
Connected Component Labeling Using Quadtrees

HANAN SAMET

Universuy of Maryland, College Park, Maryland

ABSTRACT. An algorithm is presented for labehng the connected components of an image represented by
a quadtree. The algorithm proceeds by exploring all possible adjacenoes for each node once and only
once. As soon as this ~s done, any equivalences generated by the adjacency labeling phase are propagated
Analysis of the algorithm reveals that its average executmn tune ~s of the order (W + B.log B) where B
and W correspond to the number of blocks comprising the foreground and background, respecuvely, of
the image

KEY WORDS AND PHRASES: quadtrees, unage processing, pattern recognition, connecuvity

CR CATEGORIES: 3.63, 8.2

1. Introduction

Connected component labeling [13, 14] is the process of identifying the disjoint
elements of an image (e.g., the regions labeled 1-5 are the connected components of
the image in Figure I a). As such, it is a basic operation in image processing and is
applied once the image has been segmented (e.g., the separation of object points
from the background on the basis of a threshold value). Segmentation is the first step
in processing an image and customarily results in the labeling of object points with
a l and background points with a 0. Algorithms for object counting generally involve
a connected component labeling process, even if this process is not explicit.

The most common representations used in image processing are the binary array
and the run-length representation [14]. Using these representations, connected com-
ponent labeling involves scanning the image by rows and forming equivalence
classes. These equivalence classes are subsequently merged and the image's compo-
nents labeled accordingly. This procedure has execution time on the order of the
area (i.e., number of picture elements) plus the time required to process equivalences.

The quadtree is an approach to region representation which is based on the
successive subdivision of an image array into quadrants. It results in the representa-
tion of an image as a collection of maximal blocks of standard sizes and positions
(powers of 2). It can be quite compact and lends itself to set operations such as union
and intersection [5, 6], as well as the computation of various region properties [5-8]
(see below for a more formal definition of a quadtree). It was first proposed by
Klinger [1, 8]; compare also [4, 12, 16, 17]. Recently it has been used by Hunter and
Steiglitz [5-7] in the domain of computer graphics, and also in [3, 15] for cartographic
applications.

Permission to copy wRhout fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the pubhcaUon
and its date appear, and notice is given that copying is by permission of the AssociaUon for Computing
Machinery. To copy otherwise, or to repubhsh, reqmres a fee and/or specific permission.
This work was sponsored by the Defense Advanced Research Projects Agency and the U.S. Army Night
Vismn Laboratory under Contract DAAG-53-76C-0138 (DARPA Order 3206).
Author's address Computer Science Department, University of Maryland, College Park, MD 20742
© 1981 ACM 0004-5411/81/0400-0487 $00 75

Journal of the Assoctatton for Computing Machinery, Vol 28, No 3, July 198 I, pp 487-501

488 HANAN SAMET

z-. ~/~/,..~ ;~

e I I o

g~

o

0

..~

0 ~.~

0

E

<

~2

490 HANAN SAMET

More formally, the quadtree is defined as follows. Without loss of generality,
assume that the given binary image is a 2 n by 2 n array of unit square "pixels." If the
image does not cover the entire array, then we subdivide the array into quadrants,
subquadrants until we obtain blocks (possibly single pixels) that are entirely
contained in the region or entirely disjoint from it (i.e., all l 's or O's, respectively).
This process is represented by a tree of outdegree 4 in which the root node represents
the entire array. The four sons of the root node represent the quadrants, and the leaf
nodes correspond to those blocks of the array for which no further subdivision is
necessary. Since the array was assumed to be 2 n by 2 n, the tree height is at most n. It
should be clear that the representation does not depend on the image containing
only one region. As an example, Figure lb is a block decomposition of the region in
Figure la, while Figure lc is the corresponding quadtree. In general, BLACK and
WHITE square nodes are leaf nodes corresponding to blocks consisting entirely of
l 's and O's, respectively. Circular nodes, also termed GRAY nodes, denote nonter-
minal nodes.

In the following sections we present and analyze an algorithm for labeling the
connected components of an image represented by a quadtree. It is based on an
analogy with the method used in conjunction with the binary array representation.
Included is a formal description of the algorithm along with motivating considera-
tions. The actual algorithm is given using a variant of ALGOL 60 [11].

