
HIERARCHICAL SPATIAL DATA STRUCTURES

Hanan Samet
Computer Science Department,

Center for Automation Research, and
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

Abstract

An overview is presented of the use of hierarchical spatial data structures such as
the quadtree. They are based on the principle of recursive decomposition. The focus is
on the representation of data used in image databases. The emphasis is on two-
dimensional regions, points, rectangles, and lines.

194

1. INTRODUCTION

Hierarchical data structures are important representation techniques in the
domains of computer vision, image processing, computer graphics, robotics, and
geographic information systems. They are based on the principle of recursive
decomposition (similar to divide and conquer methods). They are used primarily as
devices to sort data of more than one dimension and different spatial types. The term
quadtree is often used to describe this class of data structures. For a more extensive
treatment of this subject, see [Same84a, Same88a, Same88b, Same88c, Same89a,
Same89b].

Our presentation is organized as follows. Section 2 describes the region quadtree
and presents an application for which it is well-suited. Section 3 briefly reviews the
historical background of the origins of hierarchical data structures especially in the
context of region data. Section 4 discusses a hierarchical representation of point data.
Sections 4, 5, and 6 discuss hierarchical representations for point, rectangle, and line
data, respectively, as well as give examples of their utility. Section 7 contains concluding
remarks in the context of a geographic information system that makes use of these
concepts.

2. REGION DATA

The term quadtree is used to describe a class of hierarchical data structures
whose common property is that they are based on the principle of recursive
decomposition of space. They can be differentiated on the following bases: (1) the type
of data that they are used to represent, (2) the principle guiding the decomposition
process, and (3) the resolution (variable or not). Currently, they are used for points,
rectangles, regions, curves, surfaces, and volumes. The decomposition may be into equal
parts on each level (termed a regular decomposition), or it may be governed by the
input. The resolution of the decomposition (i.e., the number of times that the
decomposition process is applied) may be fixed beforehand or it may be governed by
properties of the input data.

The most common quadtree representation of data is the region quadtree. It is
based on the successive subdivision of the image array into four equal-size quadrants. If
the array does not consist entirely of ls or entirely of 0s (i.e., the region does not cover
the entire array), it is then subdivided into quadrants, subquadrants, etc., until blocks
are obtained (possibly single pixels) that consist entirely of ls or entirely of 0s. Thus, the
region quadtree can be characterized as a variable resolution data structure.

As an example of the region quadtree, consider the region shown in Figure la
which is represented by the 2aX2 a binary array in Figure lb. Observe that the ls
correspond to picture elements (termed pixels) that are in the region and the 0s
correspond to picture elements that are outside the region. The resulting blocks for the
array of Figure lb are shown in Figure lc. This process is represented by a tree of
degree 4.

In the tree representation, the root node corresponds to the entire array. Each
son of a node represents a quadrant (labeled in order NW, NE, SW, SE) of the region
represented by that node. The leaf nodes of the tree correspond to those blocks for

195

00000000
00000000
0 0 0 0 I ! I I I
0 0 0 0 ~ I I I I
ooo 11 I11 F
O O I l l l l l I
0 [0 I I i i I O 0

]olo !lll o o o

(o) (b)

2i3
! m m

:::::::::::::::::: "'~'¢ "":': ':;:': 2::::::

. : ~ : : :';':"" "~';:
: ::: :::: i:::i." :!i:~!~::"::::::

(c)

A
Level 5 - -

Level 2

Level I

Level 0
7 8 9 I0 15 16 17 18

(d}

Figure 1. A region, its binary array, its maximal blocks, and the corresponding
quadtree. (a) Region. (b) Binary array. (c) Block decomposition of the region in (a).
Blocks in the region are shaded. (d) Quadtree representation of the blocks in (c).

which no further subdivision is necessary. A leaf node is said to be BLACK or WHITE,
depending on whether its corresponding block is entirely inside or entirely outside of the
represented region. All non-leaf nodes are said to be GRAY. The quadtree
representation for Figure lc is shown in Figure ld. For an efficient algorithm to
construct a quadtree from an image represented as a set of rows, see [Shaf87].

Quadtrees can also he used to represent non-binary images. In this case, we apply
the same merging criteria to each color. For example, in the case of a landuse map, we
simply merge all wheat growing regions, and likewise for corn, rice, etc. This is the
approach taken by Samet et al. [Same84b].

For a binary image, set-theoretic operations such as union and intersection are
quite simple to implement [Hunt78, Hunt79, Shne81a]: For example, the intersection of
two region quadtrees yields a BLACK node only when the corresponding regions in both

196

quadtrees are BLACK. This operation is performed by simultaneously traversing three
quadtrees. The first two trees correspond to the trees being intersected and the third
tree represents the result of the operation. If any of the input nodes are WHITE, then
the result is WHITE. When corresponding nodes in the input trees are GRAY, then their
sons are recursively processed and a check is made for the mergibility of WHITE leaf
nodes. The worst-case execution time of this algorithm is proportional to the sum of the
number of nodes in the two input quadtrees. Note that as a result of actions (1) and (3),
it is possible for the intersection algorithm to visit fewer nodes than the sum of the
nodes in the two input quadtrees.

