
AN OVERVIEW OF HIERARCHICAL SPATIAL DATA STRUCTURES

Hanan Samet
Computer Science Department,

Center for Automation Research, and
Institute for Advanced Computer Studies

University of Mary land
College Park, Maryland 20742

Abstract

An overview, with an emphasis on recent results, is presented of the use of
hierarchical spatial data structures such as the quadtree. They are based on the principle
of recursive decomposition. The focus is on the representation of data used in image
databases. There is a greater emphasis on region data (i.e., 2-dimensional shapes) and to
a lesser extent on point, curvilinear, and 3-dimensional data.

*The support of the National Science Foundation under Grant IRI-88-02457 is gratefully ack­
nowledged.

331

1. INTRODUCTION

Hierarchical data structures are important representation techniques in the
domains of computer vision, image processing, computer graphics, robotics, and
geographic information systems. They are based on the principle of recursive
decomposition (similar to divide and conquer methods). The term quadtree is often used
to describe this class of data structures. In this paper} we focus on recent developments in
the use of quadtree methods. We concentrate primarily on region data. For a more
extensive treatment of this subject, see {Same84a, Same88a, Same88b, Same88c,
Same88d, Same89a, Same89b).

Our presentation is organized as follows. Section 2 briefly reviews the historical
background of the origins of hierarchical data structures. Section 3 discusses
improvements in the performance of some key operations on region data. Sections 4 and
5 describe hierarchical representations for r~ctangle and line data, respectively 1 as well a:;

give examples of their utility. Section 6 contains concluding remarks in the context of a

geographic information system that makes use of these concepts.

2. HISTORICAL BACKGROUND

The term quadtree is used to describe a class of hierarchical data structures whose
common property is that they are based on the principle of recursive decomposition of
space. They can be differentiated on the following bases: (1) the type of data that they
are used to represent, (2) the principle guiding the decomposition process, and (3) tlw
resolution (variable or not). Currently, they are used for points, rectangles, region::;,
curves, surfaces1 and volumes. The decomposition may be into equal parts on each level
(termed a regular decomposit£on), or it may be governed by the input. The resolution of
the decomposition (i.e., the number of times that the decomposition process is applied)
may be fixed beforehand or it may be governed by properties of the input data.

The most common quadtree representation of data is the region quadtree. It is
based on the successive subdivision of the image array into four equal-size quadrants. If
the array does not consist entirely of ls or entirely of Os (i.e., the region does not cover
the entire array), it is then subdivided into quadrants, subquadrants, etc., until block:->
are obtained (possibly single pixels) that consist entirely of ls or entirely of Os. Thus, tlw
region quadtree can be characterized as a variable resolution data structure.

As an example of the region quad tree, consider the region shown in Figure I a

which is represented by the 23X 23 binary array in Figure lb. Observe that the b

correspond to picture elements (termed pixels) that are in the region and the Ox
correspond to picture elements that are outside the region. The resulting blocks for thr
array of Figure lb are shown in Figure le. This process is represented by a tree of degree
4.

In the tree representation, the root node corresponds to the entire array. Each
son of a node represents a quadrant (labeled in order NW, NE, SW, SE) of the region
represented by that node. The leaf nodes of the tree correspond to those blocks for which
no further subdivision is necessary. A leaf node is said to be BLACK or WHITE,
depending on whether its corresponding block is entirely inside or entirely outside of tlu·

332

l
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 I I
0 0 0 0 I I
O· 0 0 I I I
0 0 I I I I
0 0 I I I I
0 0 I I I 0

(a) (b)

A
Level 3 ---------------

NW

Level 2 ---
1

Level I--------

Level 0 - - -- - - - - - - - - - - - - -

{d)

0 0
0 0
I I
I I
I I
I I
0 0
0 0

7 8 9 10

Figure 1. A region, its binary array, its maximal blocks, and f.111·
quadtree. (a) Region. (b) Binary array. (c) Block decomposition of I.Ii
Blocks in the region are shaded. (d) Quadtree representation of the blod-

333

2 3

11!1Htl~~

(c)

15 rs 11 rs

represented region. All non-leaf nodes are said to be GRAY. The quad tree
representation for Figure le is shown in Figure Id.

Quadtrees can also be used to represent non-binary images. In this case1 we apply
the same merging criteria to each color. For example1 in the case of a landuse map 1 we
simply merge all wheat growing regions, and likewise for corn 1 rice 1 etc. This is the
approach taken by Samet et al. [Same84bJ.

Unfortunately, the term quadtree has taken on more than one meaning. The
region quadtree, as shown above1 is a partition of space into a set of squares whose sides
are all a power of two long. This formulation is due to .Klinger (Klin71) who used the
term Q-tree [Klin76L whereas Hunter [Hunt78) was the first to use the term quadtree in
such a context. A similar partition of space into rectangular quadrants1 also termed a
quadtree, was used by Finkel and Bentley [Fink74J. It is an adaptation of the binary
search tree to two dimensions (which can be easily extended to an arbitrary number of
dimensions). It is primarily used to represent multidimensional point data.

The origin of the principle of recursive decomposition is difficult to ascertain.
Below, in order to give some indication of the uses of the quadtree1 we briefly trace some
of its applications to image data. Morton fMort66J used it as a means of indexing into a
geographic database. Warnock !Warn69] - implemented a hidden surface elimination
algorithm using a recursive decomposition of the picture area. The picture area is
repeatedly subdivided into successively smaller rectangles while searching for areas
sufficiently simple to be displayed. Horowitz and Pavlidis (Horo76) used the quadtree as
an initial $tep in a "split and merge" image segmentation algorithm.

