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ABSTRACT .
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SUMMARY

This document is the final report for Phase IV of an investigation of the application of
hierarchical data structures to geographical information systems, conducted under Department
of the Army Contract DAAIC70-81-C-0059/P00007. The purposes of this investigation were
twofold: (1) to construct a geographic information system based on the quadtree hierarchical
data structure, and (2) to gather statistics to allow the evaluation of the usefulness of this
approach in geographic information system organization.

To accomplish the above objectives, in Phase I of the project a database was built that
contained three maps supplied under the terms of the contract. These maps described the
floodplain, elevation contours, and landuse classes of a region in California. The map regions
were represented in quadtree form, and algorithms were developed for basic operations on
quadtree-represented regions (set-theoretic operations, point-in-region determination, region
property computation, and submap generation). The efficiency of these algorithms was stu-
died theoretically and experimentally.

In Phase II of the project, a quadtree-based Geographic Information System was par-
tially implemented, allowing manipulation of images which store area, point, and line data.
This system included a memory management system to allow manipulation of images too large
to fit into main memory, a software package to allow users to edit and update images, data-
base management and map manipulation functions, and an English-like query language with
which to access the database.

Phase III of this project primarily dealt with enhancements and alterations to this
information system package, an evaluation of some of the design decisions, and the collection
of empirical results to indicate the utility of the software and to justify the indicated design
decisions. Also included was the first step of an attribute attachment package for storing
non-geographic data associated with the map objects, and a survey of appropriate point and
linear feature data structures for future investigation. '

Phase IV of the project primarily dealt with developing new structures for storing
linear feature data. The attribute attachment package was extended to point and linear
feature data. Existing area map algorithms were improved to yield significant efliciency speed-
ups by reducing node accesses. The efficiency of the linear quadtree was compared to that of
the pixel array for computation of several important geographic functions.

The particular tasks reported on in this document are:

(a) Memory management improvements. The memory management system has been general-
ized for operation on a number of machines supporting the UNIX operating system.
In the process, the maximum individual map size has been extended to 16,384 by
16,384 pixels. Nodes with duplicate addresses may now be stored, in order to sup-
port the new linear feature data structure.

(b) Database enhancements. Locating and updating nodes in a disk-based quadtree is a rela-
tively expensive process, compared to in-core manipulations. By altering many
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quadtree algorithms to reduce the number of node accesses necessary, significant
efficiency improvements have been achieved.

(c) Attribute attachment. The attribute attachment package now handles area, point, and
linear data maps in a uniform manner.

(d) New linear feature representation. The original linear feature representation (based on the
edge quadtree) was deemed inadequate for use in the current system. A new imple-
mentation was devised, based on the PM quadtree.

(e) Quadiree/array comparisons. Many functions performed by the database system were

implemented using arrays; timing results for these functions were gathered and
compared to timings for our quadtree implementation.,
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1. Introduction

This document reports on the current status of an ongoing effort to determine the sui-
tability of applying a class of hierarchical data structures known as quadtrees [Klin71,
Same84a] to the representation of cartographic data. Previous project reports are presented in
[Rose82, Rose83, Same84b).

Section 2 describes new work done on the quadtree memory management system. Sec-
tion 3 describes improvements to the quadtree database system algorithms. Section 4
discusses new work done on the attribute attachment system. Section 5 presents the new
linear feature implementation. Section 6 contains our conclusions.



2. Enhancements to the quadtree memory management system

The quadtree memory management system, as described in Phase II of this project, is
based on a structure termed the linear quadtree. The leaf nodes making up the quadtree of an
image are stored in » list. Each leaf contains a 32 bit key; this key is used to order the node
list. [t is formed by bit interleaving the binary representation of the lower left x and y coordi-
nates of the block represented by the leaf node. When sorted in ascending value of the key,
the node list will be in order identical to that in which the leaves would have been visited by a
preorder traversal of the original tree. Each leaf also contains a 32 bit value field. The linear
quadtree allows for a reduction in storage as compared to pointer-based quadtrees which
require each node to store four pointers to the children and a pointer to the father, in addition
to the value field. The linear quadiree technique has been implemented in conjunction with a
disk based memory management system which maintains only a small part of the image in
core at one time. In our system, the sorted list of quadtree leaves is stored in a Bt-tree
[Come79] with a page size of 1024 bytes, capable of holding up to 120 leaves in a page. For
complete details, see the Phase II report.

In order to implement the line representation described in Section 6 of this report, a
variable length node representation is required. This is represented in the linear quadtree by
producing B-tree records with duplicate addresses to store separate pieces of information about
the same quadtree block. This wastes some space since the information in the address field is
repeated, but it avoids updating the pointer fields required by linked lists, or having to main-
tain an additional field if the address were only stored once for each block. More importantly,
however, this method is compatible with our area and point representations with only minor
modifications.

A variable length quadtree node is processed by locating the first B-tree record with
the desired address, and then visiting successive records until one with a greater address is
encountered. New user callable functions are provided for finding the n th B-tree record with
a given address, for inserting a record with a given address into the tree, and for deleting a
record with a given address and specified contents. The find function operates more efficiently
for this implementation than it would were it operating on a linked list. This is because, after
locating the first record with a given address, the n th item’s position within the B-tree page
can be calculated directly. Cases where multiple records with a given key are split between
B-tree pages are uncommon since the average amount of information associated with a quad-
tree block in our application is small in comparison to that of the B-tree page.

A number of modifications were made to the kernel to allow compatibility with a wider
variety of UNIX-based computers. Differing 16 and 32 bit word machines have different order-
ings for the bytes within a word; for example the SUN and the VAX have reversed byte ord-
ers. Previously, byte number 4 of the address field (the low order byte on a VAX) was
reserved for the depth field. Since the low order byte is system dependent, this definition
must be changed for compatibility. All address manipulations are now performed as mask and
shift operations on unsigned integer values. This yields the added benefit of releasing 4 extra
bits to the coordinate portion of the address since a maximum depth of 16 can be specified by
a 4 bit depth fleld. Quadtrees in our system can now reach a depth of 14 (i.e., the maximum
depth which can be represented in the 28 bit coordinate field), corresponding to an image of
16,384 by 16,384 pixels. ‘



3. Enhancements to the quadtree database system

During Phase IV, several existing database functions were significantly improved by the
implementation of new algorithms. These include the WITHIN function, the raster to quad-
tree conversion function, and the map windowing function. In addition, the set functions (e.g.,
union and intersection) were extended to work on unregistered images.

3.1. The WITHIN algorithm

In Phase III we presented an algorithm to generate a map which is BLACK at all pixels
within a specified radius of the non-WHITE regions of an input map. Known as the WITHIN
function, it is important for answering queries such as “Find all cities within 5 miles of the
wheat growing regions”. Such a query would be answered by calling the WITHIN function on
a map containing wheat growing regions, and then intersecting the result with a map contain-
ing cities, '

The algorithm presented in Phase III worked by expanding each non-WHITE block of
the input image by R units (where R is the radius), and inserting all the nodes making up
this expanded square into the output tree. This leads to many redundant node insertions. In
addition, many of the nodes inserted are small, and are eventually merged together to form
larger nodes.

A new algorithm is presented here which is based on the distance transform algorithm
of Samet [Same82]. The algorithm does the following for each node of the input image. If the
node is non-WHITE, it is inserted into the output map. If the node is WHITE, and less than
or equal to (R + 1)/2 in width, then it must lie entirely within R pixels of a non-WHITE
node. This is true because one of its siblings must contain a non-WHITE pixel. Thus, it is
made BLACK and inserted into the tree. If the node is WHITE and has a width greater than
(B + 1)/2, then its distance transform is computed. In other words, the exact distance from
the node’s border to the nearest non-WHITE pixel is determined. If this distance is such that
the node is completely within radius R of a non-WHITE pixel, it is inserted as a BLACK node
into the output tree. If the node is completely outside the radius, then it is inserted as
WHITE. Otherwise, the node is quartered, and the process is continued for each quadrant.

The new algorithm is an improvement over the old one for two reasons. First, only
large WHITE nodes need excessive computation. Since most nodes in a quadtree are small,
very few nodes generate much work. Secondly, while input tree nodes may be visited several
times when neighboring nodes compute their distance transform value, each block of the out-
put tree is processed exactly once.

Table 3-1 compares execution times for the two algorithms on the images shown in Fig-
ures 3-1 and 3-2. The algorithm is computed for radius values of from 1 to 8. Timings for the
old algorithm differ from those presented in Phase III due to improvements in the kernel and
changes to our computer hardware. The algorithm is as follows.



Figure 3-1. The floodplain map.

Figure 3-2. The ACC landuse class map.




procedure WITHIN(INMAP,OUTMAP R);
/* Create a map OUTMAP which is BLACK at all pixels within R units of a
BLACK pixel of INMAP. */
begin
global pointer map INMAP, OUTMAP;
global integer R;
pointer node ND;

for ND in INMAP do
begin
if VALUE(ND) ¢ WHITE then
INSERT(OUTMAP,ND);
else if WIDTH_OF(ND) < {R+1)/2 then
begin /# must be within radius */
VALUE(ND) «— BLACK,
INSERT{OUTMAP,ND);
end;
else COMPDIST(ND,X_OF(ND),Y_OF(ND),WIDTH_OF(ND));
end;
end;

procedure COMPDIST(ND,X,Y,WIDTH);
/* Compute the distance transform of node ND which has lower left
corner (X,Y) and width WIDTH =/
begin
value pointer node ND;
value integer X,Y,WIDTH,; ,
global pointer map INTREE, OUTTREE;
global integer R;
pointer node Q;
direction D;
integer 1,C, T,

Q + create{node);
for D in {'N’,E’'S’W’} do
begin
COPY(ND,Q};
FIND_NEIGHBOR(INTREE,Q,D,CCSIDE(D));
if Q £ NIL then
if DEPTH(ND) < DEPTH(Q) then
begin /* neighbor is GRAY */
while DEPTH(ND) < DEPTH(Q) do
Q — FATHER(Q);
DIST_NODE(Q,WIDTH_OF(Q),X,Y, WIDTH);
end
else if VALUE(Q) 5 WHITE then
begin
T + SCOMPARE(X_OF(Q),Y_OF(Q), WIDTH_OF(Q),X,Y,WIDTH);



if T + WIDTH_OF(ND) < R then /* node within radius */
begin
VALUE(ND) « BLACK;
INSERT{OUTTREE,ND);
end; '
else if T < R then /# node beyond radius */
SPLITDIST(X,Y, WIDTH,X_OF(Q)},Y_OF(Q),WIDTH_OF(Q));

end; .

