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Abstract 

An overview is presented of the use of hierarchical spatial data structures such as 
the quadtree. They are based on the principle of recursive decomposition. The focus is 
on the representation of data used in image databases. The emphasis is on two- 
dimensional regions, points, rectangles, and lines. 



194 

1. INTRODUCTION 

Hierarchical data structures are important representation techniques in the 
domains of computer vision, image processing, computer graphics, robotics, and 
geographic information systems. They are based on the principle of recursive 
decomposition (similar to divide and conquer methods). They are used primarily as 
devices to sort data of more than one dimension and different spatial types. The term 
quadtree is often used to describe this class of data structures. For a more extensive 
treatment of this subject, see [Same84a, Same88a, Same88b, Same88c, Same89a, 
Same89b]. 

Our presentation is organized as follows. Section 2 describes the region quadtree 
and presents an application for which it is well-suited. Section 3 briefly reviews the 
historical background of the origins of hierarchical data structures especially in the 
context of region data. Section 4 discusses a hierarchical representation of point data. 
Sections 4, 5, and 6 discuss hierarchical representations for point, rectangle, and line 
data, respectively, as well as give examples of their utility. Section 7 contains concluding 
remarks in the context of a geographic information system that makes use of these 
concepts. 

2. REGION DATA 

The term quadtree is used to describe a class of hierarchical data structures 
whose common property is that they are based on the principle of recursive 
decomposition of space. They can be differentiated on the following bases: (1) the type 
of data that they are used to represent, (2) the principle guiding the decomposition 
process, and (3) the resolution (variable or not). Currently, they are used for points, 
rectangles, regions, curves, surfaces, and volumes. The decomposition may be into equal 
parts on each level (termed a regular decomposition), or it may be governed by the 
input. The resolution of the decomposition (i.e., the number of times that the 
decomposition process is applied) may be fixed beforehand or it may be governed by 
properties of the input data. 

The most common quadtree representation of data is the region quadtree. It is 
based on the successive subdivision of the image array into four equal-size quadrants. If 
the array does not consist entirely of ls or entirely of 0s (i.e., the region does not cover 
the entire array), it is then subdivided into quadrants, subquadrants, etc., until blocks 
are obtained (possibly single pixels) that consist entirely of ls or entirely of 0s. Thus, the 
region quadtree can be characterized as a variable resolution data structure. 

As an example of the region quadtree, consider the region shown in Figure la 
which is represented by the 2aX2 a binary array in Figure lb. Observe that the ls 
correspond to picture elements (termed pixels) that are in the region and the 0s 
correspond to picture elements that are outside the region. The resulting blocks for the 
array of Figure lb are shown in Figure lc. This process is represented by a tree of 
degree 4. 

In the tree representation, the root node corresponds to the entire array. Each 
son of a node represents a quadrant (labeled in order NW, NE, SW, SE) of the region 
represented by that node. The leaf nodes of the tree correspond to those blocks for 
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Figure 1. A region, its binary array, its maximal blocks, and the corresponding 
quadtree. (a) Region. (b) Binary array. (c) Block decomposition of the region in (a). 
Blocks in the region are shaded. (d) Quadtree representation of the blocks in (c). 

which no further subdivision is necessary. A leaf node is said to be BLACK or WHITE, 
depending on whether its corresponding block is entirely inside or entirely outside of the 
represented region. All non-leaf nodes are said to be GRAY.  The quadtree 
representation for Figure lc is shown in Figure ld. For an efficient algorithm to 
construct a quadtree from an image represented as a set of rows, see [Shaf87]. 

Quadtrees can also he used to represent non-binary images. In this case, we apply 
the same merging criteria to each color. For example, in the case of a landuse map, we 
simply merge all wheat growing regions, and likewise for corn, rice, etc. This is the 
approach taken by Samet et al. [Same84b]. 