2. Definitions and Notation

Let each node in a quadtree be stored as a record containing seven fields. The first
five fields contain pointers to the node's father and its four sons, labeled NW, NE,
SE, and SW. Give a node P and a son L these fields are referenced as FATHER(P)
and SON(P, I), respectively. At times it is useful to use the function SONTYPE(P),
where SONTYPE(P) = Q iff SON(FATHER(P), Q) = P. The sixth field, named
NODETYPE, describes the contents of the block of the image which the node
represents--that is, WHITE, if the block contains no l's; BLACK, if the block
contains only l's; and GRAY, if it contains pixels of both types. Alternatively,
BLACK and WHITE nodes are terminal nodes, while GRAY nodes are nonterminal
nodes. The seventh field, named REGION, identifies the connected component
containing the block represented by the node. This field is only meaningful for
BLACK nodes. It is set as a result of the connected component labeling algorithm.
LABELED(P) indicates whether node P has already been labeled.

Let the four sides of a node's block be called its N, E, S, and W sides. They are
also termed its boundaries, and at times we speak of them as if they are directions
(e.g., in Figure 1, node 3 is node l's neighbor in the southern direction). The
interrelationship between a block's four quadrants and its sides is facilitated by use
of the predicate ADJ and the function REFLECT. ADJ(B, I) is true if and only if
quadrant I is adjacent to side B of the node's block; for example, ADJ(N, NE)
is true. REFLECT(B, I) yields the SONTYPE value of the block of equal size
that is adjacent to side B of a block having SONTYPE value I; for example,
REFLECT(W, NW) = NE, REFLECT(E, NW) -- NE, REFLECT(N, NW) --
SW, and REFLECT(S, NW) = SW. Figure 2 shows the relationship between the
quadrants of a node and its boundaries.

Given a quadtree corresponding to a 2 n by 2 n array, we say that the root node is
at level n, and that a node at level i is at a distance of n - i from the root of the tree.
In other words, for a node at level i we must ascend n - i FATHER links to reach
the root of the tree. Note that the farthest node from the root of the tree is at
level _>0.

Connected Component Labeling Using Quadtrees

N

N W NE

W
SW SE

FIG 2

E

S

Relattonshtp between a block's four
quadrants and its boundaries

491

3. Informal Description of the Algorithm

The connected component labeling algorithm has three phases. The first phase
traverses the tree and explores all possible adjacencies between pairs of BLACK
nodes. During this process all BLACK nodes are labeled. Should any equivalences
be discovered between regions already labeled, then their component identifiers are
added to a list of pairs of equivalences. Once the entire tree is traversed in this
manner, the second phase processes pairs of equivalences to yield equivalence classes
(e.g., [9, 18]). Finally, the third phase traverses the tree one more time, assigning the
same component identifier (i.e., label) to all members of an equivalence class.

Phase one traverses the tree in postorder (i.e., the sons of a node are visited first).
In particular, the sons are visited in the order NW, NE, SW, and SE. For each
BLACK terminal node, say P, we explore the eastern and southern adjacencies. This
means that all of the node's BLACK adjacent southern and eastern neighbors are
visited. If they have not been previously visited, then they are labeled with the label
of P. If P does not already have a label, then it is assigned the label of one of its
adjacent neighbors if it has a label. If adjacent BLACK nodes have already been
assigned labels that are different, then the labels are added to the list of equivalences
that will be merged in the second phase.

The key to the algorithm is that phase one ensures that every adjacency of two
BLACK nodes will be explored once and only once. To see this, note that the
traversal starts at the NW-most son, if possible, and the brothers are traversed in the
order NW, NE, SW, and SE. Clearly, by the time any BLACK node is visited, its
northern and western adjacencies have already been explored. Thus the northern
and western adjacencies need not be reexplored. This is because each node labels all
of its adjacent eastern and southern neighbors.

