Using linear quadtrees to store vector data *

en-

Huanan Samet
Clifford A. Shaffer
ey,
Computer Science Department and

Center for Automation Research
University of Maryland

b | | College Park, Maryland 20742

Robert E. Webber

Computer Science Department
Rutgers University, Busch Campus
New Brunswick, New Jersey 08903

ABSTRACT

The linear quadtree is adapted 1o store vector data by defining a
new data structure called a segment gquadtree. It uses a constant or
bounded, amount of storage per node, represents straight lines
exactly (i.e.. it is not a digitized representation), and enables updates
in a consistent manner (i.e, when a vector feature is deleted, the
database can be restored to the state it would have been in had the
deleted feature never been inserted). The segment quadtree is shown
to meet these requirements whereas existing quadtree-like methods
(e.g., the edge quadiree, strip tree, etc.) fail lo satisfy them. In order
to illustrate the usefulness of the segment quadtree, sample algo-
rithms are discussed {o insert and delete line segments as well as per-
form boundary following. The space requirements of segment quad-
trees are also invesligated.

- 1. Introduction

The region quadtree representation [Klin71, Same84a] has gained extensive use as a
data structure for region representation in image processing, computer graphics,
automated cartography, and other fields. It is a hierarchical data structure that is
based on. the principle of regular decomposition. Due to the large amounts of data
involved ‘in such applications, it is useful to use a representation for the quadtree

* This work was supported in part by the National Science Foundation under Grant
DCR-83-02118 and in part by the U.S. Army Engineer Topographic Laboratory
under contract 70-81-C-0059. _ -
: £

606§9 d3

Wb i

R o SR e T

o et i,

g
{1
1
H .

92 Samet, Shaffer, Webber

that does not involve pointers. The linear quadtree [Garg82] is one such representa-
tion that stores the image as a collection of leaf nodes each of which is encoded by
a number corresponding to a sequence of directional codes that locate the leaf along
a path from the root of the quadtiree.

We are interested in using the linear quadtree as a uniform representation for data
corresponding to regions, points, and vector features. The uniformity facilitates the
performance of set operations such as intersecting a vector feature with an area,
etc. Use of a linear quadtree for point and region data is well understood; however,
this is not the case for vector features. While there are several hierarchical data
structures for vector features, they are either not based on regular decomposition
(e.g., the strip tree [Ball81]), do not handle more than one vector feature (e.g., the
strip tree), or do not cope with the intersection of vector features (e.g., the edge
quadtree [Shne81]). For vector features, a good linear quadtiree representation must
also have the following three properties. First, it must use a constant, or bounded,
amount of storage per node. This rules out the PM quadtree {Same85b}. Second,
straight line segments should be represented exactly (not a digitized representa-
tion). Third, updates must be consistent, i.e., when a vector feature is deleted, the
data base must be capable of being restored 1o a state identical (not an approxima-
tion) to that which would have resulted if the deleted véctor feature had never
been added. The line quadtree [Same84b] is eliminated because it only handles rec-
tilinear vector features. Hunter and Steiglitz’s [Hunt79] adaptation of the quadtree
for polygons is likewise of no use since it only approximates the lines. The edge
quadtiree [Shne81] was designed primarily for representing curves and thus does
.not handle connected edges in a manner that permits consistent updates.

In order to meet the above requirements, we present a new data structure, termed a
segment quadiree. We show how it can be used in conjunction with linear quad-
trees to represent collections of vector features consisting of sels of connected
straight line segments termed polygonal maps. The remainder of this paper is
organized as follows. Section 2 reviews the region quadtree and other attempts to
use quadtree-like data structutes for storing vector feature data. Section 3 describes
the segment quadtree while Sections 4, 5, and 6 show, respectively, how line seg-
ments are inserted into segment quadirees, how they are deleted, and how a boun-
dary represenied by. a segment quadtree is followed. Section 7 contains a worst-
case analysis of the size and storage requirements of segment gquadtrees as well as
some empirical data. Section 8 summarizes the current state of, and future plans
for, the investigation of the segment guadtree.

2. The quadtree and previous line representations

The region quadtree represents region data by successive subdivision of the image
array into four isomorphic quadrants. Given an image and its binary array, if the
array Is not composed entirely of 1’s or entirely of s, then we subdivide it into
quadrants, subquadrants, ..., until we obtain square blocks {possibly single pixels)
that consist entirely of 1's or entirely of 0's. As an example, the region: in Figure
la is represented by the 2* by 23 binary array in Figure 1b.;The resulting blocks
for the array of Figure 1b are shown in Figure 1c and the quadtree in Figure 1d.

Below we
issues we
node of d
the point
However,
this is no

The PR g
dle point
into quad
The colle
2b. :

As mentic
regions, a
for wvecto
requireme
reviewed |

In the ed,
part there
tains at m
Each leaf
it: magnit
grey-scale
resujting |
such as le
flag is set .

Applying

in a few I
intersectin
course, ms
intersected
edge quad
polygonal

A serious
two or mc
to an edge
vertex - e.
lowing as

© vicinity of

which is ¢
Steiglitz [}
a region as
shows the
quadiree h
Again, a ve
tion of lin
quadtree o

I

93

Linear quadtrees for vector data

. enta- Below we consider quadtree representations for line and point data. One of the first
- «d by issues we must face is the location of a point specified with 4 bits of precision in a
along : node of depth 4. In order to simplify the theoretical analysis of Section 7, we treat

the point as being located in the center of the node at level 4 in the quadtree.