The pyramid of Tanimoto and Pavlidis (Tani75) is a close relative of the region
quadtree. It is a multiresolution representation which is is an exponentially tapering stack
of arrays, each one-quarter the size of the previous array. It has been applied to the
problems of feature detection and segmentation. In contrast1 the region quadtree is a
variable resolution data structure.

Quadtree-like data structures can also be used to represent images in three
dimensions and higher. The octree [Hunt78, Jack801 Meag82, Redd78) data structure is
the three-dimensional analog of the quadtree. It is constructed in the following manner.
We start with an image in the form of a cubical volume and recursively subdivide it into
eight congruent disjoint cubes (called octants) until blocks are obtained of a uniform
color or a predetermined level of decomposition is reached. Figure 2a is an example of a

simple three-dimensional object whose raster octree block decomposition is given in
Figure 2b and whose tree representation is given in Figure 2c.

One of the motivations for the development of hierarchical data structures such
as the quadtree is a desire to save space. The original formulation of the quadtrce
encodes it as a tree structure that uses pointers. This requires additional overhead to
encode the internal nodes of the tree. In order to further reduce the space requirements1

two other approaches have been proposed. The first treats the image as a collection of
leaf nodes where each leaf is encoded by a base 4 number termed a locational code,
corresponding to a sequence of directional codes that locate the leaf along a path from

334

A

567891011-12

Figure 2. (a) Example three-dimensional object; (b) its octree block decomposition; and

(c) its tree representation.

8 9 2 3 .
D

10 II I 4A. 5

.c P· ~B 7

12 13

Figure 3. Example illustrating the
neighboring object problem. P is the
location of the pointing device. The
nearest object is represented by point B in
node 6.

335

•
ii'

Figure 4. Correlation between some of the
nodes of the quadtree correspondi.ng to
Figure I and the pixels that led to their
creation.

the root of the quadtree. It is analogous to taking the binary representation of the x and
y coordinates of a designated pixel in the block (e.g. 1 the one at the lower left corner) and
interleaving them (i.e., alternating the bits for each coordinate). It is difficult to
determine the origin of this method (e.g., [Abe)83 1 Garg821 Klin79, Mort66]).

The second, termed a DF-expression, represents the image in the form of a
traversal of the nodes of its quadtree !Kawa80). It is very compact as each node type can
be encoded with two bits. However1 it is not easy to use when random access to nodes is
desired. Recently 1 Samet and Webber [Sa.me86) showed that for a static collection of
nodes, an efficient implementation of the pointer-based representation is often more
economical spacewise than a locational code representation. This is especially true for
images of higher dimension.

Nevertheless, depending on the particular implementation of the quadtree we may
not necessarily save space (e.g., in many cases a binary array representation may still be
more economical than a quadtree). However, the effects of the underlying hierarchical
aggregation on the execution time of the algorithms are more important. Most quadtree
algorithms are simply preorder traversals of the quad tree and, thus, their execution time
is generally a linear function of the number of nodes in the quadtree. A key to the
analysis of the execution time of quadtree algorithms is the Quadtree Complexity
Theorem 1Hunt781 Hunt79] which states that:

For a quadtree of depth q representing an image space of 2qX 2q pixels where these pix­
els represent a region whose perimeter measured in pixel-widths is p1 then the number of
nodes in the quadtree cannot exceed 16·q-ll + 16·p.

Since under all but the most pathological cases (e.g. 1 a small square of unit width
centered in a large image), the region perimeter exceeds the base 2 logarithm of the width
of the image containing the region 1 the Quadtree Complexity Theorem means that the
size of the quadtree representation of a region is linear in the perimeter of the region.

The Quadtree Complexity Theorem holds for three-dimensional data [Meag80}
where perimeter is replaced by surface area1 as well as higher dimensions for which it is
stated as follows.

The size of the k-dimensional quadtree of a set of k-dimensional objects is proportional
to the sum of the resolution and the size of the (k-1)-dimensional interfaces between
these objects.

The Quadtree Complexity Theorem also directly impacts the analysis of the execution
time of algorithms. In particular, most algorithms that execute on a quadtree
representation of an image instead of an array representation have an execution time that
is proportional to the number of blocks in the image rather than the number of pixels. In
its most general case 1 this means that the application of a quadtree algorithm to a
problem in d-dimensional space executes in time proportional to the analogous array­
based algorithm in the (d-1)-dimensional space of the surface of the original d­
dimensional image. Therefore1 quadtrees act like dimension-reducing devices.

336

t----

LH~~

}~'c~c

3. ALGORITHMS USING QUADTREES

In this section 1 we describe how a number of basic image processing algorithms
can be implemented using region quadtrees. In particular1 we discuss point and object
location, set operations, and quadtree construction.

3.1. POINT AND OBJECT LOCATION

The simplest task to perform on region data is to determine the color of a given
pixel. In the traditional array representation 1 this is achieved by exactly one array access.
In the region quadtree, this requires searching the quadtree structure. The algorithm
starts at the. root of the quad tree and uses the values of the x and y coordinates of the
center of its block to determine which of the four subtrees· contains the pixel. For
example1 if both the x and y coordinates of the pixel are less than the x and y coordinates
of the center of the root's block, then the pixel belongs in the southwest subtree of the
root. This process is performed recursively until a leaf is reached. It requires the
transmission of parameters so that the center of the block corresponding to the root of
the subtree currently being processed can be calculated. The color of that leaf is the
color of the pixel. The execution time for the algorithm is proportional to the level of the
leaf node containing the desired pixel.