As an example of the application of the algorithm, consider the image given in
Figure la. Figure lb is the corresponding block decomposition, and Figure lc is its
quadtree representation. All of the BLACK nodes have numbers ranging between 1
and 41, while the WHITE nodes have numbers ranging between 42 and 91. The
BLACK nodes have been numbered in the order in which they were labeled by phase
one. The WHITE nodes have been numbered in the order in which they were visited
(i.e., the argument to procedure LABEL). Thus node 1 has been labeled before nodes
2, 3, etc. Figure 3 shows the labels assigned to the five components. Phase two of the
algorithm will merge the equivalence pair B ~ D to form component 4 and the
equivalence pairs F ~ G and G ~ H to form component 5.

4. Formal Statement of the Algorithm
The following ALGOL-like procedures specify the connected component labeling
algorithm. Actually, we only present the procedures corresponding to the first and
third phases of the algorithm. Phase two can be achieved by using a variant of
Algorithm E in [9, p. 354].

492 HANAN SAMET

I
IB

BI
BI

E E

IB

B

G
HIH G

I

111111
IIIII!

F: F

F F

G F

FIG. 3. Result of the apphcation of phase one to Figure lb.

The main procedure is termed COMPONENT and is invoked with a pointer to
the root of the quadtree representing the image. The global variable MERGES is
used to accumulate all the equivalence relations formed by adjacent BLACK nodes.
MERGES is subsequently processed by phase two to yield a set of equivalence
classes--that is, one class per component. LABEL implements phase one by tra-
versing the tree and controlling the exploration of adjacent BLACK nodes.
GTEQUAL_.ADJ__~EIGHBOR locates a neighboring node of greater or equal
size along a specified side of a given node's corresponding block. If no such
neighboring BLACK or WHITE node exists, then GTEQUAL__ADJ__
NEIGHBOR returns a pointer to a GRAY node of equal size. If this is also
impossible, then the node is adjacent to the border of the image, and NULL is
returned. In the case of a GRAY node, procedure LABEL__.ADJACENT continues
the search recursively by examining all BLACK and WHITE adjacent neighbors of
smaller size. Otherwise, LABEL__ADJACENT assigns a label to the adjacent
neighbor if it is BLACK. Unique labels are generated by procedure GENREGION
(not given here) and assigned by procedure ASSIG~._._LABEL. Procedure UPDATE
corresponds to phase three and results in the postorder traversal of the tree in order
to propagate the equivalences, thereby uniquely labeling each component.

procedure COMPONENT(QUADTREE),
/*Label all of the connected components of the tree rooted at QUADTREE*/

value node QUADTREE;
pairlist MERGES;
MERGES ~ empty;
LABEL(QUADTREE),
Process eqmvalences specified by MERGES,
UPDATE(QUADTREE);

end;

procedure LABEL(P),
/*Assign labels to node P and its sons*/

Connected Component Labeling Using Quadtrees

begin
value node P;
node Q,
quadrant I,
if GRAY(P) then

begin
for I in {'NW', 'NE', 'SW', 'SE'} do LABEL(SON(P, I));

end
else if BLACK(P) then

begin
Q ~-- GTEQUAL__ADJ_.~EIGHBOR(P, 'E');
if not NULL(Q) then LABEL_ADJACENT(Q, 'NW', 'SW', P),
Q ~ GTEQUAL__ADJ__~EIGHBOR(P, 'S');
if not NULL(Q) then LABEL__ADJACENT(Q, 'NW', 'NE', P);
if not LABELED(P) then REGION(P) ~ GENREGION (),

end
else re turn, /*A WHITE node*/

end;

493

node procedure GTEQUAL__ADJ__~EIGHBOR(P, D);
/ , Return the neighbor of node P m horizontal or vertical direction D which is greater than or equal m size
to P. If such a node does not exist, then a GRAY node of equal size is returned If this is also impossible,
then the node is adjacent to the border of the tmage and NULL is returned*/
begin

value node P;
node Q,
value direction D,
if (not NULL(FATHER(P))) and ADJ(D, SONTYPE(P)) then