COPY(ND,Q); /* do diagonal neighbor */

Q «— FIND_DIAG_NEIGHBOR(INTREE,QUAD D,CSIDE(D}));

if Q £ NIL then

begin

if DEPTH(ND) < DEPTH(Q) then
begin
while DEPTH(ND) < DEPTH(Q) do
Q «— FATHER(Q);
DIST_NODE(Q,WIDTH_OF(Q),X,Y,WIDTH);
end;
else if VALUE(Q) % WHITE then
begin )
T + SCOMPARE(X_OF(Q),Y_OF(Q),WIDTH_OF(Q),X,Y,WIDTH);
if T + WIDTH_OF(ND) < R then /* node within radius */
begin
VALUE(ND) «— BLACK;
INSERT(OUTTREE,ND);

end; . :

else if T < R then /* node beyond radius */
SPLITDIST(X,Y, WIDTH,X_OF(Q),Y_OF(Q),WIDTH_OF(Q));

end;
end;
end;
end;

procedure DIST_NODE(ND,WIDTH,X,Y W)
/* Compute the closest distance from node ND with width WIDTH to a
block with lower left corner (X,Y) and width W. */ -
begin
- value pointer node ND;
value integer WIDTH, X, Y, W;
pointer node SON;
pointer node TP;
integer TEMP;

SON < create(node);

COPY(ND,SON};

if WIDTH_OF(SON) 54 1 then
FIND(INMAP,SON +« SON_OF(SON,SW));

else



FIND(INMAP ,SON);
if WIDTH_OF(SON = WIDTH) then /* found the leaf node */
if VALUE(SON) s£ WHITE then
begin
TEMP «— SCOMPARE(X_OF(SON),Y_OF(SON),WIDTH_OF(SON),X,Y,W);
if TEMP + W < R then
begin
VALUE(SON) «— BLACK;
INSERT(OUTTREE,SON);
end;
else if TEMP < R then
S_PLITDIST(X,Y,W,X_OF(SON),Y_OF(SON),WIDTH_OF(SON));
return;
end;
else
return;
WIDTH « WIDTH/2;
if SCOMPARE(X_OF(ND),Y_OF(ND),WIDTH,X,Y,W) < R then
DIST_NODE(SON_OF(COPY(ND,SON),SW),WIDTH,X,Y,W);
if SCOMPARE(X_OF(ND)-I—WIDTH,Y_OF(ND),WIDTH,X,Y,W) < R then
DIST_NODE(SON_OF(COPY(ND,SON),SE),WIDTH,X,Y,W);
if SCOMPARE(X__OF(ND),Y_OF‘(ND)+WIDTH,VVIDTH,X,Y,W) < R then
DIST_NODE(SON_OF(COPY(ND,SON),NW),WIDTH,X,Y,W);
if SCOMPARE(X_OF(ND)—I—WIDTH,Y_OF(ND+WIDTH,\WDTH,X,Y,W) < R then
DIST__NODE(SON_OF(COPY(ND,SON),NE),VVIDTH,X,Y,W);
end;

procedure SPLITDIST(GX,GY,GW FX,FY,FW)
/* Compute the distance from the quadrants of the block represented
by GX, GY, and GW to the block represented by FX, FY, and FW. */
begin
value integer GX,GY,GW FXFY,FW;
integer WIDTH,T;

WIDTH «— GW/2;

T +— SCOMPARE(GX,GY,WIDTH,FX FY,FW),

if T + WIDTH < R then
INSERT(OUTTREE,OREATE_NODE(GX,GY,LOG(WIDTH),BLACK));

else if T < R then
SPLITDIST(GX,GY,WIDTH,FX,FY FW),

T «— SCOMPARE(GX+WIDTH,GY, WIDTH,FX,FY FW);

if T + WIDTH < R then : -
INSERT(OUTTREE,CREATE_NODE(GX+WIDTH,GY,LOG(WIDTH),BLAOK));

else if T < R then
SPLITDIST(GX+WIDTH,GY,WIDTH,FX,FY,FW);

T — SCOMPARE(GX,GY—{—‘NIDTI—I,WIDTH,FX,FY,FW);

if T + WIDTH < R then
INSERT(OUTTREE,CREATE_NODE(GX,GY+WIDTH,LOG(VVIDTH),BLACK));



else if T < R then
SPLITDIST(GX,GY+WIDTH,WIDTH FX,FY,FW);
T +— SCOMPARE(GX+WIDTH,GY+WIDTH,WIDTH,FX,FY,FW);
if T + WIDTH < R then
INSERT(OUTTREE, .
CREATE_NODE(GX+WIDTH,GY+WIDTH,LOG(WIDTH),BLACK)};
else if T < R then
SPLITDIST(GX4WIDTH,GY+WIDTH,WIDTH,FX FY FW);

end;

integer procedure SCOMPARE(X1,Y1,W1,X2,Y2,W2),

/* Find the chessboard distance between two squares (closest approach) */
begin

value integer X1,Y1,W1,X2,Y2, W2;

integer XDIST,YDIST;

if X1 < Y1 then XDIST + X2 - (X1 + WI);
else XDIST «— X1 - (X2 + W2);

if Y1 < Y2 then YDIST « Y2 - (Y1 + WI);
else YDIST « Y1 - (Y2 + W2);
return(max(XDIST,YDIST));

end;

Algorithm 3-1. The new WITHIN algorithm.

Table 3-1. Execution times for the WITHIN function.
. Flood time (secs.) ACC time (secs.)
Distance : : - - :
new algorithm | old algorithm | new algorithm | old algorithm
1 21.4 504 25.7 57.8
2 29.2 40.8 329 47.9
3 25.4 8G.3 30.4 105.5
4 31.5 73.3 ’ 35.7 847
5 38.7 141.1 42.9 170.1
6 41.6 143.9 438 164.5
7 38.3 222.4 48.6 258 8
8 40.1 205.5 43.9 2308




3.2. A new quadtree building algorithm

The naive algorithm for converting a raster image to a linear quadtree is to insert indi-
vidually each pixel of the raster image into the quadtree in raster order. Those pixels making
up larger nodes will be merged together by the quadtree insert routine. Previous algorithms
presented in the literature [Same81, Rose82| have worked on this principle. Attempts at
increasing efficiency concentrated on how to improve the insert routine. Algorithm 3-2,
encoded by procedure NAIVE_BUILD and given below, demonstrates the naive method. Table
3-2 contains its execution times when applied to six test maps, corresponding to Figure 3-1 and
Figures 3-3 to 3-6. The timings are nearly identical for raster images with the same number of
pixels (i.e., node inserts), regardless of the number of nodes in the eventual quadtree. In other
words, we see that the number of nodes in the output tree has little or no effect on the time
required to perform the algorithm. Note that for the naive building algorithm, the amount of
time needed to read the picture data is approximately 1% of the time necessary to insert every
pixel.

Considering the large number of pixels in the raster representation of an image in com-
parison to the number of nodes in the quadtree representation for that image, it would be
desirable to find an algorithm which can reduce the number of node insertions required. An
optimal algorithm would, in the worst case, make a single insertion for each node in the quad-
tree. Algorithm 3-3 encoded by procedure OPTIMAL_BUILD and given below has this worst-
case behavior. It is based on processing the image in raster-scan (top to bottom, left to right)
order, always inserting the largest node for which the current pixel is the first (upper leftmost)
pixel. Such a policy will avoid the necessity.of merging since the upper leftmost pixel of any
block is inserted before any other pixel of that block. Therefore, it is impossible for four sibling
blocks to be of the same color.

At any point during the quadtree building process there is a processed portion of the
image and an unprocessed portion. Both the processed and unprocessed portions of the quad-
tree have been assigned to nodes. We say that a node is active if at least one, but not all, pixel
covered by the node has been processed. The optimal quadtree building process must keep
track of all of these active nodes. Given a 2* X 2" image, an upper bound on the number of
active nodes is 2" -1 as shown by the following theorem.

Theorem: Given a 2" X 2" image, at any time during a raster-scan building process in
which the largest node possible is always inserted, at most 2" - 1 nodes will be active.

Proof: Any given pixel can be covered by at most n active nodes - i.e., a node at each level
from 1 to n (corresponding to the root). At any given instant, there can be at most 2"
active nodes at level 1 (i.e., nodes of size 2 X 2). This is true because, for any given column,
only 1 node at level 1 will be active, giving at most a solid line of 2 X 2 active nodes along a
row just processed. In a like manner, there will be at most 2”2 active nodes at level 2, and so

on with 2”7 active nodes at level ¢ up to a single active node at level n (the root). Thus,
i=n-1 :

there will be at most 3} 2' = 2" - 1 active nodes. ®
i=0

Using the above observation and theorem an optimal quadtree building algorithm is
derived below. Assume the existence of a data structure which keeps track of the active



Figure 3-4. The topography map.
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Figure 3-6. The pebble image.
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procedure NAIVE_BUILD(INPIC,R,C,N,OUTTREE);

/* Build a quadtree in OUTTREE corresponding to input picture INPIC using a naive quad-
tree building algorithm that inserts each pixel individually into the quadtree. The input
picture has R rows and C columns and the output quadtree will be of maximum depth N
(ie., a 2N x 2N image). */

begin

value pointer picture INPIC; /* INPIC points initially to the first row */
value integer R,CN;

reference pointer quadtree OUTTREE;

row BUFF(1:C];

integer ROW, COL;

for ROW+«1 step 1 until R do
begin /* Process each row of the picture in sequence */
GET_ROW(INPIC BUFF);
for COL+1 step 1 until C do
INSERT(OUTTREE,MAKE_NODE(COL,ROW N,BUFF [COL]));
end;
end;

Algorithm 3-2. The naive raster to quadtree algorithm.

Table 3-2. Naive quadtree building algorithm statistics.
Map Num ‘ Num Time
Name Nodes Inserts (secs.)

Floodplain 5266 180000 413.2

Topography 24859 180000 429.8

Landuse 28447 180000 436.7

Center 4687 262144 603.8

Pebble 44950 262144 630.1

Stone 31969 262144 629.5

quadtree nodes. For each pixel in the raster scan traversal, do the following. If the pixel is
the same color as the appropriate active node, do nothing. Otherwise, insert the largest possi-
ble node for which this is the first (i.e., upper leftmost) pixel, and (if it is not a 1 X 1 pixel
node) add it to the set of active nodes. Remove any active nodes for which this is the last
(lower right) pixel. Algorithm 3-3, encoded by procedure OPTIMAL_BUILD, works in such a
fashion. The list of active nodes is represented by a table, called TABLE, with a row for each
level of the quadtree {except for level 0 which corresponds to the single pixel level; these nodes
cannot be active). Row ¢ of the table contains 2"~ entries, with row n corresponding to the
full image. Given a pixel in column j, the value of the active node at row 7 of the table is
found at position j /2'. Note that shift operations can be used instead of divisions if speed is
important.

12



The only remaining problem is to locate the appropriate active node in the table which
contains a given pixel. For a given pixel in a 2" X 2" image, as many as n active nodes
could exist. Multiple active nodes for a given pixel occur whenever a new node is inserted, as
illustrated in Figure 3-7. Each pixel will have the color of the smallest of the active nodes
which covers it, since the smallest node will have been the most recently inserted. Finding the
smallest active node that contains a given pixel can be done by searching from the lowest level
in the table upwards until the first non-empty entry is found. However, this is time consum-
ing since it might require n steps. Therefore, an additional one-dimensional array, called LIST
and referred to as the access array, is maintained to provide an index into TABLE. LIST is of
size 2”7 since single-pixel sized nodes need not be stored. For any pixel in column 7, the
LIST entry at j /2 indicates the row of TABLE corresponding to the smallest active node con-
taining the pixel. At the beginning of the algorithm, each entry of LIST points to the entry of
TABLE corresponding to the root (i.e., row n for a 2" X 2" image). As active nodes are
inserted or completed (and are to be deleted from the active node table), the active node table
and the access array are updated.

