T e

w«,;,}?@wmjmjyn_.<”.*<.k..._.‘,....u
R [

S

A e e

L

-basic region processing algorithms including

Wpeil [Somes2z <)

PROGRAM LIBRARY

PR N
coopuTER STIENCE CENTER

UIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND 20742

TR-1162 February, 1982
DAAK 70-81-C-0059

On Encoding Boundaries with Quadtrees

Hanan Samet
Robert E. Webber

Computer Science Department
and
Computer Vision Laboratory
Computer Science Center
University of Maryland
College -Park, MD 20742

ABSTRACT

A new data structure termed a line quadtrec is presented that encodes both a region and its boun-
quadtrec with the modification that with each node

dary in a hierarchical manner. It is similar to the
djacent to a boundary. The information is available

information is stored as to which of its sides are a
‘Such a data structure is shown to facilitate a number of

boundary following. In particular, an efficent algorithm is
top of another map when the maps are encoded using the

for both terminal and non-terminal nodes.

demonstrated for superimposing one map on
line guadtree.

The support of the Engineering Topographic Laboratories (under contract DAAK 70-81-C-0059) is
-gratefully acknowledged, as is the help of Janet Salzman in preparing this manuscript and Sherry Pal-

- mer for drawing the figures.

1. Introduocfion . _ _

Region representation plays an important role in image processing and geographic information
systems. There are a number of different data representations in use. They range from point by point
representations such as binary arrays and run length coding [12] to vector representations such as chain
codes [4] and even hierarchical representations such as quadtrees [8] and strip trees [1]. In fact, varia-
tions on hierarchical representations (e.g., medial axis transforms [18]) also exist.

The quadtree [8] is an approach to region representation that is based on the successive subdivi-
sion of an image array (for this definition assume that the image consists of foreground, i.e., BLACK,
. and background, i.e., WHITE) into quadrants. If the region does not cover the entire array (or miss
the entire array), we subdivide the array, and repeat this process for each quadrant, each subguadrant,

.., as long as necessary, until we obtain blocks (possibly single pixels) that are entirely contained
within the region or entirely disjoint from it. In other words, our partition process results in squares
whose sides are powers of two and that are either entirely BLACK or entirely WHITE. For example,
the resulting blocks for the region of Figure la are shown in Figure 1b. This process can be
represented by a tree of degree 4 in which the entire array is the root node, the four sons of a node are
its quadrants (labeled in order NW, NE, SW, SE), and the leaf nodes correspond to those blocks for
which no further subdivision is necessary. Leaf nodes are said to be BLACK or WHITE depending or
whether their corresponding blocks are in the foreground or background while non-leaf nodes are said
to be GRAY. The quadtree representation for Figure 1b is shown in Figure lc.

In this paper, we address the issue of hierarchically representing images which are segmented into
a number of different regions rather than mere foreground and background as is done in work relating
to quadtrees. In particular, we are interested in a representation that encodes both the region and its
border in a hierarchical maoper. This is in contrast to the conventional quadtree which only encodes
areas in a hierarchical way and the strip tree (1] which only encodes curves in a hierarchical manner.
We achieve our goal by introducing a new data structure termed a "line quadtree” and show how it can
be used to encode boundaries. Our approach is an iterative one and shows the reader the various
design decisions which led to our adoption of a particular definition for the data structure. The ulii-
mate data structure is one that preserves the hierarchical nature of the region quadtree and also intro-
duces a hierarchical boundary representation. We conclude our presentation by showing how the line
quadtree facilitates both boundary following algorithms as well as the more traditional postorder tree
traversal quadtree algorithms. The latter is done in the context of a algorithm to implement the com-
mon problem of superimposing one map on top of another map.

PROTRAY LIBRARY
COTT T LTINS CENTER
TR sE e amn

COLLLIL PO BARYLAND 20742

2. Line Quadtrees

Two different approaches can be made to the task of defining the quadtree data structure. The
first approach is top-down and recursively subdivides a space (to simplify the presentation, we confine
the discussion to the Euclidean plane) until some uniformity criteria is met. The second approach is
bottom-up and recursively merges portions of a fragmented (digitized) space that meet some compatibil-
ity criteria. The second approach is used below.

Planar geometry populates the plane with three distinct entities - the point, the line, and the
region. Finkel and Bentley [3] present the application of the quadtree data structure to the problem of
storing a set of points. Klinger [8] (also [9,10]) introduced the use of quadtrees to store regions. Such
quadtrees are henceforth called region quadtrees. Subsequent work included applications to graphics
[5,6,7] as well as interconversions with other representations such as chain codes [2,13], rasters {14,15]
and binary arrays [16]. Herein, we present an application of the quadtree data structure to the problem
of storing line segments that partition a plane.

Since the partitions bounded by the line segments comespond to regions, the same data structure
can be used for region-oriented problems. This is analogous to being able to represent a map by giving
each region a separate color or by just drawing the boundary lines. We could view the latier represen-
tation as a two color region map where the boundary lines become narrow BLACK regions and the
remainder of the map is colored WHITE. This is awkward for two reasons: (1) narrow regions are
costly in terms of the number of nodes in the quadtree, and (2) it commits the user to a specific thick-
ness of the boundary line which may be unfortunate when regerierating the picture on an output device.

The bottom-up definition of a region quadtree starts with space fragments, called pixels, that have
a single property: its color. The bottom-up definition of a line ghadtree, the data structure proposed
herein, starts with pixels that record the presence or absence of an edge on each of the four sides of a
_pixel. The line quadiree is subsequently built by merging the nodes of a complete 4-ary tree where
-each leaf node corresponds to a pixel.

It should be noted that this is quite different from the edge quadtree of Shneier [19]. Edge quad-
trees store (at each leaf) linear approximations of idealized curves with explicit error factors, whereas
line quadtrees store an exact representation of a digitized image. Hence, comparing these two quad-
. trees would be analogous to comparing splines to boundary codes, i.e., an approximation scheme for
curves in the real plane vs. an exact encoding of a digital curve.

In order to complete the bottom-up definition of a line quadtree, we must give a compatibility
criteria for merging. The scheme that we propose is called the propagated criteria of weak-formedness.
Below, this criteria and its associated algorithm are presented as the end result in a successive pattern
of refinement from the criteria of identicality (algorithm 1) to the criteria of strong-formedness (algori-
thm 2) to the criteria of weak-formedness (algorithm 3) to the propagated criteria of weak-formedness
(algorithm 4). Note that subroutines common to more than one algorithm are only presented once, i.e.,

in conjunction with the first reievant algorithm.