' dat However, results analogous to that of Section 7 hold for other treatments. Thus
- data

the this is not a restriction on the implementation.
5
area, The PR quadtree [Oren82, Same84al is an adaptation of the region quadtree to han-
rgver, 1 dle point data. Given an image representing a set of points, the image is subdivided
data _ i into quadrants, subquadrants, etc., until each quadrant contains at most one point.
sition ; The collection of points in Figure 2a is represented by the PR quadtree of Figure
... the - 2b.
- edge !
must As mentioned in Section 1 our goal is a unified approach to the treatment of points,
nded, regions, and vector features. Thus we must find a similar decomposition criterion
cond, : for vector features. Unfortunately, the strip tree [Ball8l]l does not meet our
enta- 1 requirements as it is not based on a regular decomposition. Other candidates are
1, the ‘ reviewed below. ' '
::221. In the edge quadiree of Shneier [Shne81] a region containing a vectlor feature, or
< rec- part thereof, is repeatedly subdivided into subgquadrants until each quadrant con-
adiree lains at most one curve that can be approximated by a single straight line segment.
+ edge , Each leaf node contains the following information about the edge passing through
; does it: magnitude {i.e., 1 in the case of a binary image or the intensity in case il is a
grey-scale image), direction, intercept, and a directional error term (i.e., the error
resulting from the approximation of the curve by a straight line using a measure
med a such as least squares). If a line segment terminates within a node, then a special
quad- = flag is set and the intercept denotes the point at which the segment lerminates.
?)ch:teicsi Applying this process leads to quadtrees in which long siraight edges can be stored
pts 1o in a few large leaves. However, small leaves are required in the vicinily of corners,
wcribes intersecting edges, close approaches between curves, or areas of high curvature. Of
e seg- course, many leaves will contain no edge information at all, since they are not
boun- intersected by a curve. As an example of the decomposition that is imposed by the
vorst- edge quadtree, consider Figure 4 which is the edge quadtree corresponding to the
-ell as polygonal map of Figure 3 when represented on a 2 by 2% grid.
plans A serious drawback of the edge quadtree is its inability 1o handle the meeting of
two or more edges at a single point (i.e., a vertex) except as a pixel corresponding
to an edge of minimal length. In other words, we don’t know the nature of the
vertex - eg., the number of edges intersecting it. This means that boundary fol-
lowing as well as deletion of line segments cannot be properly handled in the
vicinity of a vertex at which more than one edge meets. Another quadtree variant
image which is closely related to the edge quadiree is the formutation of Hunter and
if the Steiglitz [Hunt79), termed an MX quadtree in [Same84a). It considers the border of
it into . a region as separate from either the inside or the outside of that region. Figure 5 .
_oixels) ' shows the MX quadtree corresponding to the polygonal map of Figure 3. The MX g
Figure quadtree has problems similar to those of the edge quadtree in handling vertices.
blocks Again, a vertex is represented by a single pixel. Thus boundary following and dele-
ld. _ tion of line segments cannot be properly handled. Worse is the faét that an MX
quadtree only yields an approximation of a straight line rather than an exact

pecusaik o goas

o A e s Rt =Tl s Y

i ' d
2, A

94 Samet, Shaffer, Webber

representation as done by the edge quadtree. Furthermore, note that the edge quad-
tree in Figure 4 contains considerably fewer nodes than the MX quadtree in Figure
5. :

The linear edge quadtree is a variant of the edge quadtree thal has been adapted for
incorporation in a geographic information system [Same84c]. In this scheme, the
leaf nodes of the quadtree are stored in a list (maintained in a B-tree) in the order
in which they would have been visited by a preorder traversal of the tree. Each
node contains three fields; an address, a type, and a value field. The address field
describes the size of the node and the coordinates of one of the corners of its
corresponding block. The type field indicates whether the node is emply (i.e.,
WHITE), contains a single point, or contains a line segment. Unlike Shneier’s
[Shne&1] formutation, a line segment may not end within a node since in the exist-
ing implementation the value field is not large enough to contain the location of an
interior point as well as a slope. Thus endpoints and interseclion points are
represented by single pixel-sized point nodes. The value field of a line segment
indicates the coordinates of its intercepts with the borders of its containing node.
Vertices are represented by pixel-sized nodes with the degree of the veriex stored
in the value field. Figure 6 illustrates the linear edge quadtree representation. Note
the difference in the decomposition of the region containing the vertex H in Figures
4 and 6. .

The linear edge quadtiree has a number of deficiencies. All vertices and endpoints
are stored at the lowest level of digitization, i.e., in nodes deep in the tree. There is
no mechanism for following a line segment, as each node describes only that por-

" tion of a line segment which is contained within the borders of the node. In par-

ticular, given a node that contains a single point, there is no indication as to which
of the neighbouring nodes are connected to the point by a line segment.

An important criterion for evalualing whether or not astorage representation han-
dles line segments properly is if the successive insertion and removal of the same
line segment leaves the mgp unchanged. Since the edge quadtree nodes store only
local information, it is extremely difficuit to restore nodes, by merging, which had
been split apart by the original insertion. For example, it is not easy to determine
the endpoints of the edges emanating from a given vertex. Thus over lime, the
representation’s compactness could deteriorate until it becomes equivalent to the
MX quadtree (i.e., line segments are represented by pixel-sized nodes).

An alternative approach to storing vector feature data is the PM quadtiree
{Same85bl. The PM quadtree evolved from a desire to adapt the PR guadtree to
store a polygonal map in a manner which preserves the relationship between edges
and vertices. In essence, whenever a group of line segments meet at a common
point, those segments can be organized by the linear ordering derived from their
orientation. Three variations of the PM quadtree, termed PM,, PM,, and PM;, have
been developed.

