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ABSTRACT

Image representatlon plays an- important role
in image processing applications. ‘Recently_tnere

quadtrees.- This has: led to
algorithms for performlng

is a traversal of the tree a e'performence of
a given computation At each ‘node: . These camputa—
tions’ typleally require the a_ility to examine
adacencies between neighboring ‘nodes; Algorithms
are given for determining such adjacencies in the
horizontal, vertical, and diagonal directions.

Introduction

Region representation is an important aspect
of image processing with numerous representations
finding use. Recently, there has emerged a con-

siderable amount of interest in the gquadtree [3-8,1].

This stems primarily from its hierarchical nature
which lends itself to a compact representation

It is also gquite efficient for a number of tradi-
tional image processing operations such as computing
perimeters [14], labeling comnected components [13],
finding the genus of an image [1], and computing
centroids and set properties [19]. Development of
algoritims to convert between the quadtree repre-
sentation and other representations such as chain
codes [2,10], rasters [12,18], binary arrays [11],
and medial axis transforms [15 16,20} lend further
support to this importance.

In this paper we discuss methods for moving
between adjacent blocks jin the guadtree. We first
show how transitions are made between blocks of
equal size and then generalize our results to blocks
of different size where the destination block is
either of larger or smaller size than the source
block. Such blocks are termed neighbors. Note
that the transitions that we discuss also include
those along diagonal, as well as horizontal and
vertical, directions. The importance of these
methoeds lies in their being the cornerstone of many
of the quadtree algoritims (e.g., [1,2,10,12-16,
18-20]), since they are basically tree traversals
with a "visit" at each node. More often than not
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these visits involve probing a node's neighbors.

The significance of our methods lies in the fact
that they do not use coordinate informatiom,
knowledge of the size of the images, or storage in
excess of that imposed by the nature of the quadtree
data structure,

Definitions and notation

The quadtree is an approach to image represen—
tation based on the successive subdivision of the
image into gquadrants. It is represented by a
tree of outdegree 4 in which the root represents
a block and the four sons represent in order the
NW, NE, SW, and SE quadrants. We assume that each
node is stored as a record containing six fields.
The first five fields centain pointers to the node's
father and its four sons which correspond to the
four quadrants, If P is a node and I is a quadrant,
then these fields are referenced as FATHER(P) and
SON(P,T) respectively. We can determine the speci~-
fiec quadrant in which a node, say P, lies relative
to its father by use of the function SONTYPE(P)
which has a value of I if SON{FATHER(F},I) =

. The sixth field, NODEIYPE describes the contents

of the.block of the imege which the node represents-
i.e., WHITE if the block contains noc 1's, BLACK If
the block contains only 1's, and GRAY if it contains
©'s and 1's. Alternatively, BLACK and WHITE are
terminal nodes, while GRAY rodes are non-terminal
nodég.: < For- example, ‘Figure 1t is.a block decomposi-
tion: of the:fegion in’ Figure_la whi efFigure Lis :
the corresponding quadtree.:~‘-, el B

: Let the four sides of a node:s block be,. called
its N, B, #@nd W sides.  They are. ‘algo termed :its
boundaries and at times: we speak of: them as ‘if they
are ‘directions.. We define thef Towing predieates
and funetions to ‘aid in thé expression’ of -opérations
involving -2 block's quadrantsand 'its boundaries:
ADJ(B,I) is true:if and: only if quadrant ‘I.isiadja-
cent to boundary:B of the, dode's, block, e.g., ADI(W,
SW) “is ‘trie, HEFLECT(B 1) yields_th SONTYPE value
of the bloek of: equal size'tha s adja nt to:side
B of .block,hav1ng SONTYPE alue I,
SW) = - ] ; ndicates:the boundary
of .the- block cont'ining quadrants QL 'Q2 thet is
common to ‘them; €.g8:5. COMMONSIDE(SW SN ﬁ qQl
and Q2 are not adjacent ‘brother guadra ts (e.g.,
NE and SW) or if @l and Q2 are the same, ‘then the
value of COMMONSIDE is undefined. OPQUAD(Q) is

- the quadrant which does not share a block boundary
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For a quadtree corresponding to a 20 by 20
array we say that the root is at level n, and that
a node at level i is at a distance of n-i from

b. Bloc i
. k decomposition of the region in (a). the root of the tree. In other words, for a node
K at level i, we must ascend n-i FATHER links to
reach the root of the tree. MNote that the farth-
~ L] SE est node from the root of the tree is at a level

