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ABSTRACT. An algorithm is presented for labehng the connected components of an image represented by 
a quadtree. The algorithm proceeds by exploring all possible adjacenoes for each node once and only 
once. As soon as this ~s done, any equivalences generated by the adjacency labeling phase are propagated 
Analysis of the algorithm reveals that its average executmn tune ~s of the order (W + B.log B) where B 
and W correspond to the number of blocks comprising the foreground and background, respecuvely, of 
the image 
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1. Introduction 

Connected component labeling [13, 14] is the process of  identifying the disjoint 
elements of  an image (e.g., the regions labeled 1-5 are the connected components of  
the image in Figure I a). As such, it is a basic operation in image processing and is 
applied once the image has been segmented (e.g., the separation of  object points 
from the background on the basis of  a threshold value). Segmentation is the first step 
in processing an image and customarily results in the labeling of  object points with 
a l and background points with a 0. Algorithms for object counting generally involve 
a connected component labeling process, even if this process is not explicit. 

The most common representations used in image processing are the binary array 
and the run-length representation [14]. Using these representations, connected com- 
ponent labeling involves scanning the image by rows and forming equivalence 
classes. These equivalence classes are subsequently merged and the image's compo- 
nents labeled accordingly. This procedure has execution time on the order of  the 
area (i.e., number of  picture elements) plus the time required to process equivalences. 

The quadtree is an approach to region representation which is based on the 
successive subdivision of  an image array into quadrants. It results in the representa- 
tion of  an image as a collection of  maximal blocks of  standard sizes and positions 
(powers of  2). It can be quite compact and lends itself to set operations such as union 
and intersection [5, 6], as well as the computation of  various region properties [5-8] 
(see below for a more formal definition of  a quadtree). It was first proposed by 
Klinger [1, 8]; compare also [4, 12, 16, 17]. Recently it has been used by Hunter  and 
Steiglitz [5-7] in the domain of  computer graphics, and also in [3, 15] for cartographic 
applications. 
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More formally, the quadtree is defined as follows. Without loss of generality, 
assume that the given binary image is a 2 n by 2 n array of unit square "pixels." If  the 
image does not cover the entire array, then we subdivide the array into quadrants, 
subquadrants . . . . .  until we obtain blocks (possibly single pixels) that are entirely 
contained in the region or entirely disjoint from it (i.e., all l 's or O's, respectively). 
This process is represented by a tree of outdegree 4 in which the root node represents 
the entire array. The four sons of the root node represent the quadrants, and the leaf 
nodes correspond to those blocks of  the array for which no further subdivision is 
necessary. Since the array was assumed to be 2 n by 2 n, the tree height is at most n. It 
should be clear that the representation does not depend on the image containing 
only one region. As an example, Figure lb is a block decomposition of  the region in 
Figure la, while Figure lc is the corresponding quadtree. In general, BLACK and 
WHITE square nodes are leaf nodes corresponding to blocks consisting entirely of 
l 's and O's, respectively. Circular nodes, also termed GRAY nodes, denote nonter- 
minal nodes. 

In the following sections we present and analyze an algorithm for labeling the 
connected components of an image represented by a quadtree. It is based on an 
analogy with the method used in conjunction with the binary array representation. 
Included is a formal description of the algorithm along with motivating considera- 
tions. The actual algorithm is given using a variant of ALGOL 60 [11]. 

2. Definitions and Notation 

Let each node in a quadtree be stored as a record containing seven fields. The first 
five fields contain pointers to the node's father and its four sons, labeled NW, NE, 
SE, and SW. Give a node P and a son L these fields are referenced as FATHER(P)  
and SON(P, I), respectively. At times it is useful to use the function SONTYPE(P), 
where SONTYPE(P) = Q iff SON(FATHER(P),  Q) = P. The sixth field, named 
NODETYPE, describes the contents of  the block of  the image which the node 
represents--that is, WHITE, if the block contains no l's; BLACK, if the block 
contains only l's; and GRAY, if it contains pixels of  both types. Alternatively, 
BLACK and WHITE nodes are terminal nodes, while GRAY nodes are nonterminal 
nodes. The seventh field, named REGION, identifies the connected component 
containing the block represented by the node. This field is only meaningful for 
BLACK nodes. It is set as a result of the connected component labeling algorithm. 
LABELED(P) indicates whether node P has already been labeled. 