3. HISTORICAL BACKGROUND

Unfortunately, the term quadtree has taken on more than one meaning. The
region quadtree, as described here, is a partition of space into a set of squares whose
sides are all a power of two long. This formulation is due to Klinger [Klin71] who used
the term Q-tree [Kiln76], whereas Hunter [Hunt?8} was the first to use the term quadtree
in such a context. A similar partition of space into rectangular quadrants, also termed a
quadtree, was used by Finkel and Bentley [Fink74]. It is an adaptation of the binary
search tree to two dimensions (which can be easily extended to an arbitrary number of
dimensions). It is primarily used to represent multidimensional point data. As an
example, consider the point quadtree in Figure 2, which is built for the sequence
Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, and Miami. Note that its
shape is highly dependent on the order in which the points are added to it.

The origin of the principle of recursive decomposition is diificult to ascertain.
Below, in order to give some indication of the uses of the quadtree, we briefly trace some
of its applications to image data. Morton [Mort66] used it as a means of indexing into a
geographic database. Warnock [Warn6g] implemented a hidden surface elimination
algorithm using a recursive decomposition of the picture area. The picture area is

(0, soo) , (IO0,100)

(0,0:

(5,45)
OENVER

(zs, 35)
OMAHA

(3S, 40)
CHICAGO

[60,75)
TORONTO

(ao,6s)
BUFFALO

(50, I0)
MOBILE

(85, 15)
ATLANTA

C ~

DENVER TORONTO OMAHA MCG~I.I[

BUFFALO ATLANTA 14IAJ,U

AA
MIAMI l

~(100.0)
L

(o) (b)

Figure 2. A point quadtree (b) and the records it represents (a).

197

repeatedly subdivided into successively smaller rectangles while searching for areas
sufficiently simple to be displayed. Horowitz and Pavlidis [Horo76] used the quadtree as
an initial step in a "split and merge" image segmentation algorithm.

The pyramid of Tanimoto and Pavlidis lTani75] is a close relative of the region
quadtree. It is a multiresolution ,representation which is is an exponentially tapering
stack of arrays, each one-quarter the size of the previous array. It has been applied to
the problems of feature detection and segmentation. In contrast, the region quadtree is
a variable resolution data structure.

Quadtree-like data structures can also be used to represent images in three
dimensions and higher. The octree [Hunt78, Jack80, Meag82, Redd78] data structure is
the three-dimensional analog of the quadtree. It is constructed in the following manner.
We start with an image in the form of a cubical volume and recursively subdivide it into
eight congruent disjoint cubes (called octants) until blocks are obtained of a uniform
color or a predetermined level of decomposition is reached. Figure 3a is an example of a
simple three-dimensional object whose raster octree block decomposition is given in
Figure 3b and whose tree representation is given in Figure 3c.

One of the motivations for the development of hierarchical data structures such
as the quadtree is a desire to save space. The original formulation of the quadtree
encodes it as a tree structure that uses pointers. This requires additional overhead to
encode the internal nodes of the tree. In order to further reduce the space requirements,
two other approaches have been proposed. The first treats the image as a collection of
leaf nodes where each leaf is encoded by a base 4 number termed a locational code,
corresponding to a sequence of directional codes that locate the leaf along a path from
the root of the quadtree. It is analogous to taking the binary representation of the x
and y coordinates of a designated pixel in the block (e.g., the one at the lower left
corner) and interleaving them (i.e., alternating the bits for each coordinate). The
encoding is also quite similar to a hashing function. It is difficult to determine the origin
of this method (e.g., label83, Garg82, Kiln79, Mort66}).

/

(o)

A

5 6 7 8 9101112

(b) (c)

Figure 3. (a) Example three-dimensional object; (b) its octree block decomposition;
and (c) its tree representation.

198

The second, termed a DF-ezpression, represents the image in the form of a
traversal of the nodes of its quadtree [Kawag0]. It is very compact as each node type can
be encoded with two bits. However, it is not easy to use when random access to nodes is
desired. Samet and Webber [Same89c] show that for a static collection of nodes, an
efficient implementation of the pointer-based representation is often more economical
spacewise than a locational code representation. This is especially true for images of
higher dimension.

Nevertheless, depending on the particular implementation of the quadtree we
may not necessarily save space (e.g., in many cases a binary array representation may
still be more economical than a quadtree). However, the effects of the underlying
hierarchical aggregation on the execution time of the algorithms are more important.
Most quadtree algorithms are simply preorder traversals of the quadtree and, thus, their
execution time is generally a linear function of the number of nodes in the quadtree. A
key to the analysis of the execution time of quadtree algorithms is the Quadtree
Complexity Theorem [Hunt78, Hunt79] which states that:

For a quadtree of depth q representing an image space of 2 ¢ X 2 q pixels where these
pixels represent a region whose perimeter measured in pixel-widths is p, then the
number of nodes in the quadtree cannot exceed 16-q-11-{-16-p.

Since under all but the most pathological cases (e.g., a small square of unit width
centered in a large image), the region perimeter exceeds the base 2 logarithm of the
width of the image containing the region, the Quadtree Complexity Theorem means
that the size of the quadtree representation of a region is linear in the perimeter of the
region.