2. A node at level @ corresponds to.a single
: . pixel in-the image. Also, we say that a nmode is
k _ ' Y ] D of size 2% if it is found at level s in the tree,

Neighbor finding algoritims

W R .glsﬁ u] fuln d D0y - Glven a node corresponding to a specific
AZHH AN block in the image, its neighbor of equal size iIn
the horizontal or vertical direction is determined
by locating a common ancestor. Next, we retrace
the path while making mirror image moves about an

K > O0O¢ O (¥ » s
2B M 5 axis formed by the common boundary between the
blocks associated with the two nodes. The common
ancestor is simple to determine—-e.g., to find an
efuln ] 00g ] Ials nfulzn] §s eastern neighbor, the common ancestor is the first
ZBEIWISNA 67 I BHINRBABABRHED ancestor node which is reached via its NW or SW
e, d . : . son. For example, the eastern neighbor of node A
Quadtree representation of the blocks in (b). in Figure 3a 1s 6. It is located by ascending the
Figure 1. A region, its maximal bloeks, and the tree until the common ancestor, D, is found. This
corresponding quadtree. Blocks in the re- requires going through a NE link to reach B, a NE
gion are shaded, background blocks are link to reach ¢, and a NW link to reach D. Node

lank,
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Figure 3. Process of locating the edstern neighbor of Node A (i.e., G ).
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Figure 4.'-Process of locating the SE neighbor of Hode & (i.e., G}.

G is now reached by backtrackirg along the pre~
vious path with the appropriate mirror image moves.
This reéquires descending a NE link to reach E, a
NW link to reach F, and a NW link to reéach G, Fig-
ures 3a and 3b show how the eastern nelghbor of
node A is located: The algorithm for locating-an
equal sized neighbor in a given horizontal or ver-
tical direction is given below using a variant of
ALGOL 60 '[9]. HNote that we assume that the neigh-
bor in the specified direction does indeed exist
(i.€.,, we are not on the border of the image) ,

node procedure EQUAL ADJ NEIGHEOR(F,D);

/* Locate an equal-sized neighbor of node P in
" horizontal or vertical direction D %/ ’

begin- . :
value node P; |
. value direction D; . L
. return (SON(if ADJ(D,SONTYPE(P)) then :
) __'EQUAL ADJ NEIGHBOR(FATHER(P) ,D)

else FATHER(P),
. REFLECT(D,SONTYPE(P))));

end;
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Finding a node's neighbor in the diagonal
direction (i.e., its corresponding block touches
the given node's bloek at a corner) is more com~
plex. @Given a node corresponding to a specific
biock in the image, its neighbor of equal size in
a diagonal direction is determined by a three stlep
process. First, we locate the given node's. near-
‘est ancestor who is also adjacent (horizontally or
vertically) to an ancestor of the sought neighbor.
Next, we make use of EQUAL ADJ NEIGHBOR to access

the ancestor of the sought neighbor in. the direc—

tion of the adjacency. Finally, we retraée the
remainder of ‘the path while making directly opposite
moves (i.e., 180° opposite so that -a NW move be-
comes. a SE move). The nearest ancestor of ﬁhé
first’ step is the first ancestor which is not |
reached by a link equal to the direction of .the
desired neighbor-~e.g., to find a SE neighbor, the
nearest .such ancestor is the first: ancestor node.
which is not reached via its SE son, For example,
the S5E neighbor of node A in Figure 4a is 6. It



la located by ascending the tree until the nearest
‘neighbor, B, which is also adjacent horizontally
{in this case) to an ancestor of G, i.e., F, is
found. This requires going through a NE link to
ceach B. Node F is now reached by applying EQUAL
ADJ NEIGHBOR in the direction of the adjacency
(i.e., east). This forces us to go through a NE
link to reach C and a NW link to reach D. Back~
tracking results in descending a NW link to reach
£ and a WW link to reach F. Fimally, we backtrack

along the remainder of the path making 180° moves——

t.e., we descend a SW link to reach C. Figures 4a
and 4b show how the SE neighbor of node A is loca-
ted, Note that, at times, EQUAL: ADJ NEIGHBOR may
not need to be applied. This 4s the case when the
nearest ancestor of the first step is reached by a
link equal to the direction opposite that of the

desired neighbor (e.g., the SW neighbor of node 16

1s 25 with the nearest ancestor of step 1 in Figure

1, being node A). The algofithm for locating an
equal size neighbor in a given diagonal direction
1z given below. Once again, we assume that the
neighbor in the specified direction does indeed

exist (i.,e., we are not on the border of the image).

