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Computing Geometric Properties of Images
| Represented by Linear Quadtrees

HANAN SAMET, MEMBER, IEEE, AND MARKKU TAMMINEN, MEMBER, IEEE

Abstract—The region quadtree is a hierarchical data structure that
finds use in applications such as image processing, computer graphics,
pattern recognition, robotics, and cartography. In order to save space,
a number of pointerless quadtree representations (termed linear quad-
trees) have been proposed. One representation maintains the nodes in a
list ordered according to a preorder traversal of the quadtree, Using
such an image representation and a graph definition of a quadtree, a
general algorithm to compute geometric image properties such as the
perimeter, the Euler number, and the connected components of an
image is developed and analyzed. The algorithm differs from the con-
ventional approaches to images represented by quadtrees in that it does
not make use of neighbor finding methods that require the location of a
nearest common ancestor, Instead, it makes use of a staircaselike data
structure to represent the blocks that have been already processed. The
worst-case execution time of the algorithm, when used to compute the
perimetes, is proportional fo the number of leaf nodes in the quadtree,
which is optimal. For an image of size 2" X 2", the perimeter algorithm
requires only four arrays of 2™ positions each for working storage. This
makes it well suited o processing linear quadtrees residing in secondary
storage. Implementation experience has confirmed its superiority to
existing approaches to computing geometric properties for images repre-
sented by quadtrees. - )

Index Terms—Computer graphics, connected component labeling,
DF-expressions, Euler number, hierarchical data structures, image pro-
cessing, linear quadtrees, pattern recognition, perimeter, quadtrees.

I. INTRODUCTION

HE region quadtree [11], [7],ahierarchical data structure
A based on a regular decomposition of space, has been the
subject of much research in recent years (see the survey in
[22]). It and its variants have been found to be useful in such
applications as image processing, computer graphics; pattern
recognition, robotics, and cartography. Many algorithms for
standard operations in these domains can be expressed as simple
tree traversals where at each leaf a computation is performed
involving that leaf and some or all of its bordering neighbors
[18]. For images represented by quadtrees, algorithms for the
computation of perimeter [17] and Euler number [4], as well
as connected component labeling [16], have beenimplemented
in this way. The only difference between the tree traversals is
in the type of the bordering neighbors that are examined.
As an example of the quadtree, we briefly describe how it is
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Fig. 1. A region,itsbinary array, its maximal blocks, and the correspond-
ing quadiree.

used to represent regions. Consider the region shown in Fig.
1(a), which is represented by the 2* X 2 binary array in Fig.
1(b). Observe that the 1’s correspond to picture elements
(termed pixels) that are in the region, and the 0% correspond
to picture elements that are outside the region. The quadtree
approach to region representation is based on the successive
subdivision of the array into four equal-size quadrants. If the
array does not consist entirely of 1’s or entirely of 0’s (i.e., the
region does not cover the entire array), then we subdivide it
into quadrants, subquadrants, etc., until we obtain square
blocks (possibly single pixels) that consist entirely of 1% or
entirely of 0%; i.e., each block is entirely contained in the
region or entirely disjoint from it. Asanexample, the resulting
blocks for the array of Fig. 1(b) are shown in Fig. 1(c). This
process is represented by a tree of out degree 4 (i.e., each non-
leaf node has four sons). The root node corresponds to the en-
tire array. Each son of the root node represents a quadrant
(labeled in order NW, NE, SW, and SE). The leaf rodes of the
tree correspond to those blocks for which no further subdivi-
sion is necessary. A leaf node is said to be BLACK or WHITE
depending on whether its corresponding block is entirely in-
side or entirely outside of the represented region. All nonleaf
nodes are said to be GRAY. The quadtree representation for
Fig. 1(c) is shown in Fig. 1{(d). Similar techniques can be used
to represent multicolor (or gray scale) images [10].
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The quadiree was originally devised as an alternative to the
binary array image representation with the goal of saving space
by grouping similar regions. However, more importantly, the
hierarchical nature of the quadtree also results in savings in
execution time. In particular, algorithms for computing basic
image processing operations using a quadtree representation
have execution times that are only dependent on the number
of blocks in the image and not their size (e.g., for connected
component labeling see {16]). Nevertheless, in actuality the
space required for pointers from a node to its sons is not trivial
and processing pointer chains in external storage may be time
consuming due to page faults. Consequently, there has beena
considerable amount of interest in pointerless quadtree repre-

sentations. They can be grouped into two categories. The first’

treats the image as an’ ordered collection of leaf nodes. Each
teaf is represented by a locational code corresponding to a se-
quence of directional codes to locate the leaf along a path from
the root of the tree, Locational codes have been used by a
number of researchers to represent quadtrees [12], [27], [5],
[14], [2], [1], as well as in other related contexts [13], [3],
[26]. The second represents the image in the form of a pre-
order traversal of the nodes of its quadtree [9], [24].

Pointerless quadtree representations such as those described
above are termed linear quadtrees.! They are attractive be-
cause of their relative compactness and their appropriateness
for maintenance of the data in external storage. A linear quad-
tree can be viewed as a sequential file that only supports the
operation NEXT( )Y which yields, in sequence, theleaf nodesof
the tree. Many image operations can be performed by scanning
the file, in its natural order, while keeping only one or two
nodes in working storage. For example, the computation of
moments and set operations {e.g., union, intersection, etc,) are
described in [9], [5], and {14].