Prior to developing the merging criteria, we set forth a number of notational conventions. From
a node in a line quadtree data structure, we must be able to access five other nodes. Four of these
accessible nodes are the four sons of the original node and are accessed via the function SON.

SON: nodes x quadrants -> nodes

The four quadrants are named NW, NE, SW and SE (e.g., Figure 2). The fifth accessible node is the
father of the original node and is accessed via the function FATHER.

FATHER: nodes -> nodes

The nodes of a line quadtree are also interrogated by two predicates, IS_LEAF and EDGE.

IS_LEAF: nodes -> boolean
EDGE: nodes x boundary -> boolean

1S_LEAF is true iff the node has no sons and hence is a terminal node. It should be clear that if a
node has one son, then it has all four sops. EDGE is true iff the specified boundary of the node is

-3,

present (said to be marked SET) and is false when not present (sald to be unmarked or marked
CLEAR). The four boundaries (at times referred to as sides or directions) are labeled N, E, S, and W
(e.g., Figure 2). ' :

Boundaries and quadrants are manipulated with the aid of the auxiliary functions CSIDE,
CCSIDE, and QUAD.

CSIDE: boundary -> boundary
CCSIDE: boundary -> boundary
QUAD: boundary x boundary -> quadrant

CSIDE (CCSIDE) returns as its value the boundary that is adjacent clockwise (counter-clockwise) from
the boundary indicated by its parameter (e.g., CSIDE(E)=S and CCSIDEMN)=W). QUAD returns as its
value the quadrant that contains the corner formed by the boundaries indicated by its parameters pro-
vided such a corner exists (e.g., QUAD(N,W)=NW whereas QUADN ,5) is undefined).

~ Storage management is facilitated by GET_FROM_AVAIL and RETURN_TO_AVAIL.
GET_FROM_AVAIL returns z pointer to a previously inaccessible node. RETURN_TO_AVAIL sig-
nals the storage management system that the node referred to by the parameter is no longer being used
and that the storage associated with it be recycled.

As with most systems for manipulating geometric data, the intuitions involved in line quadtrees
are best motivated pictorially; hence certain pictorial conventions must also be established. In Figure
2, the standard arrangement of boundaries and quadrants is shown. In Figure 3, a map M of six
regions is shown. The bold lines indicate the region’s boundaries and the light lines indicate the
digitization. Note that all maps are surrounded by a border. This maintains the separation of regions
when the maps undergo linear transformations. In Figure 4, the complete 4-ary tree that encodes the
map M is shown. Note that each square represents a node in the tree. The four largest squares inside
a given square represent the four sons of that node. A square that contains no squares represents a leaf.
The outermost square represents the tree’s root. The EDGE information for a node is stored in the pic-
ture by using a bold line on any boundary whose EDGE value is marked SET and using a light line on
the other boundaries (i.e., marked CLEAR). Note that algorithms 1! through 3 do not use the EDGE
information of interior nodes and thus the interior nodes are drawn under the assumption that all EDGE
information is set to false (i.e., marked CLEAR).

The first algorithm, CONDENSE!, embodies the criteria of identicality, i.e., four brothers are
merged iff all the nodes corresponding to the blocks represented by the brothers contain identical infor-
mation in their comresponding EDGE fields. Thus if CONDENSE] were applied to the 4-ary tree in
Figure 4, it would produce the quadtres of Figure 5. Note that only two 4-tuples of brothers were can-
didates for merging. ‘

Although the criteria of identicality is adequate for region quadtrees, it is inadequate for line
quadtrees. Nodes that border edges tend to have as brothers nodes that do not border edges on the
same corresponding side. For example, the same edge causes a northern brother to have his southern
edge marked SET and a southern brother to have his northern edge marked SET, making it unlikely

that the southern brother will also have his southern edge marked SET (at least at levels of digitization

that are common in images that do not evidence microlevel texture, e.g., maps in contrast with gray
scale photographs). This can be seen by observing the example map in Figure 4. The storage utiliza-
tion is comparable to that of region quadtrees for line drawings segmented into two regions: one the

- black line and the other being the clear interior. This claim 1s asymptotically true with respect to the

degree of digitization. Here, we assume that the insignificant number of nodes merged in the "line”
region of the region quadtree representation is comparable to the insignificant number of nodes merged

‘that are identical and have some of their edge values marked as SET in the line quadtree representation.

In both schemes, the primary effect of the merging criteria occurs at nodes away from the boundaries
of the regions represented by the quadtree.

From the above discussion, it follows that a key aspect of the design of a merging criteria is to
maximize the probability that it will be met by many nodes of the tree representation of a "typical”
image. On the other hand, the allowable merging criteria are restricted by the necessity of having the
ability to reconstruct the original image (at least the onginal digitization of the original image).

_ 4.

We will not attempi to find an "optimal” method of satisfying the above restrictions on .'alh:)‘.wablﬁE
merging criteria. Instead, we address the more modest task of finding a merging criteria for line quad.
trees that is as reasonable as the standard merging criteria for a region quadtree. Recall that in such 1
case each region is given a separate color and borders are represented implicitly by the two squares of
different color that the border separates. For Figure 3, such a region quadiree would use six colors as
is shown in Figure 11. :

- The next step in finding the above mentioned merging criteria is to consider the criteria of
strong-formedness as implemented in CONDENSE2. The criteria of strong-formedness can be stated ag
follows. If the submap represented by a given subtree corresponds to a square with zero or more entire *
sides missing, then that subtree can be replaced by 2 single leaf. Since there are no lines crossing the
interior of a drawn square, it follows that a single leaf can never represent a submap that containg
more than one region. This can best be understood pictorially. Figure 6 presents the quadiree that is
built by applying this merging condition to the 4-ary tree in Figure 4. If we look at node o in Figures
4 and 6, we see the result of the patterns of four brothers being merged to form one pattern. In the
NW son of the root of Figure 4, we see the result of this merging process having been performed on
two separate levels. Node B in Figures 4, 5, and 6 illustrates four soms that could not be merged
because they had edges interior to their non-square pattern {although they were merged in CON-
DENSEI). This is checked by predicate NO_INSIDE_BORDERS in CONDENSE2. In node v of

~ Figure 6, we see four sons that could not be merged because the S border of v’s SW son is marked
SET but that of y’s SE son is marked CLEAR; so that together, they form only a partial border. This
is checked by predicate WHOLE_QUTSIDE_BORDERS in CONDENSE?.