The PM; quadtree is based on a decomposition rule that permits more than one line
segment to be stored at a node only if they meet at a vertex that lies within the
borders of that node. Figure 7 shows the PM; quadtree corresponding to the polyg-
onal map of Figure 3. From the decomposition of the line segments CD and CE, we
observe that the representation of line segments which meet at narrow angles may

require 2

The PM;
when th
the PM.;
requires
observe
(e.g., seg
may be

The PM.
line seg
separate
the nodse
the nodt
ing from
line seg
represen
3. Note
vertex (
secling t

Althoug
the pMz
based re
single q
contain

tex. The
COTTESPO
limits a
This is 1
Indeed,

linear g

3. The

The seg.
3)line {
block ¢«
type in
WHITE
for ther
tex nodi

A liner
which e
store th
enables
of a lal
nodes a

v

P
B

Linear quadtrees for vector data 95
require a large number of nodes.

The PM, quadtree permits more than one line segment to be stored at a node even
when the vertex they share is not within the borders of that node. Figure 8 shows
the PM, quadtree that corresponds to Figure 3. Note that the PM, quadtree
requires fewer nodes than the PM, quadtree for the same map. However, we
observe that when & line segment passes near a vertex that is not incident on it
(e.g., segment DF passing near point E in Figure 8), it is possible that many nodes
may be required to separate them.

The PM; quadtree is based on the same decomposition rule as the PR quadtree. All
line segments that pass through the node are broken into a fixed number of
separate groups. There is one group for all the lines that radiate from the vertex in
the node. The remaining line segments are ordered according to the pair of sides of
the node’s containing block that they intersect. The group of line segments radiat-
ing from a vertex is organized by angular orientation and the remaining groups of
line segments are organized by their intercepts with the side of the region
represented by the node. Figure 9 is the PM; quadtree that corresponds 1o Figure
3. Note that the block containing vertex E has two line segments iniersecting the
vertex (i.e., EA and EC), and one line segment {i.e., DF) for the line segment inter-
secting the South and West boundaries of the block.

Although useful for storing polygonal maps in core, it is not easy to incorporate

" the PM, or PM; quadtrees into the fixed-width fields of the linear quadtree disk-

based representation. The problem is that the amount of information stored at a
single quadtree node varies widely. For exain ple, in the PM; quadtree, a node can
contain both a vertex and a set of line segments that do not pass through the ver-
tex. The PM; quadtree represents an improvement in the sense that a node either
corresponds to a vertex or a sel of line segments but not both. The PM, quadtree
limits a node further to correspond either to a vertex or 1o a single line segment.
This is more compatible with the node size limitation posed by the linear quadtree.
Indeed, the segment quadtres presented in the next section, can be viewed as a
linear quadtree adaptation of the PM; quadtree.

3. The segment quadtree

The segment quadtree has three types of nodes: 1)empty or WHITE, 2)vertex, and
3)line (i.e., a node containing a line segment whose endpoints are boundaries of the
block corresponding to the node). A linear quadiree representation stores each node

~type in the same (fixed) amount of space. This space should be minimized since

WHITE nodes will also be of the same size as line and vertex nodes, even though
for them we need only to store information distinguishing them from line and ver-

" tex nodes.

A line node in the segment quadtree is defined to contain precisely one line segment
which enters from one side and exits through another side. With each line node we
store the coordinates of the vertices of the line of which it is a component. This
enables us to determine easily whether or not two neighbouring line nodes are part
of a larger line segment. Without this information, we cannot properly merge
nodes after deletion of a nearby line segment. Note that recording the coordinates,

i
1
-3

e A L b s e

B S S Y

o

TE R, G e

o

Vol At o

ry

SRR

TSR

Ry
s iy

i A

i

96 Samet, Shaffer, Webber

although requiring more space, is preferable to recording the slope and intercept
values for the line because it avoids precision errors as well as keeps all informa-
tion in integer format. .

We next consider the problem of storing vertex nodes. A vertex node in the seg-
ment quadtree is defined to contain precisely one vertex and no line segments
which do not intersect the vertex. This is identical 1o the definition of the PM,
quadtree. With each vertex node we store the x and y coordinates of the vertex
that it represents.

In order to be able to perform boundary following, we must be able 1o follow line
segments which extend from a vertex. This requires us to investigate the neigh-
bouring nodes of the vertex node. There are three cases. First, if a neighbour is
empty, then there are no line segments extending from the vertex in that direction.
Second, if a neighbour contains a single line segment, then we can check the slope
of that line segment to determine whether or not it intersects the vertex. Finally, if
the neighbour is a vertex, then we must be able 10 detect whether or not there
exists an edge joining the two vertices. The solution is to store an eight bit
descriptor with each vertex node that indicates which of the sides and corners are
exited by one or more line segments. Using this scheme, whenever two vertices are
contained in adjacent nodes, one of three situations can arise:

(1) The corresponding sides (or corners) are not exited through;
(2} the corresponding sides (or corners) are exited through; and

(3} the side for one node is marked as exited through, and the corresponding side
of the other node is not exited through.

(1) indicates that no line segmenl joins the two vertices (e.g., the boundary
between vertices B and C in Figure 10), while (2) indicates that a line segment does
join the vertices (e.g., the boundary between vertices A and B in Figure 10). (3)
signifies that no line segment passes between the two vertices and that the vertex
node with the exited side is larger than the vertex node with the unexited side
(since there must be another node on that side into which 2 line segment exited).
For example, consider vertices B and D in Figure 10. Note that all the nodes neigh-
bouring a given node on an exited side must be inspected since more than one line
segment may exit from that side (e.g., the East side of the node containing vertex D
in Figure 10).