For a binary image, set-theoretic operations such as union and intersection are 
quite simple to implement [Hunt78, Hunt79, Shne81a]: For example, the intersection of 
two region quadtrees yields a BLACK node only when the corresponding regions in both 
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quadtrees are BLACK. This operation is performed by simultaneously traversing three 
quadtrees. The first two trees correspond to the trees being intersected and the third 
tree represents the result of the operation. If any of the input nodes are WHITE, then 
the result is WHITE. When corresponding nodes in the input trees are GRAY, then their 
sons are recursively processed and a check is made for the mergibility of WHITE leaf 
nodes. The worst-case execution time of this algorithm is proportional to the sum of the 
number of nodes in the two input quadtrees. Note that as a result of actions (1) and (3), 
it is possible for the intersection algorithm to visit fewer nodes than the sum of the 
nodes in the two input quadtrees. 

3. HISTORICAL BACKGROUND 

Unfortunately, the term quadtree has taken on more than one meaning. The 
region quadtree, as described here, is a partition of space into a set of squares whose 
sides are all a power of two long. This formulation is due to Klinger [Klin71] who used 
the term Q-tree [Kiln76], whereas Hunter [Hunt?8} was the first to use the term quadtree 
in such a context. A similar partition of space into rectangular quadrants, also termed a 
quadtree, was used by Finkel and Bentley [Fink74]. It is an adaptation of the binary 
search tree to two dimensions (which can be easily extended to an arbitrary number of 
dimensions). It is primarily used to represent multidimensional point data. As an 
example, consider the point quadtree in Figure 2, which is built for the sequence 
Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, and Miami. Note that its 
shape is highly dependent on the order in which the points are added to it. 

The origin of the principle of recursive decomposition is diificult to ascertain. 
Below, in order to give some indication of the uses of the quadtree, we briefly trace some 
of its applications to image data. Morton [Mort66] used it as a means of indexing into a 
geographic database. Warnock [Warn6g] implemented a hidden surface elimination 
algorithm using a recursive decomposition of the picture area. The picture area is 
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Figure 2. A point quadtree (b) and the records it represents (a). 
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repeatedly subdivided into successively smaller rectangles while searching for areas 
sufficiently simple to be displayed. Horowitz and Pavlidis [Horo76] used the quadtree as 
an initial step in a "split and merge" image segmentation algorithm. 

The pyramid of Tanimoto and Pavlidis lTani75] is a close relative of the region 
quadtree. It is a multiresolution ,representation which is is an exponentially tapering 
stack of arrays, each one-quarter the size of the previous array. It has been applied to 
the problems of feature detection and segmentation. In contrast, the region quadtree is 
a variable resolution data structure. 

Quadtree-like data structures can also be used to represent images in three 
dimensions and higher. The octree [Hunt78, Jack80, Meag82, Redd78] data structure is 
the three-dimensional analog of the quadtree. It is constructed in the following manner. 
We start with an image in the form of a cubical volume and recursively subdivide it into 
eight congruent disjoint cubes (called octants) until blocks are obtained of a uniform 
color or a predetermined level of decomposition is reached. Figure 3a is an example of a 
simple three-dimensional object whose raster octree block decomposition is given in 
Figure 3b and whose tree representation is given in Figure 3c. 

One of the motivations for the development of hierarchical data structures such 
as the quadtree is a desire to save space. The original formulation of the quadtree 
encodes it as a tree structure that uses pointers. This requires additional overhead to 
encode the internal nodes of the tree. In order to further reduce the space requirements, 
two other approaches have been proposed. The first treats the image as a collection of 
leaf nodes where each leaf is encoded by a base 4 number termed a locational code, 
corresponding to a sequence of directional codes that locate the leaf along a path from 
the root of the quadtree. It is analogous to taking the binary representation of the x 
and y coordinates of a designated pixel in the block (e.g., the one at the lower left 
corner) and interleaving them (i.e., alternating the bits for each coordinate). The 
encoding is also quite similar to a hashing function. It is difficult to determine the origin 
of this method (e.g., label83, Garg82, Kiln79, Mort66}). 
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Figure 3. (a) Example three-dimensional object; (b) its octree block decomposition; 
and (c) its tree representation. 



198 

The second, termed a DF-ezpression, represents the image in the form of a 
traversal of the nodes of its quadtree [Kawag0]. It is very compact as each node type can 
be encoded with two bits. However, it is not easy to use when random access to nodes is 
desired. Samet and Webber [Same89c] show that for a static collection of nodes, an 
efficient implementation of the pointer-based representation is often more economical 
spacewise than a locational code representation. This is especially true for images of 
higher dimension. 