The Quadtree Complexity Theorem holds for three-dimensional data [lVleag80]
where perimeter is replaced by surface area, as well as higher dimensions for which it is
stated as follows.

The size of the k-dimensional quadtree of a set of k-dimensional objects is proportional
to the sum of the resolution and the size of the (k-1)-dimensional interfaces between
these objects.

The Quadtree Complexity Theorem also directly impacts the analysis of the execution
time of algorithms. In particular, most algorithms that execute on a quadtree
representation of an image instead of an array representation have an execution time
that is proportional to the number of blocks in the image rather than the number of
pixels. In its most general case, this means that the application of a qu~t ree algorithm
to a problem in d-dimensional space executes in time proportional to the analogous
array-based algorithm in the (d-1)-dimensional space of the surface of the original d-
dimensional image. Therefore, quadtrees act like dimension-reducing devices.

4. POINT DATA

Multidimensional point data can be represented in a variety of ways. The
representation ultimately chosen for a specific task will be heavily influenced by the type
of operations to be performed on the data. Our focus is on dynamic files (i.e., the
number of data can grow and shrink at will) and on applications involving search. In
Section 2 we briefly mentioned the point quadtree of Finkel and Bentley [Fink74] and
showed its use. In this section we discuss the PR quadtree (P for point and R for region)

199

[Oren82, Same84a]. It is an adaptation of the region quadtree to point data which
associates data points (that need not be discrete) with quadrants. The PR quadtree is
organized in the same way as the region quadtree. The difference is that leaf nodes are
either empty (i.e., WHITE) or contain a data point (i.e., BLACK) and its coordinates. A
quadrant contains at most one data point. For example, Figure 4 is the PR quadtree
corresponding to the data of Figure 2.

Data points are inserted into PR quadtrees in a manner analogous to that used
to insert in a point quadtree - i.e., a search is made for them. Actually, the search is for
the quadrant in which the data point, say A, belongs (i.e., a leaf node). If the quadrant
is already occupied by another data point with different x and y coordinates, say B,
then the quadrant must repeatedly be subdivided (termed splitting) until nodes A and B
no longer occupy the same quadrant. This may result in many subdivisions, especially if
the Euclidean distance between A and B is very small. The shape of the resulting PR
quadtree is independent of the order in which data points are inserted into it. Deletion
of nodes is more complex and may require collapsing of nodes - i.e., the direct
counterpart of the node splitting process outlined above.

PR quadtrees, as well as other quadtree-like representations for point data, are
especially attractive in applications that involve search. A typical query is one that
requests the determination of all records within a specified distance of a given record -
i.e., all cities within 100 miles of Washington, DC. The efficiency of the PR quadtree lies
in its role as a pruning device on the amount of search that is required. Thus many
records will not need to be examined. For example, suppose that in the hypothetical
database of Figure 2 we wish to find all cities within 8 units of a data point with
coordinates (84,10). In such a case, there is no need to search the NW, NE, and SW
quadrants of the root (i.e., (50,50)). Thus we can restrict our search to the SE quadrant
of the tree rooted at root. Similarly, there is no need to search the NW, NE, and SW

(0,I00) (I00,I00)

(0,0)

(2~,~5) i ,
OMAHA

(SO, 75)
TORONTO

2

(50,10)
MOBILE

,(80o•) BUFFALO

i" I
llO0°O)

_ o

~ _ ~ ~ ATL~'~ kLUWJ

Figure 4. A PRquadtree (b) and the records it represents(a).

x - ~ Co) (b)

200

quadrants of the tree rooted at the SE quadrant (i.e., (75,25)). Note that the search
ranges are usually orthogonally defined regions such as rectangles, boxes, etc. Other
shapes are also feasible as the above example demonstrated (i.e., a circle).

5. RECTANGLE DATA

The rectangle data type lies somewhere between the point and region data types.
Rectangles are often used to approximate other objects in an image for which they serve
as the minimum rectilinear enclosing object. For example, bounding rectangles can be
used in cartographic applications to approximate objects such as lakes, forests, hills, etc.
[Mats84]. In such a case, the approximation gives an indication of the existence of an
object. Of course, the exact boundaries of the object are also stored; but they are only
accessed if greater precision is needed. For such applications, the number of elements in
the collection is usually small, and most often the sizes of the rectangles are of the same
order of magnitude as the space from which they are drawn.

Rectangles are also used in VLSI design rule checking as a model of chip
components for the analysis of their proper placement. Again, the rectangles serve as
minimum enclosing objects. In this application, the size of the collection is quite large
(e.g., millions of components) and the sizes of the rectangles are several orders of
magnitude smaller than the space from which they are drawn. Regardless of the
application, the representation of rectangles involves two principal issues [Same88a].
The first is how to represent the individual rectangles and the second is how to organize
the collection of the rectangles.

The representation that is used depends heavily on the problem environment. If
the environment is static, then frequently the solutions are based on the use of the
plane-sweep paradigm [Prep85], which usually yields optimal solutions in time and space.
However, the addition of a single object to the database forces the re-execution of the
algorithm on the entire database. We are primarily interested in dynamic problem
environments. The data structures that are chosen for the collection of the rectangles are
differentiated by the way in which each rectangle is represented.