node procedure EQUAL CORNER NELGHBOR(P,C);

/ *Locate an equal-sized neighbor of node P in
the direction of guadrant C */
begin
value node P
value quadrant C; -

" return(SON(if SONTYPE(P)=QOPQUAD(C) then FATHER(P)

else if SONTYPE(P)=C then

else EQUAL ADJ NEIGHBOR(
FATHER(P) , _
COMMONSIDE(SONTYPE(?) ,C)),

OPQUAD(SONTYPE(P)))) ; ' :

end;

Tt is often the case that neighbors are of
different sizes. In such a case, we say that we
want the neighboring terminal nodes having equal
or greater size (e.g., the eastern neighbor of
node 23 in Figure 1, is 16). If such a node does
not exist, then we return a GRAY node of equal
size if possible (e.g., the northern neighbor of
nede 23 in Figure 1 is J).
adjacent to the border -of the image (not the
region) and NULL is returned since there is no
neighbor in the specified direction (e.g., the
northern neighbor of nede 2 in Figure 1 is NULL).
When a node does not have a neighboring terminal
node of equal or greater size, returning a GRAY

node of equal size is reasonable because the given

node whose neighbor is being sought has more than
one neighboring terminal node in the gived direc-—
tion. The algorithms for locating neighbors of
equal or greater size in horizontal and vertiecal

directions as well as diagonal directions are given

below using procedures GTEQUAL ADJ NEIGHBOR and
GTEQUAL -CORNER NEIGHBOR respectively. WNote that
a neighbor in a diagonal direction, say €, will

not always abut ‘against corner C of the node whose
neighbor is sought (e.g., node 16 is a non-abutting

NE neighbor of node 23 in Figure 1).

EQUAL CORNER NEIGHBOR(FATHER(P),C)

Otherwise the node is

node procedure GTEQUAL ADJ NEIGHBOR(P,D):

/% Locate a neighbor of node P in horizemtal or
vertical direction D. If such a node does not
exist, then return NULL */

begin :

value node P;

value direction D;

node §;

Af not NULL(FATHER(P)) and ADJ(D,SONTYPE(PF)) then

/* Find a common ancestor */
Q*GTEQUAILﬁDJ_REIGHBOR(FATHER(P),D)
else Q<FATHER(P);
/* Follow the reflected path to locate the
neighbor #/
return {(if not NULL(Q) and GRAY(Q) then
" SON(Q, REFLECT(D,SONTYPE(P)))
else Q);-

end;
node procedure GTEQUAL CORNER NEIGHBOR(P,C);

/* Locate a neighbor of node P in the direction

of quadrant ., If such a node does not exist,
then return NULL */
begin

value node P; -
value quadrant C;
node Q;
1If not NULL(FATHER(P)) and
SONTYPE(PY#0PQUAD(C) then
/* Find a common ancestor */
if SONTYPE(P)=C then )
Q+GTEQUAL CORNER NEIGHBOR(FATHER(E),C)
else Q+GTEQUAL ADJ NEIGHBOR{
FATHER(P),
COMMONSIDE(SONTYPE(P) ,C))
else (Q-FATHER(P); ’

/* Follow opposite path to locate the neighbor */
return (if not NULL(Q) and GRAY(Q) then
- T SON(Q,O0PQUAD{SONTYPE(P}))

else Q);

end;

1f neighbors are of different sizes, we
may wish to know the size of the adjacent or
abutting neighbor. 1In such a case, we want
our nelghbor finding algorithms to return both
a pointer to the neighboring node and a value
from which the node's size can be easily com-
puted. This is relatively straightforward
when we know the level in the tree at which
is found the node whose neighbor is being
sought, TIn fact, such an algorithm need

only increment the level counter by 1 for
each link that is ascended while locating the
common ancestor, and then decrement the level
counter by 1 for each link that is descended
while locating the appropriate neighbor. The
algorithms for locating neighbors of. equal or
greater size, with their corresponding level
positions, in horizontal and vertical diree-
tions as well as diagonal directions, are
given below using procedures GTEQUAL ADJ
NEIGHEORZ and GTEQUAL_CORNERHNEIGHBORZ res-
pectively. Note the use of reference para-
meters to ‘transmit and return results. An
“alternative is to define a record of type
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"block' having two fields of type 'mode' and
Tinteger' whose values are a pointer to the neigh-
boring node and "its level respectively.