In summary, segment quadtree nodes may contain either a vertex in which case
each line segment in the node intersects the vertex, or at most a single line segment
which enters and exits the node. The resulting decomposition is identical to that of
the PM,; quadtree; however, the information stored is diff erent. Figure 11 shows
the segment quadtree corresponding to the polygonal map of Figure 3. Compare
this with the PM, quadtree of Figure 7. '

An img
case ‘wi
result i
quadral
tices m
depth |
betwee:
on two
the mis
Section

In the ¢
ments t
two int
followi:
done.

4. Inse

The dat
intersec!
data; ho
how to
tion of :
discussic

Insertior
segment
tree, the
appropri
subquad
whether
clipping

Upon en
on its ty
the line
the regio
segment
exited in
node. If
becomes

If the le;
then the
ponents

within t
formed ¢
exited as
wise, th

Linear yuadtrees for vector data 97

An important aspect of the above decomposition rule is that it does not allow any
case where there might be an unbounded decomposition of the iree. This would
result if we would have taken as our decomposition rule one that did not permit a
quadrant to contain more than one line segment. In the segment quadtrec all ver-
tices must be specified at some level of resolution, which will correspond to some
depth in the tree. This resolution, say &, is a function of the minimum separation
between any two vertices. The maximum depth of the segment quadtree depends
on two further factors: the minimum separation beiween a vertex and a line and
the minimum separation between two lines. These factors are analyzed further in
Section 7,

In the case of geographic data, images are construcled from sequences of line seg-
ments that intersect only at their endpoints. Note that if a user wishes to specify
two intersecting line segments, then four line segments must be specified. In the
following, we assume that this minor preprocessing of the data has already been
done.

4. Insertion into the segment quadtree

The data model used by the above analysis assumes that line segmenis do not

. intersect (except al their endpoints). This model is appropriate for cartographic

data; however, the data structure is not restricted to such data. Below we show
how to handle intersecting line segments by creating vertex points at the intersec-

- lion of a collection of line segments. We shall also use this extended model in the

discussion of deletion of line segments from the segment quadtree.

Insertion of a line segment into a segment quadtree proceeds as follows. If the line
segment is 1o be inserted into a region represented by an internal node of the quad-
tree, then it is clipped against each of the quadrants of that region and the
appropriate component of .the line segment is inserted into the corresponding
subquadrants. Once a line segment has been clipped, it is important 10 remember
whether its end points were vertices of the original line segment or artifacts of the
clipping operation. .

Upon encountering a leaf node there are three possibie courses of action depending
on its type - i.e., empty, line, or vertex. If the leaf is em pty and the component of
the line segment contains two vertices (i.e., it is the unclipped line segment), then
the region is further subdivided. If the leaf is empty and the component of the line
segment contains one vertex, then the node becomes a vertex node and is marked

" exited in the direction of the intercept of the line segment with the border of the

node. If the component of the line segment contains no vertices, then the node
becomes a line node.

If the leaf is a line node, and the line segment to be inserted contains any vertices,
then' the node must be decomposed. Otherwise, we must determine if the com-
ponents of the line segment and the line represented by the line node intersect
within the region bounded by the node. If they intersect, then a new vertex is
formed at the intersection point with the borders of the node being marked as
exited as appropriate for the four line segments radiating from that vertex. Other-
wise, the nodes are decomposed further until the two line segments are not -

N

3l
1)
P

g o Ll Mbtott e iy o o v LY

98 Samet, Shaffer, Webber

contained within the same node.

If the leaf is a vertex node, and the component of the line segment either contains
another vertex or does not intersect the vertex, then the leaf node must be further
decomposed and the line segment insertion procedure continues. If the component
of the line segment intersects the vertex and contains no new vertex, then we need
only mark the edges of the node that intersect the line segment as exited.

S. Deletion from the segment quadtree

Deletion of a line segment from a segment quadiree is achieved by applying a
two-step process to each quadtree node through which the line segment passes.
First, we must remove the information corresponding to the presence of the line
segment. Second, we must merge empty nodes as well as nodes that correspond to
a line segment once the nodes containing the removed vertex have been replaced by
empty nodes.

The first step of removing the information corresponding to the presence of a line
segment is quite easy. We simply repeat the decomposition of the line segment as
though it were to be inserted, locating those segment quadtree leal nodes which
contain the segment. Line nodes are marked WHITE. Vertex nodes require more
work since the sides of the containing leaf through which the segment exits may
also be exited by another (undeleted) line segment. Therefore, the neighbours
along these sides must be examined to see if they contain another line segment. If
not, then the vertex segment bit marking that side as exited is turned off. If, after
this process, no side of the node’s block remains marked as exited, then the line
segment being deleled is the only one intersecting thal vertex, and the node is
marked WHITE.

Merging eligible nodes is somewhat more complicated; but since it is possible 1o
determine which neighbotrs of a node are connected by a line segment, it is feasi-
ble. Each node which contained a portion of the line segment being deleted must be
considered as a potential candidate for merger with its three siblings. The follow-
ing algorithm should be applied to each such node,

A node and its three siblings may be merged if they are either 1) all WHITE, 2) all
line nodes representing portions of the same line, or 3) a single vertex with line
segments all of which intersect the vertex. The first two cases are easily deter-
mined by comparing the values of the node and its siblings - the siblings in this
case will all be at the same depth in the tree. The third case might be difficult to
determine, since two- line segments may intersect at a vertex which either is not
contained within the region covered by the node and its siblings, or is stored at a
lower level in one of its sibling’s subtrees.