One representation reduces each rectangle to a point in a higher dimensional
space, and then treats the problem as if we have a collection of points. This is the
approach of Hinrichs and Nievergelt [Hinr83, Hint85]. Each rectangle is a Cartesian
product of two one-dimensional intervals where each interval is represented by its
centroid and extent. The collection of rectangles is, in turn, represented by a grid file
[Niev84], which is a hierarchical data structure for points.

The second representation is region-based in the sense that the subdivision of the
space from which the rectangles are drawn depends on the physical extent of the
rectangle - not just one point. Representing the collection of rectangles, in turn, with a
tree-like data structure has the advantage that there is a relation between the depth of
node in the tree and the size of the rectangle(s) that are associated with it. Interestingly,
some of the region-based solutions make use of the same data structures that are used in
the solutions based on the plane-sweep paradigm. In the remainder of this section, we
give an example of a pair of region-based representations.

201

The MX-CIF quadtree of Kedem [Kede81] (see also Abel and Smith label83]) is a

region-based representation where each rectangle is associated with the quadtree node
corresponding to the smallest block which contains it in its entirety. Subdivision ceases
whenever a node's block contains no rectangles. Alternatively, subdivision can also cease
once a quadtree block is smaller than a predetermined threshold size. This threshold is
often chosen to be equal to the expected size of the rectangle [Kede81]. For example,
Figure 5 is the MX-CIF quadtree for a collection of rectangles. Note that rectangle F
occupies an entire block and hence it is associated with the block's father. Also
rectangles can be associated with both terminal and non-terminal nodes.

It should be clear that more than one rectangle can be associated with a given
enclosing block and, thus, often we find it useful to he able to differentiate between
them. Kedem proposes to do so in the following manner. Let P be a quadtree node with
eentroid (CX,CY), and let S be the set of rectangles that are associated with P .
Members of S are organized into two sets according to their intersection (or eollinearity
of their sides) with the lines passing through the centroid of P ' s block - i.e., all members
of S that intersect the line z..~CX form one set and all members of S that intersect the
line y-~-CY form the other set.

If a rectangle intersects both lines (i.e., it contains the centroid of P's block),
then we adopt the convention that it is stored with the set associated with the line
through z-~-CX. These subsets are implemented as binary trees (really tries), which in
actuality are one-dimensional analogs of the MX-CIF quadtree. For example, Figure 6
illustrates the binary tree associated with the y axes passing through the root and the
NE son of the root of the MX-CIF quadtree of Figure 5. Interestingly, the MX-CIF
quadtrce is a two-dimensional analog of the interval tree [Edel80, McCr80], which is a
data structure that is used to support optimal solutions based on the plane-sweep
paradigm to some rectangle problems.

I

|

I "D n

° .

IG

I
,., °~ i I

1

÷ '1

(A,E}

{F}

(a) (b)

Figure 5. MX-C]F quadtree. (a) Collection of rectangles and the block decomposi-
tion induced by the MX-CIF quadtree. (b) The tree representation of (a),

202

D B

E

(o) (b)

Figure 8. Binary trees for the y axes passing through (a) the root of the NIX-CII P
quadtree in Figure 6 and (b) the IhrE son of the root of the MX-CIF quadtree in Fig-
ure 6.

The R-tree [Gutt84] is a hierarchical data structure that is derived from the B-
tree [Come79]. Each node in the tree is a d-dimensional rectangle corresponding to the
smallest rectangle that encloses its son nodes which are also d-dimensional rectangles.
The leaf nodes are the actual rectangles in the database. Often, the nodes correspond to
disk pages and, thus, the parameters defining the tree are chosen so that a small number
of nodes is visited during a spatial query. Note that rectangles corresponding to
different nodes may overlap.

Also, a rectangle may be spatially contained in several nodes, yet it can only be
associated with one node. This means that a spatial query may often require several
nodes to be visited before ascertaining the presence or absence of a particular rectangle.
This problem can be alleviated by using the R+-tree [Falo87, Sell87] for which all
bounding rectangles (i.e., at levels other than the leaf) are non-overlapping. This means
that a given rectangle will often be associated with several bounding rectangles. In this
case, retrieval time is sped up at the cost of an increase in the height of the tree. Note
that B-tree performance guarantees are not valid for the R+-tree - i.e., pages are not
guaranteed to be 50% full without very complicated record update procedures.

6. LINE DATA

Sections 2 and 3 were devoted to the region quadtree, an approach to region
representation that is based on a description of the region's interior. In this section, we
focus on a representation that specifies the boundaries of regions. This is done in the
more general context of data structures for curvilinear data. The simplest representation
is the polygon in the form of vectors which are usually specified in the form of lists of
pairs of x and y coordinate values corresponding to their start and end points. One of
the most common representations is the chain code [Free74] which is an approximation
of a polygon. There has also been a considerable amount of interest recently in
hierarchical representations. These are primarily based on rectangular approximations
to the data as well as on a regular decomposition in two dimensions.