Table 3-3 contains timing results when Algorithm 3-3 is applied to the same test maps
as Algorithm 3-2. As indicated in Table 3-3, the optimal algorithm often requires far fewer
calls to the insert routine than the number of nodes in the resulting output tree. This is
because some calls to insert may cause several node splits to occur thereby increasing the
number of nodes in the tree. This is all accomplished by procedure INSERT whose code is not
given here as it is implementation-dependent. For example, consider Figure 3-8e where node B
(from Figure 3-8a) is replaced by node Bl with a new value along with three other nodes (B2,
B3, and B4) retaining B’s value. However, only one new active node is created (B1) as the
remaining pixels are still covered by the original active node (B). When it comes time to pro-
cess the pixels covered by those blocks which are artifacts of the splitting process (B2, B3, and
B4)), these pixels may have the same value as B, and thus no additional insertion is required.
As another example, in Figure 3-10 inserting node B into the quadtree containing a single
node causes seven nodes to result. If the first pixel inserted into node X happens to be the
same color as the original node (A of Figure 3-10a), no insertion is required.

Table 3-3. Optimal quadtree building algorithm statistics.
Map Num Num Time
Name Nodes Inserts {secs.)

Floodplain 5266 2352 13.8

Topography 24859 12400 51.2

Landuse 28447 14675 56.9

Center 4687 2121 16.1

Pebble 44950 20770 111.0

Stone 31969 14612 70.2

As an example of how the optimal quadtree building algorithm works let us consider
how the quadtree corresponding to the image of Figure 3-9 is constructed. Table 3-4 traces the
active nodes at each stage of execution. Each row in Table 3-4 lists the active nodes after the
given pixel has been processed. The “+” prefix indicates that the designated node has become
active when the corresponding pixel was processed. When the first pixel of the array is
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(a) Node A is active aflter inserting a single pixel of color C.

(b) The first two pixels have color C. Pixel 3 has color D. Its insertion creates active node B. Node A
is still active.

Figure 3-7. Node insertion can create multiple active nodes.
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(2) An example of block decomposition. {b) The result of inserting a large BLACK node into
. (a): merging occurs.

(¢) The result of inserting a WHITE node at node F

of (a): F, G, H, ) (d) The result of insertng a small BLACI node in
(=) and Imerge , the upper left corner of node A in (a): no splitting
occurs.

(¢) The result of inserting a small WHITE node into
the upper left corner of node A in (a): splitting
oceurs.

Figure 3-8. The effects of node insertion.

15



(a) A region

(b) Block decomposition of the region in (a). Blocks
in the region are shaded.

Figure 3-9. A region and its block decomposition.

18



m—n

{a) State after processing pixel (2, 4).

-

(c) State after processing pixel {4, 4).

(b} State after processing pixel (2, 6).

(d) State after processing pixel (6, 8).

Figure 3-10. The construction process for the region in Figure 3-9.



procedure OPTIMAL_BUILD(INPIC R,C,N,OUTTREE);

/* Build a quadtree in OUTTREE corresponding to input picture INPIC using a quadtree
building algorithm that inserts the largest node for which the current pixel is the first (ie.,
upper leftmost) pixel The input picture has R rows and C columns and the output quad-
tree will be of maximum depth N (i.e, a oN x oN image). Type row is an array of type
color where color takes on the values NOCOLOR BLACK, and WHITE. */

begin

value pointer picture INPIC;

value integer R,CN;

reference pointer quadtree OUTTREE;
row BUFF[0:C-1];

pointer row array TABLE[L:NJ;
integer array LIST[0:2{(N-1)-1];
integer ROW,COL,I,J,DEPTHXT,YT,T;

/* Allocate space and initialize TABLE for description of active nodes: */
for {+1 step 1 until N do
begin
TABLE[[|«~ALLOCATE(row,21(N-1));
for J+«0 step 1 until 21(N-I)-1 do
TABLE(I][{J]«+‘NOCOLOR’;
end;
TABLE(N][0]«—‘WHITE’;
for J—0 step 1 until 2{(N-1)-1 do LIST[J]«—N;
/* Process the picture: */
for ROW«0 step 1 until R-1 do
begin
GET_ROW(INPIC,BUFF); /# Process one row at a time %/
for COL+0 step 1 until C-1 do /* Process each pixel in the row */
begin
[+LIST[COL/2|; /* Find the smallest active node containing the pixel */
if TABLE[I|[COL/21I] NEQ BUFF|COL| then
begin /* The pixel and the node containing it differ in color */
/* Calculate the depth of the largest node for which this is the first pixel: */
XT+~COL; YT+ROW; DEPTH+O0;
while EVEN(XT) and EVEN(YT) and (DEPTH<N) do
begin
XT—XT/2; YT<~YT/2; DEPTH—DEPTH+I;
end;
if DEPTH NEQ 0 then
begin /* The largest node containing the pixel is larger than 1 X 1 %/
/* Update the active node table and the access array */
TABLE[DEPTH]|[COL/(2tDEPTH)| + BUFF[COL];
for J—COL/2 step 1 until COL/2+21(DEPTH-1)-1 do LIST[J]—DEPTH;
end;
INSERT{OUTTREE MAKENODE(COL,ROW DEPTH,BUFF[COL)));
if mod(ROW+1,211)=0 and mod{COL+1,2{1)=0 then
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begin /* The last pixel of one or more active nodes */
while mod(ROW+1,211)=0 and mod(COL+1,211)=0 do
begin /* Update the active node table */
TABLE{I)[COL/21]]—‘NOCOLOR’; I+I+1;
end;
T+—I-1; _
while TABLE[I][COL/(21]}}=‘NOCOLOR’ do
I~I+1; /* Get level of next active node */
for J«COL/2 step -1 until COL/2-2{(T-1)+1 do
LIST[J}I; /* Update access array */
end;
end;
end;
end;
end;

Algorithm 3-3. The optimal raster to linear quadtree algorithm

processed, the entire quadtree is represented by a single WHITE node (block A in Figure 3-
10a). No other insertions occur while processing rows 0 and 1. When the firss BLACK pixel
(2,4) is processed, block B of Figure 3-10a becomes active. When BLACK pixel (2,5) is pro-
cessed, block B will be located in the active node table, since it is the smallest active node
containing that pixel. When BLACK pixel {2,6) is processed, block ¢’ of Figure 3-10b becomes
active, since only active WHITE block A contains it at that point. As row 3 is processed,
blocks B and C are deactivated when their lower right pixels are processed. When pixel (4,4)
is processed, the state is as shown in Figure 3-10c. The blocks previously labeled B and €
are not active. Pixel-sized block D at (4,3) is not active since it contains no unprocessed pix-
els. Blocks A and E are, therefore, the only active blocks. Figure 3-10d shows the state of
the algorithm when pixel (6,6) has been processed. Block F' became active after processing
pixel (6,2). Since the smallest block containing pixel (6,6) had been BLACK, a new WHITE
block has been activated, block G'. Thus, three active blocks (i.e., A, E, and G) contain pixel
(6,7), with the smallest being block G'. As the final row is processed, all active nodes will be
deactivated.
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Table 3-4. Trace table for active nodes in building example.

Pixel

Level 3

Level 2

Level 1

(0,0)

+A (0,0) WHITE

(2,4)

A (0,0) WHITE

+B (2,4) BLACK

(2,6)

A (0,0) WHITE

B (2,4) BLACK
+C (2,6) BLACK

(3,5)

A (0,0) WHITE

C (2,6) BLACK

3,7

A (0,0) WHITE

(4,4)

A (0,0) WHITE

+E (4,4) BLACK

(6,2)

A (0,0) WHITE

E (4,4) BLACK

+F (6,2) BLACK

(6,6)

A (0,0) WHITE

E (4,4) BLACK

F (6,2) BLACK
+G (6,6) WHITE

(7,3)

A (0,0) WHITE

E (4,4) BLACK

G (6,6) WHITE

(7.7)

In order to understand why Algorithm 3-3 is such an improvement over Algorithm 3-2,
let us analyze the cost of both algorithms in terms of the number of insert operations that
they perform. Algorithm 3-2 examines each pixel and inserts it into the quadtree. Assuming a
cost of I for each insert operation, and a cost of ¢ for the time spent examining a pixel, the
total cost is then 2°" (¢ +I). Algorithm 3-3 must also examine each pixel. However, there will
be at most one insert operation for each of the N nodes in the output quadtree. Therefore, the
cost of Algorithm 3-3 is ¢ 22" + I-N where ¢ is relatively small in comparison to I, and NV
is usually small in comparison to 22 . In other words, the quantity [-N dominates the cost of
Algorithm 2. The result is that using Algorithm 3-3 reduces the execution time from being
O(pixels) to O{nodes). Of course, this is achieved at the cost of an increase in storage require-
ments due to the need to keep track of the active nodes (approximately 2" +! for a 27 x 27

image).
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3.3. Set operations for unregistered maps

In many applications, including geographic information systems, it is desirable to com-
pute set operations on a pair of images. For example, suppose a map is desired of all
wheatfields above 100 feet in elevation. This can be achieved by intersecting a wheatfield map
and an elevation map whose pixel values are BLACK if they represent an area whose elevation
is above 100 feet. The resulting map would have BLACK pixels wherever the corresponding
pixels of the input maps were both BLACK. In this section we will consider only the case of
map intersection, although other set functions such as union or difference can be handled in an
analogous manner.

Intersection of quadtrees representing images with the same grid size, same map size,
and same origin is quite straightforward. A simple traversal of both trees is performed in
parallel; each node of the first image is compared with the corresponding node(s) in the second
image. Algorithm 3-4, named REG_INTERSECT illustrates this procedure. On the other
hand, very little work has been done on set operations between unregistered quadtrees (i.e.,
quadtrees which have the same grid size and map size, but differing origins). In particular, the
only prior mentions of algorithms for intersecting unregistered quadtrees involved translating
one of the images to be in registration with the other, and then performing registered intersec-
tion [Garg83]. In this section, an optimal algorithm for unregistered map intersection is
presented. By optimal, we mean that each node of the input images is visited only once, and
at most one insertion into the output tree is performed for each output tree node.