The object-location operation is closely related to the point-location task. In this
case1 the x and y coordinates of the location of a pointing device (e.g. 1 representing a
mouse1 tablet1 lightpen, etc.) must be translated into the name of a nearby appropriate
object (e.g., the nearest region corresponding to a specified feature). The leaf
corresponding to the point is located as described above. If the leaf does not contain the
f eature1 then we must investigate other leaf nodes.

Finding the nearest leaf node containing a specific feature (also known as the
nearest ne£ghbor problem) is achieved by a top-down recursive algorithm. Initially1 at
each level of the recursion 1 we explore the subtree that contains the location of the
pointing device 1 say P. Once the leaf containing P has been found, the distance from P to
the nearest feature in the leaf is calculated (empty leaf nodes have a value of infinity).
Next, we unwind the recursion and 1 as we do so1 at each level we search the subtrees that
represent regions that overlap a circle centered at P whose radius is the distance to the
closest feature that has been found so far. When more than one subtree must be
searched1 the subtrees representing regions nearer to P are searched before the subtrees
that are further away (since it is possible that one of them may contain the desired
feature thereby making it unnecessary to search the subtrees that are further away).

For example, suppose that the features are points. Consider Figure 3 and the task
of finding the nearest neighbor of P in node 1. If we visit nodes in the order NW, NE1

SW1 SE, then as we unwind for the first time, we visit nodes 2 and 3 and the subtrees of
the eastern brother of 1. Once we visit node 4, there is no need to visit node 5 since node
4 contained A. Nevertheless, we still visit node 6 which contains point B which is closer
than A, but now there is no need to visit node 7. Unwinding one. more level finds that
due to the distance between P and B1 there is no need to visit nodes 81 91 101 11, and 12.
However, node 13 must be visited as it could contain a point that is closer to P than B.

337

3.2. SET OPERATIONS

For a binary image1 set-theoretic operations such as union and intersection are
quite simple to implement jHunt78, Hunt79, Shne81). For example, the intersection of
two quadtrees yields a BLACK node only when the corresponding regions in both
quadtrees are BLACK. This operation is performed by simultaneously traversing three
quadtrees. The first two trees correspond to the trees being intersected and the third tree
represents the result of the operation. If any of the input nodes are WHITE1 then the
result is WHITE. When corresponding nodes in the input trees are GRAY, then their
sons are recursively processed and a check is made for the mergibility of WHITE leaf
nodes. The worst-case execution time of this algorithm is proportional to the sum of the
number of nodes in the two input quadtrees. Note that as a result of actions (1) and (3),
it is possible for the intersection algorithm to visit fewer nodes than the sum of the nodes
in the two input quadtrees.

The above implementation assumes that the images are in registration (i.e., they
are with respect to the same origin). However, at times, being able to perform set
operations on images that are not in registration is very convenient as it enables the
execution of many other operations {Same85a). For example, windowing can be achieved
by treating the image and the window as two distinct images, say 11 and 12, that are not
in registration and performing a set intersection operation. In this case, I 1 is the image
from which the window is being extracted and 12 is a BLACK image with the same size
and origin as the window to be extracted. The quadtree corresponding to the result of the
windowing operation has the size and position of 12, where each pixel of 12 has the value
of the corresponding pixel of 11.

Using the same analogy 1 we can also shift an image. Specifically, shifting an image
is equivalent to extracting a window that is larger than the input image and having a

different origin than that of the input image. If the image to be shifted has an origin at.

(x,y), then shifting it by !:::.x and !:::.y means that the window is a BLACK block with an
origin at (x-!:::. x,y-!:::. y). Similar paradigms can also be applied to rotations of images by
arbitrary amounts (not just multiples of 90 °) [Same88c).

3.3. CONSTRUCTING QUADTREES

There are many algorithms for building a region quadtree. They differ in part 011

the representation of the input data. When the data is presented in raster scan order
(i.e., the image is processed row by row), one algorithm [Same81] uses neighbor-finding
[Same82, Same88b] to move through the quadtree in the order in which the data is
encountered. Such an algorithm takes time proportional to the number of pixels in the
image. Its execution time is dominated by the time necessary to check if nodes should be
merged. This can be avoided by using a rec~ntly developed predictive technique [Shaf87)
which assumes the existence of a homogeneous node of maximum size whenever a pixel
that can serve as an upper left corner of a node is scanned (assuming a raster scan frotn
left to right and top to bottom). In such a case, the need for merging is reduced and tlH~

algorithm's execution time is dominated by the number of blocks in the image ratlrn1
than by the number of pixels. However, this algorithm does require the use of an
auxiliary one-dimensional array of size equal to the width of the image.

338

c

(

are
I Of
oth
1rec
~rec

the
.1Clf

leaf
the
{3))
ides

hey
set
the
ved
not
age

SIZC

the
due

.age

.g a
l at

1 an
i by

~on

rd er
ling
a IS

the
i be
f87J
1ixel
rom
the

th er
an

In order to see how the predictive algorithm works, we briefly examine the
construction of the quadtree corresponding to Figure L We say that a node is active if at
least one pixel (but not all of the pixels) covered by the node has been processed and it
differs in color from a node containing it. Assume the existence of a data structure to
keep track of the active nodes. For each pixel in the raster scan traversal (starting at the
first row), do the following. If the pixel is the same color as the appropriate active node,
then do nothing. Otherwise, insert the largest possible node for which this is the first
(i.e., upper leftmost) pixel, and (if it is not a lX 1 pixel node) add it to the set of active
nodes. Remove any active nodes for which this is the last (lower right) pixel.