The strip tree [Ball81] is a hierarchical representation of a single curve that is
obtained by successively approximating segments of it by enclosing rectangles. The data
structure consists of a binary tree whose root represents the bounding rectangle of the
entire curve. For example, consider Figure 7a where the curve between points P and Q,
at locations (zp,yp) and (XQ,yQ) respectively, is modeled by a strip tree. The rectangle

203

IAI I I E

r~r~}--1 r-7+-I-'I

(b)
I o l l l IEI I I

Figure 7. A curve between points P and Q. (a) Its decomposition into strips; and
(b) the corresponding strip tree.

associated with the root, A in this example, corresponds to a rectangular strip, that
encloses the curve, whose sides are parallel to the line joining the endpoints of the curve
(i.e., P and Q). The curve is then partitioned in two at one of the locations where it
touches the bounding rectangle. Each subcurve is then surrounded by a bounding
rectangle and the partitioning process is applied reeursively. This process stops when
the width of each strip is less than a predetermined value. The strip tree is implemented
as a binary tree (Figure 7b) where each node contains eight fields. Four fields contain
the x and y coordinates of the endpoints, two fields contain pointers to the two sons of
the node, and two fields contain information about the width of the strip (i.e., W L and
W R in Figure 7a).

Figure 7 is a relatively simple example. In order to be able to cope with more
complex curves, the notion of a strip tree must be extended. In particular, closed curves
and curves that extend past their endpoints require some special treatment. The general
idea is that these curves are enclosed by rectangles which are split into two rectangular
strips and from now on the strip tree is used as before. For a related approach that does
not require these extensions, see the arc tree of Giinther [Giint87]. Its subdivision rule
consists of a regular decomposition of a curve based on its length.

Like point and region quadtrees, strip trees are useful in applications that involve
search and set operations. For example, suppose we wish to determine whether a road
crosses a river. Using a strip tree representation for these features, answering this query
means basically performing an intersection of the corresponding strip trees. Three c a s e s

are possible as is shown in Figure 8. Figures 8a and 8b correspond to the answers NO
and YES respectively while Figure 8c requires us to descend further down the strip tree.
Notice the distinction between the task of detecting the possibility of an intersection and
the task of computing the actual intersection, if one exists. The strip tree is well suited
to the former task. Other operations that can be performed efficiently by using the strip
tree data structure include the computation of the length of a curve, areas of closed

204

(a) NULL (b) CLEAR

OR

(c) POSSIBLE

Figure 8. Three possible results of intersecting two strip trees.
(a) Nun. (b) Clear. (c) Possible.

curves, intersection of curves with areas, point membership, etc.

The strip tree is similar to the point quadtree in the sense that the points at
which the curve is decomposed depend on the data. In contrast, a region quadtree
approach has fixed decomposition points. Similarly, strip tree methods approximate
curvilinear data with rectangles while methods based on the region-quadtree achieve
analogous results by use of a collection of disjoint squares having sides of length power
of two. In the following we discuss a number of adaptations of the region quadtree for
representing curvilinear data.

The edge quadtree [Shne81b, Warn69] is an attempt to store linear feature
information (e.g., curves) for an image (binary and gray-scale) in a manner analogous to
that used for storing region information. A region containing a linear feature or part
thereof is subdivided into four squares repeatedly until a square is obtained that contains
a single curve that can be approximated by a single straight line (e.g., Figure 9 where
the maximum level of decomposition is 4). Each leaf node contains the following

A

I' '-I H ~ ~
f ~

B

f . , / I

Figure 9. An edge quadtree.

205
information about the edge panning through it: magnitude (i.e., 1 in the case of a binary
image or the intensity in case it is a gray-scale image), direction, intercept, and a
directional error term (i.e., the error induced by approximating the curve by a straight
line using a measure such as least squares). If an edge terminates within a node, then a
special flag is set and the intercept denotes the point at which the edge terminates.
Applying this process leads to quadtrees in which long edges are represented by large
leaves or a sequence of large leaves. However, small leaves are required in the vicinity of
corners or intersecting edges. Of course, maaay leaves will contain no edge information at
all.

The PM quadtree family [Same85, Nels86] (see also edge-EXCELL [Tamm81])
represents an attempt to overcome some of the problems associated with the edge
quadtree in the representation of collections of polygons (termed polygonal maps). In
particular, the edge quadtree is an approximation because vertices are represented by
pixels. Moreover, it is difficult to detect the presence of a vertex when more than five line
segments meet. There are a number of variants of the PM quadtree. These variants are
either vertex-based or edge-based. They are all built by applying the principle of
repeatedly breaking up the collection of vertices and edges (forming the polygonal map)
until obtaining a subset that is sufficiently simple so that it can be organized by some
other data structure.

The PM quaxttrees of Samet and Webber [Same85] are vertex-based. We
illustrate the PM 1 quadtree. It is based on a decomposition rule stipulating that
partitioning occurs as long as a block contains more than one line segment unless the
line segments are all incident at the same vertex which is Mso in the same block (e.g.,
Figure 10).

Samet, Shaffer, and Webber [Same87] show how to compute the maximum depth
of the PM 1 quaxltree for a polygonal map in a limited, but typical, environment. They

A B

G I , ' ! ~ FI,, Y
/ f l ,

E

Figure 10. Example PM 1 quadtree.

206

consider a polygonal map whose vertices are drawn from a grid (say 2 n X2n), and do not
permit edges to intersect at points other than the grid points (i.e., vertices). In such a
case, the depth of any leaf node is bounded from above by 4 n + l . This enables a
determination of the maximum amount of storage that will be necessary for each node.