As with the quadtree building algorithm of Section 3.2, the intersection algorithm
maintains a table of the active output tree nodes to minimize insertions into the output tree.
We will call this table OUTTABLE. Unlike the building algorithm, there are two input quad-
trees (call them I1 and I2) to be considered as well. The basic algorithm is as follows. I1 is
processed in depth-first traversal order. For each node N of I1, the various nodes of I2 which
cover N are located. In order to minimize the number of node searches made in the tree 12, a

“second table will be used to keep track of the active nodes of I2 {i.e., those nodes of 12 which
have been partially, but not completely, processed). Starting with the upper left pixel of IV,
the node of 12 which covers that pixel is located. Next, the largest block contained within
both nodes is computed. The set function is evaluated on the values of these two nodes, and
OUTTABLE is queried to determine if the new node should be inserted. This step is repeated
on subsequent portions of N in key order (i.e., Morton sequence order on the pixels of node
N') until all pixels of N are processed. Figure 3-11 provides an example.

OUTTABLE is easily implemented, since nodes will always be inserted in Morton
sequence order (matching the progress made in tree I1). During the traversal of the output
tree, the second, third, and fourth subquadrants of a block at level ¢ will not be processed
until the previous subquadrants are completed (e.g., the SW subquadrant will not be processed
until the NW and NE subquadrants are complete). Thus, at most one node at each level of
the tree can be active; for a 2" by 2" image, a table of only n entries is needed to represent
the active nodes. Each entry of OUTTABLE contains the location and value of the current
active node at the corresponding level, along with a field to indicate the quadrant relative to

its father in which the node lies. In addition, a variable is needed to keep track of the current
depth.
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(b} The decomposition and order of processing for node NN as directed by the image decomposition.

Figure 3-11. An example of intersection. A node N from the first input tree is processed by comparing
it against those nodes which it intersects in the second input tree.
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node procedure REG_INTERSECT(INTREE1 INTREE2)
begin

value pointer quadtree INTREE1, INTREE2;

node pointer N;

if( WHITE(INTREE1) or (WHITE(INTREEZ2))) then
return(CREATENODE(WHITE));

if(BLACK(INTREE1)) then
return(COPYTREE(INTREE2));

if(BLACK(INTREE2)) then
return{COPYTREE(INTREE1));

N — CREATENODE(GRAY);

for I in {'SW’‘SE’'NW’‘NE'} do
SON(ND,]) — INTERSECT(SON(INTREEL, 1), SON(INTREE2,1));

if(WHITE(SON(N,'NW")) and WHITE(SON(N,'NE’)) and

WHITE(SON(N,'SW’)) and WHITE(SON(N,‘SE"))) then

return(CREATENODE(WHITE));

return{N);

end;

Algorithm 3-4. Registered intersection of two images represented by quadtrees.

The final requirement for the non-registered set function algorithm is a method for
keeping track of the active nodes of I12. First, consider the border of the nodes of I1 which
have been processed at any given instant (referred to as the active border ). Since these nodes
are processed in Morton sequence order, the active border will be in the form of a staircase (see
Figures 3-12 and 3-13). The active border, as it crosses an output map of size 2” by 2", will
form horizontal and vertical segments such that the sums of the horizontal and vertical seg-
ments will each be 2" pixels in length. The active nodes of 12 will be those nodes which, at
any given instant, straddle the active border.

The active border table used by the intersection algorithm is a modification of the
active border table described by Samet and Tamminen [Same84e]. For their purpose, it was
necessary only to store at each position along the border the color of the processed node
corresponding to that position, and the length of its border. For the intersection algorithm,
we must maintain in the active border table a complete description of each active node. The
table will be composed of two node arrays named X_EDGE and Y_EDGE, each 2" records
long. Each record has four fields: X, Y, NODETYPE, and SIZE.

The non-registered intersection algorithm works as follows. For each node N of 11, the
function DOSET is called to perform the following. Beginning with (CX, CY) corresponding
to the upper left corner, and continuing to the lower right corner, the node will be processed in
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Figure 3-12. The active border during a traversal after processing block R.
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Figure 3-13. The active border (shown in heavy line) after processing block R of Figure 3-12 (shown by
dotted lines) as it intersects the second input tree. After node S (of Figure 3-12) is processed, the active
border will advance as shown by the dashed line. Note that only sections marked by an “X” are eligible
for processing at this time.
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pieces, as determined by the size and position of those nodes of 12 corresponding to the pixels
covered by N. For each such piece, tables X_EDGE([CX] and Y_EDGE[CY] are checked to
determine if the records they store contain (CX, CY). If one table, but not the other, contains
the node covering (CX, CY), this record is copied to the deficient table. If neither table con-
tains a record covering (CX, CY), the appropriate node in 12 is located, and the node descrip-
tor containing {CX, CY) is inserted into both tables. This is the only updating of the edge
table required by the algorithm to insure that no node of I2 need be located more than once.
To understand that this is true, notice the way in which the nodes (or pieces of a node) of 1
are processed. At any given moment, only those pixels in the corner formed by two segments
of the active border can be processed (i.e., the X marks in nodes C, H, J, and I of Figure 3-
13). Assuming that both X_EDGE[CX]| and Y_EDGE[CY] have the correct node descriptor
after {CX, CY) has been processed, the new active border will form at most two new angle
positions - one at (CX, CY+WIDTH) and the other at (CX+WIDTH, CY) for a processed
node portion of width WIDTH (e.g., at positions marked Y in Figure 3-13). When pixel (CX,
CY+WIDTH) is processed, X_EDGE|CX] will still contain the same record, since no other
pixel with X value CX will be processed in the meantime. Similar reasoning applies to pixel
(CX+WIDTH, CY) and Y_EDGE[CY].

Once the node of 12 containing (CX, CY) is located, say N, it is compared with node
N to generate the largest block with upper left corner (CX,CY) contained in both N and N 9.
The set operation (in this case, intersection) is then performed on N and N, This value is
then compared with the current active node of the output tree, as maintained in QUTTABLE.
If the values are the same, no insertion into the output tree is necessary. If they are different,
the largest node for which (CX, CY) is the upper-left corner is inserted. Finally, OUTTABLE
is updated, along with the values of CX and CY to determine the next part of node N to be
processed.

Algorithm 3-5, named INTERSECT, encodes the unregistered intersection algorithm
described above. To be precise, this algorithm produces an image whose value is WHITE at
those pixels where either the corresponding value of 12 is WHITE or the pixel is beyond the
borders of either image; the value is that of the corresponding position in I1 for all other pix-
els. As an example of the unregistered intersection algorithm, Table 3-5 shows the contents of
active border tables X_EDGE and Y_EDGE after processing certain pixels of node N from
Figure 3-11. N is assumed to be the first (upper-leftmost) block of map I1. In Table 3-5,
those records marked with an asterisk (*) indicate a node which has been located in I2. A
minus mark (-) indicates a position which did not contain a record covering current pixel (CX,
CY}); a plus mark (+) indicates the record from the other table which did contain the current
pixel and which was therefore copied. Columns two and three are of the format position:
record where the record consists of the X, Y, and WIDTH descriptors for the node from 12
being stored at that position. All coordinates are relative to I1.
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/* Calculate the intersection of two
input maps, preducing an output map of size and position identical to
that of the first map. */

pointer node array X_EDGE, Y_EDGE;

integer OFFSETX, OFFSETY;

integer DIFFX[4] «+ {0,1,-1,1}; /* difference in x coords moving to quad i from i-1 */
integer DIFFY[4] «— {0,0,1,0}; /* difference in y coords moving to quad i from i-1 */

structure BLOCIK
begin

integer X_OF, Y_OF, WQUAD, VALUE
end;

/* output table - initialize to a single WHITE node */
BLOCK array OUTTAB[0:DEPTH_OF(OUTTREE)] — {0 0,'SW’ WHITLE};

/* set to current depth (largest node for current position) in outtab */
integer OUTDEPTH « DEPTH_OF(OUTTREE);

procedure INTERSECT({IN1TREE, IN2TREE, OUTTREE);
begin
global pointer gquadtree INITREE;
global pointer quadtree IN2TREE;
global pointer quadtree OUTTREE;
global node array X_EDGE{WIDTH_OF(IN2TREE)};
global node array Y_EDGE{WIDTH_OF(IN2TREE})];
pointer node I;

(INITREE);

OFFSETX = X_OF(IN2TREE) - X_O
Y_OF(INiTREE);

OFFSETY = Y_OF(IN2TREE) -
for each | in INITREE do
DOSET(1);

end;

F
F

integer procedure DOSET(IN1INODE)

/* For each node of INITREE, break it into pieces matching the nodes
of IN2TREE (active nodes are stored in X_EDGE and Y_EDGE),
perform SET_FUNC on the node pieces, and insert the result into
OUTTREE through function NEW_INSERT. =/

begin

value pointer node ININODE;
integer INX, INY, INWID;
integer STOPX, STOPY;
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pointer node IN2NODE, OUTNODE;
integer CX, CY, MAXDEPTH, VALUE;

CX « INX + X_OF(OUTTAB|OUTDEPTH]);
CY « INY + Y_OF(OUTTAB[OUTDEPTH]);
INWID «— WIDTH_OF(IN1NODE,WIDTH_OF(IN1TREE));
STOPX « INX + INWID; -
STOPY « INY + INWID;
while((CX 5 STOPX) and (CY % STOPY)) do
begin
#{((Y_OF(X_EDGE[CX]) + WIDTH_OF(X_EDGEICX])) < CY) and
((X_OF(Y_EDGE[CY}) + WIDTH_OF(Y_EDGE[CY])) < CX)) then
begin /+ locate new node in the tree */
FIND(IN2TREE,MAKE_NODE(IN2NODE,CX-OFFSETX,CY-OFFSETY,0));
X_OF(X_EDGE[CX]) «+ X_OF(Y_EDGE(CY]) + X_OF(IN2NODE) + OFFSETX;
Y_OF(X_EDGE[CX]) «— Y_OF(Y_EDGE[CY]) — Y_OF(IN2NODE) + OFFSETYX;
VALUE(X_EDGE|CX]) «~ VALUE(Y_EDGE[CY]) «— VALUE(IN2NODE);
WIDTH_OF(X_EDGE[CX]) « WIDTH_OF(Y_EDGE(CY])
+~— WIDTH_OF(IN2NODE);
end; ;
else if((Y_OF(X_EDGE|CX]) + WIDTH_OF(X_EDGE[CX])) < CY) then
X_EDGE|[CX] + Y_EDGE[CY];
else if((X_OF(Y_EDGE(CY]) + WIDTH_OF(Y_EDGEICY])) < CX) then
Y_EDGE[CY] + X_EDGE[CX];

/* compute the biggest block starting at (CX,CY) contained within both

input nodes */

MAXDEPTH ~ COMPUTE_DEPTH(CX, CY, STOPX, STOPY,
X_OF(X_EDGE(CX]} + WIDTH_OF(X_EDGE|CX]),
Y_OF(X_EDGE[CX]} + WIDTH_OF(X_EDGE[CX]));

/* attempt to insert the result into the output tree */

VALUE « SET_FUNC(VALUE(ININODE), VALUE(X_EDGE[CX]):

if(VALUE(INTAB[INDEPTH]) # VALUE) then

/* insert node into output file */
INSERT(OUTTREE,MAKE__NODE(X_OF(OUT’I‘AB{OUTDEPTH]),
Y_OF(OUTTAB[OUTDEPTH]),OUTDEPTH));