Let the four sides of a node's block be called its N, E, S, and W sides. They are 
also termed its boundaries, and at times we speak of them as if they are directions 
(e.g., in Figure 1, node 3 is node l's neighbor in the southern direction). The 
interrelationship between a block's four quadrants and its sides is facilitated by use 
of the predicate ADJ and the function REFLECT. ADJ(B, I)  is true if and only if 
quadrant I is adjacent to side B of the node's block; for example, ADJ(N, NE) 
is true. REFLECT(B, I)  yields the SONTYPE value of the block of equal size 
that is adjacent to side B of  a block having SONTYPE value I; for example, 
REFLECT(W, NW) = NE, REFLECT(E, NW) -- NE, REFLECT(N, NW) -- 
SW, and REFLECT(S, NW) = SW. Figure 2 shows the relationship between the 
quadrants of a node and its boundaries. 

Given a quadtree corresponding to a 2 n by 2 n array, we say that the root node is 
at level n, and that a node at level i is at a distance of n - i from the root of the tree. 
In other words, for a node at level i we must ascend n - i FATHER links to reach 
the root of  the tree. Note that the farthest node from the root of  the tree is at 
level _>0. 
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3. Informal Description of the Algorithm 

The connected component labeling algorithm has three phases. The first phase 
traverses the tree and explores all possible adjacencies between pairs of BLACK 
nodes. During this process all BLACK nodes are labeled. Should any equivalences 
be discovered between regions already labeled, then their component identifiers are 
added to a list of pairs of equivalences. Once the entire tree is traversed in this 
manner, the second phase processes pairs of equivalences to yield equivalence classes 
(e.g., [9, 18]). Finally, the third phase traverses the tree one more time, assigning the 
same component identifier (i.e., label) to all members of an equivalence class. 

Phase one traverses the tree in postorder (i.e., the sons of a node are visited first). 
In particular, the sons are visited in the order NW, NE, SW, and SE. For each 
BLACK terminal node, say P, we explore the eastern and southern adjacencies. This 
means that all of the node's BLACK adjacent southern and eastern neighbors are 
visited. If they have not been previously visited, then they are labeled with the label 
of P. If P does not already have a label, then it is assigned the label of one of its 
adjacent neighbors if it has a label. If adjacent BLACK nodes have already been 
assigned labels that are different, then the labels are added to the list of equivalences 
that will be merged in the second phase. 

The key to the algorithm is that phase one ensures that every adjacency of two 
BLACK nodes will be explored once and only once. To see this, note that the 
traversal starts at the NW-most son, if possible, and the brothers are traversed in the 
order NW, NE, SW, and SE. Clearly, by the time any BLACK node is visited, its 
northern and western adjacencies have already been explored. Thus the northern 
and western adjacencies need not be reexplored. This is because each node labels all 
of its adjacent eastern and southern neighbors. 

As an example of the application of the algorithm, consider the image given in 
Figure la. Figure lb is the corresponding block decomposition, and Figure lc is its 
quadtree representation. All of the BLACK nodes have numbers ranging between 1 
and 41, while the WHITE nodes have numbers ranging between 42 and 91. The 
BLACK nodes have been numbered in the order in which they were labeled by phase 
one. The WHITE nodes have been numbered in the order in which they were visited 
(i.e., the argument to procedure LABEL). Thus node 1 has been labeled before nodes 
2, 3, etc. Figure 3 shows the labels assigned to the five components. Phase two of the 
algorithm will merge the equivalence pair B ~ D to form component 4 and the 
equivalence pairs F ~ G and G ~ H to form component 5. 

4. Formal Statement of the Algorithm 
The following ALGOL-like procedures specify the connected component labeling 
algorithm. Actually, we only present the procedures corresponding to the first and 
third phases of the algorithm. Phase two can be achieved by using a variant of 
Algorithm E in [9, p. 354]. 
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FIG. 3. Result of the apphcation of phase one to Figure lb. 