In this paper, we show how linear quadtrees can be used in ;

conjunction with algorithms for operations that also require
inspection of neighbors of leaf nodes. However, we do not
have to use neighbor finding methods that are based on locating
a nearest common ancestor, Such methods are cumbersome
for linear quadtrees and are not explicitly used in 51, [1].
Instead, to examine a particular neighboring node, its key is
calculated and the linear quadtree is searched (by a modified
binary search} to determine the BLACK leaf node with the
given key. If such a leaf node is not found, then the color of
the neighbor (WHITE or GRAY) is inferred from the next
higher value in the tree (i.e., list). The key of the nearest
common ancestor is implicitly determined in calculating the
neighbor’s key, but a search for the nearest common ancestor
is not made. Nevertheless, the binary search is expensive. We
present a simple general algorithm for traversing linear quad-
tree representations and computing geomeiric image properties
such as the perimeter, the Euler number, and the connected
components. Our algorithm only assumes that the tree can be

TWe use this term to denote any data structure based on a linear or-
dering of the riodes of a quadtree. This is somewhat more general than
the original definition of Gargantini [5], [6], who stores a list of
BLACK leaf nodes with their locational codes to represent the tree
structure. The remaining nodes (WHITE and GRAY) can be inferred
from a sorted list of the BLACK nodes.
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traversed in preorder and does not require much internal
storage. For example, for an image of size 27 X 27, the
perimeter algorithm requires only four arrays of 27 positions
each for working storage. We shall show that its worst-case
time complexity is O(N) where N is the number of leaf nodes
in the quadtree.

The rest of the paper is organized as follows. Section II con-
tains definitions and a description of the notation that we use.
Section 111 presents a graph definition of a quadtree, which we
use to give abstract algorithms for the computation of perim-
eter, connected component labeling, and Euler number. Sec-
tion IV introduces our implementation with an algorithm for
the computation of perimeter using a linear quadtree represen-
tation. Section V presents a more general algorithm for the
computation of geometric properties using linear quadtrees.

II. DEFINITIONS AND NOTATION

Each node of a quadtree corresponds to a block in the original
image.2 Each block has four sides and four corners. At times
we speak of sides and corners collectively as directions. Let
the four sides of a node’s block be called its N, E, S, and W
sides. The four corners of a node’s block are labeled NW, NE,
SW, and SE, with the obvious meaning. Algorithms for the
computation of geometric properties require the examination
of adjacent nodes, Such nodes are referred to as neighbors. In
order to be more precise, given node P and a direction D, we
say that Q is the neighbor of P in direction D, i.e., neighbor
(P, D) = Q when both of the following conditions are satisfied.

1} Pand ( are adjacent along a side or a corner.

2) If D is a diagonal direction (i.e., NW, NE, SW, or SE},
then node Q coiresponds to the smallest block that shares the
D corer of node P’s block. Otherwise (D is one of the hori-
zontal or vertical directions, i.e., N, E, S, or W), the block
corresponding to Q is the smallest block (it may be GRAY) of
size greater than or equal to the block corresponding to P,

"For example, in Fig.-1(d) the E neighbor of node 38 is NV;
the NE neighbor of node L is 39; and the N neighbor of node
M is K. Nodes correspending to blocks that are adjacent to
the border of the image have no neighbors in the direction of
the border [e.g., the eastern sides of blocks G,-J, 0, and Qin
Fig. 1(c)] . Note that this definition of neighbor differs slightly
from the one given in [18]. In particular, we permit diagonal
neighbors to be.of smaller size. Two other items are worthy of
note. First, the neighbor function does not define a one-to-one
correspondence (i.e., a node may be a neighbor in a given di-
rection of several nodes, i.e., in Fig. 1, neighbor(J, N) =B,
neighbor(37, N) = B, and neighbor (38, N) = B). Second, the
neighbor function is not necessarily symmetric. For example,
in Fig. 1, neighbor(37, N) = B, but neighbor(B, S)=D.

For a quadtree corresponding to a 2" X 2" image array, we
say that the root is at level n. A node at level 0 cotresponds to
a single pixel in the image. Each pixel in the array has an x
coordinate and a y coordinate between O and 2" - 1, corre-
sponding to its position in the array. The lower left-hand

2We use the terms block and node interchangeably. The term thatis
used depends on whether we are referting to a block decomposition
[i.e., Fig. 1(c)] or a tree [Fig. 1(d}].
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corner of the image is located at (0, 0), and the upper right-
hand corner is located at (2 - 1,2" - 1).

In the presentation of our algorithms we use a linear quad-
tree representation that is based on a preorder tree traversal.
Of course, our results are equally applicable to other linear
quadtree representations. The traversal yields a string over the
alphabet “(,” “B,” and “W,” corresponding to GRAY,BLACK,
and WHITE nodes, respectively. It is due to Kawaguchi and
Endo [9], and is called a DF-expression (denoting depth first).
For example, the image of Fig. 1 has (W(WWBB(W(WBBBWB
(BB(BBBWW as its DF-expression when the sons are visited in
the order NW, NE, SW, and SE. In order to facilitate the ex-
pression of our algorithms, we will visit the sons in the order
SW, SE, NW, and NE. Using such an order, the DF-expression
for the image of Fig. 1 is((WBW(BBWB((BWBBWBBW(BBWW.
It should be clear that the original image can be reconstructed
from the DF-expression by observing that the degree of each
nonterminal (i.e., GRAY) node is always 4.

III. A GRAPH DEFINITION OF QUADTREES

As mentioned in Section I, algorithms for the computation
of geometric properties of images represented by quadtrees are
implemented as tree traversals. At each node some or all of
the adjacent nodes must be inspected, depending on the task
being performed. In this section, we give an alternative defini-
tion of a quadtree in terms of a graph. Using such a definition
facilitates the formulation of a number of geometric property
computation algorithms. In particular, it is especially well
suited to linear quadtrees since it eliminates the need for the
use of neighbor finding techniques based onlocating the nearest
common ancestor [18] or searching [5], [1]. Instead, our
algorithms are expressed in terms of blocks, edges, and vertices.

The partition of space induced by a quadtree may be viewed
as an undirected planar graph. The vertices of the graph corre-
spond to the corners of the leaf nodes comprising the quadtree.
The edges of the graph are the sides of the leaf nodes. For ex-
ample, Fig. 2 is the graph representation of the block decom-
position in Fig, 1{c}. The vertices are labeled AA-BF, and the
edges are labeled xa-xy and ya-yy. More precisely, edges are
‘defined as follows: given a leaf P and a side D between vertices
¥V, and ¥, of P, there exists an edge between ¥, and ¥, if
and only if neighbor(P, D) is not GRAY (e.g., in Fig. 1, edge
ye joins vertices AN and AR of 39, while there is no edge be-
tween vertices Al and AR of J). In order to cope with leaf
nodes that are adjacent to the border (e.g., the W side of node
L in Fig. 1), we say that the image is surrounded by WHITE or
BLACK as is appropriate to the task being performed.