/*Fred a common ancestor*/
Q ~- GTEQUAL__ADJ__NEIGHBOR(FATHER(P), D)

else Q ~ FATHER(P);
/*Follow the reflected path back to locate the neighbor*/
return (if not NULL(Q) and GRAY(Q) then SON(Q, REFLECT(D, SONTYPE(P)))

else Q),
end,

procedure LABEL__ADJACENT(R, Q1, Q2, P),
/ ,F red all descendants of node R adjacent to node P--1 e , in quadrants QI and Q2*/
begin

value node P, R,
value quadrant Q l, Q2,
if GRAY(R) then

begin
LABEL__ADJACENT(SON(R, Ql), QI, Q2, P),
LABEL_ADJACENT(SON(R, Q2), QI, Q2, P),

end
else if BLACK(R) then ASSIGN__LABEL(P, R)
else r e tu rn , / ,A WHITE node*/

end,

procedure ASSIGN__LABEL(P, Q),
/*Assign a label to nodes P and Q if they do not already have one If both have different labels, then enter
them m MERGES*/
begin

value node P, Q,
if LABELED(P) and LABELED(Q) then

begin
if REGION(P) # REGION(Q) then add (REGION(P), REGION(Q)) to MERGES,

end
else if LABELED(P) then REGION(Q) ~-- REGION(P)

494 HAMAN SAMET

FIo 4. Sample component shapes and the labels that they generate.

else if LABELED(Q) then REGION(P) ~ REGION(Q)
else REGION(P) <--- REGION(Q) ~ GENREGION();

end;

procedure UPDATE(P);
/*Propagate the equivalences represented by MERGES m the quadtree rooted at P*/
hegin

value node P;
quadrant I;
if GRAY(P) then

begin
for I in {'NW', 'NE', 'SW', 'SE'} do UPDATE(SON(P, I));

end
else if BLACK(P) then REGION(P) ~-- LOOKUP (REGION(P), MERGES)
else return;/*A WHITE node*/

end;

5. Analysis

The running time of the connected component labeling algorithm is determined by
the time necessary to execute its three phases. Prior to analyzing this value we first
examine the spatial configurations confronted by the algorithm and how they affect
its execution time. It should be clear that the greater the number of BLACK nodes,
the more time is spent exploring adjacencies in phase one. Phase two is more
dependent on the shapes of the various components. The execution time of phase
two is dominated by the number of equivalence pairs that are generated in phase
one. An equivalence pair is generated whenever an adjacency of a previously labeled
node is explored and it is found that the adjacent neighbor has already been assigned
a different label.

The situation giving rise to the generation of an equivalence pair can be best seen
by examining Figure 4. Components 1-3 do not result in the generation of equiva-
lence pairs because of the manner in which phase one explores adjacencies--that is,
in the eastern and southern directions, thereby processing the quadrants in the order
NW, NE, SW, SE. Thus for components 1-3 we see that the nodes or blocks

Connected Component Labeling Using Quadtrees

= l
I
W
m

495

FIG. 5. Sample image demonstrating the maxunum number
of nodes that must be visited for an adjacency.

comprising the quadtree are processed in the order in which they are adjacent.
However, this is not always the case for a component having the form of component
4 in Figure 4 (in this case we have the equivalence of D and E). This is especially
true when the vertical and horizontal segments are not comprised of single blocks.
For example, in the image represented by Figure l a we fred that no equivalence
pairs were generated for the components 1-3, whereas this was not true for the
components 4 and 5. In particular, as demonstrated in Figure 3, we have the
equivalences B --- D for component 4 and F ~- G and G ~- H for component 5. Note
that if the block labeled 40 had been WHITE rather than BLACK, then block 41
would have been labeled with G and no equivalence pair would have been generated.