A similar representation has been devised for three-dimensional images [Aya185,
Carl85, Fuji85, Hunt81, Nays86, Quin82, Tamm81, Vand84]. The decomposition criteria
are such that no node contains more than one face, edge, or vertex unless the faces all
meet at the same vertex or are adjacent to the same edge. For example, Figure l lb is a
PM 1 octree decomposition of the object in Figure lla. This representation is quite
useful since its space requirements for polyhedral objects are significantly smaller than
those of a conventional octrce.

The PMR quadtree [Nels86] is an edge-based variant of the PM quadtree (see
also edge-EXCELL [Tamm81]). It makes use of a probabilistic splitting rule. A node is
permitted to contain a variable number of line segments. A line segment is stored in a
PMR quadtree by inserting it into the nodes corresponding to all the blocks that it
intersects. During this process, the occupancy of each node that is intersected by the line
segment is checked to see if the insertion causes it to exceed a predetermined splitting
threshold. If the splitting threshold is exceeded, then the node's block is split once, and
only once, into four equal quadrants.

On the other hand, a line segment is deleted from a PMR quadtree by removing
it from the nodes corresponding to all the blocks that it intersects. During this process,
the occupancy of the node and its siblings is checked to see if the deletion causes the
total number of line segments in them to be less than the predetermined splitting
threshold. If the splitting threshold exceeds the occupancy of the node and its siblings,
then they are merged and the merging process is reapplied to the resulting node and its
siblings. Notice the asymmetry between the splitting and merging rules.

Members of the PM quadtree family can be easily adapted to deal with fragments
that result from set operations such as union and intersection so that there is no data
degradation when fragments of line segments are subsequently recombined. Their use
yields an exact representation of the lines - not an approximation. To see how this is
achieved, let us define a q-edge to be a segment of an edge of the original polygonal map
that either spans an entire block in the PM quadtree or extends from a boundary of a
block to a vertex within the block (i.e., when the block contains a vertex).

(a) (b)

Figure 11. (a) Example three-dimensional object; and (b) its corresponding PM I octree.

207

Each q-edge is represented by a pointer to a record containing the endpoints of
the edge of the polygonal map of which the q-edge is a part [Nels86]. The line segment
descriptor stored in a node only implies the presence of the corresponding q-edge - it
does not mean that the entire line segment is present as a lineal feature. The result is a
consistent representation of line fragments since they are stored exactly and, thus, they
can be deleted and reinserted without worrying about errors arising from the roundoffs
induced by approximating their intersection with the borders of the blocks through
which they pass.

7. CONCLUDING REMARKS

The use of hierarchical data structures in image databases enables the focussing
of computational resources on the interesting subsets of data. Thus, there is no need to
expend work where the payoff is small. Although many of the operations for which they
are used can often be performed equally as efficiently, or more so, with other data
structures, hierarchical data structures are attractive because of their conceptual clarity
and ease of implementation.

When the hierarchical data structures are based on the principle of regular
decomposition, we have the added benefit of a spatial index. All features, be they
regions, points, rectangles, lines, volumes, etc., can be represented by maps which are in
registration. In fact, such a system has been built [Same84b I for representing geographic
information. In this case, the quadtree is implemented as a collection of leaf nodes where
each leaf node is represented by its locational code. The collection is in turn represented
as a B-tree [Come79]. There are leaf nodes corresponding to region, point, and line data.

The disadvantage of quadtree methods is that they are shift sensitive in the sense
that their space requirements are dependent on the position of the origin. However, for
complicated images the optimal positioning of the origin will usually lead to little
improvement in the space requirements. The process of obtaining this optimal
positioning is computationally expensive and is usually not worth the effort [Li82].

The fact that we are working in a digitized space may also lead to problems. For
example, the rotation operation is not generally invertible. In particular, a rotated square
usually cannot be represented accurately by a collection of rectilinear squares. However,
when we rotate by 90", then the rotation is invertible, This problem arises whenever one
uses a digitized representation. Thus, it is also common to the array representation.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under Grant IRI-8802457.
I would like to acknowledge the many valuable discussions that I have had with Michael
B. Dillencourt, Randal C, Nelson, Azriel Rosenfeld, Clifford A. Shaffer, Markku
Tamminen, and Robert E. Webber.

208

REFERENCES

1. lAbel83] - D.J. Abel and J.L. Smith, A data structure and algorithm based on a linear
key for a rectangle retrieval problem, Computer Vision, Graphics, and Image Processing
2J, l(October 1983), 1-13.

2. [Aya185] - D. Ayala, P. Brunet, R. Juan, and I. Navazo, Object representation by
means of nonminimal division quadtrees and octrees, ACM Transactions on Graphics J,
l(January 1985), 41-59.

3. [Ball81] D.H. Ballard, Strip trees: A hierarchical representation for curves,
Communications of the ACM 2J, 5(May 1981), 310-321 (see also corrigendum,
Communications of the ACM 25, 3(March 1982), 213).

4. [Carl85] - I. Carlbom, I. Chakravarty, and D. Vanderschel, A hierarchical data
structure for representing the spatial decomposition of 3-D objects, IEEE Computer
Graphics and Applications 5, 4(April 1985), 24-31.