It is convenient to associaie some additional information
with edges and vertices. First, we label edges and vertices as
BLACK, WHITE, or GRAY, An edge is defined to be GRAY
if its adjacent leaf nodes differ in color, and it is BLACK
(WHITE) if its adjacent leaf nodes are both BLACK (WHITE).
Similarly, a vertex is said to be BLACK (WHITE) if all edges
emanating from it are BLACK (WHITE); otherwise, itis GRAY.
For example, in Fig. 2 edge ys is BLACK, edge xf is WHITE,
and edge ye is GRAY; vertex AT is BLACK, vertex A/ is
WHITE, and vertex AJ is GRAY. Second, the width of an

231

AA AB AC AD
Xa xb xC
yi F ya & yv

ya
AH

yb
T AQ

yC

’ W AX

BA BB BC BD BE BF

Fig. 2. Graph representation of the quadtree of Fig. 1.

edge is the distance between the two vertices comprising it
and is accessed by the use of the function WID. -

The description of the relationship between blocks, edges,
and vertices is facilitated by the use of the TOUCH function.
When X is a vertex, the value of TOUCH (X) is the set of
blocks whose corners meet at X. A similar definition holds
for edges. For example, in Fig. 1, TOUCH(vj)=1{B, H},
TOUCH(AK) ={B, H, N, 38}, and TQUCH(AF)={B, F, H}.

The computation of the perimeter of an image represented
by a quadtree is a tree traversal where at each BLACK node we
ook for adjacent WHITE nodes [17]. Using our graph formu-
lation of a quadtree, we merely need to accumulate the sum of
the widths of all GRAY edges as shown by procedure PERIM-
ETER given below.

integer procedure PERIMETER(Q);
/* Compute the perimeter of quadtree Q. */
begin '

value quadtree O;

edge F; '

integer PER;

PER « 0;

foreach E in {edges(Q)}do

begin -

*if GRAY(E') then PER « PER +WID(E);

end;
return (PER);
end; S

Labeling the connected components of an image represented
by a quadtree is a threestep process [16]. The first stepisa
tree traversal where for each BLACK node we find all adjacent
nodes and assign them the same label. If some of the nodes
have already been assigned a label, then we note the equivalence.
The second step merges all the equivalence pairs that were gen-

erated during the first step. The third step performs another
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Fig. 3. Sample image containing two connected components.

tree traversal and updates the labels on the nodes to reflect the
equivalences generated by the first two steps of the algorithm.
Using our graph formulation of the quadtree, step one becomes
a simple examination® of all the BLACK edges. Steps two and
three are unchanged from the original formulation. The algo-
rithm is given below by procedure CCL.

procedure CCL(Q);
/* Label the connected components of quadtree Q. */
begin :
value quadtree Q;
edge E;
block B; - -
foreach F.in {edges(Q)}do
begin /* Step one */
if- BLACK(E ) then ASSIGN SAME LABEL
(TOUCH(E));
end; : .
MERGE__EQUIVALENCES; /* Step two */
foreach B in {blocks(Q)}do
begin [* Step three */
. if BLACK(B) then UPDATE(B)
end;
end;

Applying the algorithm to Fig. 3 yields two connected com-
ponents, Note that the first and second steps can be combined
to form one step by using the UNION-FIND algorithm [25]
thereby resulting in a two-step process. However, by separating
~ these tasks we are better able to see the similarity between the
algorithms for the different geometric properties.

The Euler number (or genus) of an image is the difference
between the number of connected components and the number
of holes. Dyer has shown that the Euler number of an image
represented by a quadtree is B - E+ V [4] where B is the
number of BLACK blocks, F is the number of pairs of adjacent
BLACK blocks in the horizontal and vertical directions, and ¥V
is the number of cases where three or four BLACK blocks share
a corner (i.e., there exists a 2 X 2 block of BLACK pixels such
that at least three out of the four pixels are in different BLACK
blocks). For example, for Fig. 3, B=10,E=10,and V=1
(contributed by vertex 4) yielding a Euler number of 1. The
-algorithm is analogous to the first step of connected compo-
-nent labeling with the added provision that in ordéer to deter-
mine ¥V, for each BLACK block, the leaf nodes surrounding its
SE corner must be examined as must vertices on'its S and W
sides. For example, when processing node & of Fig. 2 we in-
spect the leaves surfounding vertices AT, AP, and AU, Using
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our graph formulation of the quadtiree, we merely need to
accumulate the number of BLACK blocks, BLACK edges, and
BLACK vertices. The algorithm is given below usmg procedure
GENUS.

integer procedure GENUS(Q);
- /* Compute the genus of quadtree Q. */
begin ,
. value quadtree Q;
block B;
edge E;
vertex V;
integer 7B, TE, TV;
TB<« TE <« TV<0,
foreach B in {blocks(Q)}do
" begin
if BLACK(B) then TB « TB + 1;
end; ‘ '
foreach £ in {edges(Q)}do
begin
if BLACK(E) then TE < TE + 1;
end;
foreach V in {vertices(Q)}do
begin
it BLACK(V) then TV < TV + 1;
- end;
retum (TB- TE+ TV);
end;

IV. COMPUTING PERIMETERS OF LINEAR QUADTREES

Recall from Sections I and II that a linear quadtree represents
an image as a preorder traversal of the leaf nodes comprising it.
The traversal of the blocks, edges, and vertices of the graph of
a quadtree described in Section II can be implemented by a
traversal of the leaves of the tree. In this section, we show
how this can be achieved for the task of perimeter computation
in such a way that each leaf node is examined exactly once.
At any instant, the state of the traversal (i.e., after processing
m leaf nodes) can be visualized as a staircase (termed an active
border). The active border partitions the leaf nodes into two
sets: those nodes that have already been visited and those that
are to be visited in the future. In particular, given a traversal
in the order SW, SE, NW, NE, the part of the image described
by the m leaf nodes is to the left of and below the staircase.?
The active border consists of a set of active edges. This set can
be decomposed into a set of active horizontal edges and active
vertical edges. For example, for Fig. 1, a traversal in the above
order (without GRAY nodes) is L, M, J, 39, 40, 37, 38, 59,
60, 57, 58, Q, N, O, B, H, I, F, G. Fig. 4 shows the active
border after processing node 37. In the following, we describe
a process that systematically visits the edges of the quadtree
without requiring the use of neighbor finding methods that are
based on locating the nearest common ancestor [18].