The main procedure is termed COMPONENT and is invoked with a pointer to 
the root of the quadtree representing the image. The global variable MERGES is 
used to accumulate all the equivalence relations formed by adjacent BLACK nodes. 
MERGES is subsequently processed by phase two to yield a set of equivalence 
classes--that is, one class per component. LABEL implements phase one by tra- 
versing the tree and controlling the exploration of adjacent BLACK nodes. 
GTEQUAL_.ADJ__~EIGHBOR locates a neighboring node of greater or equal 
size along a specified side of a given node's corresponding block. If no such 
neighboring BLACK or WHITE node exists, then GTEQUAL__ADJ__ 
NEIGHBOR returns a pointer to a GRAY node of equal size. If this is also 
impossible, then the node is adjacent to the border of the image, and NULL is 
returned. In the case of a GRAY node, procedure LABEL__.ADJACENT continues 
the search recursively by examining all BLACK and WHITE adjacent neighbors of 
smaller size. Otherwise, LABEL__ADJACENT assigns a label to the adjacent 
neighbor if it is BLACK. Unique labels are generated by procedure GENREGION 
(not given here) and assigned by procedure ASSIG~._._LABEL. Procedure UPDATE 
corresponds to phase three and results in the postorder traversal of the tree in order 
to propagate the equivalences, thereby uniquely labeling each component. 

procedure COMPONENT(QUADTREE), 
/*Label all of the connected components of the tree rooted at QUADTREE*/ 

value node QUADTREE; 
pairlist MERGES; 
MERGES ~ empty; 
LABEL(QUADTREE), 
Process eqmvalences specified by MERGES, 
UPDATE(QUADTREE); 

end; 

procedure LABEL(P), 
/*Assign labels to node P and its sons*/ 
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begin 
value node P; 
node Q, 
quadrant I, 
if GRAY(P) then 

begin 
for I in {'NW', 'NE', 'SW', 'SE'} do LABEL(SON(P, I)); 

end 
else if BLACK(P) then 

begin 
Q ~-- GTEQUAL__ADJ_.~EIGHBOR(P, 'E'); 
if not NULL(Q) then LABEL_ADJACENT(Q, 'NW', 'SW', P), 
Q ~ GTEQUAL__ADJ__~EIGHBOR(P, 'S'); 
if not NULL(Q) then LABEL__ADJACENT(Q, 'NW', 'NE', P); 
if not LABELED(P) then REGION(P) ~ GENREGION (), 

end 
else re turn, /*A WHITE node*/ 

end; 
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node procedure GTEQUAL__ADJ__~EIGHBOR(P, D); 
/ ,  Return the neighbor of node P m horizontal or vertical direction D which is greater than or equal m size 
to P. If such a node does not exist, then a GRAY node of equal size is returned If this is also impossible, 
then the node is adjacent to the border of the tmage and NULL is returned*/ 
begin 

value node P; 
node Q, 
value direction D, 
if (not NULL(FATHER(P))) and ADJ(D, SONTYPE(P)) then 

/*Fred a common ancestor*/ 
Q ~- GTEQUAL__ADJ__NEIGHBOR(FATHER(P), D) 

else Q ~ FATHER(P); 
/*Follow the reflected path back to locate the neighbor*/ 
return (if not NULL(Q) and GRAY(Q) then SON(Q, REFLECT(D, SONTYPE(P))) 

else Q), 
end, 

procedure LABEL__ADJACENT(R, Q1, Q2, P), 
/ ,F red  all descendants of node R adjacent to node P--1 e ,  in quadrants QI and Q2*/ 
begin 

value node P, R, 
value quadrant Q l, Q2, 
if GRAY(R) then 

begin 
LABEL__ADJACENT(SON(R, Ql), QI, Q2, P), 
LABEL_ADJACENT(SON(R, Q2), QI, Q2, P), 

end 
else if BLACK(R) then ASSIGN__LABEL(P, R) 
else r e tu rn , / ,A  WHITE node*/ 

end, 

procedure ASSIGN__LABEL(P, Q), 
/*Assign a label to nodes P and Q if they do not already have one If both have different labels, then enter 
them m MERGES*/ 
begin 

value node P, Q, 
if LABELED(P) and LABELED(Q) then 

begin 
if REGION(P) # REGION(Q) then add (REGION(P), REGION(Q)) to MERGES, 

end 
else if LABELED(P) then REGION(Q) ~-- REGION(P) 
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FIo 4. Sample component shapes and the labels that they generate. 