Phase one depends on the speed of the combination of procedures
LABEL__ADJACENT and GTEQUAL__ADJ__~EIGHBOR. These procedures
are invoked in phase one (i.e., in procedure LABEL) twice as many times as one has
BLACK nodes. The actual amount of work performed by these procedures is more
accurately represented by considering the number of nodes that are visited when an
adjacency is being explored. Recall that we must find the neighbor, and, if it is
GRAY, then visit all adjacent neighbors of a smaller size. In the worst case we are
at level n - 1, with a GRAY neighbor and all adjacent neighbors at level 0. In such
a case we must visit 2 n nodes. For example, consider Figure 5 where n = 3 and we
wish to visit the blocks adjacent to the block labeled/I (i.e., blocks B, C, D, and E).
We must visit the root of the quadtree as well as A's neighboring GRAY node and
all of its NW and SW sons-- that is, a complete binary tree of height 2 (termed A's
adjacency tree in [5]). In total, 2 a = 8 nodes are visited. In general, let the space be
partitioned into a 2" by 2 n array. Assume a random image in the sense that a BLACK
node is equally likely to appear in any position and level in a quadtree. This means
that we assume that all neighbor pairs (i.e., configurations of adjacent nodes of
varying sizes) have equal probability. This is different from the more conventional
notion of a random image which implies that every block at level 0 (i.e., pixel) has
an equal probability of being BLACK or WHITE. Such an assumption would lead
to a very low probability of any nodes corresponding to blocks of size larger than 1.

4 9 6 H A N A N S A M E T

Clearly, for such an image the quadtree is the wrong representation. We have the
following result.

THEOREM 1. The average o f the m a x i m u m number o f nodes visited by
L A B E L _ A D J A C E N T is f ire.

PROOF. Given a node P at level i and a direction D, there is a maximum of 2 n- ' .
(2"-' - 1) neighbor pairs. 2"- ' . 2 o have their nearest common ancestor at level n, 2"- ' .
21 at level n - 1 and 2"- ' . 2 "-'-1 at level i + 1. For each node at level i having
a common ancestor at level j , the maximum number of nodes that will be visited by
GTEQUAL__ADJ__NEIGHBOR and SUM ADJACENT is

l

(j - i) + (j - i - 1)+ X 2 k = 2 " (j - i - 1) + 2 '+1
k--O

This is obtained by observing that the common ancestor is at a distance o f j - i and
that a node at level i has a maximum of 2' adjacent neighbors (all appearing at level
0). Assuming that node P is equally likely to occur at any level i and at any of the
2"- ' . (2"-' - 1) positions at level i, then the average of the maximum number of
nodes visited by GTEQUAL__ADJ___NEIGHBOR and SUM__ADJACENT is

X.-l~,. 2n-,. ,--0 2.aj=,+l 2 n-J. (2. (j -- i -- 1) + 2 '+1)
(l)

X,L-o 1 2"- ' . (2"-' - 1)

Expression (1) can be rewritten to yield

E~¢o ~ E'~=~-' 22n-2'-lW " (2j + 2 '+1)
(2)

X,Lo 2 ' . (2 ' - 1)

The numerator of (2) can be rewritten as follows:
n--1 n - - l - - , j n--1 n - - l - - t 1
X 22"-2" -~0 ~ + X 22n-'" X 2--5" (3)
t -O y ,=0 j=O

B u t

Also,

" - 1 - ' i n + l - i
2 ~5 = 2 - J 2,-1-, (4)

j --0

Substituting (4) and (5) into (3) yields

2 2n-a 2 ~'.=l~ + . 2 1 -
l~O

n-1 n + 1 2 ,+1 t n-i 1 n-1 •
= 2 2 " + 1 " ~ o ~ 7 - 2 " + 1 " ~ o - - ' ~ 7 - - + " X ~,=o

n-l 1
+ 22"+1 • Y. ~7 - n . 2n+k

,--0

(5)

(6)

B u t

,_20 ~ - 5 4 - ~ (7)

Connected Component Labeling Using Quadtrees

Making use of (7) in (6) leads to

22n-2' 2 - 2,_1_ , + • 2 1 -
z~O

=22n+1 4 (. ~ . l - - ~ l) - - 2 n + Z . (n + 1) . (1 - - T n)

~'h':-;] + 22'~+z " n .

= 2 0 22 n (3 n + 2) . 2 n÷1 8
3 3"

The denominator of (2) can be simplified as follows:
n

~ 2 ' . (2 ~ - 1) = ~ 4 ' - ~ 2 '
tR0 t--0 L--0

4 n+x- 1
- - - (2 n + l - 1)

3

1 =-.(22n+2 - 3 . 2 "41 + 2).
3

Substituting (8) and (9) into (2) yields

~t. 22n _ (3n + 2). 2 n+l -
~ . (2 2n+2 - - 3 . 2 n+l + 2)

497

(8)

(9)

3 . (3 n + 7) . 2 n÷l+ 18
= 5 - - 22n+z - 3 • 2 n÷l + 2

= 5 as n gets large

_< 5. Q.E.D.