Nevertheless, depending on the particular implementation of the quadtree we 
may not necessarily save space (e.g., in many cases a binary array representation may 
still be more economical than a quadtree). However, the effects of the underlying 
hierarchical aggregation on the execution time of the algorithms are more important. 
Most quadtree algorithms are simply preorder traversals of the quadtree and, thus, their 
execution time is generally a linear function of the number of nodes in the quadtree. A 
key to the analysis of the execution time of quadtree algorithms is the Quadtree 
Complexity Theorem [Hunt78, Hunt79] which states that: 

For a quadtree of depth q representing an image space of 2 ¢ X 2 q pixels where these 
pixels represent a region whose perimeter measured in pixel-widths is p, then the 
number of nodes in the quadtree cannot exceed 16-q-11-{-16-p. 

Since under all but the most pathological cases (e.g., a small square of unit width 
centered in a large image), the region perimeter exceeds the base 2 logarithm of the 
width of the image containing the region, the Quadtree Complexity Theorem means 
that the size of the quadtree representation of a region is linear in the perimeter of the 
region. 

The Quadtree Complexity Theorem holds for three-dimensional data [lVleag80] 
where perimeter is replaced by surface area, as well as higher dimensions for which it is 
stated as follows. 

The size of the k-dimensional quadtree of a set of k-dimensional objects is proportional 
to the sum of the resolution and the size of the (k-1)-dimensional interfaces between 
these objects. 

The Quadtree Complexity Theorem also directly impacts the analysis of the execution 
time of algorithms. In particular, most algorithms that execute on a quadtree 
representation of an image instead of an array representation have an execution time 
that is proportional to the number of blocks in the image rather than the number of 
pixels. In its most general case, this means that the application of a qu~t ree  algorithm 
to a problem in d-dimensional space executes in time proportional to the analogous 
array-based algorithm in the (d-1)-dimensional space of the surface of the original d- 
dimensional image. Therefore, quadtrees act like dimension-reducing devices. 

4. POINT DATA 

Multidimensional point data can be represented in a variety of ways. The 
representation ultimately chosen for a specific task will be heavily influenced by the type 
of operations to be performed on the data. Our focus is on dynamic files (i.e., the 
number of data can grow and shrink at will) and on applications involving search. In 
Section 2 we briefly mentioned the point quadtree of Finkel and Bentley [Fink74] and 
showed its use. In this section we discuss the PR quadtree (P for point and R for region) 
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[Oren82, Same84a]. It is an adaptation of the region quadtree to point data which 
associates data points (that need not be discrete) with quadrants. The PR quadtree is 
organized in the same way as the region quadtree. The difference is that leaf nodes are 
either empty (i.e., WHITE) or contain a data point (i.e., BLACK) and its coordinates. A 
quadrant contains at most one data point. For example, Figure 4 is the PR quadtree 
corresponding to the data of Figure 2. 

Data points are inserted into PR quadtrees in a manner analogous to that used 
to insert in a point quadtree - i.e., a search is made for them. Actually, the search is for 
the quadrant in which the data point, say A, belongs (i.e., a leaf node). If the quadrant 
is already occupied by another data point with different x and y coordinates, say B, 
then the quadrant must repeatedly be subdivided (termed splitting) until nodes A and B 
no longer occupy the same quadrant. This may result in many subdivisions, especially if 
the Euclidean distance between A and B is very small. The shape of the resulting PR 
quadtree is independent of the order in which data points are inserted into it. Deletion 
of nodes is more complex and may require collapsing of nodes - i.e., the direct 
counterpart of the node splitting process outlined above. 

PR quadtrees, as well as other quadtree-like representations for point data, are 
especially attractive in applications that involve search. A typical query is one that 
requests the determination of all records within a specified distance of a given record - 
i.e., all cities within 100 miles of Washington, DC. The efficiency of the PR quadtree lies 
in its role as a pruning device on the amount of search that is required. Thus many 
records will not need to be examined. For example, suppose that in the hypothetical 
database of Figure 2 we wish to find all cities within 8 units of a data point with 
coordinates (84,10). In such a case, there is no need to search the NW, NE, and SW 
quadrants of the root (i.e., (50,50)). Thus we can restrict our search to the SE quadrant 
of the tree rooted at root. Similarly, there is no need to search the NW, NE, and SW 
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quadrants of the tree rooted at the SE quadrant (i.e., (75,25)). Note that the search 
ranges are usually orthogonally defined regions such as rectangles, boxes, etc. Other 
shapes are also feasible as the above example demonstrated (i.e., a circle). 