Table 1 is a trace of the values of the active nodes as the pixels that lead to the
creation of nodes (or their removal from the active list of nodes) are processed. Each row
in the table indicates the node that has become active (as well as its size), or the nodes
that have been removed from the set of active nodes. In addition, the active nodes are
tabulated according to their level. The pixel identifier (a,b) means that the pixel is in row
a and column b relative to an origin at the upper left corner of the image. Figure 4
illustrates some of the nodes created during the building process by using their names to
label the pixel that caused their creation. Figures 5a-d indicate in greater detail some of
the steps in the construction of the quadtree.

Table 1. Trace of the active nodes as the ouadtree for Fii:rnre la is built.

Pixel Action Size
Active Nodes by Level

3 2 1

(0,0) insert WHITE node A 8X8 A
(2,4) insert BLACK node B 2X2 A B
{2,6) insert BLACK node C 2X2 A BC
{3,5) remove B from active A c
{3,7) remove C from active A
(4,3) insert BLACK node D lXl A
(4,4) insert BLACK node E 4X4 A E
(5,2) insert BLACK node F lXl A E
(5,3) insert BLACK node G lX 1 A E
(6,2) insert BLACK node H 2X2 A E H
(6,6) insert WHITE node I 2X2 A E HI
(7,3) remove H from active A EI
(7,5) insert WHITE node J lX 1 A EI
(7 7) remove I E A from active ·

When the first pixel of the array is processed, the entire quadtree is represented
by a single WHITE node (node A in Figure 5a). No other insertions occur while
processing rows 0 and 1. When the first BLACK pixel (2,4) is processed, node B of
Figure Sa becomes active. The insertion of node B causes node A to be split and its NE
son is split again. When BLACK pixel (2,5) is processed, node B will be located in the
active node table since it is the smallest active node containing that pixel.

When BLACK pixel (2,6) is processed, node C of Figure 5b becomes active, since
only active WHITE node A contains it at that point. As row 3 is processed, nodes B and

339

A

(a)

A

::)

A

• .

(b)

A

••
(d}

Figure 5. Intermediate states of the quadtree as the predictive algorithm is used to build
the quadtree corresponding to Figure 1. (a) State after processing pixel (2,4); (b) state
after processing pixel (2,6); (c) state after processing pixel (4,4); (d) state after processing
pixel (6,6).

340

I

I

C are deactivated when their lower right pixels are processed (i.e., pixels (3,5) and (3 17)
respectively). Pixel (4,3) causes the insertion of node D which resulted in two node
splitting operations. When pixel (4,4) is processed, node E is inserted as shown in Figure
Sc. The nodes previously labeled B and Care not active. Similarly, pixel-sized node D at
(4,3) is not active since it contains no unprocessed pixels. Therefore, nodes A and E are
the only active nodes.

Pixels (5,2) and (5,3) cause the insertion of nodes F and G. Node H becomes
active after processing pixel (6,2). Pixel (6,6) is WHITE and since the smallest node
containing it had been BLACK, a WHITE node1 I, has been inserted as well as made
active (see Figure 5d). When processing pixel (6,7) we find that three active nodes (i.e~,
A, E, and I) contain it, with the smallest being node I. Pixel (7,3) causes node H to be
removed from the set of active nodes. Pixel (7,5) results in the insertion of node J. Since
pixel (717) is the lower rightmost pixel in the image, it causes the removal of all active
nodes from the active node list (i.e., nodes I, E, and A). The final result of the quadtree
building process is shown in Figure 4.

Use of the predictive quad tree construction algorithm for 512X 512 images
resulted in execution time speedups of factors as high as 40 and usually at least one order
of magnitude [Shaf87]. This is a very important result because it means that like all
other quadtree operations, the execution time of building a quadtree is also proportional
to the complexity of the image. In other words, the building time is competitive with the
time necessary to perform a set operation.

4. RECTANGLE DATA

The rectangle data type lies somewhere between the point and region data types.
Rectangles are often used to approximate other objects in an image for which they serve
as the minimum rectiHnear enclosing object. For example, bounding rectangles can be
used in cartographic applications to approximate objects such as lakes, forests, hills, etc.
[Mats84). In such a case, the approximation gives an indication of the existence of an
object. Of course, the exact boundaries of the object are also stored; but they are only
accessed if greater precision is needed. For such applications, the number of elements in
the collection is usually small, and most often the sizes of the rectangles are of the same
order of magnitude as the space from which they ·are drawn.

Rectangles are also used in VLSI design rule checking as a model of chip
components for the analysis of their proper placement. Again, the rectangles serve as
minimum enclosing ~bjects. In this application, the size of the collection is quite large
(e.g., millions of components) and the sizes of the rectangles are several orders of
magnitude smaller than the space from which they are drawn. Regardless of the
application, the representation of rectangles involves two principal issues [Same88a). The
first is how to represent the individual rectangles and the second is how to organize the
collection of the rectangles. .

The representation that is used depends heavily on the problem environment. If
the environment is static, then frequently the solutions are based on the use of the
plane-sweep paradigm [Prep85], which usually yields optimal solutions in time and space.

341

However, the addition of a single object to the database forces the re-execution of the
algorithm on the entire database. We are primarily interested in dynamic problem
environments. The data structures that are chosen for the collection of the rectangles are
differentiated by the way in which each rectangle is represented.

One representation reduces each rectangle to a point in a higher dimensional
space, and then treats the problem as if we have a collection of points. This is the
approach of Hinrichs and Nievergelt IHinr83, Hinr85j. Each rectangle is a Cartesian
product of two one-dimensional intervals where each interval is represented by its
centroid and extent. The collection of rectangles is1 in turn, represented by a grid file
[Niev84L which is a hierarchical data structure for points.