The speed of phase two of the algorithm depends on the method used for processing
equivalence relations and on the number of pairs of equivalences and different
objects of the set on which the equivalences are defined. We use a variant of
Algorithm E presented in [9, p. 354]. The basis of this algorithm is the construction
of a set of trees such that each tree corresponds to an equivalence class. In particular,
the root of the tree denotes the head of the equivalence class, while its subtrees
correspond to members of the equivalence class. Algorithm E has a maximum
execution time that is proportional to the square of the number of equivalence pairs.
It can be speeded up by use of the following rules [9, p. 572]. The weighting rule
ensures that whenever two equivalence classes are merged, the class containing the
fewest elements is made a subtree of the tree corresponding to the other class. The
collapsing rule stipulates that whenever the head of an equivalence class is sought
(i.e., the appropriate tree is searched), all nodes accessed during the process are made
direct sons of the nodes corresponding to the head of the equivalence class. Using
such methods, equivalences can be processed in time proportional to the product of
the number of equivalence pairs and the log of the size of the set on which the
equivalences are defined. For an even better time estimate, although still not a linear
one, see [18].

Recall that equivalence pairs are generated during phase one only when we are
exploring the adjacencies of a node that is already labeled and whose neighbor has
also been labeled before, albeit with a different label. We now prove the following
lemma.

498 HANAN SAMET

LEMMA 1. Phase one generates a maximum of one equivalence pair for each
adjacency that is explored (i.e., each call to procedure LABEL explores two adjacencies).

PRooF. There are two cases depending on the direction of the adjacency.

Case a. An adjacency in the eastern direction can yield at most one equivalence
pair regardless of the size of the neighbor. This is dearly true if the neighbor is larger
(e.g., blocks 38 and 35 in Figure lb). Similarly, if the neighbor is smaller, then only
the northernmost such neighbor could have been previously labeled (e.g., blocks 12
and 20 in Figure l b) because only it could have been the southern neighbor of a
previously labeled node.

Case b. An adjacency in the southern direction can only yield an equivalence pair
if the neighbor is larger. No equivalence pair may result if the neighbor is smaller.
This should be dear, since southern neighbors could only be labeled already if they
are adjacent to a western neighbor which has been visited previously. Q.E.D.

Letting B denote the number of BLACK nodes, we have the following theorem.

THEOREM 2. 2 • B . log B is an upper bound on the execution time of phase two.

PROOF. By the above lemma, phase one generates a maximum of one equivalence
pair for each adjacency that is explored. Recall that phase one explores two
adjacencies for each BLACK node. Also, the set on which the equivalence pairs are
defined has a maximum number of objects equal to the number of BLACK nodes,
that is, B. Thus when the speeded up equivalence merging algorithm of [9] is used,
we have 2 • B. log B as the upper bound for the execution time. Q.E.D.

The speed of phase three of the algorithm can be obtained in a straightforward
way. The quadtree must be traversed, and for each BLACK node P, REGION(P)
must be set to the head of the equivalence class obtained as a result of phase two.
Since collapsing is assumed to have taken place during phase two, the lookup
operation takes a constant amount of time (i.e., traverse one link in the tree of
equivalence classes). Letting B and W correspond to the number of BLACK and
WHITE leaf nodes in the quadtree, respectively, we obtain the total number of nodes
in the quadtree as follows.

LEMMA 2. The number of nodes in a quadtree having B and W leaf nodes is
bounded by 2" (B + W).

PROOF. Let G denote the number of nonterminal nodes. Given G nonterminal
nodes and B + W terminal nodes, we have G + B + W - 1 edges (since the tree is
an acyclic graph). Counting another way, by the number of sons, we have that there
are 4 .Gedges. T h u s 4 G = G + B + W - 1, o r G + B + W = (4 . (B + W) - 1)/3.
But G + B + W corresponds to the number of nodes in the quadtree, and our result
follows. Q.E.D.