else if LABELED(Q) then REGION(P) ~ REGION(Q) 
else REGION(P) <--- REGION(Q) ~ GENREGION( ); 

end; 

procedure UPDATE(P); 
/*Propagate the equivalences represented by MERGES m the quadtree rooted at P*/ 
hegin 

value node P; 
quadrant I; 
if GRAY(P) then 

begin 
for I in {'NW', 'NE', 'SW', 'SE'} do UPDATE(SON(P, I)); 

end 
else if BLACK(P) then REGION(P) ~-- LOOKUP (REGION(P), MERGES) 
else return;/*A WHITE node*/ 

end; 

5. Analysis 

The running time of the connected component labeling algorithm is determined by 
the time necessary to execute its three phases. Prior to analyzing this value we first 
examine the spatial configurations confronted by the algorithm and how they affect 
its execution time. It should be clear that the greater the number of BLACK nodes, 
the more time is spent exploring adjacencies in phase one. Phase two is more 
dependent on the shapes of the various components. The execution time of phase 
two is dominated by the number of equivalence pairs that are generated in phase 
one. An equivalence pair is generated whenever an adjacency of a previously labeled 
node is explored and it is found that the adjacent neighbor has already been assigned 
a different label. 

The situation giving rise to the generation of an equivalence pair can be best seen 
by examining Figure 4. Components 1-3 do not result in the generation of equiva- 
lence pairs because of the manner in which phase one explores adjacencies--that is, 
in the eastern and southern directions, thereby processing the quadrants in the order 
NW, NE, SW, SE. Thus for components 1-3 we see that the nodes or blocks 
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FIG. 5. Sample image demonstrating the maxunum number 
of nodes that must be visited for an adjacency. 

comprising the quadtree are processed in the order in which they are adjacent. 
However, this is not always the case for a component having the form of  component 
4 in Figure 4 (in this case we have the equivalence of  D and E). This is especially 
true when the vertical and horizontal segments are not comprised of  single blocks. 
For example, in the image represented by Figure l a we fred that no equivalence 
pairs were generated for the components 1-3, whereas this was not true for the 
components 4 and 5. In particular, as demonstrated in Figure 3, we have the 
equivalences B --- D for component 4 and F ~- G and G ~- H for component 5. Note 
that if the block labeled 40 had been WHITE rather than BLACK, then block 41 
would have been labeled with G and no equivalence pair would have been generated. 

Phase one depends on the speed of  the combination of  procedures 
LABEL__ADJACENT and GTEQUAL__ADJ__~EIGHBOR.  These procedures 
are invoked in phase one (i.e., in procedure LABEL) twice as many times as one has 
BLACK nodes. The actual amount  of  work performed by these procedures is more 
accurately represented by considering the number of  nodes that are visited when an 
adjacency is being explored. Recall that we must find the neighbor, and, if  it is 
GRAY, then visit all adjacent neighbors of  a smaller size. In the worst case we are 
at level n - 1, with a GRAY neighbor and all adjacent neighbors at level 0. In such 
a case we must visit 2 n nodes. For example, consider Figure 5 where n = 3 and we 
wish to visit the blocks adjacent to the block labeled/I  (i.e., blocks B, C, D, and E). 
We must visit the root of the quadtree as well as A's neighboring GRAY node and 
all of  its NW  and SW sons-- that  is, a complete binary tree of  height 2 (termed A's 
adjacency tree in [5]). In total, 2 a = 8 nodes are visited. In general, let the space be 
partitioned into a 2" by 2 n array. Assume a random image in the sense that a BLACK 
node is equally likely to appear in any position and level in a quadtree. This means 
that we assume that all neighbor pairs (i.e., configurations of  adjacent nodes of  
varying sizes) have equal probability. This is different from the more conventional 
notion of  a random image which implies that every block at level 0 (i.e., pixel) has 
an equal probability of  being BLACK or WHITE.  Such an assumption would lead 
to a very low probability of  any nodes corresponding to blocks of  size larger than 1. 



4 9 6  H A N A N  S A M E T  

Clearly, for such an image the quadtree is the wrong representation. We have the 
following result. 