From Section I we know that the computation of the
perimeter only requires the accumulation of the widths of all

3In fact, any traversal order that forms a staircase can be used with
our algorithms once appropriate changes are made. Thus, for instance,
the order SW, NW, NE, SE would also be permitted, as would others,
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Fig. 4. The active border after processing node 37 in Fig. 1.

GRAY edges. This process is facilitated by the active border
which records the color and size {i.e., width) of each leaf node
that is adjacent to it. We represent the active border by two
arrays of active edges, termed XEDGE and YEDGE, corre-
sponding to the active horizontal and vertical edges and indexed
by the x and y coordinates, respectively, of their starting pixels.
This enables the cost of accessing the edge data structure to be
independent of the number of edges. XEDGE and YEDGE are
implemented as arrays of pointers to records of type edge.
Each edge represents an active edge. It has two fields, WID
and COL, corresponding to the width and the color of the
block adjacent to the side of the edge that has already been
processed. Initially, there is one active horizontal edge and
one active vertical edge, both of width 2" and color WHITE at
address 0. For example, Fig. 4 shows the active border after
processing node 37, while Table I represents the state of the
XEDGE and YEDGE arrays.

Perimeter computation is performed by procedures KPERIM-
ETER, PTRAVERSE, and INCREMENT. They are given below
using a variant of Algol. Procedure KPERIMETER is invoked
with the DF-expression encoding of the nodes in the quadtree.
It initializes the active border and then invokes procedure
PTRAVERSE, which controls the fraversal of the quadtree
nodes. For each leaf node, PTRAVERSE calls procedure
INCREMENT twice, i.e., once for the southern side of a leaf
and once for the western side. INCREMENT augments the
perimeter and updates the active border.

In order to see how INCREMENT works, suppose that we
are adding leaf node L of width W, color C, and leftmost pixel
at x coordinate X. We illustrate the workings of INCREMENT
with respect to the southern side of L. Let the southern neigh-
bor of L be Q. Note that at this point { has already been pro-
cessed, and so all the relevant data with respect to the edges
between L and @ are represented by XEDGE[X], i.e., their
color and width. There are three possibilities. First, if Q is of
the same size as L, and Q is a leaf node, then we simply check
if the edge is GRAY (i.e., L and (2 differ in color along their
shared side). If yes, then the perimeter is augmented by W. In
any case, XEDGE [X] is updated to reflect the new active
edge, i.e., the northern side of L. As an example, after pro-
cessing leaf node 37 in Fig. 1, the perimeter is augmented by 1
corresponding to the width of leaf 37 (assuming an 8 X 8 pixel
array) since the edge between 37 and its southern neighbor,
39, is GRAY. The color field of the active edge is changed
from BLACK to WHITE because 37 is a WHITE leaf. The
width field remains the same in this case. ’
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TABLE 1
XEDGE anp YEDGE Arrer ProcessinG NoDE 37 In FiG. |
XEDGE [1] YEDGE [1]

! LEN coL BLOCK LEN CcoL BLOCK
0 2 WHITE J 2 BLACK M
{
2 l WHITE 37 | BLACK 40
3 1 BLACK 40 | WHITE 37
4 4 WHITE | BORDER 4 WHITE | BORDER
5
6
T

Second, if @ is larger than L, then ¢ must comrespond to a
leaf node. If the edge between L and @ is GRAY, then the
perimeter is augmented by W. In any case, XEDGE [X] is up-
dated to reflect the two new active edges. In particular,
XEDGE [X] is set to the northernside of L. In addition, there
is a new segment of the active border that corresponds to the
part of the active edge associated with @ that has not been re-
placed by the northern side of L. As an example, after pro-
cessing leaf node 39 in Fig. 1, the perimeter is unchanged since
the edge between it and its southern neighbor, M, is BLACK.
The color field of the active edge at XEDGE{2] remains
BLACK, but the width field is changed from 2 to 1. Since M
is larger than 39, the part of the active border between pixel
locations 3 and 4 now forms an active edge. In particular,
the color field of XEDGE[3] is set to BLACK, and its width
field is set to 1.

Third, if Q is of the same size as L but corresponds toa GRAY
node (i.e., WID(XEDGE[X]) < W), then we must process all
of the edges between L and the northernmost descendants of
Q. For each such edge that is GRAY, the perimeter is aug-
mented by the width of the adjacent northernmost descendant
of Q. In any case, XEDGE[X] is updated to reflect the new
active edge, i.e., the northern side of L. As an example, in Fig.
1 the southern neighbor of leaf node B isGRAY node D, After
processing B, the perimeter is augmented by 1 corresponding
to the width of node 38 since it is the only northernmost
descendant of D that has a GRAY edge between it and B. The
color field of the active edge (i.e., XEDGE[0]) remains WHITE,
The width field of the active edge is set to 4 (i.e., XEDGE[0]).

Procedure INCREMENT must also do some extra work
when processing a node adjacent to the border of the image.
In particular, it must determine if the edge formed by the
block and the border is GRAY (assuming that the image is sur-
rounded by WHITE). For example, after processing node 7 in
Fig. 1 we are at the eastern border of the image. This is de-
tected after the application of INCREMENT to the southern
side of I since the x coordinate of the westernmost pixel of /
is available for such a test. In this example, the edge is GRAY,
and the perimeter is augmented by 2 (i.e., the width of ).

V. A GENERAL GEOMETRIC PROPERTY COMPUTATION
ALGORITHM

In Section IV we saw how to compute the perimeter of an
image represented by a linear quadtree. This was facilitated
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by use of a data structure which was called an gctive border.
In this section we show how additicnal geometric properties
such as the Euler number and connected component labeling
can be computed for linear quadtrees. This is done in the con-
text of a general algorithm which is able to compute all three
geometric properties. In the process we show how the active
border data structure is modified fo enable the computation
of these properties.