procedure GTEQUAL ADJ WEIGHBORZ(P,D,Q,L};

/* Return in Q the neighbor of node P in hori-
zontal or vertical direction D, 1 denotes
the level of tlie tree at which node P is
initially found and the level of the tree
at which node Q is ultimately found. - If such
a node does not exist, then return NULL */

begin ’

value node P;
value direction D;
reference node Q;
reference integer L;
L4141 :
if not NULL(FAIHER(P)) and
ADJ(D SONTYPE(P)) then
/* Find a common ancestor */
GTEQUAL ADJ NEIGHBGRZ(FATHER(P) D,q,L)
else Q+FATHER(P),
7* Tollow the reflected path to locate the -
neighbor */
1f not NULL(Q) amd GRAY{Q) then
begin '
G<SO0N(Q,REFLECT(D ,SONTYPE(P) }};
L+L-1;
end;

erd;

procedure GTEQUAL CORNER NEIGHBORZ(P C,0,L);

/% Return in Q the neighbor of node P in the dir-
ection of quadrant €, L denotes the level of
the tree at-which hode P 1s initially found
and the level of the tree at which node Q is:
ultimately found. If such a nede does not
exist, then return NULL */ '

begin

value node P3
value quadrant C;
reference node Q; .
reference 1nteger L'
L+L+1s
1f not NULL(FATHER(P)) and
SONTYPE(P)#0PQUAD(C) then
/% Find a common ancestor */
if SONTYPE(P)=C then
GTEQUAL CORNER NEIGHBORZ(FATHER(P) +G.Q, )
else GTEQUAL ADJ | NEIGHBQRZ (
FATHER(P) ,
* COMMONSTDE(SONTYPE(P),€),Q,L)
else Q+FATHER(P);

/* Follow the opposite path to locate the neigh-

bhor *f
if not NULL(Q) and GRAY(Q) then
begin
Qe50N(Q, OPQUAD(SONTYPE(R))) ;
L+l-1;
end;
d

At times we may wish to locate an adjacent
horizontal or vertical neighbor regardless of its
size., In such a case, we also specify a cormer
of the block corresponding to the node whose
neighbor is being sought, The neighboring node
must be adjacent to this corner (e.g., node 21 is
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the northern neighbor of node 23 which is adjacent
to the NE corner of node 23). The algorittm for
copputing such a neighbor is given below by proce-
dure CORNER ADJ NEIGHBOR which makes use of
GTEQUAL ADJ | NEIGHBOR.

node Erocedure CORNER #bJ NEIGHBOR(P,D,C); -
7% Locate a neighbor of node P in horizental or
vertical direction D which is adjacent to
_corner C of node P, If such a node does not
 exist, then return NULL ¥/
begin
value node P;
value direction D;
value guadrant C;
'P+GTEQUAL ADJ. NEIGHBOR(P ,D);
while GRAY(P) do P+SON(F, REFLECT(D,C)):
T /% Descend to the desired cormer ¥/
return (P);

end;

Similarily, in the case of a diagonal nelgh-
bor, we may also wish to locate the neighibor in
the given direction regardless of its size (e.g.,
node 20 is a NE neighbor of node 22 in Figure 1
which is smaller in size). The algoritim for lo-
cating an arbitrary-sized diagonal neighbor is
given below by procedure CORNER_CORNER NEIGHBOR
whlch makes use of GTEQUAL CORNER NEIGHBOR.

node procedure CORNER CORNER NEIGHBOR(P G),

7* Locate a meighbor of node P in the direction of

quadrant € which abuts against corner C of ncde
P. If such a node does not exist, then return
NULL */
begin
value node P;
value guadrant C;
node Q;
Q+GTEQUAL CORNER NEIGHBOR(P C)s;
while GRAI(Q) do  -SON{Q,0PQUAD(C));
T /* Descend to the desired corner. %/
return (Q);

end;

it should be clear that procedures similar to
CORNER ADJ NEIGHBOR ‘and CORNER_CORNER NEIGHBOR
can be constructed that also Teturn the level at
which the desired neighboring node is found, This
will not be done here, '