THEOREM 1. The average o f  the m a x i m u m  number  o f  nodes visited by 
L A B E L _ A D J A C E N T  is f ire.  

PROOF. Given a node P at level i and a direction D, there is a maximum of 2 n- ' .  
(2"-' - 1) neighbor pairs. 2"- ' .  2 o have their nearest common ancestor at level n, 2"- ' .  
21 at level n - 1 . . . . .  and 2"- ' .  2 "-'-1 at level i + 1. For each node at level i having 
a common ancestor at level j ,  the maximum number of nodes that will be visited by 
GTEQUAL__ADJ__NEIGHBOR and SUM ADJACENT is 

l 

( j - i ) + ( j - i -  1 )+  X 2 k = 2 " ( j - i -  1 ) + 2  '+1 
k--O 

This is obtained by observing that the common ancestor is at a distance o f j  - i and 
that a node at level i has a maximum of 2' adjacent neighbors (all appearing at level 
0). Assuming that node P is equally likely to occur at any level i and at any of the 
2"- ' .  (2"-' - 1) positions at level i, then the average of the maximum number of 
nodes visited by GTEQUAL__ADJ___NEIGHBOR and SUM__ADJACENT is 

X.-l~,. 2n-,. ,--0 2.aj=,+l 2 n-J. (2. ( j  -- i -- 1) + 2 '+1) 
(l)  

X,L-o 1 2"- ' .  (2"-' - 1) 

Expression (1) can be rewritten to yield 

E~¢o ~ E'~=~-' 22n-2'-lW " (2j + 2 '+1) 
(2) 

X,Lo 2 ' .  ( 2 '  - 1) 

The numerator of  (2) can be rewritten as follows: 
n--1 n - - l - - ,  j n--1 n - - l - - t  1 
X 22"-2" -~0 ~ + X 22n-'" X 2--5" (3) 
t -O y ,=0 j=O 

B u t  

Also, 

" - 1 - ' i  n +  l - i  
2 ~5 = 2 -  J 2,-1-, (4) 

j --0 

Substituting (4) and (5) into (3) yields 

2 2n-a 2 ~'.=l~ + . 2  1 - 
l~O 

n-1 n + 1 2 ,+1 t n-i 1 n-1 • 
= 2 2 " + 1 " ~ o ~ 7 - 2 " + 1 " ~ o - - ' ~ 7 - - +  " X ~,=o 

n-l 1 
+ 22"+1 • Y. ~7 - n .  2n+k 

,--0 

(5) 

(6) 

B u t  

,_20 ~ - 5 4 - ~  (7) 
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Making use of (7) in (6) leads to 

22n-2' 2 - 2,_1_ , + • 2 1 - 
z~O 

=22n+1 4 ( . ~ .  l - - ~ l ) - - 2 n + Z . ( n +  1 ) . ( 1 - - T n  ) 

~'h':-; ] + 22'~+z " n .  

= 2 0  22 n ( 3 n + 2 ) . 2  n÷1 8 
3 3" 

The denominator of (2) can be simplified as follows: 
n 

~ 2 ' . ( 2 ~ - 1 ) =  ~ 4 ' -  ~ 2  ' 
tR0 t--0 L--0 

4 n+x-  1 
- - -  (2 n + l -  1) 

3 

1 =-.(22n+2 - 3 . 2  "41 + 2). 
3 

Substituting (8) and (9) into (2) yields 

~t. 22n _ (3n + 2). 2 n+l - 
~ .  (2  2n+2 - -  3 . 2  n+l + 2) 
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(8) 

(9) 

3 . ( 3 n + 7 ) . 2  n÷l+ 18 
= 5 - -  22n+z - 3 • 2 n÷l + 2 

= 5 as n gets large 

_< 5. Q.E.D. 