The algorithms that we study are of two types: those that
are based solely on the inspection of adjacencies at edges and
those that also require the inspection of adjacencies at vertices.
Computation of perimeter and connected components are of
the former type, while the computation of the Euler number
is of the latter type. In order to label connected components,
we need only add a field to the active border data structure
that records the label assigned to the block adjacent to the side
of the edge that has already been processed. Thus, the edge
record type now contains an additional field termed LAB.

The computation of the Euler number requires an additional
data structure to keep tfrack of the vertices. To see this, we
note that for each leaf, say L, of the preorder traversal, we
must determine if the SW vertex of L, say X, is BLACK. This
is the last opportunity to examine this vertex since it will never
again be adjacent to the active border. This statement is easily
verified by observing the staircase nature of the active border
and the fact that the tree is traversed in the order SW, SE, NW,
NE. In other words, the active border expandsin the rightward
and upward directions, The active border data structure used
for computing perimeter and connected components does not
always contain enough information to determine the color of
X. In particular, it only keeps track of the colors of the leaf
nodes that are adjacent to the border along a side and not at a
corner. For example, Fig. 4 and Table I show the active border
after processing node 37 in Fig. 1. The next node to be pro-
cessed is 38, but we do not know the color of the block adja-
cent to its SW corner. To rectify this situation, we define an
additional entity termed an active verfex, which corresponds
to a vertex on the active border. The set of all such vertices is
called the ective vertices. Itisimplemented as anarray, VRTX,
of pointers to records of type verfex. A record of type vertex
has one field, COL, corresponding to the color of the block
whose NE corner touches the vertex, For a 2" X 2" image
array, at any one time, VRTX has a maximum of 2"*1-1
entries. Given a vertex at (x, ), VRTX[x - y] corresponds to
its vertex record. Since the line K =x - y can only intersect
the active border at one position, we see that no two active
vertices may simultaneously have the same VRTX entry.

The general geometric property computation algorithm can
be decomposed into two sets of procedures. The first set
consists of procedures GEOM_PROPERTY, TRAVERSE,
PROCESS_LEAF, PROCESS_SIDE, UPDATE_VERTEX,
and UPDATE_EDGE. They are common to the computation
of all geometric properties. The actual computation is con-
trolled by procedure GEOM_PROPERTY, which is invoked
with the DF-expression encoding of the nodes in the quadtree.
It initializes the active border and the active vertices and then
invokes procedure TRAVERSE, which controls the traversal
of the quadtree nodes. For each leaf node, TRAVERSE calls
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procedure PROCESS_LEAF to compute the desired geometric
property. PROCESS_LEAF invokes procedure PROCESS_
SIDE twice: once for the southern border and once for the
western  border, Procedures UPDATE_VERTEX and
UPDATE_EDGE are used to update the active vertices and
active border, respectively., TRAVERSE. assumes that the
linear quadtree is in the form of a DF-expression, However, it
should be clear that TRAVERSE could be easily modified to
handle other linear quadtree representations. Note that we
make use of a record of type leaf to represent the leaf nodes.
It is an edge record with two additional fields, XPOS and YPOS,
corresponding to the coordinates of the lower left-hand corner
of the leaf.

The second set consists of procedures necessary to compute
the geometric property in question and thus may be coded
differently depending on the geometric property. It consists
of procedures PROCESS_VERTEX, PROCESS_BLOCK,
PROCESS_EDGE, PROCESS_EDGES, and PROCESS_
BORDER. The actual code for these procedures is given in the
Appendix for the computation of perimeter, connected com-
ponent labeling, and Euler number, In the following we de-
scribe briefly their meaning. Note that for a specific geometric
property not all of the procedures are used.

Procedure PROCESS_LEAF is the controller of the com-
putation process. For each leaf node, say L, it performs the
following three steps. First, the vertex in which the SW corner
of L participates as an NE component is now fully specified
(i.e., the colors of the blocks touching it are all known), and it
is processed by PROCESS_VERTEX. This is useful in the
computation of the Euler number. We also use UPDATE__
VERTEX to update the VRTX entry corresponding to the NE
corner of L (e.g., after processing leaf node & in Fig. 1, the
color of the active vertex corresponding to the NE corner of G
is changed to WHITE from BLACK, which was the color asso-
ciated with the previous VRTX entry, i.e., corresponding to
the NE corner of H). Second, PROCESS_SIDE is invoked
twice: once to process all the edges and vertices on the W side
of I and once for those on the S side. Finally, PROCESS__
BLOCK is invoked to perform any computation that involves
the leaf node alone. For example, when computing the Euler
number we must keep track of the number of BLACK leaf
nodes.

Procedure PROCESS_SIDE has the same structure as pro-
cedure INCREMENT described in Section IV for the computa-
tion of perimeter. Suppose that we are adding leaf node L of
width W, color C, and leftmost pixel at x coordinate X. As-
sume that we are processing the southern side of L and let ¢
be the southern neighbor of L (recall the definition of neighbor
in. Section II). PROCESS_SIDE must process the edges and
vertices between @ and L depending on their relative sizes.
This is described below. In addition, it updates the active
border for the northern side of the new leaf L by use of
UPDATE _EDGE. Finally, it checks to see if the eastern side
of the new leaf is on the border, in which case it invokes
PROCESS_BORDER to perform any necessary additional
computations (e.g., for perimeter).