Note that procedure SET_EDGES in CONDENSE? is more complicated than is necessary, i.e.,
it logically ANDs together two values that have already been tested as equal by
WHOLE_OUTSIDE_BORDERS. This permits the same procedure to be used by both CONDENSE3
and CONDENSEA4.

“Although we note that the number of nodes in Figure 6 is considerably smaller than in Figure 5,
we still have not reached the goal of merging all nodes that would be merged if the map were painted
with six colors and region quadtrees were used. In particular, note that the SE son of the root in Figure
6 resides entirely inside region M6 of Figure 3 and thus would be represented by one node of color M6
in the mentioned region quadtree, whereas in Figure 6 this node has four offspring.

Consideration of this problem leads to the criteria of weak-formedness. Ciearly, in order to be
able to merge the above mentioned regions, it is necessary to weaken the criteria of strong-formedness
to allow two different edge values to be combined but still to provide for reconstruction of the original
map. o _

CONDENSE3 performs this weakening by eliminating the test for
WHOLE_OUTSIDE_BORDERS in CONDENSE2. The combination of the now possibly differing
edge values is done via a “logical AND" operation in SET_EDGES. The merging criteria encoded by
CONDENSES is termed the criteria of weak-formedness. Figure 7 shows the result of applying CON-
DENSES to the complete 4-ary tree of Figure 4. Note that the SE son of the root is now a leaf and
also that merging occurred in both the NW son and the SE son of the SW son of the root. Indeed all
the hoped-for mergers occurred.

Observing the algorithm, CONDENSES3, it readily becomes apparent that the only criterion for
‘merging is that the “inner” edges must be marked CLEAR. Note that. if the inner edges were not
marked CLEAR, then by virtue of the fact that line segments forming the edges must partition the
space, it follows that the nodes on each side of the edge belong to separate regions. In such a case, the
region quadtree would not have merged these brothers either.

Therefore, the number of nodes in the line quadiree is bounded from above by the number of
nodes in the corresponding region quadtree. Analogous reasoning about the significance of the absence
of inner edges leads to the conclusion that the number of nodes in the line quadtree is equal to the

- number of nodes in the corresponding region guadtree.

‘The remaining question with respect to the criteria of weak-formedness is whether or not it is
possible to reconstruct the image. The reconstruction is based on the following twa premises: 1) if a

(;)\'\/'atl:,[E .
* Quag,g
Such i

-ares gff
oo ag!

iglreg
.0 the

2rged

i.e.

1ted
Ture
M6

be
ess
aal

‘or
g

id

ALY Y

xd op ;

H

*ria of§
ited as
cnriref
18 the
ntaing §
that iy §

:
P
3

P

i
¢
&

ZON- :
Y of ;
rked :

'SE3

35,‘.

-5.

terminal node’s side is marked SET, then there was an edge of that length in that position in the origi-
nal image; 2} if a terminal node’s side is marked CLEAR, but there are segments of the map that coin-
cide with segments of that side, then those edges will be represented by sides being marked SET in the
adjacency tree for that side. The adjacency tree [5] of a terminal node x on a given side is a binary
tree rooted at the neighbor y (possibly an internal node) on that side and containing all descendants of
that neighbor y that have the node x as a neighbor. For example, in Figure 7, we see that a complete
description of the W side of the SE son of the root can be obtained by examining the E side of the NE
son of the SW son of the root. Since this segment of border does not extend down the entire W side of
the SE son of the root, it must turn west (note that all curves are tmplicitly closed). By tumning west,
the line prevents the merger of the sons of the SW son of the root, thereby ensuring that one of these
unmerged sons could encode it as a side marked SET.

Finally, we are confronted with the recurring issue of what information to store at the internal
nodes (analogous to the GRAY nodes of the region quadtree) to speed up our algorithms. This depends
on which algorithms are to be speeded up. Our choice is to speed up edge-following algorithms, e.g.,
the quadtree to boundary code transformation,” due to a natural affinity between line quadtrees and
line-following algorithms. '

At this point, we must be precise as to what constitutes our merging criteria and what information
is propagated to the interior nodes. We term our final merging criteria the "propagated criteria of
weak-formedness.” The propagation criteria is that an edge is propagated upward as marked SET iff at
the higher level, it could be followed without reference to the lower nodes that form it, e.g., the south
side of M6 in Figure 3. This propagation criteria is encoded by CONDENSE4 with the aid of an addi-

 tional parameter named CORNERS. In order to see the need for this extra information, examine Figure

8 which results from the execution of CONDENSEA on the 4-ary tree in Figure 4. Note that for the
first time, some of the internal nodes have sides marked SET, e.g., the south side of the root. The key
to the need for CORNERS is seen in the W side of the SW son of the ROOT. This side is marked
CLEAR because any line following algorithm would have to turn E half way down the segment in
order to keep following the border of the same region (e.g., for regions M3 or M6 in Figure 3). How-
ever, the two sides that are to be combined to form this W side are both marked SET. Moreover, the
information stored in the SW and NW sons of the SW son of the root do not indicate the presence of a
T-junction along their western boundary. Hence non-local information must be passed upward from the
leaves and this is the role of CORNERS. To summarize, CORNERS indicates whether or not two
edges that meet at a corner are both marked SET, e.g., the NE corner of region M1. If CORNERS is
true for an interior portion of a scgment that is marked SET (e.g., when M5 and M6 meet on the
western side of the image), then a T-junction is present, and the segment’s other node should be
marked CLEAR (e.g., a in Figure 5). This is accomplished by FIX_T_JUNCTION, which is invoked
by SET_INTERIOR_NODE, which is in turn invoked by CONDENSEA.

While we are considering edge-following algorithms, we can also take the time to justify the
placement of the onus of multiple meaning on the CLEAR edge so that when there is a SET edge,
there is no question but that it is SET. In essence, when following an cdge, there is a greater benefit
in knowing how far ahead we can jump rather than the extent of the absence of a boundary (i.e., the
length of the CLEAR edge).