5. RECTANGLE DATA 

The rectangle data type lies somewhere between the point and region data types. 
Rectangles are often used to approximate other objects in an image for which they serve 
as the minimum rectilinear enclosing object. For example, bounding rectangles can be 
used in cartographic applications to approximate objects such as lakes, forests, hills, etc. 
[Mats84]. In such a case, the approximation gives an indication of the existence of an 
object. Of course, the exact boundaries of the object are also stored; but they are only 
accessed if greater precision is needed. For such applications, the number of elements in 
the collection is usually small, and most often the sizes of the rectangles are of the same 
order of magnitude as the space from which they are drawn. 

Rectangles are also used in VLSI design rule checking as a model of chip 
components for the analysis of their proper placement. Again, the rectangles serve as 
minimum enclosing objects. In this application, the size of the collection is quite large 
(e.g., millions of components) and the sizes of the rectangles are several orders of 
magnitude smaller than the space from which they are drawn. Regardless of the 
application, the representation of rectangles involves two principal issues [Same88a]. 
The first is how to represent the individual rectangles and the second is how to organize 
the collection of the rectangles. 

The representation that is used depends heavily on the problem environment. If 
the environment is static, then frequently the solutions are based on the use of the 
plane-sweep paradigm [Prep85], which usually yields optimal solutions in time and space. 
However, the addition of a single object to the database forces the re-execution of the 
algorithm on the entire database. We are primarily interested in dynamic problem 
environments. The data structures that are chosen for the collection of the rectangles are 
differentiated by the way in which each rectangle is represented. 

One representation reduces each rectangle to a point in a higher dimensional 
space, and then treats the problem as if we have a collection of points. This is the 
approach of Hinrichs and Nievergelt [Hinr83, Hint85]. Each rectangle is a Cartesian 
product of two one-dimensional intervals where each interval is represented by its 
centroid and extent. The collection of rectangles is, in turn, represented by a grid file 
[Niev84], which is a hierarchical data structure for points. 

The second representation is region-based in the sense that the subdivision of the 
space from which the rectangles are drawn depends on the physical extent of the 
rectangle - not just one point. Representing the collection of rectangles, in turn, with a 
tree-like data structure has the advantage that there is a relation between the depth of 
node in the tree and the size of the rectangle(s) that  are associated with it. Interestingly, 
some of the region-based solutions make use of the same data structures that are used in 
the solutions based on the plane-sweep paradigm. In the remainder of this section, we 
give an example of a pair of region-based representations. 
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The MX-CIF quadtree of Kedem [Kede81] (see also Abel and Smith label83]) is a 

region-based representation where each rectangle is associated with the quadtree node 
corresponding to the smallest block which contains it in its entirety. Subdivision ceases 
whenever a node's block contains no rectangles. Alternatively, subdivision can also cease 
once a quadtree block is smaller than a predetermined threshold size. This threshold is 
often chosen to be equal to the expected size of the rectangle [Kede81]. For example, 
Figure 5 is the MX-CIF quadtree for a collection of rectangles. Note that rectangle F 
occupies an entire block and hence it is associated with the block's father. Also 
rectangles can be associated with both terminal and non-terminal nodes. 

It should be clear that more than one rectangle can be associated with a given 
enclosing block and, thus, often we find it useful to he able to differentiate between 
them. Kedem proposes to do so in the following manner. Let P be a quadtree node with 
eentroid (CX,CY), and let S be the set of rectangles that are associated with P .  
Members of S are organized into two sets according to their intersection (or eollinearity 
of their sides) with the lines passing through the centroid of P ' s  block - i.e., all members 
of S that intersect the line z..~CX form one set and all members of S that intersect the 
line y-~-CY form the other set. 