When processing the edges and vertices lying between Q and
L, there are three possibilities. First, if Q is of the same size as
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L, and @ is a leaf node, then we simply compute the geometric
property for the edge between L and Q using PROCESS_ EDGE.
Second, if @ islarger than L, then Q must correspond to a leaf
node. Again, we compute the geometric property for the edge
between L and @ using PROCESS_EDGE, In addition, we
invoke UPDATE_VERTEX and UPDATE_EDGE to update
the active vertices and active border data structures, respec-
tively, to reflect the additional vertex and the reduction in size
of a component of the active border. As anexample,after pro-
cessing leaf node 39 in Fig. 1, we find that the size of the con-
tribution of M to the active border changes from 2 to 1 and
lies between pixel positions 3 and 4. Moreover, there is now a
vertex at {3, 2), and the set of active vertices is modified ac-
cordingly. Third, if 0 is of the same size as L but corresponds
to a GRAY node, then we compute the geometric property for
the edges and vertices between L and the northernmost de-
scendants of Q. This is done by PROCESS_EDGES and
PROCESS_VERTEX. Note that this is the last time that we
have an opportunity to examine these edges and vertices since
they will never again be adjacent to the active border. As an
example, in Fig. 1 the southern neighbor of leaf node B is
GRAY node D. From Fig. 3 we see that we must compute the
geometric property for edges xf, xg, and xk and vertices A7

and AJ.
The detailed code for procedures PROCESS _VERTEX,

PROCESS__BLOCK, PROCESS_EDGE, PROCESS_EDGES,
and PROCESS_BORDER for each geometric property, when
they are used, is given in the Appendix. For perimeter compu-
tation, PROCESS _EDGE and PROCESS_EDGES check for
GRAY edges. Assuming that the image is surrounded by
WHITE, PROCESS._BORDER determines if the border edge
is GRAY. PROCESS_VERTEX and PROCESS_BLOCK are
not used.

For connected component labeling, PROCESS_EDGE and
PROCESS _EDGES check for BLACK edges and merge if
necessary. PROCESS _VERTEX, PROCESS _BLOCK, and
PROCESS _BORDER are not used.

For Euler number computation, PROCESS _EDGE and
PROCESS _EDGES check for BLACK edges. PROCESS _
VERTEX checks for BLACK vertices. PROCESS _BLOCK
checks for BLACK leaf nodes. PROCESS _BORDER is not
used.

VI. CoNCcLUDING REMARKS -

A general algorithm for the computation of geometric prop-
erties for images represented by lnear quadtrees has been
presented. The key to the success of the algorithm is the use
of a staircase-like data structure to represent the active border
as the tree is traversed. Use of a graph-theoretic definition of
a quadtree simplified the presentation considerably. The algo-
rithm was discussed in the context of a linear quadtree repre-
sentation in the form of a DF-expression. However, it should
be clear that it can be used with other linear quadtree repre-
sentations.  No general algorithms for such tasks using linear
quadtress have existed before.

Computation of the perimeter and the Euler number only
requires one pass over the data whereas connected component
labeling requires two passes {one for determining equivalences
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and one for updating; recall that steps one and two can be
combined). The execution time of perimeter, Euler number,
and the first step of connected component labeling using our
general algorithm is proportional to the number of leaf nodes
in the image. This is better than results achievable by algo-
rithms based on neighbor finding using a nearest common
ancestor. The problem with the latter is that although they
have linear average case behavior, in the worst case, evenassum-
ing an explicit tree representation, their executjon time is pro-
portional to T +r where T is the number of leaf nodes in a
2" X 2" image. The worst case for nearest common ancestor
neighbor finding methods arises when the nearest common
ancestor is the root of the tree. For example, in Fig. 1, to lo-
cate the eastern neighbor of node 38 (i.e., V'), we must ascend
through K, D, and A4 and descend to N through E. For a more
general example of this worst case behavior, see [20]. Note
also that Jackins and Tanimoto [8] have devised an O(T) pe-
rimeter. computation algorithm applicable to explicit quadtree
representations. However, their algorithm traverses the quad-
tree twice, whereas we only need to traverse it once.

Using our algorithms, the amount of extra storage beyond that
required for the quadtree nodes is three arrays. We assume a
2" X 2" image. Two of the arraysare used for the active border,
have a maximum of 2" entries, and contain three fields per

" entry (i.e., WID, COL, and LAB). Thethird array for the active

vertices has a maximum of 2"*! - 1 entries and contains one
field per entry. The active border and active vertices data struc-
tures could also be implemented as linked lists with a slightly
more complex access mechanism. This would have the advan-
tage of not needing to store more entries than there are actual
edges and vertices. The quadtree nodes are stored in external
memory. However, it is preferable to store the active border
and vertices arrays in internal memory.

The algorithms presented in this paper were tried out on an
existing geographic information system based on linear quad-
trees [15]. Due to the large amount of data, the system is
disk based. Use of the new algorithm resulted in an order of
magnitude improvement in the execution time of algorithms
such as perimeter computation. Aside from the decrease inthe
computational complexity of the new algorithm, other reasons
for the speed-up include the absence of page faults due to the
ability to process the nodes of the quadtree in a sequential or-
der. In experiments involving trees stored in central memory,
the speed-up was smaller but still considerable (up to sixfold).
However, we refrain from giving exact figures due to the great
dependence of the performance of the Gargantini encoding
scheme [5] on implementation details.

Future work includes an attempt to compute distance trans-
forms [19] and a quadtree medial axis transform [21] using
linear quadtrees. This is somewhat more difficult than the algo-
rithms which we have attempted above since we must examine
all sides of a leaf node as well as neighbors of neighbors. Most
likely, such tasks will require more than one pass over the leaf
nodes comprising the linear quadtres. Geometric properties
for linear octrees [6] (e.g., connected component labeling, sur-
face area, etc.) could also be computed using simitar techniques.
However, the active border and active vertices arrays will now
get rather large, and it would be preferable to use linked lists.
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Such an approach, having the same execution time behavior, is
used in [23] with a different graph definition of a quadtree.