In order to handle this last case, it is necessary to check the subtrees of each
sibling of the node to determine if all line segments stored intersect at the same
vertex. If the vertex is not contained in these siblings, then we must check the
siblings of the node's ancestors until either 1) the vertex is located, or 2) additiona}

line segments or vertices are encountered which would not allow the nodes to
merge, Note that a special situation arises when exactly two line segments meet at

I e e r 44 Mt 4 L T e et 1 T

a vertex
merged
would hs

For exam
which is
since it n
tex E is i
deleting s
leaf node:

6. Trave

In order
accomplis
(having s
in questic
using the

If a line |
line node
found (in
that verte
the minimn
traversal

At each st
node. If +
new neigh
witlh the i
directions

-node excej

If we are «
in a count
segment T
found is t
the polygc
ple, suppo:
wWe are mo
wWe must ¢
rather thar

7. Space r

Earlier wo
terms of tl
segments i
the case 1

A s n

e
{0

e
as
ch
re
Yy

If
er
ne
is

to

si-

all
ne
ar-
ais

to
10t
ta

: ich
me
the
nal
to
at

Linear quadtrees for vector data 99

a vertex and they are collinear. In such a situation, the appropriate nodes are
merged to form a line node instead of being merged to form a vertex node as
would have otherwise happened in the third case.

For example, consider the deletion of line segment AE from Figure 3, the result of
which is shown in Figure 12a. The leaf node marked [is the result of merging
since it now contains only portions of line segment AG. The node containing ver-
tex E is no longer marked as exited on the North. Figure 12b shows the result of
deleting segment CE from Figure 12a. In the course of deleting the line segment all
leal nodes in the SE quadrant will be merged 1o form the node marked II.

6. Traversing the border of a polygon

In order to traverse the border of a polygon we must first locate it. This can be
accomplished, for example, by visiting successive western neighbours of a node
(having started with some leaf representing a region that is internal to the polygon
in question) until either a line or a vertex node is reached. This can be achieved
using the neighbour finding techniques described in [Same82, Same85al.

If a line node is reached, then proceed down the line segment represented by the
line node such that the interior of the polygon is on the right. If a veriex node was
found {instead of a line node), then examine all the line segments radiating from
that vertex in the counterclockwise direction looking for the segment that forms
the minimum interior angle with il. We are now positioned to perform a clockwise
traversal of the perimeter of the polygon.

At each step of the traversal, we are either entering a line segment node or a vertex
node. If we are entering a line segment node, then all we must do is calculate the
new neighbour. The information in the line node should be checked for consistency
with the information used to calculate the entry into the line node. However, since
directions only change at vertex nodes, nothing new is learned from a line segment
node except that the border hasn't changed direction yet.

If we are entering a vertex node, then the neighbours of the vertex node are visited
in a counter-clockwise manner {from the node we enter from} until the next line
segment radiating from the vertex is located. This insures that the line segment
found is the next line segment met in the clockwise traversal of the perimeter of
the polygon (in case the vertex is intersected by many line segments). For exam-
ple, suppose we are following the border of the poiygon ABCEA in Figure 11 and
we are moving along line segment BC in the direction of C. Upon reaching vertex C,
we must search in a counter—clockwise direction in order to locate segment CE,
rather than segment CD> which is part of an adjacent polygon.

7. Space requirements

Earlier work [Same85b] on PM quadtrees analyzed the storage requirements in
terms of the distances between vertices in the map and the angles formed by line
segments in the map. Although such an analysis is technically correct, it is seldom
the case that we categorize a map in such terms. A more common way of

i

e

L T et e v Ay

e e -
SRR e BT T A :

L

-

M

" it

¥y

Y,

b

~ depth.

100 Samet, Shaffer, Webber

describing a map is in terms of the precision with which the locations of the ver-
tices of the map are measured. We shall use this technique in the following
analysis of the PM, quadtree (which is equivalent to the analysis of the segment
quadtree).

As has been observed elsewhere [Same85b], the key factor in the analysis of the
storage requirements of the PM,; quadtree is the maximum depth of the quadtree.
Given the maximum depth, say d, it is clear that the number of quadtree nodes
representing a polygon will be proportional to 2¢ (except in certain degenerate
cases). This follows from the analysis of the MX quadtree performed by Hunter

[Hunt79] and is definitely superior to using a 2-dimensional array to store the

same information with a corresponding storage requirement of 4¢. Of course, PM
quadtrees are usually considerably more compact than MX quadtrees (as will be
demonstrated in the empirical results at the end of this section). However, this is
not revealed by our approach to the worst-case analysis of these structures.

Analyzing the worst-case slorage requirements in terms of the maximum depth is
particularly useful when contemplating a linear quadtree implementation because
efficiency considerations require that the linear quadtree address be stored in an
array whose eiements have a fixed and bounded size. Each element of this array
will have a width, in bits, equal to twice the maximum depth of the gquadtree

being stored. Hence the following analysis will yield a safe size for the linear -

quadtree address as a function of the number of bits used to store the coordinates
of the map.

The situation that leads to a maximum depth for vertices stored with d bits of
precision can be derived in the following manner. Observe that ail the peints that
can be specified with @ bits of precision form a 2¢ by 2¢ grid. Recall that the PM,
(and segment) quadtree require that no node can contain two line segments - unless
they meet at a common vertex in the region of that node (here we can view an iso-
lated vertex as a degenerate line segment). Thus the problem reduces to how small
(or deep) a node can be and still fail to satisfy this requirement. First, we deter-
mine the closest approach (without touching) between a point, say C, on that grid
and a line segment, say AF, connecting two other points (A and F) on that grid.
Assuming that our grid of points corresponds to centers of pixels, we can see that
this has placed the vertex C at the maximum depth for a map of one line segment
and an isolated vertex. Now we find two other points, say W and Y, such that the
angle formed by WCY is a minimum. Let W’ be the intercept of the border of the
node containing C with the line segment CW and let Y’ be the intercept of the
border of the node containing C with the line segment CY. We claim that on a
map where all line segment intersections are represented by vertices with precision
d, that the maximum depth of the corresponding PM, (or segment) quadtree is the
depth necessary to separate W' from Y. Figures 13 and 14 show the worst case
positioning of A, C, F, W, and Y. In the following discussion we demonstrate that
this is indeed the worst-case situation and calculate the corresponding worst-case