/* Update input/output table */

while(MAXDEPTH > OUTDEPTH) do

begin
OUTDEPTH «— OUTDEPTH - 1; :
X_OF(OUTTAB|OUTDEPTH)) « X_OF(OUTTAB[OUTDEPTH-1]);
Y_OF{OUTTAB[OUTDEPTH]) «— Y_OF(OUTTAB[OUTDEPTH-1});
WQUAD(OUTTAB[OUTDEPTH]|) « ‘SW’;
VALUE(OUTTAB[OUTDEPTH]) « VALUE;

end;

while(WQUAD(OUTTAB[OUTDEPTH]) = ‘NE’)
OUTDEPTH «~ OUTDEPTH + 1; i

WQUAD(OUTTAB[OUTDEPTH]) — WQUAD(OUTTAB[INDEPTH]) - 1;
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CX « X_OF(OUTTAB[OUTDEPTH]) «+ X_OF(OUTTAB|OUTDEPTH]) +
- DIFFX[WQUAD(OUTTAB[OUTDEPTH)])| * 2{OUTDEPTH;
CY «+ Y_OF(OUTTAB[OUTDEPTH]) +— Y_OF(OUTTAB|OUTDEPTH)) +
DIFFY[WQUAD(OUTTAB[OUTDEPTH])] * 21OUTDEPTH,;
end;
end;

integer procedure COMPUTE_DEPTH(X1,Y1,X2,Y2,X3,Y3)
/* Compute the depth of the largest node with upper left corner (X1,Y1)
which does not contain (X2,Y2) or (X3,Y3). */
begin
value integer X1,Y1 X2 Y2X3,Y3;
integer MAX, [,

MAX + min(min(X2-X1,Y2-Y1),min(X3-X1,Y3-Y1));
for | «— 0 step 1 until 211 > MAX do;
/* 1 now one size too big */
return(I-1);
end;

integer procedure SET_FUNC(V1,V2)
begin
integer V1, V2;

if V1 = WHITE then return(WHITE),
else return(V2);
end;

Algorithm 3-5. Unregistered intersection of two images represented by
quadtrees,
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Table 3-5. Trace table for active nodes in intersection example.

Pixel Active node tables
processed X_EDGE Y_EDGE
(0, 0) 0. F=* 0: F*
(1, 0) 0: Fx* 0: B+
1. B
{0, 1) 0: Ix 0: B+
1: B 1: 1
(1, 1) 0. 1 0. B
1: B+ 1: B-
(2,0) 0: I 0: B+
1: B 1: B
2. B-
(0, 2) 0: K=« 0: B
1: B 1: B
2. B 2 K
(1, 2) 0. K 0: B
I: B 1: B
2. B 2: K
(0, 3) 0: Cx 0: B
1: B 1: B
2. B 2. K
' 3. Cx
(1,3) 0: C 0: B
1: D= 1: B
22 B 2: K
3: D=
(2, 2) 0: C 0: B
1. D ‘1: B
2. B+ 2: B-
3:D
(3,2) 0. C 0: B
1. D 1. B
2. B 2: B+
3: B- 3D
(2, 3) 0: C 0. B
1: D 1: B
2. D- 2: B
3 B 3: D+
(3, 3) 0. ¢C 0: B
1. D i: B
2. D 2: B
3: _D- 3: D+
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3.4, Windowing

Another function commonly available in geographic information systems allows the
user to extract a window from an image. A window is simply any rectangular subsection of
the image. Typically, the window will be smaller than the image, but this is not necessarily
the case. The window could also be partly off the edge of the image. Most importantly, the
origin (or lower left corner) of the window could potentially be anywhere in relation to the ori-
gin of the input map. This means that large blocks from the input quadtree must be broken
up, and possibly recombined into new blocks in the output quadtree.

Shifting an image represented by a quadtree is a special case of the general windowing
problem - taking a window equal to or larger than the input image but with a different origin
will yield a shifted image. Shifting is important for operations such as finding the quadtree of
an image which has the fewest nodes. It can also be used to register two images represented
by quadtrees. In order to simplify the following presentation, we will assume a window of size
2™ by 2™ taken from an image of size 2" by 2" where m < n.

If windowing is viewed as a set function on two unregistered images, an optimal algo-
rithm can be derived from Algorithm 3-5. By optimal, we mean that each node of the input
and ouput trees is located/inserted at most once. In particular, in the worst case a single
insertion is performed for each node in the output tree. Let I1 be a BLACK block with the
same size and origin as the window. Let I2 be the image from which the window is to be
extracted. The resulting image would have the size and position of 1, with the value of the
corresponding pixel of I2 at each position. The equivalence between windowing and unre-
gistered set intersection should be clear. In fact, the windowing algorithm would be simpler,
since a single BLACK node of the appropriate size would take the place of 11 in the algorithm,
and only one call to DOSET would be needed. Otherwise, after modifying procedure
SET_FUNC, the algorithm is fundamentally the same. Such an algorithm is optimal in the
sense that it locates (only once) those nodes of the input tree which cover a portion of the win-
dow, and performs at most one insert operation for each output node. Table 3-6 presents an
empirical comparison of the new windowing algorithm with that presented in Phase III.
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Size/ Times
Shift  Old  New
256
1 674 256
2 476 224
4 352 217
16 29.8 205
64 259 16.8
128
1 13.9 53
2 9.7 4.3
4 7.3 4.3
16 6.5 4.3
64 8.8 5.2
64
1 4.2 1.5
2 3.1 1.4
4 2.3 12
16 1.5 09
64 2.3 1.6
16
1 0.5 0.3
2 0.4 0.3
4 0.3 0.3
16 0.2 0.2
64 0.1 0.2

Table 3-6. Windowing timings to compare two algorithms. Size indicates the width
and height of the square window. Shift indicates the location of the lower left corner
of the window with respect to the input image - i.e., a shift of 2 means that the lower
left corner of the window is 2 pixels to the right and above the origin of the input im-
age. Note that a shift by 2 multiple of a node size will result in no splitting of nodes
that size or smaller; thus the shift value affects the difficulty of the operation. Times

are measured in seconds.
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4. Enhancements to the attribute attachment system

In a geographic information system, it is desirable to associate descriptive information
with the geographic objects stored in the maps. This set of descriptive information is referred
to as the attributes of an object. The ability to store attribute information is provided by our
database system. This attribute attachment system is implemented in the LISP programming
language, in order to take advantage of the power LISP provides for symbolic manipulation.
Functions for editing and manipulating attribute data associated with area maps were
described in the Phase III report. -

In Phase III, the attribute attachment system had been implemented only with area
maps. In Phase IV, we have extended the attribute system to work with point and linear
feature data. The capabilities of the system have been enhanced to allow for sharing of attri-
bute data among data objects. Finally, a new function has been added to aid in the develop-
ment of point data attributes from area maps.

4.1. New features of the attribute attachment system

In many geographic databases, the attribute data forms the vast majority of the infor-
mation stored. In our system, each geographic object (a polygon, point, or linear feature) is
assumed to be a member of an aftribute class (sometimes simply referred to as a class ). An
attribute class is simply a list of name/value pairs. The name can be any string; the value can
be a number or a string. A name/value pair is referred to a an attribute. For example, a map
might contain polygons representing fields in a farming district. Each field might belong to an
attribute class which describes the crop type, average yield for that crop, fertilizer require-
ments, etc. The user may want certain attribute classes to share attributes, and have identical
values. Continuing our example, each field may have an owner, and other specific information.
Each wheatfield should still contain all the generic attributes for wheatfields. To help reduce
the amount of storage required to store attribute data, the ability to store attribute class
names as part of the attribute list has been added. An attribute class, say A, can now store
one or more subclass, say B and C, amoung its attributes. A class can store in its attribute
list both attributes and class names. Class A would be interpreted as having all attributes
which make up B and C as well as any attributes on its own list. In this way we do not need
to duplicate information when one class shares attribute values with another. In our example
for representing fields, the attribute class for a particular wheatfield would contain the generic
wheatfield attribute class in addition to attributes specific to that field. Attribute classes may
be viewed as forming an attribute tree. The class name .is at the root, those classes listed on
its attribute list are at the next level, and their subclasses and attributes are at lower levels.
All astributes that belong to any class of the attribute tree are considered to belong also to the
class at the root.

Two problems may arise from this implementation. The first problem is attribute
value inconsistency. [t is possible that a class contains an attribute more than once within its
tree, with these multiple occurences storing different values. In this case, the value of each
attribute in the class is defined to be that which is located first when the class list is expanded.

The second problem is circularity. A user could define a class, say A, containing attri-

bute class B. Class B could contain class €', which in turn contains class A. A search
through this attribute tree would result in an infinite loop. The edit functions have been
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modified so as not to allow the user to create such a cycle.

4.2. Point and line map attribute attachment

The attribute attachment system has been extended to associate attribute data with
point and linear feature maps. In addition to the attribute class table normally associated
with all maps, point and line maps have a second table. This second table, referred to as the
object table, contains an entry for each point or linear feature in the corresponding map. This
table stores for each feature the name of its attribute class which is found in the attribute
table.

The object table is maintained for two reasons. First, it is required for quick lookup
when features are located in the map. Often, retrieval functions operating on the map image
need only to determine the object identifier stored in the object table. The larger attribute
table need not be searched in this case. The second reason is to allow sharing of attribute
tables between maps. The data stored in the object table is unique to the map; the attribute
table may contain information global to a large database of maps.

Area feature maps do not maintain an object table since individual polygons are not
typically referenced by “name”. Instead, area maps are usually referenced in terms of classes
(i.e., those polygons within a given attribute class). However, each point or linear feature is a
unique object. The only quick lookup required for area maps is to find the color- associated
with an attribute class (for display purposes). This is maintained in a special table available
to the display functions.

The SUBSET function has been extended to generate subsets of point and linear
feature maps based on a set of class names or attribute values. In addition, a new function
has been provided which returns a list of points or line features which match a given set of
class names or attributes.

4.3. The POINTAREA function

A new function has been implemented to facilitate building attribute tables for point
maps. This function, called POINTAREA, takes as input a point map and an area map. It
associates with each point in the point map all attributes belonging to the polygon at that
. point’s position in the area map.

The execution of this function is divided into two steps. The first step is done at the C
language level. At this level, the two maps are compared. For every point in the point map,
the class value of the corresponding position in the area map is determined. If it is not
WHITE, the point and its class value are included in a list which is returned to LISP. The
second step is done at the LISP language level. The list of points and classes is processed,
updating the point attribute table to contain the appropriate attribute values.
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5. A new linear feature representation

For reasons explained below, we decided that the linear feature implementation
described in Phase II was inadequate. In this section we first present a discussion of the merits
of various hierarchical linear feature representations and provide empirical comparisons of
their storage requirements. We then present the implementation ultimately decided upon for
inclusion in the database system.