THEOREM 3. The upper bound of the execution time of phase three is proportional
to~ . (B + W).

PROOF. A direct result of Lemma 2, since each node is visited once. Q.E.D.

Using Lemma 2, we obtain an upper bound on the average execution time of phase
one.

THEOREM 4. The upper bound on the average execution time of phase one is
~(34. B + 4. W).

Connected Component Labeling Using Quadtrees 499

PROOF. From Theorem 1 we have that for each adjacency involving a BLACK
node, phase one results in a bounded average of five nodes being visited. Recall that
two adjacencies are visited for each node. Also, from Lemma 2 we have that the
tree traversal component of phase one visits] . (B + W) nodes. Therefore, we have
2 . B . 5 +] . (B + W) = ~ . (3 4 . B + 4 . W) nodes being visited. Q.E.D.

At this point we come to the main result.

THEOREM 5. The average execution time of the connected component labeling
algorithm is of order (W + B . log B).

PROOF. A direct result of the contributions of phases one, two, and three, as
indicated by Theorems 4, 2, and 3, respectively. Q.E.D.

Connected component labeling can also be achieved by adapting the initial stage
of the quadtree transformation algornthm of Hunter and Steiglitz [5, 7]. This involves
labeling the BLACK blocks on the boundary of each component and then propa-
gating the labels to the interior nodes. Using such a technique, connected component
labeling could be done in time proportional to the number of leaf nodes. This is
due, in part, to their use of additional links in their quadtree representation
which are called ropes and nets. In essence, these links enable them to avoid the
GTEQUAL__ADJ__~EIGHBOR and LABEL__ADJACENT procedures that we
execute. They do so by explicitly storing such information with each leaf node
through the use of links. This requires considerably more space than our represen-
tation, which only uses SON and FATHER links.

6. Concluding Remarks

An algorithm has been presented for labeling the connected components of a binary
image that is represented by a quadtree. The algorithm's average execution time was
shown to be of order (W + B • log B), where B and W correspond to the number of
blocks comprising the objects and the background of the image, respectively. It was
also shown that the number of BLACK blocks (i.e., the image complexity) dominates
the execution time of the algorithm. The B. log B term arises from the need to
process equivalences. Lower bounds, although not linear, can be obtained by use of
an algorithm such as that presented in [18]. In general, processing equivalences is not
really a problem. This is because in actuality very few equivalence pairs are generated.
An example of the worst case, in terms of the number of equivalence pairs that are
generated, for a 23 by 23 image is given in Figure 6. Note that some variant of the
worst case in terms of configurations leading to the generation of an equivalence pair
will arise no matter which order of traversing the adjacencies is adopted (i.e., NW,
SW, NE, and SE sons in order instead of NW, NE, SW, and SE sons in order as
done in our algorithm).

It should be clear that phase two of our algorithm can be combined with phase
one by performing the merge dictated by the equivalence immediately in procedure
ASSIGN__LABEL instead of using the hst MERGES and executing phase two. We
chose the present approach in order to simplify the presentation of the analysis. Also
note that Lemma 1 ensures that the upper bound of the execution time of phase two
is not affected by generating the same equivalence pair more than once (e.g., in
Figure 7 the equivalence A ~ B is generated once by blocks 6 and 2 and once by
blocks 9 and 2).

The importance of our connected component labeling algornthm is that it lends
support to the usefulness of the quadtree representation, aside from the obvious

500

m)m

llnl .

lllllll

FIG. 6 Sample image for n ffi 3
whnch results in the generatmn o f a

maxtmum number of eqmvalence
pairs.