APPENDIX
ALGORITHMS FOR THE INDIVIDUAL
GEOMETRIC PROPERTIES

Perimeter computation:

procedure PROCESS _EDGE(L, E);
begin
value pointer leaf L ;
value pointer edge F,
global integer PER;
if COL{L) NEQ COL(FE) then /*GRAY edge*/
PER <« PER + WID(L);
end;

procedure PROCESS _EDGES(L, F);
begin
value pointer leaf ;
value pointer edge £;
globat integer PER;
if COL(L) NEQ COL(F) then /+GRAY edge+/
PER < PER + WID(E),
end;

procedure PROCESS _BORDER(L);
begin
value pointer leaf L;
global integer PER;
if COL(L) = BLACK then /#GRAY border edge */
PER <« PER + WID(L);
end;

Connected component labeling:

procedure PROCESS _EDGE(L, E);
begin
value pointer leaf L ;
value pointer edge £;
if COL(L)= BLACK and COL(E) = BLACK
then /*BLACK edge =/
begin
if labeled (L) then MERGE(LAB(L), LAB(E'))
else LAB(L) < LAB(F);
end;
end;

procedure PROCESS _EDGES(L, EY);
begin

value pointer leaf L;

value pointer edge F;

PROCESS _EDGE(L, E);
end;

Fuler number computation:

procedure PROCESS _BLOCK(Z);

begin
value pointer leaf L;
global integer 7B;

if COL(L) = BLACK then /+*BLACK block */
TB<TB+1;
end;

procedure PROCESS _EDGE(L, F);
begin
value pointer leaf L;
value pointer edge F;
global integer TF;
if COL(L) = BLACK and COL(E) = BLACK
then /*BLACK edge#/
TE<«TE+1;
end;

procedure PROCESS _EDGES(L, E);
begin

value pointer leaf I.;

value pointer edge £;

PROCESS _EDGE(L, £);
end;

procedure PROCESS _VERTEX(C1, C2,(3,C4);
begin
value color C1,C2,C3,C4;
global integer 7'V; '
if C1 = BLACK and €2 = BLACK and C3 = BLACK
and C4 = BLACK then
TV < TV + 1; [*BLACK vertex */

end;

integer procedure KPERIMETER (M,DF);

/* Compute the perimeter of an M by M (M = 2") image
represented by DF, a preorder traversal of its quadtree,
Each invocation of NEXT(DF) provides the next ele-
ment in the list and advances the pointer DF. XEDGE
and YEDGE are arrays of pointers to records of type
edge that represent the active edges in the x and y direc-
tions, respectively. Arecord of type edge hastwo fields,
WID and COL, corresponding, respectively, to the width
and the color of the block adjacent to the side of the
edge that has already been processed. */

begin

global value integer M;
global value pointer nodelist DF;
global pointer edge array XEDGE, YEDGE [0: M -1] ;
/* Initialize XEDGE and YEDGE to represent one active
edge of width M at location 0 and adjacent to WHITE
blocks: */
WID(XEDGE[0] ) < WID{YEDGE[0] ) < M;
COL(XEDGE[0]) < COL(YEDGE|[0] } « WHITE;
return (if empty (DF) then O
else PTRAVERSE(M,0,0));
end;

integer procedure PTRAVERSE(W,X,Y);

/* Compute the perimeter of a W by W segment of an M
by M image where DF represents the preorder traversal
of its quadtree. The lower left corner of the Wby W
segment has x and y coordinates of X and Y, respec-
tively, */
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begin :
value integer W X,Y;
global pointer nodelist DF;

global integer M;

global pointer edge array XEDGE, YEDGE [0: M/ - 1]
-integer T;

color P; /*P takes on the values “( ” 4B, and “W ¥/
P < NEXT(DF);

if P=“(" then
begin /* A nonterminal node */

T+0;

W< W/2;

T < PTRAVERSE(W,X,Y) + .
PTRAVERSE(W,X+W,Y) +
PTRAVERSE(W,X,Y+W) +
PTRAVERSE(W, X+W,Y+W);
[*Process SW, SE, NW,
and NE sons in order.*/

end

else

T« INCREMENT(XEDGE, X, W, P) +
INCREMENT(YEDGE, ¥, W, P);
[*Horizontal contribution and
vertical contribution®/

return (T);

‘end;

integer procedure INCREMENT (£,X,W,C);

/*  Compute the contribution to the perimeter of the side
adjacent to the active border, represented by E, of a
leaf of color C, side length W, and at position X relative
to the start of the active border. */ .

begin

value pointer edge array E[0: M -1 ]
value integer X, I,
value color C;
global integer A/
integer I, PER,;
if w> WID(E {X1]) then f*Isthe neighbor of the new Ieaf
a GRAY node? */
begin /*Yes, process the edges adjacent to the new
leaf */
PER «0;
I+ X;
while 7 < X+W do ,
begin /*Update the perimeter for GRAY edges*/
if C NEQ COL(E[[])
then PER < PER + WID(E[I]);
I<rI+ WID(E[I})
end;
end;
else /*The neighbor is a leaf node */
begin
if C NEQ COL(E[X])
then PER « W /[*GRAY edge*/
else PER < 0;
if W<WID(E[X])
then /*Is the neighbor larger? */

begin /*Yes, update the active border’ for the
neighbor */
WID(E[X+W]) « WID(E[X]) - W,
COL(E[X+W]) < COL(E[X]):
end; s a :
end; :
{*Update the active border for the new leaf: */
WID(E[X]) < W;
COL(E[X])«C;

“if X+W=M then /*Is one of the other sides of the new

leaf on thé image border?*/
begin /*Yes, update the perimeter if necessary */
if C = BLACK then PER < PER + ¥, )
end; :
return (PER);

end;

procedure GEOM_PROPERTY (M,DF); = .
/* Compute a geometric property:of an-M by M (M =2")

-image represented by DF, a preorder traversal of its
quadtree. Each invocation of NEXT(DF) provides the
next element in the list and advances the pointer DF.
XEDGE and YEDGE are arrays of pointers to records
of type edge that represent the active edges in the x and
y directions, respectively. A record of type edge has
three fields WID, COL,: and LAB, corresponding, re-
spectively, to the width, color, and label of the block
adjacent to the side-of the edge that has already been
processed. VRTX is an array of pointers to records of
type vertex that represent the active vertices. A record
of type verfex has one field, COL, corresponding to the
color of the block whose NE corner touches the vertex,
LL points to the start of a list of the leaf nodes that
have been processed by TRAVERSE. This is useful
when there is a need for further processing as in the
case of connected component labeling. */

begin

global value integer A

global value pointer nodelist DF

global pointer edge array XEDGE YEDGE[0: M-1];

global pointer vertex array VRTX [-M+1: M -1];

global pointer leaflist LL,;

[* Initialize XEDGE and YEDGE tc represent one active
edge of width M at location 0 and adjacent to WHITE
blocks: ¥/