The edge-following algorithms are straight forward extensions of the quadtree-to-boundary-code
algorithm. Actually, they are slightly faster because they can sometimes move onward on the basis of
informatjon stored at an interior node and not have to examine all the terminal nodes along the path.
For example, an edge following algorithm processing the bottom edge of the map of Figure 3, with the
aid of the quadtree of Figure 8, would be able to use the fact that the S side of the root is solid and
thereby never have to descend to the SE son of the SW son of the SW son of the root to verify the
presence of that segment of the edge. . :

3. Postorder Tree Traversal Algorithms

We are also interested in speeding up postorder tree traversal algorithms. Such algonithms Bre
often useful because the worst-case analysis of their execution times does not depend on the depth fo
the quadtree (i.e., the resolution of the image) as is common to the edge-following algorithms, by ¢
rather, depends only on the number of nodes in the quadtree. As an example of such an algorithm, We,,
shal] analyze the CROSS_PRODUCT algorithm as described below.

The CROSS_PRODUCT algorithm is the line quadtree analogue of the region quadtre,:
SUPER_POSITION algorithm [5] and hence is of this postorder traversal type. Recall that Humgr:
was referring to an algorithm for overlapping two images. As an example of its effect, consider Fig.*
ure 9, where two maps are presented: (1) map A composed of two regions (Al & A2) and (2) map R :
composed of two regions (B! & B2). These maps can be viewed as describing regions uniform with }
respect to two different variables, A and B. The CROSS_PRODUCT algorithm produces a map
(termed AB in Figure 10} of regions uniform in the ordered pair (A,B). It should be noted that if twg |
cells are in separate regions in either map, they will necessarily be in separate regions in the result of
the application of CROSS_PRODUCT. : -

If these maps were being stored in 2-d arrays, then the obvious implementation of the superposi-
tion process would be to logically OR the corresponding elements in the two arrays. This is a conse-
quence of the fact that the presence of an edge marked SET in either map implies the presence of the
corresponding edge in the resulting set. However, when we logically OR the corresponding elements

. of the two line quadtrees for maps A and B, we get the line quadtree indicated in Figure 10c. This tree

differs from the line quadtree of the map AB shown in Figure 10b at two types of instances which are
labeled o and B. Alpha points to the edge of an internal node that is marked CLEAR due to the pres-
ence of a "T” side in the correct quadtree, whereas the indicated edge is marked SET by the logical OR
operation since the corresponding edges in quadtrees A and B are marked SET. Note that this situation
occurs in two places in Figure 9. Beta points to the edge of a terminal node that is marked SET in the
correct quadtree, but not in the tree generated by the logical OR operation since the corresponding
edges in quadtrees A and B are marked CLEAR.

In the following paragraphs, we develop the CROSS_PRODUCT algorithm in a2 manner analo-
gous to that used for CONDENSE4. Recall that this type of approach is one of a “debug” nature, i.e.,
we will generate the logical OR tree and then proceed to fix it.

The first iteration of CROSS_PRODUCT is CROSS_PRODUCT1. CROSS_PRODUCT2 gen-
erates the same result as CROSS_PRODUCT], but it has a faster worst-case execution time. Both ver-
stons of CROSS_PRODUCT have the following high level structure: (1) generate the logical OR tree
using the function NODE_OR; (2) comect the values of the terminal nodes using procedure CON-
SISTENT; and (3) correct the values of the internal nodes using procedure CONDENSE4. Note that
since cells of separate regions in the array stay in separate regions in the result of CROSS_PRODUCT,

" no merging occurs during the execution of CONDENSEA4. Thus, CONDENSEA is merely being used

for its side-effect of calculating the EDGE values for the intemnal nodes.

In CROSS_PRODUCT! we use a version of the NODE_OR algorithm to perform a postorder
traversal of both trees in parallel until a leaf node is reached. Having reached a leaf node in one tree,
NODE_OR proceeds to copy the remaining subtree of the other tree using COPY and then to perform a

Jogical OR of the sides of the region represented by the subtree with the corresponding sides of the leaf

node. This is followed by continuing the traversal while simultaneously patching togethcr the copied
subtrees to form the ROOT_RESULT. Hence, the result of the NODE_OR operation is the logical OR
of the corresponding parts of the two quadtrees involved. Note that the internal nodes are ignored,
since they will be fixed up later by CONDENSEA4. Figure 11a shows the result of applying NODE_OR
to the maps of Figure 9 disregarding the values of the edges of the internal nodes.

Once the NODE_OR operation has been completed, CROSS_PRODUCT] removes B problems in
the leaf nodes of the 4-ary tree by use of CONSISTENTI1. This process consists of examining (using
HAS_DARK_SIDE) .the neighboring adjacency trees (found by GETNEIGHBOR) and insuring that
they satisfy the criteria of weak-formedness. The version of GETNEIGHBOR used herein is presented
in [13] and uses the FATHER function. The result of applying CONSISTENT1 is to set the leafl nodes

- 7=

i k the edges of the internal
indi in Fi ONDENSE4 is used to mar edge
dicated in Figure 11b. Next, C - o e
ns E . (;hﬁ \;a;ues}:ilgu:e I1c is the result of the application of CONDENSE4 to the
are : nodes, e.g., |
pth of .
'S, by
m, we !

adtree
lunter
r Fig. :
ap B

with

Mmap
f two
1t of |

Y

POsi-
onse- |
fthe ;
1ents
free ¢
1 are
Tes-
1 OR
ition |
the
fing

b e e cn e

4. Analysis

The cost of executing CROSS_PRODUCTT is the sum of the costs of its three components - j g
NODE_OR, CONSISTENTI, and CONDENSE4. The cost of NODE_OR is bounded from above b;,
three times the number of nodes in both quadtrees. This can be seen by observing that NODE_QR
visits every node at least once while MARK_SIDE visits a disjoint set of adjacency trees chosen from %
the two quadtrees. Since no node can be in more than two nontrivial adjacency trees [5], it follow,
that the number of nodes processed by MARK_SIDE is bounded from above by twice the number of
nodes in both quadtrees. Hence, as stated earlier, the number of nodes processed by NODE_OR jg
bounded from above by three times the number of nodes in both quadtrees. :

CONDENSEA4 is simply a postorder traversal of the quadtree rooted at ROOT_RESULT Since
CONSISTENT! does not alter the number of nodes in that tree, it follows that the number of nodeg
processed by CONDENSE4 is bounded from above by three times the number of nodes in both quad-
trees as this is the bound resulting from CONSISTENTI. :