First, let us consider how close C can approach AF. If we drop straight down from
C onto the segment AF, we find a point G on AF. Although the distance between '
C.and AF is not exactly the length of CG, AF is no closer to C than 1/ V2 times the
length of CG. To find the length of CG, we argue from the similar triangies ACG

and AF
ratio of
HF) is
approxi

To see
isolated
observe
both) is
culated
node of
that to
tree add

First, ob
than 4

an endp
from ve
with H
be irrele
represen
what le
non-inte
deeper is
nodes or
line segn
and W',
lest poss;

In order

introduce
length)..

on a sire
lengths o
Observe 1
Y'Q is t
length of
triangles

is the sar
WCQ anc
the ratio
ratio of
QC is 29-
that node
lions, we

We can n
2“(3d+l) \

to separat
approacty

‘depth of

()

W o L WP o e Gy

Md (Bt

LMLt e i it S VAR e e bl S 4 ¥ i Tl A Y PO ST Pov iy o TR AN LT TSR T o A

Linear quadtrees for vector data 101

and AHF that the ratio of the length of CG to the length of HF is the same as the
ratio of the length of AC to the length of AH. If we assume that AC (and hence
HF) is of unit length, then the length of AH is 2°—1 and the length of CG is
approximately 2~¢,

To see that this is the worst-case situation for a map of one line segment and an
isolated vertex, we consider all the other possible combinations of points and
observe that when we form the analogous similar triangles, either AC or HF (or
both) is greater than 1 and hence the length of CG would be greater than that cal-
culated above. If this was as far as the analysis went, then we would see that a
node of width 279, occurring at depth 2d, would be sufficient. This would mean
that to store vertices with d bits of precision in each coordinate, the linear quad-
tree address field must have room for 4d bits.

First, observe that the point G is not a vertex of our map (and would require more
than d bits of precision 1o represent). Therefore, line segments that contain G as
an endpoint are irrelevant to our analysis since we are looking at maps formed
from vertices of the grid. Similarly, if a point below A {say B) were connected
with H resulting in an intersection point, say D, with the line AF, this would also
be irrelevant. This is because D would be a vertex of the map, but would not be
representable in d bits of precision. However, by the above analysis we now know
what level of decomposition is necessary to separate vertex C from its nearest
non-intersecting line segment. Therefore, the only way we can cause nodes 1o be
deeper is to realize that any line segments connected to C have to be in separate
nodes once they leave the node containing C. The closest approach between two
line segments connected to C, say CY and CW, occurs at their intersection, say Y’
and W', with the border of the node containing C. Thus, we must find the smal-
lest possible angle YCW and then calculate the length of Y"'W".

In order to calculate the length of Y'W* as shown in Figure 14, it is convenient 1o
introduce a point Q such that WQC is a right angle (and hence WQ is of unit
length).. We shall also extend the line segment CY to CY” where Y”, W, and Q lie
on a straight line. Since triangles Y"WY and Y"QC are similar, the ratio of the
lengths of Y“W and Y"Q is the same as the ratio of the Iengths of WY and QC.
Observe that the length of WY is I and the length of QC is 2¢—2. The length of
Y"Q is the length of Y"W plus the length of WQ (which is 1). Therefore the
length of Y"W is 1/{2¢~3) (which is roughly 27¢). Next, we observe that the
triangles Y"CW and Y'CW" are similar which means that the ratio of YW to Y'W'
is the same as the ratio of WC to W'C, Similarly, by observing that the triangles
WCQ and W'CQ' are similar, we find that the ratio of WC to W'C’ is the same as
the ratio of QC to Q’C. Therefore, the ratio of YW to YW’ is the same as the
ratio of QC to Q'C. Recall that the length of Y"W is 1/(2¢—3), and the length of
QC is 29—2. Since the depth of the node containing vertex C is 2d , the width of
that node must be 27¢ and the length of Q'C must be 27¢~1, By solving the equa-
tions, we find: that the length of Y'W" is roughly 2~ 34+1),

We can now complete our analysis by noting that the depth of a node of width
270G +1) yould be 4d +1. However, the above analysis assumes that we are trying
to separate Y' from W', whereas in reality we want 1o separate Y'Y from its closest

- approach W'W. This can be handled by using 44 +2 as an upper bound on the

depth of the quadtree. Thus the linear quadtree address field should allow for

--q-w-——'l"ﬂ"""" i oty Sl MR - ic'n it i mnit v lacrum ol AL

s mTIS

102 Samet, Shaffer, Webber

84 +4 bits. Since d is usually the wordsize, in bits, on the compuier, using 9
words to store the linear quadtree address might seem a bit extravagant. However,
it should be noted that our worst-case example was rather eccentric and that typi-
cal data behaves much better. Below, we cite some typical maximum depths and
node counts for four maps from a cartographic database with which we have been
working [Same84c]. The various strategies for handling maps that require greater
depth than a user is willing to allocate are beyond the scope of this paper.

“The above results are of interest when establishing the correctness of an implemen-
tation, i.e., they indicate the worst-case depth for which we must allow. However,
this is one situation when the worst case is truly rare. As an example, let us con-
sider four maps (Figures 15 through 18) chosen from our geographic database. The
Railline Map {Figure 15) shows the path of a railroad through a section of the Rus-
sian River area in California. The Powerline Map (Figure 16) presents analogous
information about the local main powerline. The Cityline Map (Figure 17) indi-
cates the border of the local munidpality. The Roadline Map (Figure 18) is our
most complicated map, since it details the local roadway network. Table 1 contains
the number of vertices and edges in each of these maps. All of these maps consist
of line segments whose vertices rest on a 512 by 512 grid. Thus each vertex would
require 18 bits of information (2 9-bit coordinates) to represent. The above
analysis would indicate that we would have to be prepared for the possibility of

'the quadtree having a depth of 40. However, such a depth is not even approached

by our sample data, and in general is extremely unlikely.