The procedufés outlined about always return
NULL when a neighbor in a specified direction does
not exist. This situation arises whenever the
node whose neighbor is sought is adjacent to the
border of theé image alomg the specified direction.
At times the NULL pointer is not convenient. In-
stead, we could assume that the image is sur-
rounded by WHITE bBlocks as in Figure 5a or by
BLACKE blocks as in Figure 5b. The choice of WHITE
or BLACK for the surrounding blocks depends on the
particular applicat1on. For example, we use WHITE
in the case of the quadtree to boundary code con—
version algoritlm [2] while BLACK is more useful

in the case of the computation of distance [15]

and the construction of a Quadtree Medial Axis
Transform {16].



hmage

Image

a. 1Image surrounded by WHITE blocks.

image

-

Image surrounded by BLACK blocks.

inage

b.

Figure 5. Technique to avoid lacking a neigh

bor in a given direction.’ -

Concluding remarks

The above techniques should be contrasted with
other methods of locating meighbors [3-53,8]. In [8],
a method is,qescribed for moving between adjacent’
blocks of equal size that are brothers (i.e., have
the same father node). This method doés not make
use of the tree structure; instead coordinate infor-
mation and knowledge of the size of the image are
used to locate a neighboring brother im a given
horizontal or vertical direction. This is accom-
plished by a number of primitives termed MOVE UF,
MOVE DOWN, MOVE RIGHT, and MOVE LEFT. Transitions
to non-brother neighboring blocks require the use
of approximations through the use of primitives
named MORE, LESS, and GAMMA. The disadvantages of
these methods is that they require computation
(rather than chasing links) and are clumsy when
adjacent blocks are pot brothers as well as when
they are of different sizes than the block whose
neighbor is sought. .

In [3-5] a number of algorithms are described
for operating on images using quadtrees. Transi-
tions between neighboring blocks are made by use
of explicit links from a node to its adjacent
neighbors in the horizontal and vertical direc-
tions. This is achieved through the use of ad-
jacency trees, "ropes", and "nets'". An adjacency
tree exists whenever a leaf node, say X, has a
GRAY neighbor, say Y, of equal size. In such a
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21

15

Adjacency tree for the western neigh-

Figure 6. 3
bor of node 16 in Figure 1.

case, the adjacency tree of X i1g a binary tree
rooted at Y whose nodes consist of all sons of Y
(BLACK, WHITE, and GRAY) that are adjacent to X.
For example, for node 16 in Figure 1, the western
neighbor is GRAY node F with an adjacency tree as
shown in Figure 6. A rope is a link between adja-
cent nodes of equal size at least one of which is
a leaf node. Yor example, in Figure 1, there
exlsts a rope between node 16 and nodes G, 17, H,
and F. Similarly, there exists a rope between
node 37 and nodes M and N; however, there does
not exist a rope between node L and nodes M and N.

The algorithm for finding a neighbor using a
roped quadtree is quite simple. We want a neigh-
bor, say ¥, on a given side, say D, of a block,
say X. If there is a rope from X on side D, then
it leads to the desired neighbor. If no such rope
exists, then the desired neighbor must be larger.
In such a case, we ascend the tree until encounter-—
ing a node having a rope on side D which leads to
the desired neighbor. In effect, we have ascended
the adjacency tree of Y. For example, to find the
eastern neighbor of node 21 in Figure 1, we ascend
through node J to nmode F which has a rope along its
eastern side leading to node 16.

‘At times it is not convenient to ascend nodes
searching for ropes. A data structure named a net
is used in [3-5] to obviate this step by linking
all leaf nodes to their neighbors regardless of
their relative size. Thus in the previous example
there would be a direct link between nodes 21 and
16 along the eastern side of node 21. The advan-
tage of ropes and nets is that the number of links
that must be traversed is reduced (for a detailed
comparative analysis of execution times see the
expanded version of this paper in [17]}. However,
the disadvantage is that the storage requirements
are considerably increased since many additionmal
links are necessary. In contrast, our methods are
implemented by algorithms that make use of the
existing structure of the tree--i,e., four links
from a non-leaf node to its sons, and a link from
a non-root node to Its father. '
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