CONSISTENT!] performs a postorder traversal of the quadtree rooted at ROOT_RESULT and at
each leaf invokes GET_NEIGHBOR four times. The upper bound on the number of nodgs visited as a
result of the invocation to GET_NEIGHBOR is twice the depth of the tree (i.e., the log of the resolu-

- tion of the image). Since the worst-casc tree depth is proportional to the number of nodes in the tree,

the cost of CONSISTENT! clearly dominates the cost of CROSS_PRODUCT! in the worst-case. Note
that HAS-DARK-SIDE also processes adjacency trees,

In analyzing the CROSS_PRODUCT algorithm as implemented by CROSS_PRODUCT!, we find

that the cost of the algorithm is proportional to the product of the the cost of using the

GET_NEIGHBOR algorithm and the number of nodes in both trees. Although on the average, the cost

.of using GET_NEIGHBOR is a constant [13], in the worst case, it is equal to the tree depth.

CROSS_PRODUCT? presents the algorithm in a form whbse'woz_st—case execution time analysis leads
to an execution time that is proportional to the number of nodes in both trees. In particular, since only
CONSISTENT] makes use of GET_NEIGHBOR, only it is modified in CROSS_PRODUCT2.

In order to avoid having to use GET_NEIGHBOR to locate a leafs neighbors, four parameters
are added to the invocation of CONSISTENTZ. These parameters comespond to the four neighbors of
the node ROOT. As a programming convenience, it is assumed that the procedure call places those
neighbors in the array NEAR. Since most programming languages restrict formal parameters to simple
identifiers, this feature can most easily be simulated by using macros. Initially, CROSS_PRODUCT2
creates 2 node pamed NEIGHBOR with all borders marked SET to be the four neighbors of the root
ROOT_RESULT since the map is assumed surrounded by a solid boundary. The calculation of the
neighbor parameters for the processing of the four sons of the ROOT is done by HELPER. HELPER

. takes nine parameters and its expression would be quite awkward without the parameter array device.

The calculation of neighbors is straightforward and is based on the geometry of the quadiree node
arrangement. If a son of a neighbor is needed for the next pass but does not exist, then the original .
neighbor is reused as his EDGE information on the side in question is still appropriate. Note that the

semicolons in procedure calls to HELPER are merely used here to facilitate the readability of parameter

groupings and otherwise have no special programming significance.

From the above, it should be clear that we have reduced CONSISTENT2 to a postorder traversal
algorithm that separately visits all its adjacency trees. Therefore, its execution time is proportional to
three times the number of nodes in ROOT_RESULT. Other postorder traversal algorithms could be
modified in a similar manner to bring their worst-case execution times in line with the above results.

les

3
i
5
N
:

< e -

5. Concluding Remarks

We have presented a data structure for storing maps and their boundaries in a hierarchical manner
without excessive waste of storage or having to solve the messy problem of graph coloring. Such
coloring would be necessary in order to use region quadtree algorithms of comparable storage frugality.

. The coloring could be achieved by use of connected component labeling algorithms [17] followed by

the linear-time five coloring algorithm of [11] (hence minimizing the number of bits needed for colors).
However, this entails a substantial loss of information stored in the internal nodes that can be used by
line-following algorithms.

Our approach is predicated on the desire to be able to determine and represent in a hierarchical
manner both the areas and the borders of the regions comprising the maps. Thus our techniques are
more applicable to a decomposition of a map into counties, states, etc. rather than contour lines, point
data such as cities, or roads and rivers. As mentioned earlier, these problems would be more suitably
attacked by use of other data structures such as point space quadtrees [3] for cities and strip trees [1]
for roads and rivers.)

We have also detailed algorithms for the construction of the line quadtree data structure as well
as its manipulations. Our presentation was an iterative one so that the reader could gain insights for the
rationale behind our ultimate choice of a data structure. Once the data structure was chosen, we
demonstrated how it could be used to achieve some typical operations such as border following and
map superposition. These algorithms showed that the worst case execution time for line quadtree algor-
ithms is asymptotically equivalent to that obtained for region quadtree algorithms.

It should be noted that the line quadtree, as proposed in this paper, is not the unique solution to
the problems presented. Variations of the line quadtree are a subject for future research. For example,
instead of storing values for all four sides at each node, one could just store the values of two sides,
€.g., N side and E side. As we see in Figure 13, although the nodes for the "two-sided” line quadtrees
contain fewer data bits (2 instead of 4) than our standard (i.c., obtained by use of CONDENSE4) line
quadtree, the two-sided line quadtree can have more nodes. We claim that it can never have more than
twice as many nodes. The net effect of these extra nodes in the average case has yet to be determined.

e L AR e bt .

- 10 -

6. References

1.

10.
1.
12.
13.
14.
15.
Ie6.
17..
8.

19,

D. H. Ballard, Strip trees: a hierarchical representation for curves, Communications of the ACM,
May 1981, 310 - 321.

C. R. Dyer, A. Rosenfeld, and H. Samet, Region representation: boundary codes from quadtrees,
Communications of the ACM, March 1980, 171 - 178.

R. A. Finkel and J. L. Bentley, Quadtrees: a data structure for retrieval on composite keys, Actg
Informatica 4, 1974, 1 - 9. .

H. Freeman, Computcr processing of line- drawmg images, ACM Compunng Surveys 6, 1974, 57
--97.

G. M. Hunter, Efficient Computation and Data Structures for Graphics, Ph.D. dissertation,
Department of Electrical Engineering and Computer Science, Princeton University, Princeton,
New Jersey, 1978.

G. M. Hunter and K. Steiglitz, Operations on images using quadtrees, JEEE Transactions on Pat—
tern Analysis and Machine Intelligence 1, 1979 145 - 153.

- G. M. Hunter and K. Steiglitz, Lincar transformations of pictures represented by quadtrees, Com-

puter Graphics and Image Processing 10, 1979, 289 - 296.
A. Klinger, Patterns and search statistics, in Optimizing Methods in Statistics, J. S. Rustagi
(Ed.), Academic Press, New York, 1971.

A. Klinger and C. R. Dyer, Experiments in picture representation using regular decomposition,
Computer Graphics and Image Processing 5, 1976, 68 - 105.