Table 1. Size of the maps.
Map No. of Vertices | No. of Edges
Powerline 15 14
Railline 17 16
Cityline 65 64
Roadline 685 764 J

Tables 2-4 summarize the storage requirements of the MX, linear edge (recall Fig-
ure 6), and segment quadtrees (equivalent to the PM, quadtree) for the four maps
of Figures 15-18. In all cases the MX quadtree is larger than the segment quadtree

by at least a factor of 7. More generally, we would expect the size of the MX

quadtree to be roughly as large as the product of the average line length and the
number of nodes in the corresponding segment quadtree. In the case of trivial (but
often typical) maps, like the Powerline, Railline, and Cityline, we see that the
linear edge quadtree is almost three times as large as the segment quadtree. This is
because the average depth of a vertex node in the segment quadtrees for these two
maps was observed to lie between 6 and 7 whereas the linear edge gquadtree had to
represent all of the vertex nodes at depth 9. '

L

RS, I

——y

-

| S I | D

In a
have
thres
oCcCW
grid.
tree
from
this
that
by d
the
segm
smal
in tl

{oud
: Wwe

of
wed

’ig—
aps
“ree
AX
the
but
the
isis
two
d to

Linear quadtrees for vector data

Table 2: Size of the MX quadtrees.
Map Depth | Leaves | BLACK nodes | WHITE nodes
Powerline g 1627 526 1101
Railline 9 2074 680 1394
Cityline 9 2770 1187 1583
Roadline 9 | 20566 8955 11611
Table 3: Size of the linear edge quadtrees. |
Map Depth | Leaves | Vertex nodes | Line nodes : White nodes
Powerline 9 178 28 27 123
Railline 9 229 31 25 173 E
Cityline 9 542 133 71 388
Roadline 9 7723 1590 1354 4779
Table 4: Size of the segment quadtrees.
Map Depth | Leaves | Verlex nodes | Line nodes | White nodes
Powerline 7 64 20 11 33
Railline 8 70 22 12 36
Cityline 8 220 90 31 99
Roadline 12 2701 1067 509 1125
~.

-

103

In a map of moderate complexity, such as the Roadline Map (the most complex we
have gathered to date) we see that the linear edge quadtree is a bit smaller than
three limes the size of the segment quadtree. For the frst time, we observe the
occurrence of a segment quadtree deeper than the depth required by the digitization
grid. In this case the digitization grid required a depth of 9 and the segment quad-
tree actually had a depth of 12. Observe that this depth of 12 is still a long way
from the worst-case value of 40 calculated in the previous analysis. Although for
this map, the maximum depth of the segment quadtree is greater {i.e., 12) than
that of the linear edge quadtree (i.e., 9), we must look to the distribution of nodes
by depth (see Table 5} 1o explain the difference in the number of nodes between
the two trees. In essence, the average depth of the vertex nodes is smaller for the
segment quadtiree than for the linear edge quadtree thereby accounting for the
smaller number of nodes in the segment quadtree. The importance of the reduction
in the average depth of the vertex nodes in the segment gquadtree is a consequence

o et)

B g i S L

T RN A e

MLV SIS

AT

gubes PG
ars e s

e

iy
AL

- e

~

i
[

104

.of the the observation that the decomposition of a line-segment is identical in the
linear edge and segment quadtrees once the line segment has exited the region of

Samet, Shaffer, Webber

the vertex nodes representing its endpoints.

Table 5
. Distribution of node types by depth for the segment quadtiree of the Roadline map.

Depth Vertex nodes Line nodes White nodes
0 0 Q0 0

i 0 0]

2 0 0 4

3 2 g 8

4 10 3 39

5 73 33 110

6 184 106 226

7 286 152 - 272

8 242 123 208

9 165 46 159

i0 104 25 98

11 1 i7 1

12 0 4 0

8. Conclusions

The segment quadtr@ has been presented and shown 1o be a suitable data structyre
for representing vector feature data in conjunction with image databases using
linear quadtrees. Methods for insertion and deletion of line segments in it, as well
as its use in border following have been described. In the segment quadtree, dele-
tion of line segments and border following can be accomplished using information
local to the nodes representing a line segment. In contrast, such operalions in the
linear edge quadiree are much more difficult. Furthermore, the segment quadtree
requires fewer nodes than the edge quadiree to store a collection of vector features
since the vertices need not be stored at the lowest level of resolution as in the edge
quadtree. This means that fewer nodes will be required to represent corners and
intersections. Future work includes its implementation and integration into the
geographical information system described in [Same84c], where it will replace the
linear edge quadtree.