The speed of phase two of the algorithm depends on the method used for processing 
equivalence relations and on the number of pairs of  equivalences and different 
objects of  the set on which the equivalences are defined. We use a variant of  
Algorithm E presented in [9, p. 354]. The basis of  this algorithm is the construction 
of a set of trees such that each tree corresponds to an equivalence class. In particular, 
the root of the tree denotes the head of the equivalence class, while its subtrees 
correspond to members of the equivalence class. Algorithm E has a maximum 
execution time that is proportional to the square of the number of  equivalence pairs. 
It can be speeded up by use of the following rules [9, p. 572]. The weighting rule 
ensures that whenever two equivalence classes are merged, the class containing the 
fewest elements is made a subtree of the tree corresponding to the other class. The 
collapsing rule stipulates that whenever the head of an equivalence class is sought 
(i.e., the appropriate tree is searched), all nodes accessed during the process are made 
direct sons of the nodes corresponding to the head of the equivalence class. Using 
such methods, equivalences can be processed in time proportional to the product of  
the number of equivalence pairs and the log of  the size of the set on which the 
equivalences are defined. For an even better time estimate, although still not a linear 
one, see [ 18]. 

Recall that equivalence pairs are generated during phase one only when we are 
exploring the adjacencies of  a node that is already labeled and whose neighbor has 
also been labeled before, albeit with a different label. We now prove the following 
lemma. 
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LEMMA 1. Phase one generates a maximum of one equivalence pair for each 
adjacency that is explored (i.e., each call to procedure LABEL explores two adjacencies). 

PRooF. There are two cases depending on the direction of the adjacency. 

Case a. An adjacency in the eastern direction can yield at most one equivalence 
pair regardless of the size of the neighbor. This is dearly true if the neighbor is larger 
(e.g., blocks 38 and 35 in Figure lb). Similarly, if the neighbor is smaller, then only 
the northernmost such neighbor could have been previously labeled (e.g., blocks 12 
and 20 in Figure l b) because only it could have been the southern neighbor of a 
previously labeled node. 

Case b. An adjacency in the southern direction can only yield an equivalence pair 
if the neighbor is larger. No equivalence pair may result if the neighbor is smaller. 
This should be dear, since southern neighbors could only be labeled already if they 
are adjacent to a western neighbor which has been visited previously. Q.E.D. 

Letting B denote the number of BLACK nodes, we have the following theorem. 

THEOREM 2. 2 • B .  log B is an upper bound on the execution time of phase two. 

PROOF. By the above lemma, phase one generates a maximum of one equivalence 
pair for each adjacency that is explored. Recall that phase one explores two 
adjacencies for each BLACK node. Also, the set on which the equivalence pairs are 
defined has a maximum number of objects equal to the number of BLACK nodes, 
that is, B. Thus when the speeded up equivalence merging algorithm of [9] is used, 
we have 2 • B.  log B as the upper bound for the execution time. Q.E.D. 

The speed of phase three of the algorithm can be obtained in a straightforward 
way. The quadtree must be traversed, and for each BLACK node P, REGION(P) 
must be set to the head of the equivalence class obtained as a result of phase two. 
Since collapsing is assumed to have taken place during phase two, the lookup 
operation takes a constant amount of time (i.e., traverse one link in the tree of 
equivalence classes). Letting B and W correspond to the number of BLACK and 
WHITE leaf nodes in the quadtree, respectively, we obtain the total number of nodes 
in the quadtree as follows. 

LEMMA 2. The number of nodes in a quadtree having B and W leaf nodes is 
bounded by 2" (B + W). 

PROOF. Let G denote the number of nonterminal nodes. Given G nonterminal 
nodes and B + W terminal nodes, we have G + B + W -  1 edges (since the tree is 
an acyclic graph). Counting another way, by the number of sons, we have that there 
are 4 .Gedges.  T h u s 4 G = G + B +  W -  1, o r G + B +  W = ( 4 . ( B +  W ) -  1)/3. 
But G + B + W corresponds to the number of nodes in the quadtree, and our result 
follows. Q.E.D. 

THEOREM 3. The upper bound of the execution time of phase three is proportional 
to~ . (B  + W). 

PROOF. A direct result of Lemma 2, since each node is visited once. Q.E.D. 

Using Lemma 2, we obtain an upper bound on the average execution time of phase 
one. 

THEOREM 4. The upper bound on the average execution time of phase one is 
~(34. B + 4.  W). 
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PROOF. From Theorem 1 we have that for each adjacency involving a BLACK 
node, phase one results in a bounded average of five nodes being visited. Recall that 
two adjacencies are visited for each node. Also, from Lemma 2 we have that the 
tree traversal component of phase one visits ] .  (B + W) nodes. Therefore, we have 
2 . B . 5 + ] . ( B +  W ) = ~ . ( 3 4 . B + 4 .  W) nodes being visited. Q.E.D. 