A. Klinger and M. L. Rhodes, Organization and access of image data by areas, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 1, 1979, 50 - 60. :

D. Matula, Y. Shiloach, and R. Tarjan, Two linear-time algorithms for five-coloring a planar
graph, Stanford Technical Report STAN-CS-80-830, November 1980. :

D. Rutovitz, Data structures for operations on digital images, in Pictorial Pattern Recognition,
G. C. Cheng et al. (Eds.), Thompson Book Co., Washington D.C., 1968, 105 - 133.

H. Samet, Region representation: quadtrees from boundary codes, Communications of the ACM,
March 1980, 163 - 170.) .
Samet, An algorithm for converting rasters to quadtrees, IEEE Transactions on Partern Analysis
and Machine Intelligence, January 1981, 93 - 95. ; _

H. Samet, Algorithms for the conversion of quadtrees to rasters, Computer Science TR-979,
University of Maryland, College Park, November 1980. N

H. Samet, Region representation: quadtrees from binary arrays, Computer Graphics and Image
Processing 13, 1980, 88 - 93.

H. Samet, Connected component labeling using quadtrees, Journal of the ACM, Iuly 1981, 487 -
501.

H. Samet, A quadiree medial axis transform Computer Science TR-803, University of Maryland,
College Park, August 1979, '

M. Shneier, Two hierarchical hnear feature representations: edge pyramids and edge quadtree.,,
Computer Graphics and Image Processing 17, November 1981, 211 - 224.

L

a. Sample image b. Block decomposition of the image in (a) A)

, _ 38 910
: ¢. Quadtree representation of the blocks in (b)

Figure 1. An image, its block decomposition, and the corresponding guadtree. The foreqround
blocks are shaded and the background biocks are blank.

CCSIDE (N)

NwW Nl?
QUAD (N, E)
QUAD(E,N)
W E CSIDE({N)
Sw SE
S

Figure 2. Quadrants and boundaries Jabeled

-

Figure 3. Pictare (Map) M on 8x8 array of pixels

T

[]

[O

OO

L]

mEn

00
L[]

DO0O0O|| 00 0og

a0
OO

O A e i e,

e st

4. Complete 4-ary mree for Map M

Figure

[=ln

ooflogl

1O O

mg.

nfn]l

===

mju]

L D00

Figure 5. The quadtree for M Produced b}_'AJgoﬁthm 1

Figure 6. The quadtree for M produced by Algorithm 2

Figure 7. The quadtree for M produced by Algorithm 3

Y

Figure 8. The quadtree for M produced by Algorithm 4

Figure 9a. Map A

Figure 9b. Conesponding line quadtree for (a)

= @

a,

| 3

.. - ;
B .

1|

§ |
; . — |

Figure 9d. Corresponding line quadtree for {c)

Figure 102. Map AB

Figure 10b. Corresponding line quadtree for (2)

Figure 10c. Result of OR

-ing together the two quadtrees for Maps A and B

(a) Result of applying NODE_OR to the two quaduees of Maps A and E

Figure 11. Order of Generation of Map AB

§
(b) Result of applying CONSISTANT] to (a)
Figure Il;_.cont’d.

o

A S 4 g ety 1 e

—

(c) Result of applying CONDENSEA4 to (b)

Figure 11, cont’d.

- Figure 12. The region quadtree for M

" . .
b it

!

BE

|
oo

Pign: 13b. Corresponding line quadtree for (a)

rwo sided line quadtree for (a)

Figure 13c. The alternauve

Algornithm 1

procedure CONDENSEL (ROOT);
/* Modify a 4-ary tree rooted at ROOT by merging as many
nodes as possible under the criteria of identicality
to produce a quadtree */
begin
reference node ROOT;
boundary B; .
if not IS LEA.F (ROOT) then
begin
for Q in {NW, NE, SW, SE} do
CONDENSET1 (SON (ROOT, Q));
if HAS_LEAF_SONS (ROOT) and HAS_IDENTICAL_SONS (ROOT) then
begin /* replace ROOT by its NW son since all 4 sons are
the same ¥/
for Bin {N, E, S, W} do
EDGE {(ROOT, B) := EDGE (SON (ROQT, NW), B};
DELETE_SONS (ROOT);
end;
end;
end;

boolean procedure HAS LEAF SONS (PARENT);
/* Check if all sons of the quadtree rooted at PARENT
are Jeaves ¥/
begin
reference node PARENT;
return (IS_LEAF (SON (PARENT, NE)) and
IS_LEAF (SON (PARENT, SE)} and
IS_LEAF (SON (PARENT, SW)) and
1S_LEAF (SON (PARENT, NW)));
end;

boolean procedure HAS_IDENTICAL_SONS (PARENTY;
/* Check if all the sons of the quadtree rooted at PARENT
contain identical edge information */
begin
value node PARENT;
return (not (SONS_DISAGREE (PARENT, NE, SE) or
" SONS_DISAGREE (PARENT, SE, SW) or
SONS_DISAGREE (PARENT, SW, NW)));
end; : .

3.

boolean procedure NO_INSIDE_BORDERS (PARENTY;
/* Check to make sure no edge passes between two leaves
that are sons of PARENT */
begin
value node PARENT; -
/* Whenever an edge passes between two adjacent leaves,
then EDGE of both nodes has value true */
return (not (EDGE (SON(PARENT, NE}, W) or
EDGE (SON(PARENT, SE), N) or
EDGE (SON(PARENT, SW), E) or
EDGE (SON(PARENT, NW), $)));
-end; ‘

boolean procedure WHOLE_OUTSIDE_BORDERS (PARENT);
/* Check to make sure each pair of sides that are to be
merged into one side of the node PARENT agree as to
whether or not an edge is present */
begin _
value node R;
return (SAME_EDGE (PARENT, NW, NE, N) and
SAME_EDGE (PARENT, NE, SE, E) and
SAME_EDGE (PARENT, SE, SW, S) and
SAME_EDGE (PARENT, SW, NW, W));

end;

boolean procedure SAME_EDGE (PARENT, SON_I, SON_2, SIDE);
/* Check if SON_1 and SON_2 of PARENT have same EDGE

value on SIDE */ ' '
begin

value node PARENT:
- value quadrant SON_}, SON_2;

value boundary SIDE; ‘

return (EDGE (SON (PARENT, SON_1, SIDE) and

EDGE (SON (PARENT, SON_2), SIDE));

end;

procedure SET_EDGES (PARENT);
/* Set each edge of the node PARENT to the merger of
the corresponding edges of its sons */
begin -
value node PARENT:
bdundary B;
for Bin {N,E, S, W}do
- EDGE (PARENT, B) := /* The logical and of the outer
edges on side B of the appropriate sons of PARENT #/
- EDGE (SON (PARENT, QUAD (B, CSIDE (B))), B) and
EDGE (SON (PARENT, QUAD (B, CCSIDE (BM), B);
end;