The second representation is region-based in the sense that the subdivision of the
space from which the rectangles are drawn depends on the physical extent of the
rectangle - not just one point. Representing the collection of rectangles, in turn 1 with a
tree-like data structure has the advantage that there is a relation between the depth of
node in the tree and the size of the rectangle(s) that are associated with it. Interestingly,
some of the region-based solutions make use of the same data structures that are used in
the solutions based on the plane-sweep paradigm. In the remainder of this section, we
give an example of a pair of region-based representations.

The MX-GIF quadtree of Kedem (Kede81} (see also Abel and Smith [Abel83}) is a

region-based representation where each rectangle is associated with the quadtree node
corresponding to the smallest block which contains it in its entirety. Subdivision ceases
whenever a node>s block contains no rectangles. Alternatively, subdivision can also cease
once a quadtree block is smaller than a predetermined threshold size. This threshold is
often chosen to be equal to the expected size of the rectangle [Kede81}. For example,
Figure 6 is the Ivrx-OIF quadtree for a collection of rectangles. Note that rectangle F
occupies an entire block and hence it is associated with the block 1s father. Also rectangles
can be associated with both terminal and non-terminal nodes.

It should be clear that more than one rectangle can be associated with a given
enclosing block and, thus, often we find it useful to be able to differentiate between them.
Kedem proposes to do so in the following manner. Let P be a quadtree node with centroid
(eX,CY), and let S be the set of rectangles that are associated with P. Members of Sare
organized into two sets according to their intersection (or collinearity of their sides) with
the lines passing through the centroid of P's block - i.e., all members of S that intersect
the line X= ex form one set and all members of s that intersect the line y= CY form the
other set.

If a rectangle intersects both lines (i.e., it contains the centroid of P's block)1 then
we adopt the convention that it is stored with the set associated with the line through
x= ex. These subsets are imp1emented as binary trees (really tries), which in actuality
are one-dimensional analogs of the .MX-CIF quadtree. For example1 Figure 7 illustrates
the binary tree associated with the y axes passing through the root and the NE son of the
root of the MX-CIF quadtree of Figure 6. Interestingly, the MX-CIF quadtree is a two­
dimensional analog of the interval tree [Edel80, McCr80], which is a data structure that
is used to support optimal solutions based on the plane-sweep paradigm to some

B
A

I C
-----L--- -

I

D

(a)

G

E

{AlE}

(b)

Figure 6. 1v1X-CIF quadtree. (a) Collection of rectangles and the block decomposition
induced by the :tvIX-CIF quadtree. (b) The tree representation of (a).

/\
D B

E

(a) (b)

Figure. 7. Binary trees for the y axes passing through (a) the root of the :MX-CIF
quadtree in Figure 6 and (b) the NE son of the root of the :tvfX-CIF quadtree in Figure 6.

343

rectangle problems.

The R-tree [Gutt84] is a hierarchical data structure that is derived from the B­
tree f Come79}. Each node in the tree is a d-dimensional rectangle corresponding to the
smallest. rectangle t.hat encloses its son nodes which are also d-dimensional rectangles,
The leaf nodes are the actual rectangles in the database. Often, the nodes correspond to
disk pages and 1 thus, the parameters defining the tree are chosen so that a small number
of nodes is visited during a spatial query. Note that rectangles corresponding to different
nodes may overlap.

Also, a rectangle may be spatially contained in several nodes, yet it can only be
associat.ed with one node. This means that a spatial query may often require several
nodes to be visited before ascertaining the presence or absence of a particular rect.angle.
This problem can be alleviated by using the R+ -tree {Falo87 1 SeB87} for which aff
bounding rectangles (i.e., at levels other than t.he leaf) are non-overlapping. This means
that a given rectangle will often be associated with several bounding rectangles. In this
case 1 retrieval time is sped up at the cost of an increase in the height of the tree. Note
that B-tree performance guarantees are not valid for the R+ -tree - i.e., pages are not.
guaranteed to be 50% fuH without very complicated record update procedures.

5. LINE DATA

Section 3 was devoted to the region quadtree, an approach to region
representation that is based on a description of the region's interior. In this section, we
focus on a representation that specifies the boundaries of regions. We concentrate on use
of the PM qua<ltree family (Same85b, Nels86J (see also edge-EXCELL (Tamm81}) in the
represent.ation of collections of polygons (termed polygonal rnaps). There are a number of
variants of the PM quad tree. These variants are either vertex-based or edge-based. They
are all built by applying the principle of repeatedly breaking up the coHection of vertices
and edges (forming the polygonal map) until obtaining a subset that is sufficiently simple
so that it can be organized by some other data structure.

The Plvf quadtrees of Samet and Webber (Same85b} are vertex-based. We
iJJustrate the P1v11 quadtree. It is based on a decomposition rule stipulating that,
partitioning occurs as long as a block contains more than one line segment unless the line
segments are all incident at the same vertex which is also in the same block (e.g., Figure
8).

Samet, Shaffer, and Webber fSame87J show how to compute the maximum depth
of the PM1 qua,<ltree for a polygonal map in a Jimited, but typical 1 environment. They
consider a polygonal map whose vertices are drawn from a grid (say 2nx 2n)1 and do not.
permit edges to intersect at points other than the grid points (i.e. 1 vertices). In such a
case, the depth of any leaf node is bounded from above by 4n+ 1. This enables a.
determination of t.he maximum amount of storage that will be necessary for each node.

A similar representation has been devised for three-dimensional images (Ayal85,
Carl851 Fuji85, Hunt81, Nava86, Quin82 1 Tamm8l 1 Vand84). The decomposition criteria
are such that no node contains more than one face, edge 1 or vertex unless the faces all

344

A 8

H

G
F c

Figure 8. Example PM1 quadtree.

