. All features, be they regions, 
points1 rectangles, lines, volumes1 etc., can be represented by maps which are in 
registration. In fact, such a system has been built {Same84b] for representing geographic 
information. In this case, the quadtree is implemented as a collection of leaf nodes where 
each leaf node is represented by its locational code. The collection is in tum represented 
as a B-tree [Come79). There are leaf nodes corresponding to region, point, and line data. 

The disadvantage of quadtree meth-ods isthat they are shift sensitive in the sense 
that their space requirements are dependent on the position of the origin. However, for 
complicated imag~s theo.optimal positioning of the origin will 'Usually lead to: little 
improvement in the space requirements. The process of obtaining this~optimal positioning 
is computationally expensive and is usually not worth the eff9rt [Li82). 

The fact that we are wot king in a digitized space may -also lead to problems. For 
example, the rotation operation is not generally invertible. In particular1 a rotated square 
usually cannot be. represented- accurately by a collection of rectilinear squares. However,' 
when we rotate by 90 °, then the rotation is inv_ertible; This problem arises whenever one 
uses a digitized representation. Thus, it is also common to the array representation. 
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