Algorithm 3

procedure CONDENSE3 (ROOTY);

/* Modify a 4-ary tree rooted at ROOT by merging as
many nodes as possible under the criteria of
weak-formedness to produce a quadtree */

begin
reference node R;
quadrant Q;
if not 1S_LEAF(ROOQOT) then

begin
for Q in {NW, NE, SW, SE} do:
CONDENSE3 (SON(ROOT, Q));
if HAS_LEAF_SONS(ROOT) and
NO_INSIDE. BORDERS (ROOT) then
begin
SET_EDGES (ROOT);
DELETE_SONS (ROOTY);
end;
end;
end;

e i hoa

Algorithm 4

procedure CONDENSE4 (ROOT, CORNERS);

/* Modify a 4-ary tree rooted at ROOT by merging as many
nodes as possible under the criteria of weak-formedness
and propagating edge information to the interior nodes
of the resulting quadtree. CORNERS is used to pass
information upward that can not be derived immediately
from the sons of ROOT */

begin

reference node ROOT;

reference boolean array CORNERS [quadrant];

“boolean array of array SONS_CORNERS [quadrant][quadrant];
/* The first index corresponds to SON and the second

index corresponds to a corner of the SON */
guadrant (;
if IS_LEAF (ROOT) then
SET_CORNERS (CORNERS, ROOT)
else
begin
for Q in {NW, NE, SW, SE} do
CONDENSE4 (SON(ROOT, Q), SONS _CORNERS[Q));
if HAS_LEAF_SONS (ROOT) and
NO_INSIDE_BORDERS (ROOT) then
begin
SET_EDGES (ROOT);
DELETE_SONS (ROOT);
SET_CORNERS (CORNERS, ROOT):

end
else
begin
SET_INTERIOR_NODE (ROOT, SONS CORNERS)
for Q in {NW, NE, SW, SE} do

CORNERS [Q] := SONS_CORNERS {QIQL
‘ end;

end;
end;

procedure SET_CORNERS (CORNERS, LEAF);

/* Initialize the array CORNERS to indicate the presence
or absence of touching edges in each of the four
comers of the regions encoded by LEAF #/

begin

reference boolean array CORNERS [quadrant];
value node LEAF;
boundary B;
for B in {N, E, S, W] do
C{QUAD(B CSIDE(B))] := EDGE (ROOT, B) and

~ EDGE (ROOT, CSIDE(B));
end; _ _

-6 -

procedure SET_INTERIOR_NODE (ROOT, SONS_CORNERS)
* Set the EDGE values of the imterior node ROOT using
knowledge of SONS_CORNERS to avoid setting 2
T-junction edge */
begin
reference node ROOT;
value boolean array of array SONS_CORNERS [quadrant][quadrant];
/* The first index comresponds to the SON and the second
index corresponds to a corner of the SON */
SET_EDGES (ROOTY;
FIX_T_FUNCTION (ROOT, SONS_CORNERS);
end; :

procedure FIX_T_JUNCTION (ROOT, SONS_CORNERS),
/* Examine the interjor sides of the four edges of the
aode ROOT for the presence of T-junctions by use of
SONS_CORNERS which indicate the presence or absence
of joining edges for each corner of each son of ROOT.
If a SET edge forms the top of 2 T-junction, thep it
is marked CLEAR
begin
reference node ROOT; _
value boolean array of array SONS_CORNERS [quadrant][quadrant];
_/* The first index corresponds to SON and the second
index corresponds to a comer of the son */
boundary B;
gquadrants Q_B_1, Q_B_Z
for B in {N, E, S, W} do
begin -
/* Examine and update the two quadrants adjacent
to side B of the node ROOT */
Q_B_1 := QUAD (B, CSIDE(B));
Q_B_2 := QUAD (B, CCSIDEB));
if EDGE (ROOT, B) then :
EDGE (ROOT, B) := not (SONS_CORNERS [Q_B_1]{Q_B_2] or
SONS_CORNERS {Q_B_2}[Q_B_1]);
end;
end;

" Algorithm 5

node procedure CROSS_PRODUCT_! (ROOT1, ROOT2),
/% Return the root of the quadtree for the map that
results from overlaying the maps encoded by the
quadtrees rooted at ROOT]! and ROOT2 */
begin
value node ROOTI, ROOT2;
boolean array CORNERS [quadrant]; /* Set by CONDENSEA4 */
node ROOT_RESULT;
ROOT_RESULT := NODE_OR (ROOTI, ROOT2);
CONSISTENT1 (ROOT_RESULT);
CONDENSE4 (ROOT_RESULT, CORNERS),
return (ROOT_RESULT);
end; -

e

begin

node procedure NODE_OR(ROOTI, ROOT2);

/* Generate the 4-ary tree that results from OR-ing
together the corresponding edge values of the
leaves of the two 4-ary trees rooted at ROOT]
and ROOT2 */

value node ROOT], ROOT2;
node ROOT_RESULT;
quadrant Q;
I IS_LEAF(ROQT1) then
return (COPY_AND_OR (ROOT1, R0OOT2))
_else if IS_LEAF (ROOT?2) then
return (COPY_AND_OR (ROOT2, ROOTI))
else
begin .
GETFROMAVAILL (ROOT_RESULT);
for Q in {NW, NE, SW, SE} do
begin '
SON(ROOT_RESULT, Q)=
NODE_OR (SON(ROOTI, Q), SON(ROOTZ, Q));
FATHER (SON(ROOT_RESULT, Q)) := RCOT_RESULT:;
end; :
return (ROOT_RESULT);
end;
end;

node procedure COPY_AND_OR (LEAF, ROOT):;

/* Copy the 4-ary tree rooted at ROOT and OR the tree’s
- sides (accessed via its adjacency trees) with the
corresponding sides of the LEAF */