(a)

{b)

Figure 9. (a) Example three-dimensional object; and (b) its corresponding PM1 octree.

meet at the same vertex or are adjacent to the same edge. For example, Figure 9b is a
PM1 octree decomposition of the object in Figure 9a. This representation is quite useful
since its space requirements for polyhedral objects are significantly smaller than those of
a conventional octree.

The PMR quadtree 1Nels86) is an edge-based variant of the PM quadtree. It.
makes use of a probabilistic splitting rule. A node is permitted to contain a variable
number of line segments. A line segment is stored in a PMR quadtree by inserting it int.o
the nodes corresponding to all the blocks that it intersects. During this process, the
occupancy of each node that is intersected by the line segment is c,-iecked to see if thr
insertion causes it to exceed a predetermined splitting threshold. If the splitting threshold
is exceeded, then the node's block is split once, and only once, into four equal quadrants.

On the other hand, a line segment is deleted from a PMR quadtree by removing ii
from the nodes corresponding to all the blocks that it intersects. During this process, the
occupancy of the node and its siblings is checked to see if the deletion causes the total
number of line segments in them to be less than the predetermined splitting threshold. H
the splitting threshold exceeds the occupancy of the node and its siblings, then they ari·

merged and the merging process is reapplied to the resulting node and its siblings. Notin
the asymmetry between the splitting and merging rules.

Members of the PM quadtree family can be easily adapted to deal with fragments
that result from set operations such as union and intersection so that there is no dat,a
degradation when fragments of line segments are subsequently recombined. Their us1·

yields an exact representation of the lines - not an approximation. To see how this is
achieved, let us define a q-edge to be a segment of an edge of the original polygonal map
that either spans an entire block in the PM quadtree or extends from a boundary of :i

block to a vertex within the block (i.e. 1 when the block contains a vertex).

Each q-edge is represented by a pointer to a record containing the endpoints of
the edge of the polygonal map of which the q-edge is a part (Nels86J. The line segment
descriptor stored in a node only implies the presence of the corresponding q-edge - it
does not mean that the entire line segment is present as a lineal feature. The result is :1

consistent representation of line fragments since they are stored exactly and1 thus, they
can be deleted and reinserted without worrying about errors arising from the roundoffs
induced by approximating their intersection with the borders of the blocks through which
they pass.

6. CONCLUDING REMARKS

The use of hierarchical data structures in image databases enables the focussing of
computational resources on the interesting subsets of data. Thus, there is no need to
expend work where the payoff is small. Although many of the operations for which they
are used can often be performed equally as efficiently, or more so, with other data
structures, hierarchical data structures are attractive because of their conceptual clarity
and ease of implementation.

346

When' the hierarchical ,data structures 'are, based on the principle of regular
decomposition, we have the added benefit of a spatial index. All features, be they regions,
points1 rectangles, lines, volumes1 etc., can be represented by maps which are in
registration. In fact, such a system has been built {Same84b] for representing geographic
information. In this case, the quadtree is implemented as a collection of leaf nodes where
each leaf node is represented by its locational code. The collection is in tum represented
as a B-tree [Come79). There are leaf nodes corresponding to region, point, and line data.

The disadvantage of quadtree meth-ods isthat they are shift sensitive in the sense
that their space requirements are dependent on the position of the origin. However, for
complicated imag~s theo.optimal positioning of the origin will 'Usually lead to: little
improvement in the space requirements. The process of obtaining this~optimal positioning
is computationally expensive and is usually not worth the eff9rt [Li82).

The fact that we are wot king in a digitized space may -also lead to problems. For
example, the rotation operation is not generally invertible. In particular1 a rotated square
usually cannot be. represented- accurately by a collection of rectilinear squares. However,'
when we rotate by 90 °, then the rotation is inv_ertible; This problem arises whenever one
uses a digitized representation. Thus, it is also common to the array representation.

ACKNOWLEDGMENTS

This work was supported by the National 'Science Foundation under Grant DCR-
8802457. I would like to acknowledge the many valuable discussions that I have had with
Michael B. Dillencourt, Randal C. Nelson, Azriel Rosenfeld, Clifford A. Shaff er, Markku
Tamminen, and Robert E. Webber. ·

REFERENCES

1. {Abel83J - D.J. Abel and J.L. Smith, A data structure and- algorithm based on a linear
key for a rectangle retrieval problem, Computer Vision, Graph£cs, and Image Processing
£4, !(October 1983)1 1-13.

2. (Ayal85] - D. Ayala, P. Brunet, R. Juan, and I. Navazo, Object representation by
means of nonminimal division quadtrees and octrees, ACM Transactions on Graphics ../,
!(January 1985), 41~59.

3. [Carl85} - I. Carlbom, I. Chakravarty, and D. Vanderschel, A hierarchical data
structure for representing the spatial decomposition of 3-D objects, IEEE Computer
Graphics and Applications 51 4(April 1985), 24-31.

4. [Come79) - D. Comer, The Ubiquitous B-tree, ACM Computing Surveys 11, 2(June
1979), 121-137.

5. [Edel80) - H. Edelsbrunner, Dynamic rectangle intersection searching, Institute- for
Information Processing Report 47, Technical University of Graz, Graz, Austria, February
1980.

347

6. [FaJo87] - C. Faloutsos, T. Sellis, and N. Roussopoulos, Analysis of object oriented
spatial access methods, Proceedings of the SJGMOD Conj erence, San Francisco, May
1987, 426-439.

7. [Fink74J - R.A. Finkel and J.L. Bentley, Quad trees: a data structure for retrieval on
composite keys, Acta Informat£ca 4, 1(1974), l-'-9.