If a rectangle intersects both lines (i.e., it contains the centroid of P's block), 
then we adopt the convention that it is stored with the set associated with the line 
through z-~-CX. These subsets are implemented as binary trees (really tries), which in 
actuality are one-dimensional analogs of the MX-CIF quadtree. For example, Figure 6 
illustrates the binary tree associated with the y axes passing through the root and the 
NE son of the root of the MX-CIF quadtree of Figure 5. Interestingly, the MX-CIF 
quadtrce is a two-dimensional analog of the interval tree [Edel80, McCr80], which is a 
data structure that is used to support optimal solutions based on the plane-sweep 
paradigm to some rectangle problems. 
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Figure 5. MX-C]F quadtree. (a) Collection of rectangles and the block decomposi- 
tion induced by the MX-CIF quadtree. (b) The tree representation of (a), 
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Figure 8. Binary trees for the y axes passing through (a) the root of the NIX-CII P 
quadtree in Figure 6 and (b) the IhrE son of the root of the MX-CIF quadtree in Fig- 
ure 6. 

The R-tree [Gutt84] is a hierarchical data structure that is derived from the B- 
tree [Come79]. Each node in the tree is a d-dimensional rectangle corresponding to the 
smallest rectangle that encloses its son nodes which are also d-dimensional rectangles. 
The leaf nodes are the actual rectangles in the database. Often, the nodes correspond to 
disk pages and, thus, the parameters defining the tree are chosen so that a small number 
of nodes is visited during a spatial query. Note that rectangles corresponding to 
different nodes may overlap. 

Also, a rectangle may be spatially contained in several nodes, yet it can only be 
associated with one node. This means that a spatial query may often require several 
nodes to be visited before ascertaining the presence or absence of a particular rectangle. 
This problem can be alleviated by using the R+-tree [Falo87, Sell87] for which all 
bounding rectangles (i.e., at levels other than the leaf) are non-overlapping. This means 
that a given rectangle will often be associated with several bounding rectangles. In this 
case, retrieval time is sped up at the cost of an increase in the height of the tree. Note 
that B-tree performance guarantees are not valid for the R+-tree - i.e., pages are not 
guaranteed to be 50% full without very complicated record update procedures. 

6. LINE DATA 

Sections 2 and 3 were devoted to the region quadtree, an approach to region 
representation that is based on a description of the region's interior. In this section, we 
focus on a representation that specifies the boundaries of regions. This is done in the 
more general context of data structures for curvilinear data. The simplest representation 
is the polygon in the form of vectors which are usually specified in the form of lists of 
pairs of x and y coordinate values corresponding to their start and end points. One of 
the most common representations is the chain code [Free74] which is an approximation 
of a polygon. There has also been a considerable amount of interest recently in 
hierarchical representations. These are primarily based on rectangular approximations 
to the data as well as on a regular decomposition in two dimensions. 

The strip tree [Ball81] is a hierarchical representation of a single curve that is 
obtained by successively approximating segments of it by enclosing rectangles. The data 
structure consists of a binary tree whose root represents the bounding rectangle of the 
entire curve. For example, consider Figure 7a where the curve between points P and Q, 
at locations (zp,yp) and (XQ,yQ) respectively, is modeled by a strip tree. The rectangle 
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Figure 7. A curve between points P and Q. (a) Its decomposition into strips; and 
(b) the corresponding strip tree. 

associated with the root, A in this example, corresponds to a rectangular strip, that 
encloses the curve, whose sides are parallel to the line joining the endpoints of the curve 
(i.e., P and Q). The curve is then partitioned in two at one of the locations where it 
touches the bounding rectangle. Each subcurve is then surrounded by a bounding 
rectangle and the partitioning process is applied reeursively. This process stops when 
the width of each strip is less than a predetermined value. The strip tree is implemented 
as a binary tree (Figure 7b) where each node contains eight fields. Four fields contain 
the x and y coordinates of the endpoints, two fields contain pointers to the two sons of 
the node, and two fields contain information about the width of the strip (i.e., W L and 
W R in Figure 7a). 