WID(XEDGE([0]) < WID(YEDGE[0]) < M;

COL(XEDGE|[0] ) < COL(YEDGE|0]) «+ WHITE;

/* Initialize VRTX to represent one active vertex with
a white block at its SW corner: ¥/

.. COL(VRTX[0]) « WHITE;

/* Perform any special initialization for the geometric
property being computed: */ “

INITIALIZE _PROPERTY(): B

if not (empty {DF)) then TRAVERSE(M 0 0)

[* Perform any additional steps—e.g., phases 2 and 3 of
connected component labeling: */

PERFORM__ GTHER _STEPS(LL);

end;
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procedure TRAVERSE(W,X,Y);

/* Compute a geometric property of a W by W segment of
an M by M image where DF represents the preorder tra-
versal of its quadtree. The lower left corner of the W
by W segment has x and y coordinates of X and Y, re-
spectively. For each leaf node, procedure PROCESS_
LEAF is invoked. to perform the appropriate computa-
tion. After processing each leaf node, it is added to a
list, LL, of records of type leaf each of which has five
fields, WID, COL, LAB, XPOS, and YPOS corresponding
to the width of its side, color, label, and x and y coor-
dinates of its lower left corner, respectwely */

begin

value integer W, X, ¥
global pointer nodelist DF;
global integer A,
global pointer edge array XEDGE, YEDGE[0: M - 1]
global pointer vertex array VRTX [-M+t: M- 1];
global pointer leaflist LY;
color P; [*P takes on the values “( ?“B.” and “W” */
‘pointer leaf L ;
P+ NEXT(DF),
i P=“(" then
beg;n / *Nonleaf node */
W Wf2; - :
TRAVERSE(W,X,Y);
- TRAVERSE(W,X+W,Y);
TRAVERSE(W,X,Y+W);
TRAVERSE(W, X+W,Y+W),
/*Process SW, SE, NW,
and NE sons*/ -
end
© else
begin /*Leaf node */
L < createnode (leaf )
WID{L) < W,
COL(L)+« P,
LAB(L) < “unknown”;
XPOS(L) ~ X;
YPOS(L) « V;
PROCESS__LEAF(L);
addtolist (LL,L);
end;
end s

procedure PROCESS__LEAF(L);

{*. Determine the contribution of leaf L to the geometric
property being computed. Update the active border and
active vertices data structures to reﬂect the processing

- of L, ¥ :
begin
value pointer leaf /.;
global pointer edge array XEDGE, YEDGE[0: M - 11
. global pointer vertex array VRTX[ M+1 M- 1]
global integer M;
integer W XY
color C;

X <XPOS(L); /*Unpack some of the ﬁelds of the leaf
L*f

Y < YPOS(L);

W< WID(L);

C+COL(L);

{* Process the SW vertex of L, i.e., the colors of all the
leaf nodes surrounding it are now known and its color
can be determined: */

PROCESS_VERTEX(C,COL(VRTX[X-Y]),
COL(XEDGE[X]),COL(YEDGE[Y]));

/* Update the VRTX entry corresponding to the NE
corner of L:#/

UPDATE_VERTEX(X-Y,L);

/* Process all the edges and vertices on the S side of
L:*f

PROCESS _SIDE(XEDGE, X, X+W-Y,L);

/* Processall the edges and vertices on the Wside of 1. */

PROCESS_SIDE(YEDGE,Y,X-Y- W,L);

/* Process the block corresponding to the leaf L: %/

PROCESS _BLOCK(L);

end;

procedure PROCESS_SIDE(E,X,V,L);
/* Determine the contribution of a side of the new leaf L

(side width W and color C) to the geometric property
being computed. The segment of the active border that
is adjacent to the side is represented by E starting at en-
try X. V¥ is the index of the active vertices data structure
(ie., VRTX) that corresponds to the vertex at pixel
X+W. Visused in UPDATE_VERTEX. */

begin

value pointer edge array £{0: M -1];
value integer X,V
value pointer leaf I ;
global integer M;
integer I, VI, W,
W< WID(L);
if W>WID(E[X])
then /*Is the neighbor of the new leaf a GRAY node? */
begin /*Yes, process the edges adjacent to the new
leaf */
PROCESS_EDGES(L,E[X]);
Vi< X,
I< X +WID(ELX]);
while 7 < X+W do
begin /*Compute the geometric property for
GRAY edges*/
PROCESS_VERTEX(COL(E[VI]),
COL(£[1]),COL(L),COL(L));
PROCESS__EDGES(L,E[1]);
Vi<,
I<I+WID(E[I]);
end;
end
else /*The neighbor is a leaf node */
begin
PROCESS_EDGE(L,E[X]);
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if W<WID(E[X])
then [*Is the neighbor larger? */ :
begin /*Yes, update the active border and vertex
for the neighbor: */
UPDATE_EDGE(E[X+W], W E[X])
UPDATE_VERTEX(V,E{X]);
end;
- end;
“[* Update the active border for the new leaf */
UPDATE _EDGE(E[X],W,L);
lf X+W= M then /*1s the other side of the new Ieaf on
the image border? */
PROCESS__BORDER(L),/*Yes, update the geometri¢ prop-
erty if necessary*/
end;

procedure UPDATE_VERTEX(V,EL);
[* Set the color of the Vth entry of vertex array VRTX to
the color associated with edge orleaf EL. The argument
EL may be a pointer to an edge or a leaf since a leaf is
an edge record which also has entries for the coordinates
of its lower left pixel. */
begin
value integer V;
value pointer edge EL;
global pointer vertex array VRTX[-M +1: M-1];
global integer M;
COL(VRTX|[V]) <+ COL(EL);
end;

procedure UPDATE__EDGE(E,D,EL);

{* Update the active border for edge £ to reflect the ad-
jacency to leaf EL. This procedure is also used to up-
date the neighbor to a leaf in which case the WID field
is modified by D and EL is a pointer to an edge. This is
permissible since a leaf is an edge record which also has
entries for the coordinates of its lower left pixel. */

begin

value pointer edge £ FL;

value integer D;

copyfields (£, EL);

WID(¥) < WID(E) - D;
end;
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