8. {Fuji85) - K. Fujimura and T.L. Kunii, A hierarchical space indexing method,
Proceedings of Computer Graphics'85, Tokyo, 1985, Tl-4, 1-14.

9. (Garg82J - I. Gargantini, An effective way to represent quadtrees, Communications of
the ACM 25, 12(December 1982), 905-910.

IO. [Gutt84] - A. Guttman, R-trees: a dynamic index structure for spatial searching,
Proceedings of the SJGMOD Conference, Boston, June 1984, 47-57.

11. fHinr85J - K. Hinrichs, The grid file system: implementation and case studies of
applications, Ph.D. dissertation, Institut fur Informatik, ETH, Zurich, Switzerland, 1985.

12. {Hinr83] - K. Hinrichs and J. Nievergelt, The grid file: a data structure designed to
support proximity queries on spatial objects, Proceedings of the WG'89 (International
Workshop on Graphtheoretic Concepts in Computer Science), M. Nagl and J. Perl, Eds.,
Trauner Verlag, Linz, Austria, 1983, 100-113.

13. [Horo76) - S.L. Horowitz and T. Pavlidis, Picture segmentation by a tree traversal
algorithm, Journal of the ACM £9, 2(April 1976), 368-388.

14. /Hunt78J -. G.M. Hunter, Efficient comput.ation and data structures for graphics,
Ph.D. dissertation, Department of Electrical Engineering and Computer Science,
Princeton University, Princeton, NJ, 1978.

15. [Hunt81 J - G.M. Hunter, Geometrees for interactive visualization of geology: an
evaluation, System Science Department, Schlumberger-Doll Research, Ridgefield, CT,
1981.

16. [Hunt79J - G.M. Hunter and K. Steiglitz, Operations on images using quad trees,
IEEE Transactions on Pattern Analysis and Machine Intell£gence 1, 2(April 1979), 145-
153.

17. [Jack80J - C.L. Jackins and S.L. Tanimoto, Oct-trees and their use in representing
three-dimensional objects, Computer Graphics and Image Processing 14, 3(November
1980), 249-270.

18. {Kawa80] - E. Kawaguchi and T. Endo, On a method of binary picture
representation and its application to data compression, IEEE Transactions on Pattern
Analysis and Mach£ne Intelligence £, 1(January 1980), 27-35.

19. [Kede81J - G. Kedem, The Quad-CIF tree: a data structure for hierarchical on-line

348

algorithms, Proceedings of the Nineteenth Design Automation Conference, Las Vegas,
June 1982, 352-357.

20. [Klin71] - A. Klinger, Patterns and Search Statistics, in Optimizing Methods in

Stat£stics, J.S. Rustagi, Ed. 1 Academic Press, New York, 1971, 303-337.

21. [Klin76) - A. Klinger and C.R. Dyer, Experiments in picture representation using
regular decomposition, Computer Graphics and Image Processing 5, l(March 1976), 68-
105.

22. [Klin79J - A. Klinger and M.L. Rhodes, Organization and access of image data by
areas, IEEE Transactions on Pattern Analyst's and Machine Intelligence 11 l(January
1979), ·S0-60.

23. [Li82j - M. ·Li, W.I. Grosky, and R. Jain, Normalized quadtrees with respect to
translations, Computer Graph£cs and Image Processing 20, l(September 1982), 72-81.

24. [Mats84] - T. Matsuyama, L.V. Hao1 and M. Nagao, A file organization for
geographic information systems based on spatial proximity, Computer Vision, Graphics,
and Image Processing 26, 3(June 1984), 303-318.

25. (McCr80J - E.M. McCreight, Efficient algorithms for enumerating intersecting
intervals and rectangles, Xerox Palo Alto Research Center Report CSL-80-09, Palo Alto,
California, June 1980.

26. [Meag80] - D. Meagher, Octree encoding: a new technique for the representation,
The manipulation, and display of arbitrary 3-d objects by computer, Technical Report
IPL-TR-80-111 1 Image Processing Laboratory, Rensselaer Polytechnic Institute, Troy,
New York, October 1980.

27. [Meag82J - D. Meagher, Geometric modeling using octree encoding, Computer
Graphi"cs and Image Processi'ng 19, 2(June 1982), 129-147.

28. [Mort66) - G.M. Morton, A computer oriented geodetic data base and a new
technique in file sequencing, IBM Ltd., Ottawa, Canada, 1966.

29. !Nava.86] - I. Navazo, Contribucio a les tecniques de modelat geometric d 1objectes
poliedrics usant la codificacio amb arbres octals, Ph.D. dissertation, Escola Tecnica
Superior d'Enginyers Industrials, Department de Metodes Informatics, Universitat
Politechnica de Barcelona, Barcelona, Spain, January 1986.

30. [Nels86] - R.C. Nelson and H. Samet, A consistent hierarchical representation for
vector data, Computer Graphics 20, 4(August 1986), pp. 197-206 (also Proceedings of the
SIGGRAPH'86 Conference, Dallas, August 1986).

31. [Niev84J - J. Nievergelt, H. Hinterberger, and K.C. Sevcik, The Grid File: an
adaptable, symmetric multikey file structure, ACM Transactions on Database Systems 9,
l(March 1984), 38-71.

349

32~ .. / [Prep85j< ~·c~F;p; Preparata>and iMJ. iShamos1 Oo.mputational Geometry: A,n
lntroductio'(l, Springer-Verlag, New York, 1985.'

33. {Quin82} •'-'·KM. Quinlan and J;R. Woodwark, A spatially-segmented solids database
- justification and design:;:Proceedings .·of CAJJ. 82 Gonferencei. Butterworth, Guildford;
United Kingdpm, Hl82, 126d32.