Figure 7 is a relatively simple example. In order to be able to cope with more 
complex curves, the notion of a strip tree must be extended. In particular, closed curves 
and curves that extend past their endpoints require some special treatment. The general 
idea is that these curves are enclosed by rectangles which are split into two rectangular 
strips and from now on the strip tree is used as before. For a related approach that does 
not require these extensions, see the arc tree of Giinther [Giint87]. Its subdivision rule 
consists of a regular decomposition of a curve based on its length. 

Like point and region quadtrees, strip trees are useful in applications that involve 
search and set operations. For example, suppose we wish to  determine whether a road 
crosses a river. Using a strip tree representation for these features, answering this query 
means basically performing an intersection of the corresponding strip trees. Three c a s e s  

are possible as is shown in Figure 8. Figures 8a and 8b correspond to the answers NO 
and YES respectively while Figure 8c requires us to descend further down the strip tree. 
Notice the distinction between the task of detecting the possibility of an intersection and 
the task of computing the actual intersection, if one exists. The strip tree is well suited 
to the former task. Other operations that can be performed efficiently by using the strip 
tree data structure include the computation of the length of a curve, areas of closed 
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Figure 8. Three possible results of intersecting two strip trees. 
(a) Nun. (b) Clear. (c) Possible. 

curves, intersection of curves with areas, point membership, etc. 

The strip tree is similar to the point quadtree in the sense that the points at 
which the curve is decomposed depend on the data. In contrast, a region quadtree 
approach has fixed decomposition points. Similarly, strip tree methods approximate 
curvilinear data with rectangles while methods based on the region-quadtree achieve 
analogous results by use of a collection of disjoint squares having sides of length power 
of two. In the following we discuss a number of adaptations of the region quadtree for 
representing curvilinear data. 

The edge quadtree [Shne81b, Warn69] is an attempt to store linear feature 
information (e.g., curves) for an image (binary and gray-scale) in a manner analogous to 
that used for storing region information. A region containing a linear feature or part 
thereof is subdivided into four squares repeatedly until a square is obtained that contains 
a single curve that can be approximated by a single straight line (e.g., Figure 9 where 
the maximum level of decomposition is 4). Each leaf node contains the following 
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Figure 9. An edge quadtree. 
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information about the edge panning through it: magnitude (i.e., 1 in the case of a binary 
image or the intensity in case it is a gray-scale image), direction, intercept, and a 
directional error term (i.e., the error induced by approximating the curve by a straight 
line using a measure such as least squares). If an edge terminates within a node, then a 
special flag is set and the intercept denotes the point at which the edge terminates. 
Applying this process leads to quadtrees in which long edges are represented by large 
leaves or a sequence of large leaves. However, small leaves are required in the vicinity of 
corners or intersecting edges. Of course, maaay leaves will contain no edge information at 
all. 

The PM quadtree family [Same85, Nels86] (see also edge-EXCELL [Tamm81]) 
represents an attempt to overcome some of the problems associated with the edge 
quadtree in the representation of collections of polygons (termed polygonal maps). In 
particular, the edge quadtree is an approximation because vertices are represented by 
pixels. Moreover, it is difficult to detect the presence of a vertex when more than five line 
segments meet. There are a number of variants of the PM quadtree. These variants are 
either vertex-based or edge-based. They are all built by applying the principle of 
repeatedly breaking up the collection of vertices and edges (forming the polygonal map) 
until obtaining a subset that is sufficiently simple so that it can be organized by some 
other data structure. 

The PM quaxttrees of Samet and Webber [Same85] are vertex-based. We 
illustrate the PM 1 quadtree. It is based on a decomposition rule stipulating that 
partitioning occurs as long as a block contains more than one line segment unless the 
line segments are all incident at the same vertex which is Mso in the same block (e.g., 
Figure 10). 

Samet, Shaffer, and Webber [Same87] show how to compute the maximum depth 
of the PM 1 quaxltree for a polygonal map in a limited, but typical, environment. They 
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Figure 10. Example PM 1 quadtree. 



206 

consider a polygonal map whose vertices are drawn from a grid (say 2 n X2n), and do not 
permit edges to intersect at points other than the grid points (i.e., vertices). In such a 
case, the depth of any leaf node is bounded from above by 4 n + l .  This enables a 
determination of the maximum amount of storage that will be necessary for each node. 