5. [Come70] - D. Comer, The Ubiquitous B-tree, ACM Computing Surveys 11, 2(June
1979), 121-137.

6. [EdelS0] - H. Edelsbrunner, Dynamic rectangle intersection searching, Institute for
Information Processing Report 47, Technical University of Graz, Graz, Austria, February
1980.

7. [Falo87] - C. Faloutsos, T. Sellis, and N. Roussopoulos, Analysis of object oriented
spatial access methods, Proceedings of the SIGMOD Conference, San Francisco, May
1987, 426.-439.

8. [Fink74] - R.A. Finkel and J.L. Bentley, Quad trees: a data structure for retrieval on
composite keys, Acta Informatica ~, 1(1974), 1-9.

9. [Free74] - H. Freeman, Computer processing of line-drawing images, ACM Computing
Surveys 6, l(March 1974), 57-97.

10. [Fuji85] - K. Fujimura and T.L. Kunii, A hierarchical space indexing method,
Proceedings of Computer Graphics'85, Tokyo, 1985, T1-4, 1-14.

11. [Garg82] - I. Gargantini, An effective way to represent quadtrees, Communications
of the A CM 25, 12(December 1982), 905-.910.

12. [Giint87] - O. Giinther, Efficient structures for geometric data management, Ph.D.
dissertation, UCB/ERL M87/77, Electronics Research Laboratory, College of
Engineering, University of California at Berkeley, Berkeley, CA, 1987 (Lecture Notes in
Computer Science 337, Springer-Verlag, Berlin, 1988).

13. [Gutt84] - A. Guttman, R-trees: a dynamic index structure for spatial searching,
Proceedings of the SIGMOD Conference, Boston, June 1984, 47-57.

209

14. [Hinr85] - K. Hinrichs, The grid file system: implementation and case studies of
applications, Ph.D. dissertation, Institut fur Informatik, ETH, Zurich, Switzerland, 1985.

15. [Hinr83] - K. Hinrichs and J. Nievergelt, The grid file: a data structure designed to
support proximity queries on spatial objects, Proceedings of the WG'88 (International
Workshop on Graphtheoretic Concepts in Computer Science), M. Nagl and J. Perl, Eds.,
Trauner Verlag, Linz, Austria, 1983, 100-113.

16. [Horo76] - S.L. Horowitz and T. Pavlidis, Picture segmentation by a tree traversal
algorithm, Journal of the ACMeS, 2(April 1976), 368-388.

17. [Hunt78] - G.M. Hunter, Efficient computation and data structures for graphics,
Ph.D. dissertation, Department of Electrical Engineering and Computer Science,
Princeton University, Princeton, N J, 1978.

18. [Hunt81] - G.M. Hunter, Geometrees for interactive visualization of geology: an
evaluation, System Science Department, Schlumberger-Doll Research, Ridgefield, CT,
1981.

10. [Hunt79] - G.M. Hunter and K. Steiglitz, Operations on images using quad trees,
IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 2(April 1979), 145-
153.

20. [Jack80] - C.L. Jackins and S.L. Tanimoto, Oct-trees and their use in representing
three-dimensional objects, Computer Graphics and Image Processing 1,~, 3(November
1980), 249-270.

21. [Kawa80] - E. Kawaguchi and T. Endo, On a method of binary picture
representation and its application to data compression, IEEE Transactions on Pattern
Analysis and Machine Intelligence ~, 1(January 1980), 27-35.

22. [Kede81] - O. Kedem, The Quad-CIF tree: a data structure for hierarchical on-line
algorithms, Proceedings of the Nineteenth Design Automation Conference, Las Vegas,
June 1982, 352-357.

23. [Klin71] - A. Klinger, Patterns and Search Statistics, in Optimizing Metho& in
Statistics, J.S. Rustagi, Ed., Academic Press, New York, 1971, 303-337.

24. [Klin761 - A. Klinger and C.R. Dyer, Experiments in picture representation using
regular decomposition, Computer Graphics and Image Processing 5, 1(March 1976), 68-
105.

25. [Klin79] - A. Klinger and M.L. Rhodes, Organization and access of image data by
areas, IEEE Transactions on Pattern Analysis and Machine Intelligence i, 1(January
1979), 50.-60.

26. [Li82] - M. Li, W.I. Grosky, and R, Jain, Normalized quadtrees with respect to
translations, Computer Graphics and Image Processing 90, 1(September 1982), 72-81.

210

27. [Mats841 - T. Matsuyama, L.V. Hao, and M. Nagao, A file organization for
geographic information systems based on spatial proximity, Computer Vision, Graphics,
and Image Processing ~6, 3(June 1984), 303-318.

28. [McOr80] - E.M. McOreight, Efficient algorithms for enumerating intersecting
intervals and rectangles, Xerox Palo Alto Research Center Report CSL-80-09, Palo Alto,
California, June 1980.

29. [Meag80] - D. Meagher, Octree encoding: a new technique for the representation,
The manipulation, and display of arbitrary 3-d objects by computer, Technical Report
IPL.-TR-80-111, Image Processing Laboratory, Rensselaer Polytechnic Institute, Troy,
New York, October 1980.