. begin

value node LEAF, ROOT;
node ROOT_RESULT;
boundary B: '
ROOT_RESULT := COPY (ROOTY);
for Bin {N, E, S, W} do
begin
_if EDGE (LEAF, B) then
MARK_SIDE (ROOT_RESULT, B);
end;
return (ROOT_RESULT);
end; '

node procedure COPY(ROOTY
/* Copy the 4-ary tree rooted at ROOT. Note that only
leaf nodes have their edge values copied */
begin
value node ROOT;
node ROOT_RESULT;
quadrant QQ;
boundary B;
GETFROMAVAIL (ROOT_RESULT};
if IS_LEAF (ROOT) then
for Bin {N, E, 5, W} do
EDGE (ROOT_RESULT, B) := EDGE (ROOT, B)
else)
for Q in {NW, NE, SW, SE} do
begin .
SON(ROOT_RESULT, Q) := COPY(SONROOT, Q));
FATHER (SON(ROOT_RESULT, Q)) := ROOT_RESULT;
end; '
return(ROOT_RESULT);
end;

procedure MARK_SIDE (ROOT, SIDE);
/* Set the segments of the side SIDE of the 4-ary tree
rooted at ROOT */
begin
reference node ROOT;
boundary SIDE;
if IS_LEAF (ROOT) then
EDGE(RCOT, SIDE) := true
else
- begin 1
/* Set the sides of the two subtrees of the 4-ary
tree rooted at ROOT adjacent to SIDE */
MARK_SIDE(SONROOT, QUAD(SIDE, CSIDE(SIDE))), SIDE);
MARK_SIDE(SON(ROOT, QUAD(SIDE, CCSIDE(SIDE)}, SIDE);
end; ‘ -
end;

. - - - .. .
P T A R I "h;-i.',‘&r-:b‘il‘-\!uﬂﬁ.!i:‘f“ﬂ'?""};ﬁ-““"""“'“- e L AT I & A YA C A TR Pl L T T T

procedure CONSISTENTI(ROOT):
/* Check the common border of neighboring nodes to
determine whether or not they are consistent with
the criteria of weak-formedness. When a terminal
node is marked CLEAR on a side but the bordering
adjacency tree is solid, then the node is marked SET */
begin
. reference node ROOT;
quadrant Q;
boundary B;
if IS LEAF(ROQT) then
for Bin {N, E, S, W} do
begin
if HAS_DARK_SIDE(GETNEIGHBOR (ROOT, B), UPSIDE(B))
then EDGE (ROOT, B) := true; ,
end
else
for Q in {NW, NE, SW, SE} do
CONSISTENT1 (SON(ROOT, Q));
end;

boolean procedure HAS_DARK_SIDE {ROCT, SIDE);
/* Determine if all segments of the side SIDE of the
4-ary tree rooted at ROOT are marked SET #/
begin . _
vaiue node ROOT;
value boundary SIDE;
if IS_LEAF (ROOT) then
return (EDGE(ROOT, SIDE))
else
return (HAS_DARK_SIDE (SON(ROOT, QUAD(SIDE, CSIDE(SIDE)))) and
HAS_DARK_SIDE(SON(ROOT, QUAD(SIDE, CCSIDE(SIDE)))))
end,

Algorithm 6

node procedure CROSS_PRODUCT_2 (ROOTI, ROOT?2);
/* Return the root of the quadtree for the map that results
from overlaying the maps encoded by the quadtrees rooted

at ROOT] and ROOT?2 */
begin

value node ROOT1, ROOT2;

boolean array CORNERS [quadrant]; /* Set by CONDENSE4 */

node ROOT_RESULT, NEIGHBOR;

- boundary B;

ROOT_RESULT := NODE_OR (ROOT]I, ROOT2);
GETFROMAVAIL (NEIGHBOR);
for Bin {N, E, §, W} do _
EDGE (NEIGHBOR, B) := true; .
CONSISTENT2 (ROOT_RESULT, NEIGHBOR, NEIGHBOR, NEIGHBOR, NEIGHEOR);
/* The map is surrounded by a solid border! */ - '
CONDENSE4 (ROOT_RESULT, CORNERSY);
return (ROOT_RESULT); '
end; .

- 10 -

procedure CONSISTENT2 (ROOT, NEAR [N], NEAR [E], NEAR [S], NEAR [W]);
/* Check the common border of the four neighboring nodes, NEAR,
of ROOT to determine whether or not they are consistent with

the criteria of weak-formedness. When a terminal node is
marked clear on a side but the bordering adjacency tree is
solid, then the node is marked SET */
begin
reference node ROOT;
value node array NEAR [boundary];
/* Array NEAR is indexed by variables of the type boundary */
boundary B;
if IS_LEAF (ROOT) then
for B in {N, E, S, W} do
begin
if HAS_DARK_SIDE (NEAR [B], OPSIDE (B)) then
EDGE (ROOT, B):=true '
end
else
begin
HELPER (SON(ROOT, NE); NEAR [N], SE; NEAR [E], NW;
ROOT, SE; ROOT, NW),
HELPER {(SON(ROOT, SE); ROOT, NE; NEAR [E], SW;
NEAR [S], NE; ROOT, SW);
HELPER (SON(ROOT, SW); ROOT, NW; ROOT, SE;
NEAR [S], NW; NEAR [W], SE); -
HELPER (SON(ROOT, NW); NEAR [N], SW; ROQT, NE;
ROOT, SW; NEAR [W], SWY;
end: '
end;

procedure HELPER (ROOT: NEAR [N], QIN]; NEAR[E], Q[E]:
NEAR[S], Q[S]; NEAR[W], Q[W]);
/* Helps CONSISTENT2 by determining which of its parameter
list of neighbors have sons and which are leaves.
NEAR(i] is a neighbor of ROOT in direction i and Q[i] is
the desired quadrant should NEAR[i] not be a leaf */
begin
reference node ROOT;
value node array NEAR[boundary];
. value quadrant array Q[boundary];
node array PARAMETER {boundary],
boundary B; _
for Bin {N, E, S, W} do
begin
if IS_LEAF(NEAR[B] then
PARAMETER[B]:=NEAR[B]
else
PARAMETER[B]:=SONNEAR[B], Q[B]);
end; '
CONSISTENT2 (ROOT, PARAMETER[N], PARAMETER[E],
PARAMETER[S], PARAMETER[W]);
end;) B .