At this point we come to the main result. 

THEOREM 5. The average execution time of the connected component labeling 
algorithm is of order (W + B . log B). 

PROOF. A direct result of the contributions of phases one, two, and three, as 
indicated by Theorems 4, 2, and 3, respectively. Q.E.D. 

Connected component labeling can also be achieved by adapting the initial stage 
of the quadtree transformation algornthm of Hunter and Steiglitz [5, 7]. This involves 
labeling the BLACK blocks on the boundary of each component and then propa- 
gating the labels to the interior nodes. Using such a technique, connected component 
labeling could be done in time proportional to the number of leaf nodes. This is 
due, in part, to their use of additional links in their quadtree representation 
which are called ropes and nets. In essence, these links enable them to avoid the 
GTEQUAL__ADJ__~EIGHBOR and LABEL__ADJACENT procedures that we 
execute. They do so by explicitly storing such information with each leaf node 
through the use of links. This requires considerably more space than our represen- 
tation, which only uses SON and FATHER links. 

6. Concluding Remarks 

An algorithm has been presented for labeling the connected components of a binary 
image that is represented by a quadtree. The algorithm's average execution time was 
shown to be of order (W + B • log B), where B and W correspond to the number of 
blocks comprising the objects and the background of the image, respectively. It was 
also shown that the number of BLACK blocks (i.e., the image complexity) dominates 
the execution time of the algorithm. The B.  log B term arises from the need to 
process equivalences. Lower bounds, although not linear, can be obtained by use of 
an algorithm such as that presented in [ 18]. In general, processing equivalences is not 
really a problem. This is because in actuality very few equivalence pairs are generated. 
An example of the worst case, in terms of the number of equivalence pairs that are 
generated, for a 23 by 23 image is given in Figure 6. Note that some variant of the 
worst case in terms of configurations leading to the generation of an equivalence pair 
will arise no matter which order of traversing the adjacencies is adopted (i.e., NW, 
SW, NE, and SE sons in order instead of NW, NE, SW, and SE sons in order as 
done in our algorithm). 

It should be clear that phase two of our algorithm can be combined with phase 
one by performing the merge dictated by the equivalence immediately in procedure 
ASSIGN__LABEL instead of using the hst MERGES and executing phase two. We 
chose the present approach in order to simplify the presentation of the analysis. Also 
note that Lemma 1 ensures that the upper bound of the execution time of phase two 
is not affected by generating the same equivalence pair more than once (e.g., in 
Figure 7 the equivalence A ~ B is generated once by blocks 6 and 2 and once by 
blocks 9 and 2). 

The importance of our connected component labeling algornthm is that it lends 
support to the usefulness of the quadtree representation, aside from the obvious 
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FIG. 7 Sample linage demonstratmg the generation of the 
same equivalence pair more than once. 

benefits gained from its compactness, by showing that methods used in binary array 
image representations can be adapted to the quadtree. In particular, we presented a 
method which scans the image in a sequential manner (i.e., a postorder traversal of 
the quadtree) and generates a number of equivalences that are bounded by twice the 
number of blocks. The analogous binary array result is obtained by scanning the 
image a row at a time, starting at the top from left to right, and labeling adjacencies 
to the right and down. The number of equivalences is bounded by twice the number 
of  pixels (i.e., blocks). Thus we see that by aggregating pixels into larger size blocks 
we obtain an algorithm whose execution time is proportional to the number of blocks 
comprising the image and not their size. Dyer has obtained an analogous result in 
[2] where he observes that one may apply the connected component labeling 
algorithm presented here to both the BLACK and WHITE nodes, thereby also 
yielding the number of holes in the image, which enables the computation of  the 
genus of the image. In fact, Dyer also shows that the genus of an image represented 
by a quadtree can be computed in the same manner as presented by Minsky and 
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Papert [10] for the pixel representation--that is, by counting the number of  occur- 
rences of various local patterns in the image. The importance of  Dyer's result is that 
it serves to reinforce our observation that it is the number of  blocks that is critical 
and not the area which they comprise. 
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