34;•i~' •(Redd78J °"' D.R.R.eddy.and.KRubin; Representation;of .th.re.e-.;dimensionaliobjects,
_CMU-CS-78-J13,. Gompµter ... Science Pepartment, Carnegie-Mellon University~

Pittsburgh 1 April 1978.

35.•· : !Same81} >"" · H.?Samett'An··algorithm for. converting rasters· to .quadtrees,;
Transactions on Pattern Analysis and Machine Intelligence 81 l{January 1981); 93~95.C:

36. [Same82J· :-~ . • R~ Samet1 ·. Neighbor finding techniques:for~. images r~presentea
quadtrees, Computer 'Graphics· and Image Pr.oce~Bing 181 l(January 1982)1 37-57;

37,; [Same84a}>- H. •Satnet1JI'he quad tree and·related hierarchical; data/ struptures,A CM; ·
Computing Burveys 18j 2(June J984);d87.:.-260;'•

38. . [SaJI}e88~] : H. Samet, .Hierarchical representations of collections of.small rectangles,
t,q:' appear· "in /!DM Computing SurveysA also· Univ'ersity,.of MatylandJQom putet Science.<
·TR,H967:).'

39. [Sarne~8b} ..., H. Samet, Neighbor findingin images r.epresented by octrees, Computer
Science}FR~l968j.• lJniversitJ< of:MarylaJ1<i, GollegecPark1 MD, ·January 1988.

40 .. ; ·;[Same89a;):. ·+; H. ·Samet, · Pundamen.tals /cf :Spatial: Data lStructures:· fJuaatreesJ ;;
.Octrees;·.and ·Other H_ierarchical.M~thods1 Addison~Wei?ley1 R,eading~:MA11989.

4l.":: {Sanie89l>J ,..;., • H. · Samett-Applicatiqns, of Spatial.JJ.ata Structures: Quadtrees,. OCtrees,f~
and Other<Hierarchical Methods, ::Addisdn,;We5ley;' ;Readingr·MAt.1989.

- - -_ - -- - - .--_--:-

42;·~·{Same85aj·-c-H.Samet,A.Rosenfeld,~C.A.·Shaffer,.R.C.NelsonlY-G. Huang1,and ro.·
Fujimura, Application of hierarchicaLdafa structures toi geographic:information systems~
phase IV, ·Computer Science TR:-1578, University of Maryland; College Park 1 Mf);
December.1985.< · ·. 1• .•

43-.;• (Same84b}: -H<Samet;:.A. Rosenfeld,·C.A:Shaffer, and.R:E.c Webber1 ·-Jt·geographie
information system . using quadtrees, Battern ·,Recognition' '1..7, ,;6 (Noveinher/Dec~mQ~ ·
J984), ·647-656.

44'•\ '{Same87}+·H: Samet;::C.A. Shaffel)•and RE. Webber;-Digitizing the,pl3Jnewith:cel
of non-:-uniform size, In/0.rmation Proc.essingLetter,s24, 06(April1987)1i.369~~w.:,c'

45~ ... f Skme85nJ. "'"',, H .. Samet·· andifftE: .. We.}Jherv;Stoiingt a 'collection of polygons usi
ql1adtreesiAGMTransactions on,Graphicii-4t3(July11985)f182-'-222 :(also;Proceedingsr·
Computer Vision and Pattern Recognition 89, Washington, DC1 June 1983,.{127432?1i:D-_

350

University of Maryland Computer Science TR-1372).

46. [Same86J - H. Samet and R.E. Webber, A comparison of the space requirements of
multi-dimensional quadtree-ba.sed file structures Computer Science TR-1711 1 University
of Maryland, College Park, MD, September 1986.

47. [Same88cJ - H. Samet and R.E. Webber, Hierarchical data structures and algorithms
for computer graphics. Part I. Fundamentals, IEEE Computer Graphics and Applications
8, 3{May 1988), 48-68.

48. {Same88d) - H. Samet and R.~. Webber, Hierarchical data structures and algorithms
for computer graphics. Part Il. Applications, IEE$ Computer Graphics and Applications
8, 4{July 1988), 59-75. .

49. [Sell87) - T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+ -tree: a dynamic
index for multi-dimensional objects, Computer Science TR-1795, University qf
Maryland, College Park, MD, February 1987.

50. [Shaf87) - C.A. Shaffer and H. Samet, Optimal quadtree construction algorithms,
Computer Vision, Graphics, a'(td Image Prqcessing :87, 3(March 1987), 102-419.

51. . [Shne81 J. ·• - ·. Jvf' S~nejer, .· Calcu_la~ions of. g~o111~tric · .. properties using quad trees,
Computer Graphics ·and Image Processing 16, 3(Julf 1981), 296.:...302~-

52. [Tamm81] - M. Tamminen, The EXCELL method. for efficient geornetric acce5s to
data, Acta Polytechnica Scandinavica, M.athematics. and. Cpmputer Science·. Series No. 34,
Helsinki, 1981. ·. ·

53. jTani75} - S. Tanimoto and T. Pavlidis, A hierarchical data structure for picture
processing, Computer Graphics and Image [>roces§ing ,/., 2(June 1975), 104-,-119.

54. [Vand84) - D.J. Vanderschel; Divided leaf octal trees, Research Note, Schlumberger­
Doll Research, Ridgefield, CT, March 1984.

55. [Warn69) - J.L. Warnock, A hidden surface algorithm for computer generated half
tone pictures, Computer Science -Department TR. 4-lS, University ofUtah, Salt Lake
City, June, 1969.

351