A similar representation has been devised for three-dimensional images [Aya185, 
Carl85, Fuji85, Hunt81, Nays86, Quin82, Tamm81, Vand84]. The decomposition criteria 
are such that no node contains more than one face, edge, or vertex unless the faces all 
meet at the same vertex or are adjacent to the same edge. For example, Figure l lb  is a 
PM 1 octree decomposition of the object in Figure lla.  This representation is quite 
useful since its space requirements for polyhedral objects are significantly smaller than 
those of a conventional octrce. 

The PMR quadtree [Nels86] is an edge-based variant of the PM quadtree (see 
also edge-EXCELL [Tamm81]). It makes use of a probabilistic splitting rule. A node is 
permitted to contain a variable number of line segments. A line segment is stored in a 
PMR quadtree by inserting it into the nodes corresponding to all the blocks that it 
intersects. During this process, the occupancy of each node that is intersected by the line 
segment is checked to see if the insertion causes it to exceed a predetermined splitting 
threshold. If the splitting threshold is exceeded, then the node's block is split once, and 
only once, into four equal quadrants. 

On the other hand, a line segment is deleted from a PMR quadtree by removing 
it from the nodes corresponding to all the blocks that it intersects. During this process, 
the occupancy of the node and its siblings is checked to see if the deletion causes the 
total number of line segments in them to be less than the predetermined splitting 
threshold. If the splitting threshold exceeds the occupancy of the node and its siblings, 
then they are merged and the merging process is reapplied to the resulting node and its 
siblings. Notice the asymmetry between the splitting and merging rules. 

Members of the PM quadtree family can be easily adapted to deal with fragments 
that result from set operations such as union and intersection so that there is no data 
degradation when fragments of line segments are subsequently recombined. Their use 
yields an exact representation of the lines - not an approximation. To see how this is 
achieved, let us define a q-edge to be a segment of an edge of the original polygonal map 
that either spans an entire block in the PM quadtree or extends from a boundary of a 
block to a vertex within the block (i.e., when the block contains a vertex). 

(a) (b) 

Figure 11. (a) Example three-dimensional object; and (b) its corresponding PM I octree. 
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Each q-edge is represented by a pointer to a record containing the endpoints of 
the edge of the polygonal map of which the q-edge is a part [Nels86]. The line segment 
descriptor stored in a node only implies the presence of the corresponding q-edge - it 
does not mean that the entire line segment is present as a lineal feature. The result is a 
consistent representation of line fragments since they are stored exactly and, thus, they 
can be deleted and reinserted without worrying about errors arising from the roundoffs 
induced by approximating their intersection with the borders of the blocks through 
which they pass. 

7. CONCLUDING REMARKS 

The use of hierarchical data structures in image databases enables the focussing 
of computational resources on the interesting subsets of data. Thus, there is no need to 
expend work where the payoff is small. Although many of the operations for which they 
are used can often be performed equally as efficiently, or more so, with other data 
structures, hierarchical data structures are attractive because of their conceptual clarity 
and ease of implementation. 

When the hierarchical data structures are based on the principle of regular 
decomposition, we have the added benefit of a spatial index. All features, be they 
regions, points, rectangles, lines, volumes, etc., can be represented by maps which are in 
registration. In fact, such a system has been built [Same84b I for representing geographic 
information. In this case, the quadtree is implemented as a collection of leaf nodes where 
each leaf node is represented by its locational code. The collection is in turn represented 
as a B-tree [Come79]. There are leaf nodes corresponding to region, point, and line data. 

The disadvantage of quadtree methods is that they are shift sensitive in the sense 
that their space requirements are dependent on the position of the origin. However, for 
complicated images the optimal positioning of the origin will usually lead to little 
improvement in the space requirements. The process of obtaining this optimal 
positioning is computationally expensive and is usually not worth the effort [Li82]. 

The fact that we are working in a digitized space may also lead to problems. For 
example, the rotation operation is not generally invertible. In particular, a rotated square 
usually cannot be represented accurately by a collection of rectilinear squares. However, 
when we rotate by 90", then the rotation is invertible, This problem arises whenever one 
uses a digitized representation. Thus, it is also common to the array representation. 
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