5.1. Background and storage requirements

One of the goals of the project was to develop a uniform representation for data
- corresponding to regions, points, and vector features. Uniformity facilitates the performance of
set operations such as intersecting a vector feature with an area, etc. Use of a linear quadtree
for point and region data is well understood; however, this is not the case for vector features.
For vector features, a good linear quadtree representation must also have the following three
properties. First, it should distribute features between nodes in a fairly uniform fashion.
Second, straight line segments should be represented exactly (not in a digitized representation}.
Third, updates must be consistent, i.e., when a vector feature is deleted, the data base should
be restored to a state identical (not an approximation) to that which would have existed if the
deleted vector feature had never been added.

In Phase II of this project, we implemented a variation of the edge quadtree of Shneier
[Shne81]. A serious drawback of the edge quadtree is its inability to handle the meeting of
two or more edges at a single point (i.e., a vertex) except as a pixel corrésponding to an edge of
minimal length. Thus, we cannot distinguish vertices from short line segments. This means
that boundary following as well as deletion of line segments cannot be properly handled in the
vicinity of a vertex at which more than one edge meets. Another quadtree variant which is
closely related to the edge quadtree is the formulation of Hunter and Steiglitz [Hunt79),
termed an MX quadiree in [Same84al. It considers the border of a region as separate from
either the inside or the outside of that region. Figure 5-2 shows the MX quadtree correspond-
ing to the polygonal map of Figure 5-1. The MX quadtree has problems similar to those of the
edge quadtree in handling vertices. Again, a vertex is represented by a single pixel. Thus boun-
dary following and deletion of line segments cannot be properly handled. Worse is the fact
that an MX quadtree only yields an approximation of a straight line rather than an exact
representation as done by the edge quadtree. Furthermore, note that the edge quadtree in Fig-
ure 5-3 eontains considerably fewer nodes than the MX quadtree in Figure 5-2.

In our implementation of the edge quadtree, the leaf nodes of the quadtree were stored
as single records in the B-tree. Each node contains three fields; an address, a type, and a
value field. The address field describes the size of the node and the coordinates of one of the
corners of its corresponding block. The type field indicates whether the node is empty (i.e.,
WHITE), contains a single point, or contains a line segment. The value field of a line segment
indicates the coordinates of its intercepts with the borders of its containing node. Vertices are
represented by pixel-sized nodes with the degree of the vertex stored in the value field. Unlike
Shneier’s formulation, a line segment may not end within a node since in the existing imple-
mentation the value field is not large enough to contain the location of an interior point as
well as the intercepts. Thus endpoints and intersection points are represented by single pixel-
sized point nodes. Figure 5-4 illustrates the linear edge quadtree representation. Note the
difference in the decomposition of the region containing the vertex H in Figures 5-3 and 5-4.
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Figure 5-1. A polygonal map.

Figure 5-2. The MX quadtree for Figure 5-1.
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Figure 5-3. The edge quadtree for Figure 5-1.
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Figure 5-4. The linear edge quadtree for Figure 5-1.
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The linear edge quadtree has a number of deficiencies. All vertices and endpoints are
stored at the lowest level of digitization, i.e., in nodes deep in the tree. There is no mechanism
for following a line segment, as each node describes only that portion of a line segment which
is contained within the borders of the node. In particular, given a node that contains a single
point, there is no indication as to which of the neighboring nodes are connected to the point
by a line segment.

An important criteria for evaluating whether or not a storage representation handles
line segments properly is if the successive insertion and removal of the same line segment
leaves the map unchanged. Since the edge quadtree nodes store only local information, it is
extremely difficult to restore nodes, by merging, which had been split apart by the original
insertion. For example, it is not easy to determine the endpoints of the edges emanating from
a given vertex. Thus over time, the compactness of the representation could deteriorate until it
becomes equivalent to the MX quadtree (i.e., line segments are represented by pixel-sized
nodes).

An alternative approach to storing vector feature data is the PM quadtree [Same85a].
The PM quadtree developed from a desire to adapt the PR quadtree to store a polygonal map
in a manner which preserves the relationship between edges and vertices. In essence, whenever
a group of line segments meet at a common point, those segments can be organized by the
linear ordering derived from their orientation. Three variations of the PM quadtree, termed
PM,, PM,, and PMj3, have been developed.

The PM,; quadtree is based on a decomposition rule that permits more than one line
segment to be stored at a node only if they meet at a vertex that lies within the borders of
that node. Figure 5-5 shows the PM; quadtree corresponding to the polygonal map of Figure
5-1. From the decomposition of the line segments CD and CE, we observe that the represen-
tation of line segments which meet at narrow angles may require a large number of nodes.

The PM; quadtree permits more than one line segment to be stored at a node even
when the vertex they share is not within the borders of that node. Figure 5-6 shows the PM,
quadtree that corresponds to Figure 5-1. Note that the PM, quadtree requires fewer nodes
than the PM; quadtree for the same map. However, we observe that when a line segment
passes near a vertex that is not incident on it (e.g., segment DF passing near point E in Figure
5-6), it is possible that many nodes may be required to separate them.

The PM; quadtree is based on the same decomposition rule as the PR quadtree. All
line segments that pass through the node are broken into a fixed number of separate groups.
There is one group for all the lines that radiate from the vertex in the node. The remaining
line segments are ordered according to the pair of sides of the node’s containing block that
they intersect. The group of line segments radiating from a vertex is organized by angular
orientation and the remaining groups of line segments are organized by their intercepts with
the side of the region represented by the node. Figure 5-7 is the PM; quadtree that
corresponds to Figure 5-1. Note that the block containing vertex E has two line segments
intersecting the vertex (i.e., EA and EC), and one line segment (i.e., DF) for the line segment
intersecting the south and west boundaries of the block.

Although useful for storing polygonal maps in core, it is not easy to incorporate the
PM; or PM; quadtrees into the fixed-width fields of the linear quadtree disk-based
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Figure 5-5. The PM, quadtree for Figure 5-1.
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Figure 5-6. The PM, quadtree for Pigure 5-1.
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Figure 5-7. The PM; quadtree for Figure 5-1.
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representation. The problem is that the amount of information stored at a single quadtree
node varies widely. For example, in the PM; quadtree, a node can contain both a vertex and a
set of line segments that do not pass through the vertex. The PM, quadtree represents an
improvement in the sense that a node either corresponds to a vertex or a set of line segments
but not to both. The PM,; quadtree limits a node further to correspond either to a vertex or to
a single line segment. This is more compatible with the node size limitation posed by the linear
quadtree. Indeed, the segment quadtree, described below, can be viewed as a linear quadtree
adaptation of the PM,; quadtree.

In the remainder of this section we provide empirical results comparing several linear
feature representations. The variants of the PM quadtree as well as the MX and edge quad-
tree were used to encode three maps (Figures 5-8 through 5-10) chosen from the database
described in Phase IIl. Table 5-1 contains the number of vertices and edges in each of these
maps. Note that all of these maps consist of edges whose vertices rest on a 512 by 512 grid
that is offset by half a pixel width from the coordinates of the lower left hand corners of the
quadtree nodes at depth 9 (later we will consider the impact of this displacement). In other
words, the grid of points from which the vertices are drawn corresponds to the centers of pix-
els.

Table 5-1. Size of the line data sets.
Map No. of Vertices | No. of Edges
Powerline 15 14
Cityline 64 64
Roadline 684 764

As mentioned above, neither the MX quadtree nor the edge quadtree is really an
appropriate representation for polygonal maps since they only correspond to an approximation
(or in the case of the MX quadtree, a digitization) of the map, whereas the variants of the PM
quadtree represent the maps exactly. Nevertheless, in practice, for the MX quadtree it is
natural to consider the approximation that results from representing edges with the same
accuracy as the grid. For the 512 by 512 images that we are considering, this means that the
MX quadtree is built by truncating the decomposition at depth 9. Similarly, the edge quadtree
is also constructed by truncating the decomposition at depth 9.

Tables 5-2 to 5-5 summarize the storage requirements of the various quadtree methods
of representing the maps. As we observed before, the PM,; quadtree will always be the largest
of the PM quadtrees - i.e., it will require the most nodes. Therefore, let us consider how it
compares with two alternative approaches, the MX and edge quadtrees given in Tables 5-2 and
5-3 respectively. Tables 5-4 and 5-5 contain the data for the different PM quadtrees. Table 5-5
breaks down the leaf count in terms of the different types of nodes and also gives the average
number of g-edges for each node type (in parentheses) where it is relevant.
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Figure 5-8. The powerline map.

Figure 5-9. The city border map.,
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PFigure 5-10. The road map.
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Table 5-2. Size of the MX quadtrees.
Map Depth | Leaves | BLACK nodes | WHITE nodes
Powerline 9 1594 521 1073
Cityline 9 2335 782 1553
Roadline 9 19513 7055 12458
Table 5-3: Size of the edge quadtrees.
Map Depth | Leaves | Vertex nodes | Line nodes | WHITE nodes
Powerline 9 211 15 - 68 128
Cityline 9 730 64 219 {147
Roadline 9 6658 684 2431 3543

The MX quadtree (see Table 5-2) has the worst performance. In all three examples the
MX quadtree is larger than the PM; quadiree (see Table 5-4) by at least a factor of 9. More
generally, we would expect the number of nodes in the MX quadtree for a polygonal map to be
roughly as large as the product of the average edge length and the number of nodes in the
corresponding PM,; quadtree. This can be seen by the following chain of arguments. First, for
“typical data”, the number of nodes in a PM,; quadtree of a polygonal map is proportional to
the number of vertices in the polygonal map since, typically, the vertex nodes are the lowest
nodes in the PM; quadtree. In the analysis of quadtrees, a good rule of thumb is that the
deepest frequently occurring node type will dominate the size measurement. Second, Hunter
[Hunt78, Hunt79} has shown that the number of nodes in an MX quadtree of a polygonal map
is proportional to the perimeter of the polygon. Third, we know that polygonal maps are
planar maps which means that the number of edges in each map is proportional to the number
of vertices in the map. Combining these three arguments with the fact that the perimeter of a
map is equal to the product of the number of edges and the average length of an edge leads to
the desired result - i.., typically, the number of nodes in the MX quadtree is on the order of
the product of the number of vertices in the PM; quadtree and the average edge length (meas-
ured in pixels).

Table 5-4. Size of the PMI’ PMQ, and PM3 quadtrees.
Map Depth Leaves Q-edges
PMl PM2 PM3 ' PM1 PM2 PM3 PMI PM2 PM3
Powerline 7 7 7 61 61 61 38 38 38
Cityline 9 8 8 214 208 187 178 176 168
Roadline 13 9 9 2125 | 1960 | 1714 | 2144 | 2096 1976
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Table 5-5. Breakdown of information in Table 5-4 by node type.