30. [Meag82] - D. Meagher, Geometric modeling using octree encoding, Computer
Graphics and Image Processing 19, 2(June 1982), 129-147.

31. [Mort66] - G.M. Morton, A computer oriented geodetic data base and a new
technique in file sequencing, IBM Ltd., Ottawa, Canada, 1966.

32. [Nava86] - I. Navazo, Contribucib a lea fecniques de modelat georhetric d'objectes
poli'edrics usant ia codificacib amb arbres octals, Ph.D. dissertation, FEscola Teenica
Superior d'Enginyers Industrials, Department de Metodes Informatics, Universitat
Politechnica de Barcelona, Barcelona, Spain, January 1986.

33. [Nels86] - R.C. Nelson and H. Samet, A consistent hierarchical representation for
vector data, Computer Graphics P0, 4(August 1986), pp. 197-206 (also Proceedings of the
SIGGRAPH'86 Conference, Dallas, August 1986).

34. [Niev84] - J. Nievergelt, H. Hinterberger, and K.C. Sevcik, The grid file: an
adaptable, symmetric multikey file structure, A CM Transactions on Database Systems 9,
l(March 1984), 38-71.

35. [Oren82] - J.A. Orenstein, Multidimensional tries used for associative searching,
Information Processing Letters 14, 4(June 1982), 150-157.

36. [PrepS5] - F.P. Preparata and M.I. Shamos, Computational Geometry: An
Introduction, Springer-Verlag, New York, 1985.

37. [Quin82] - K.M. Quinlan and J.R. Woodwark, A spatially-segmented solids database
- justification and design, Proceedings of CAD 8£ Conference, Butterworth, Guildford,
United Kingdom, 1982, 126-132.

38, [Redd78] - D.R. Reddy and S. Rubin, Representation of three-dimensional objects,
CMU-CS.-78-I13, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, April 1978.

39. [Same84a] - H. Samet, The quadtree and related hierarchical data structures, ACM
Computing Surveys 16, 2(June 1984), 187-260.

211

40. [Same88a] - H. Samet, Hierarchical representations of collections of small rectangles,
A CM Computing Surveys £0, 4(December 1988), 271-309.

41. [SameS9a] - H. Samet, The Design and Analysis of Spatial Data Structures,
Addison-Wesley, Reading, MA, 1989.

42. [Same89b] - H. Samet, Applications of Spatial Data Structures: Computer Graphics,
Image Processing and GIS, Addison-Wesley, Reading, MA, 1989.

43. [Same84b] - H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, A geographic
information system using quadtrees, Pattern Recognition I7, 6 (November/December
1984), 647-656.

44. [Same871 - H. Samet, C.A. Shaffer, and R.E. Webber, Digitizing the plane with cells
of non-uniform size, Information Processing Letters P4, 6(April 1987), 369-375.

45. [Same85] - H. Samet and R.E. Webber, Storing a collection of polygons using
quadtrees, A CM Transactions on Graphics 4, 3(July 1985), 182-222 (also Proceedings of
Computer Vision and Pattern Recognition 88, Washington, DC, June 1983, 127-132).

46. [Same89c] - H. Samet and R.E. Webber, A comparison of the space requirements of
multi-dimensional quadtree-bazed file structures, to appear in The Visual Computer (also
University of Maryland Computer Science TR-1711).

47. [Same88b] - H. Samet and R.E. Webber, Hierarchical data structures and algorithms
for computer graphics. Part I. Fundamentals, IEEE Computer Graphics and
Applications 8, 3(May 1988), 48-68.

48. [Same88c] - H. Samet and R.E. Webber, Hierarchical data structures and algorithms
for computer graphics. Part II. Applications, IEEE Computer Graphics and Applications
8, 4(July 1988), 59-75.

49. [Se1187] - T. Sellis, N. Roussopoulos, and C. Faloutso6, The R+-tree: a dynamic
index for multi-dimensional objects, Computer Science TR-1795, University of Maryland,
College Park, MD, February 1987.

50. [Shaf87] - C.A. Shaffer and H. Samet, Optimal quadtree construction algorithms,
Computer Vision, Graphics, and Image Processing 87, 3(March 1987), 402-419.

51. [Shne81a] - M. Shneier, Calculations of geometric properties using quadtrees,
Computer Graphics and Image Processing 16, 3(July 1981), 296.-302.

52. [Shne81b] - M. Shneier, Two hierarchical linear feature representations: edge
pyramids and edge quadtrees, Computer Graphics and Image Processing 17, 3(November
1981), 211-224.

53. [TammSl] - M. Tamminen, The EXCELL method for efficient geometric access to
data, Acta Polytechnica Scandinavica, Mathematics and Computer Science Series No. 34,
Helsinki, 1981.

212

54. [Tani75] - S. Tanimoto and T. Pavlidis, A hierarchical data structure for picture
processing, Computer Graphics and Image Processing .f, 2(June 1975), 104-119.

55. [Vand84]- D.J. Vanderschel, Divided leaf octal trees, Research Note, Sehlumberger-
Doll Research, Ridgefield, CT, March 1984.

56. [Warn69] - J.L. Warnock, A hidden surface algorithm for computer generated half
tone pictures, Computer Science Department TR 4-15, University of Utah, Salt Lake
City, June 1969.