References

[Aho74] - A.V. Aho, J.E. Hopcroft, and I.D. Uliman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974, '

[Ball
munic
MU

[Garg
of the

{Hun
IFFE
145-]

[Klin
Statis

[Orer

Infor

[Sam.
irees,

fSam
Comp

[Sam:
IEFF
365~

[Sarm
infor
{Nov

[Sam
findir
Anal
puier

[Sam
quad’
of Co
132 ¢

{Shne

pyra
3(No

Linéar quadtrees for vector data 105
he [Ball81] - D.H. Ballard, Strip trees: A hierarchical representation for curves, Com-
" of munications of the ACM 24, 5(May 1981), 310-321 (see also corrigendum, Com-
munications of the ACM 25, 3(March 1982), 213).
[Garg82] - 1. Gargantini, An effective way to represent quadtirees, Commurnications
L of the ACM 25, 12(December 1982), 905-910.
1p, | {Hunt79] - G.M. Hunter and K. Steiglitz, Operations on images using quad trees,
o IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 2{April 1979),
- 145-153.
{Klin71] - A. Klinger, Patterns and search statistics, in Optimizing Methods in
Statistics, J.S. Rustagi, ED., Academic Press, New York, 1971, 303-337.
{Oren82} - J.A. Orenstein, Multidimensional tries used for associative searching,
Information Processing Lerters 14, 4(June 1982), 150-157.
[Same82] - H. Samet, Neighbor finding techniques for images represented by quad-
trees, Computer Graphics and Image Processing 18, 1{January 1982}, 37-57.
[Same84a] - H. Samet, The quadtree and related hierarchical data structures, ACM
Computing Surveys 16, 2(June 1984), 187-260.
[Same84b] - H. Samet and R.E. Webber, On encoding boundaries with quadtrees,
IEEFE Transactions on Patlern Analyg)c and Machine Intelligence 6, 3(May 1984},
365-369.
[SameB4c] - H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, A geographic
: information system using quadtrees, Pattern Recognition 7, 6
ire (November/December 1984}, 647-656.
ng S _
o]l . {Same85a] - H. Sz;r‘!ie"t and C.A. Shaffer, A model for the analysis of neighbor
te- : Bnding in pointer-based quadtrees, to appear in IEFE Transactions on Pattern
on) Analysis and Machine Intelligence, 1985 (see also University of Maryland Com-
he puter Science TR-1432). :
-ee
€S [Same85b] - ‘H. Samet and R. E. Webber, Storing a collection of polygons uging
ge quadtrees, to appear in ACM Transactions on Graphics, 1985 (see also Proceedings
ad - of Computer Vision and Partern Recognition 83, Washington, DC, June 1983, 127-
he 132 and University of Maryland Computer Science TR-1372).
he : '

! [Shne81] - M. Shneier, Two hierarchical linear feature representations: edge
‘pyramids and edge quadtrees, Computer Graphics and Image Processing 17,
3(November 1981), 211-224.

of

J— oy, e — N .
- - ~ r . g o1t - e —

{a) Region.

Figure I. A region, its binary array, and its maximal blocks.

106 Samet, Shaffer, Webber

CJ0|0J0|0J0]|0|0
0]{0|0|0|0{0|0|0
Qlofolof 1|l
ojolojofifi1 |l
Il IRERERERRE. J
QIof)it
O{Of1}I}i}1]040 L
olojljtjljojofo
(&) Binary array. {¢} Block decomposition of the
A region in (a). Blocks in the
Q region are shaded,
NW SE
NE SW
O C QD O E
K P
n L] L) - () »
F R I J L M N O Q
] »
37 38 33 40

575859 60 -

(d} Quadtree represeruation of the blocks in (c).

P T Er
»

omte U et 1423 Ml 71l s omemimat . AL

Linear quadtrees for vector data

A B
[) ,
H e
G »
F e s C
e E
D e
{a) A collection of points.
B
() e
H e
- G
F e C
o« E
Die

(b} The PR quadtree for the points of (a).

Figure 2. A colloction of points and its PR quadiree,

Samet, Shaffer, Webber

Figure 3. A polygonal map.

L et el

Linear quadtrees for vector data

DN

-
‘.

Figure 4. The edge quadtree for the polygbnal map of Figure 3.

110 Samet, Shaffer, Webber

Figure 5. The MX quadtree for the polygonal map of Figure 3.

oy

1
4
§

T

—t e
¥

Linear quadtrees for vector data 111

| A B
a
H ? e \
G
F C

N

et s Qe

Samet, Shaffer, Webber

»

mn
O

Figure 7. The PM, quadtree Jor the polygonal map of Figure 3.

T T T e e,

Linear quadtrees for vector data - -

M|

.-

Figure 8. The PM, quadtree for the polygonal map of Figure 3.

"
i
J

1

t

£

- TN —
’. A Ol G i e

I

P

aa o%

Samet, Shaffer, Webber

()

-n
O

D

Figure 9. The PM; quadiree for the polygonal map of Figure 3.

Linear quadtrees for vector data * -

A
eC
8
| o —
" E
D
F
Figure 10.

The segment quadtree for'a collection of line segments. Vertex
nodes have exited edges marked by a bracket.

116 Samet, Shaffer, Webber

A , B
H ‘= ¢
L e D} .
f’
Fle o°

Figure 11. The segment quadtree for the polygonal map of Figure 3.

R i

117

Linear quadtrees for vector data

A B
H * u
/
/ I

Gle

F e o
A)

el E /

D

A B
H. . o
. v
Gle
Fle .C
I
D =

(b) The result of deleting segment CE from the segment quad"tree of (a).

Figure 12. Examples of deletion of line segments from the segment quadtree.

e g

118 Samet, Shaffer, Webber

Figure 13. Map with worst-case storage requirements.

AT R YU S0 e e e £ B e dm o T

119

Linear quadtrees for vector data

Yo W Q

Figure 14. Detail of F igure 13 in the vicinity of point C.

120 Samet, Shaffer, Webber

Figure 15. The Railline Map.,

Linear quadtrees for vector data

Figure 16. The Powerline Map.

p.

AT T] A L gt T A TR M PR (TR Y g o A TV T SR TR P A e

122 Samet, Shaffer, Webber

Figure I7. The Cityline Map.

Linear quadtrees for vector data 123

Figure 18. The Roadline Map.

mmﬂrmmwmm'mnwmm =TTy

T e YA SR L P ST TR R AR T L R B
-

'S