Ma. Vertex nodes {average g-edges) Line nodes (average g-edges) WHITE nodes
P PM, PM, PM; | PM, | PM, PM, | PM; | PM, | PM,

Powerline | 15(1.9) | 15{(19) | 15(19) | 10 | 10(10) [ 1000) | 36 36 | 36
Cityline 64{2.0) | 64(20) | s4{21) | 50 { 47(1.0) | 33(1.0) | 100 97 90
Roadline | 684{2.2) | 684(2.2) | 684(23) | 618 | 515(1.1) | 360(1.1) | 823 | 761 | 670

Now, let us compare the edge quadtree with the PM; quadtree. The edge quadtree (see
Table 5-3) can be seen to be a definite improvement over the MX quadtree. Considering the
trivial (but often typical) maps like Powerline and Cityline, we see that the edge quadtree is
about three times as large as the PM; quadtree. This can be explained by observing that the
average depth of a vertex node in the PM,; quadtree for each of these two maps was between 6 °
and 7 (not shown in the tables) whereas the corresponding edge quadtree must represent all of
the vertex nodes at depth 9.

The Roadline Map, the most complex map in the data, has an edge quadtree that has
three times as many nodes as its corresponding PM,; quadtree. This might at first appear
surprising since the maximum depth of this quadtree is considerably greater than that required
by the digitization grid.- In this case, the digitization grid requires a depth of 9 while the PM,
quadtree requires some nodes to be at a depth of 13. Although for this map, the maximum
depth of the PM; quadtree is greater (i.e, 13) than that of the edge quadtree (i.e., 9), the
difference in the number of nodes in the two trees can be explained by examining the distribu-
tion of nodes by depth {see Table 5-6). In essence, the average depth of a vertex node is again
between 6 and 7 for the PM,; quadtree while it is 9 for the edge quadtree. The reduction in the
average depth of a vertex node in the PM,; quadtree has a direct effect on the total number of
nodes because the decomposition of an edge is identical in the edge and PM,; quadtrees once
the edge has exited the region of the vertex nodes representing its endpoints.
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Table 5-8. Distribution of node types by depth for PM quadtrees in the Roadline map.
Depth Vertex nodes Line nodes WHITE nodes
PM1 PM2 PM3 PM1 PM2 PM3 PM1 PM2 PM3
] 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 4 4 4
3 2 2 2 0 0 0 8 8 8
4 10 10 12 4 6 7 38 38 38
5 75 75 82 34 35 29 109 105 101
6 180 180 192 132 127 120 218 212 199
7 224 224 232 204 198 139 237 222 195
8 158 158 135 156 126 59 162 142 104
g 35 35 29 48 23 6 40 30 21
10 0 13 2
11 0 14 3
12 0 10 1
13 0 3 1

The above discussion leads to the conclusion that the PM; quadtree is an improvement
over earlier quadtree-based approaches to handling real data. We have seen that the PM;
quadtree has the desirable property of reducing the average depth at which the dominant node
type is located. The PM; and PM; quadtrees are attempts to further reduce the maximum
depth of nodes in a PM; quadtree. The PM, quadtree has the effect of reducing the maximum
depth (see Table 5-6) by virtue of a more compact treatment of the case when close edges that
radiate from the same vertex lie in a different node from the vertex. When comparing the data
of the PM; quadtree columns with the data of the PM, quadtree columns of Table 5-4, we
observe no change in the Powerline map since it is composed of only obtuse angles. The City-
line map has a few acute angles creating situations where line nodes can be formed containing
more than one g-edge, thus causing some of the line nodes to be closer to the root and result-
ing in a 3% reduction in the number of nodes. The more complicated Roadline map presents
more such situations resulting in an 8% reduction in the number of nodes. We note that the
PM, reduction only affects the depth of the line nodes. Recall that nodes containing a vertex
are treated in the same manner in both the PM, and PM, quaditrees. This observation is rein-
forced by noting that the vertex node columns in Table 5-6, which show the distribution of
node type by depth, are identical. '

Comparing the PM; quadtree with the PM; and PM, quadtrees also shows no change
in the number of nodes when used on the Powerline map. This is because the Powerline map
contains no edges that pass closely to vertices other than their endpoints. This situation occurs
a bit more frequently in the Cityline map, resulting in a 12% reduction in the number of
nodes. Note that the existence of such situations implies that vertex nodes will be slightly
closer to the root in the PM; quadtree than in the PM; and PM, quadtrees. For the Roadline
map, the use of the PMjy quadtree instead of a PM, quadtree leads to a 19% reduction in the
number of nodes. This is due to the tendency for vertex nodes to occur closer to the root in
the PMjz quadtree than in the PM; quadtree and can be seen by examining Table 5-6.
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From the above we see that although the differences among the different PM quadtrees
can be drastic in principle, for typical cartographic data, the difference in the number of nodes
in the various PM quadtrees for a particular map is less pronounced. Thus, for cartographic
data, the choice among the different PM quadtrees is dictated more by the problems of imple-
mentation rather than by the need to conserve space. However, it should be noted that carto-
graphic data is rather special in that it generally consists of sequences of short edges meeting
at obtuse angles. Since the lengths of the edges are often shorter than the distances between
the features that the edges are representing, this yields data that tends to bring out the best
in each of the types of PM quadtrees with the result that there is little difference between
them. For data that is not this simple, the advantages of the PM, and PM; quadtrees over the
PM, quadtree should be more pronounced.

Aside from the consideration of the numbers of leaves in the various quadtree imple-
mentations, there are two further aspects of storage to be examined: 1) the number of g-edges
in the various quadtree nodes and 2) the sensitivity of the PM quadtree representations to
slight shifts in the placement of the data.

In Table 5-4 we find that a reduction in the number of q-edges closely parallels the
reduction of the number of quadtree. leal nodes across the different PM quadtree implementa-
tions. Table 5-5 tabulates the average number of q-edges per node of a particular node type.
This is placed in parentheses 1mmed1ately after the count of the number of leaf nodes of that
node type. No averages are given for WHITE nodes and PM; quadtree line nodes, as by
definition, they have zero and one g-edge, respectively. Investigation of the average number of
g-edges per line node shows that it is rare for there to be more than one g-edge per line node.
In the case of vertex nodes, we find that the number of q-edges per node is consistently around
2, although it does seem to increase slowly with map complexity. These values tend to indicate
that a linked list is usually sufficient to organize the g-edges at a given node. The PM quadtree
implementation of the three test maps found at most one node in a given map that had as
many as 5 g-edges. Thus not only is the average low, but there also does not seem to be much
variance from the average value.

Previously, we stated that one of the motivations for the development of the PM quad-
tree data structure is that its size is relatively invariant to shifting and rotation. Table 5-7
summarizes the results of some experiments on the effect of minor shifts in positioning the ver-
tices of the Roadline map. The first column, labeled .5, shows the data used to generate Tables
5-2 to 5-6. Recall that to obtain these tables the original data was shifted by adding 0.5 to
what were originally integer coordinates on a 512 by 512 grid. The column labeled 0.0 indi-
cates no change in positioning the vertices of the original data and shows significantly higher
node counts than the other shifts. This is not surprising since when a vertex lies on the border
of a quadtree node, it is inserted in each of the nodes whose border it touches. This can cause
further node splits if a quadtree node in which it is inserted already has a vertex in it. How-
ever, if the vertices that lie on the borders of quadtree nodes are shifted slightly, then they no
longer will share a quadtree node and thus no further decomposition will be required. Once the
placement of vertices on the borders of quadtree nodes has been avoided (e.g., by using small
shifts), there still remains the secondary effect that vertices close to the border of a quadtree
node tend to result in a very small separation between the q-edges in the neighboring quadtree
node. This has the greatest effect on the number of nodes in the PM; quadstree, while it has no
effect on the number of nodes in the PM; quadtree. Like the PM; quadtree, the PM, quadtree
is not affected by g-edges whose separation is small because they result from a vertex being
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near a quadtree boundary. However, this is not shown so clearly by the entries in Table 5-7 for
the PMy quadtree since the PM, quadtree is susceptible to the digitization effects that result
from the process of determining whether or not a line falls within a particular square region.
The only digitization effects that can alter the number of leaf nodes in the PM; quadtree are
those resulting from the process of determining whether or not a vertex lies within a particular
square.

Table 5-7. The eflect of small shifts on different representations of the Roadline map.
dtree Numbers of leaves resulting from different shifts

Quadtree type 5 625 75 0.0 125 25
MX 19513 19720 19627 20554 19597 19618
Edge 6658 6709 6757 8611 6760 6727
PM1 2125 2179 2218 2698 2275 2203
PM2 1960 1984 1981 2608 1999 1993
PM3 1714 1714 1714 2434 1714 1714
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5.2. New line representation

From the results of Section 5-1, we concluded that the PM structures would best
resolve the problems encountered with the edge quadiree, particularly that of representing a
set of line segments exactly. The major obstacle to their use is that they require the use of
variable size nodes. This reflects what seems to be a general principle: that to adequately
represent lineal data in a structure based on spatial decomposition requires the ability to store
more than one piece of information about an area. This can be rationalized as follows. For a
one item per node representation to work, the amount of information needed to describe an
area must decrease as the size of that area is reduced. An intrinsic property of line data, how-
ever, is that it allows large amounts of information to be concentrated in a small area, for
example, where several lines intersect near a point. Thus it is not surprising that one line per
node representations fail to provide an effective representation for linear feature data (as illus-
trated by our problems near vertices in the linear edge quadtree).

We therefore decided to concentrate on solving the variable node size problem. In the
remainder of this discussion, we will refer to the schemes based on variable size nodes as buck-
eted structures, and to the variable size nodes as buckefs. The usage here is slightly different
than that in some other papers (e.g., [Tamm81, Tamm83]) where a bucket refers to a unit of
storage of fixed capacity.

The introduction of variable node sizes has important consequences. What was a
major difficulty, the problem of representing intersecting lines, is eliminated and a new set of
representations, each based on a different splitting rule, is possible. The selection of a splitting
rule is itself easier, as almost any scheme that divides up the segments between blocks in a
reasonable fashion can be used. The splitting rule can be tailored to the application at hand,
and the complexity of a system such as PM, becomes justifiable only if it is particularly useful
in solving some problem. In fact, unless it is required by the application, the structure need
not be uniquely determined by the data. Probabilistic splitting rules can be used as easily as
any others. For instance, a rule requiring the node to be quartered if the number of segments
in a block exceeds n when a segment is added, in conjunction with a corresponding deletion
rule, could be used to dynamically maintain a collection of line segments. We now define a
structure termed the PMR quadtree (for PM Random) which uses such a scheme.

The PMR quadtree uses a pair of rules, one for splitting and one for merging; to
organize the data dynamically. The splitting rule is invoked whenever a line segment is added
to a node. The node is split once into quadrants if the number of segments it contains exceeds
n {4 in our implementation). Note that this rule does nof guarantee that each node will con-
tain at most n line segments. The corresponding merging rule is invoked whenever a segment
is deleted. The node is merged with its siblings if together they contain fewer than n (4 in
our implementation) distinet line segments. This scheme differs from the other quadtree struc-
tures considered here in that the tree for a given data set is not unique, but depends on the
history of manipulations applied to the structure. Certain types of analysis are thus more
difficult than with uniquely determined structures. On the other hand, this structure allows
the decomposition of space to be based directly on the linear feature data stored locally.