HANAN SAMET

FIG. 7 Sample linage demonstratmg the generation of the
same equivalence pair more than once.

benefits gained from its compactness, by showing that methods used in binary array
image representations can be adapted to the quadtree. In particular, we presented a
method which scans the image in a sequential manner (i.e., a postorder traversal of
the quadtree) and generates a number of equivalences that are bounded by twice the
number of blocks. The analogous binary array result is obtained by scanning the
image a row at a time, starting at the top from left to right, and labeling adjacencies
to the right and down. The number of equivalences is bounded by twice the number
of pixels (i.e., blocks). Thus we see that by aggregating pixels into larger size blocks
we obtain an algorithm whose execution time is proportional to the number of blocks
comprising the image and not their size. Dyer has obtained an analogous result in
[2] where he observes that one may apply the connected component labeling
algorithm presented here to both the BLACK and WHITE nodes, thereby also
yielding the number of holes in the image, which enables the computation of the
genus of the image. In fact, Dyer also shows that the genus of an image represented
by a quadtree can be computed in the same manner as presented by Minsky and

Connected Component Labehng Using Quadtrees 501

Papert [10] for the pixel representation--that is, by counting the number of occur-
rences of various local patterns in the image. The importance of Dyer's result is that
it serves to reinforce our observation that it is the number of blocks that is critical
and not the area which they comprise.

ACKNOWLEDGMENTS. I would like to thank Kathryn Riley for typing the manuscript
and Pat Young for drawing the figures. I have benefitted greatly from discussions
with Charles R. Dyer, Jack Minker, Paul McMullin, and Azriel Rosenfeld.

REFERENCES

l ALEXANDRIDIS, N , AND KL1NGER, A Picture decomposition, tree data structures, and identifying
directional symmetries as node combinations Comput. Graph Image Proc 8 (1976), 43-77.

2 DYER, C R Computing the Euler number of an image from its quadtree. Comput. Graph Image
Proc 13 (1980), 270-276

3. DYER, C R , ROSENFEED, A, AND SAMET, H Region representation: Boundary codes from quadtrees.
Commun ACM 23, 3 (March 1980), 171-179

4 HOROWlTZ S L, AND PAVLIDIS, T Picture segmentation by a tree traversal algorithm. J A CM 23,
2 (Apnl 1976), 368-388

5 HUNTER, G M Efficient computation and data structures for graphics. Ph.D. Diss., Dep. of Electrical
Engmeenng and Computer Science, Princeton Univ., Princeton, N.J., 1978.

6 HUNTER, G M, AND STEIGEITZ, K Operations on images using quadtrees. 1EEE Trans. Pattern
Anal. Machine Intell PAMI-I, 2 (April 1979), 145-153.

7. HUNTER, G M, AND STEIGLITZ, K Linear transformation of pictures represented by quadtrees.
Comput Graph Image Proc 10 (1979), 289-296

8 KLINGER, A, AND DYER, C R Experiments in picture representation using regular decomposition
Comput Graph. Image Proc. 5 (1976), 68-105.

9. KNUTH, D E, The Art of Computer Programming, Vol 1" Fundamental Algorithms, 2nd ed Addison-
Wesley, Reading, Mass, 1973, pp 353-355, 360, 572.

10. MINSKY, M, AND PAPERT, S. Perceptrons--An Introduction to Computational Geometry. M.I.T. Press,
Cambridge, Mass 1969.

11 NAUR, P, ED Revised report on the algorithm language ALGOL 60, Commun ACM 3, 5 (May
1960), 299-314

12 R1SEMAN, E M, AND ARBIB, M A Computational techniques in the visual segmentation of static
scenes Comput Graph. Image Proc 6 (1977), 221-276.

13 ROSENFELD, A Connectivity in digital pictures J ACM 17, 1 (Jan. 1970), 146-160.
14 ROSENFELD, A, AND KAK, A C Dlgztal Ptcture Processing Academic Press, New York, 1976, Sec

81
15. SAMET, H Region representation Quadtrees from boundary codes. Commun. ACM 23, 3 (March

1980), 163-170
16 TANIMOTO, S L Pictorial feature distortion in a pyramid. Comput Graph. Image Proc 5 (1976),

333-352
17 TANIMOTO, S L, AND PAVLIDIS, T A hierarchical data structure for picture processing Comput

Graph Image Proc 4 (1975), 104-119
18. TARJAN, R E On the efficiency of a good but not hnear set union algorithm Tech. Rep 72-148,

Computer Soence Dep., Cornell Univ., Ithaca, New York, November 1972

RECEIVED MAY 1979, REVISED MARCH 1980, ACCEPTED APRIL 1980

Journal of the Association for Computing Machinery, Vol 28, No 3, July 1981