The main work reported here involves the implementation and testing of bucketing

methods for line storage which could be integrated with the existing representations for point
and region data in the geographic information system. Two bucket-based structures were

48



implemented, utilizing the basic PM notion of stéring lineal elements in the quadtree nodes,
and making full use of the potential of variable size nodes to limit decomposition. They are
based on the PM; and PMR quadtrees.

The representations described developed from an attempt to adapt the PM; quadtree
for use in the geographic data system. The first question is how to implement the variable
sized nodes. Since the number of line segments in a node is potentially unbounded, a true
variable-length storage scheme must be used. For pointer quadtrees, linked lists are one possi-
bility. A binary tree structure reflecting the position of the segments within the block has also
been suggested [Same83]; however, this seems to be unnecessarily complicated for our applica-
tion. As shown in Section 5-1, the average number of segments intersecting a node can be
kept small by the appropriate choice of a splitting rule. When the graph represented by the
set of line segments is planar (which is the case for polygonal maps and most geographical
situations), the average number of segments per node in the PM,; decomposition is limited by
topological considerations to some small number (for our map data, the average is less than
three). This makes a linear search through the list practical. In an application where this is
not the case, other splitting rules can ensure that the number of segments in a bucket does not’
become too high. For linear quadtrees, where an address is calculated for each block and used
to order it in the list, the simplest way of implementing variable node sizes is simply to dupli-
cate addresses. This is the method used in the present implementation.

‘The second question, and one that turns out to be critical to the expressive power of
the system, is how to represent the lines intersecting a node. We assume for simplicity that
the original data consist of line segments defined by a pair of endpoints digitized o the resolu-
tion of the quadtree. One possible implementation is to store in the node a new segment
whose endpoints are the intersections of the original segment with the block boundaries, as
was done with the linear edge quadtree. This has the single advantage that it is easy to split a
line in two {as would be necessary when decomposing a node) by introducing an intermediate
point. Since all information is local, we need not be concerned with the effects such a decom-
position will have on other nodes through which the segment passes. For the same reason,
however, it is hard to track a line from one block to the next. This makes operations such as
deletion difficult, and remerging sibling nodes is nearly impossible since there is no way of tel-
ling whether or not the pieces originally formed a single line segment. Thus, manipulation of
the map can degrade the information it contains just as in the case of the linear edge quad-
tree. One possible solution is to represent the endpoints of such local segments exactly (with
large rationals}), or to a very high accuracy (with floating point arithmetic), and to assume that
two subsegments connect if their endpoints are identical or match within some tolerance.
Such an implementation is difficult to program and is sensitive to error from scale changes.

A more viable suggestion is to store a pointer to a record representing the original line
segment in each node it intersects. Since each node containing the segment stores the same
descriptor, tracking the line from block to block is simple and operations such as deletion can
be easily implemented. This approach is also considerably more flexible as it allows the
storage of an arbitrary amount of information about the segment without increasing the size
of the B-tree record, and permits this information to be concentrated in one place rather than
repeated in every node which refers to the segment.

We still have the problem of how to split a segment. In geographical applications, the
situation arises when a line map is intersected with an area. Since the borders of the area may
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not correspond exactly with the endpoints of the segments defining the line data, certain seg-
ments may be cut off. Such an intersection is illustrated in Figure 5-11. The partial line seg-
ment produced is referred to as a fragment and the artificial endpoints produced by such an
intersection are referred to as cut points. One way to represent a fragment is to introduce an
intermediate point at the node intercept. In continuous space, the remaining line segment can
then be exactly represented as a new line segment which is colinear with the original, but has
at least one different endpoint. In discrete space, however, this is not always possible because
the continuous coordinates at the intercept do not, in general, correspond exactly to any coor-
dinates in the discrete space. If the new line segments are represented approximately in the
discrete space, then the original information is degraded, and the pieces cannot reliably be
rejoined. These are precisely the problems encountered with the linear edge quadtree. Addi-
tionally, if an intermediate point is introduced to produce new segments, then the line segment
descriptor must be propagated to all blocks containing the original segment. This is likely to
be a very time-consuming operation.

An alternative idea is to retain the original pointers, and use the spatial properties of
the quadtree to specify what parts of the corresponding segments are actually present. The
underlying insight is that a node may contain a pointer to a segment, even though the entire
segment is not present as a lineal feature. Rather, the segment descriptor contained in a node
can be interpreted as implying the presence of just that portion of the segment which inter-
sects the corresponding block. Such an intersection of a segment with a block will be referred
to as a g-edge, and the original segment will be referred to as the parent segment. The frag-
ments, therefore, may be represented by a collection of q-edges. The presence or absence of a
particular g-edge is completely independent of the presence or absence of those g-edges
representing other parts of the line segment, hence lineal features corresponding to partial seg-
ments can be represented simply by inserting the appropriate collection of q-edges. Since the
original pointers are retained, a lineal feature can be broken into pieces and rejoined without
loss or degradation of information. Within the quadtree structure, q-edges may represent arbi-
trary fragments of line segments. Since all bear the same segment descriptor, they are easily
recognizable as deriving from the same parent segment. This solves the problem of how to
split a line or a map in an easily reversible manner. The use of this principle to represent the
lineal feature produced by the intersection of Figure 5-11 is shown in Figure 5-12. Below we
describe how this idea is incorporated into the PM; and PMR linear quadtrees.

Given a collection of fragments, the basic idea is to use the quadtree decomposition to
localize the cut points of the fragments, and simultaneously use the endpoints of the parent
segments to induce a PM; decomposition. A problem arises however, if we use all such end-
points. Consider the case of a set of fragments which connects to few of the original endpoints
(i.e., most of them have been cut off). The remaining fragments may be far away from the ori-
ginal endpoints, but the former are still directing the splitting of blocks. In such a situation it
is possible to have a node which contains no g-edges, but must be split into four empty nodes.
The situation is illustrated in Figure 5-13. The problem is easily remedied by using only the
segment endpoints attached to g-edges to induce PMj splitting. The structure can thus be
defined by splitting until no block contains a cut point (all cut points must lie on the boun-
daries between blocks), and no block contains more than one segment endpoint attached to a
q-edge. Note that this rule yields the ordinary PMj; decomposition in the case where all the
fragments represent full line segments.
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(a) A region. (b) A line segment.

o cutpoint

(¢) a fragment with one cut peint produced by the
intersection of the region in (a} with the line seg-
ment in (b).

Figure 5-11, Definition of a fragment from the intersection of a segment with a region.
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{(a) A region quadtree with a line segment superimposed.
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{b} A set of 5 q-edges composing fragments of Figure 5-11, and the corresponding quadtree.

Figure 5-12. Representation of the fragment of Figure 5-11 using a collection of g-edges.
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Figure 5-13, Unattached endpoints causing split of 2 WHITE node.
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The above rule is useful as a means of defining the structure, but cannot actually be
used to construct a linear PMjz quadtree because the database has no provision for explicitly
referring to general fragments. Instead, the structure is implemented by allowing the insertion
and deletion of a restricted set of fragments, namely g-edges. Since these form a set of “build-
ing blocks”, quadtree representations for arbitrary fragments may be constructed.

Insertion of a g-edge £ representing the intersection of line segment L with block B is
accomplished as follows. If B corresponds to a leaf node, then E is installed, and the node
checked for splitting. If B is subsumed by a leaf node, then that node is split until a leal node
is produced which corresponds to B, and F is then installed. If B corresponds to a gray
node, then the g-edges corresponding to the intersection of L with the sons of Q are inserted
recursively.

Deletion is accomplished by a similar procedure, where deletion of a g-edge is inter-
preted as erasing a portion of the parent segment. If B corresponds to a leaf node which con-
tains £, then the reference to £ is removed and a check for merging is made on the node and
its siblings. If B is subsumed by a leaf node, then that node is split until a leaf node is pro-
duced which corresponds to B, and E is deleted. If B corresponds to a gray node, then the
q-edges formed by intersecting L with the sons of B are deleted recursively.

The PMR structure is adapted from the PM; quadtree by modifying the splitting and
merging rules. Nodes are now split until no block contains a cut point in its interior, and then
once more if a block contains more than four g-edges. The merge condition is now invoked
both when a q-edge is deleted and when one is inserted (since a fragment may be inserted
which restores a larger piece). Merges occur when there are four or fewer distinet line seg-
ments among the siblings and the g-edges are compatible. The PMR quadtree is implemented
in the same way as the PM; quadtree just described, except that different splitting and merg-
ing rules are used.

The modified PM; and PMR quadtrees satisfy all of the properties required for a linear
feature representation in our system. With the modifications described in Section 2, the same
underlying representation is used for all data types. Insertion and deletion can be performed
efficiently - i.e., in time proportional to the number of nodes containing the line segment to be
inserted or deleted. Since the line segment is represented in the B-tree by a pointer to an
unrestricted line segment descriptor, it can be easily integrated into the attribute attachment
system. These line segment descriptors can represent the segment exactly, and each node con-
taining a given line segment stores an identical record. Degradation is therefore avoided, and
consistency during insertions and deletions is maintained.

The bucketed g-edge schemes satisfy all the necessary requirements for a linear feature

representation. It remains to be seen whether they can be made to perform efliciently in the
geographic information system. This is the subject of the next section.
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5.3. Empirical results

In order to evaluate the performance of the proposed line representations, four different
structures were implemented. They were the MX, edge, PM;, and PMR quadtrees. The first
two, due to the various deficiencies mentioned above, are ultimately unsuitable for the desired
application. However, they are still useful for comparison. Specifically, if the performance of
the bucketing methods is far worse than that of methods known to be insufficient in other
ways, we must ask whether what has been gained is worth the cost. Comparisons were made
on the following operations: 1) the time required to build the structure; 2) the sizes of the
different representations in our specific implementation; and 3) the time required to perform an
intersection with an area image. The three linear feature data sets used in Section 5-1 were
again used for these tests.

The building algorithm essentially tests the efficiency of insertion into the structure.
Three maps were built for each of the four structures. The results are displayed in Table 5-8.
They indicate that none of the methods is overwhelmingly superior in terms of insertion
efficiency, but the PMR representation has a definite if irregular lead in most cases. In the
case of the road map, which represents the most realistic data set, the MX, edge, and PMR
representations are more or less equivalent, and about 30% better than the PM;. From these
results, we see that insertion times for the bucketing methods are comparable to those for the
other representations. :

As shown in Section 5-1, the PM representations are far superior in storage require-
ments compared to the MX and edge quadtrees. Node counts are shown in Table 5-8; they
differ slightly from those in Tables 5-1 to 5-5 due to different positionings of the vertex within
the pixel.

Examination of the data reveals a steady decrease in the required storage from MX to
edge to PMj to PMR, with the change being approximately a factor of two for each step in the
case of the road map (more for the simpler data sets). The PMR representation is at least
eight times more efficient in its use of storage than the simple MX in all the cases tested, but
both bucketing techniques improve the storage efficiency significantly over the other two tech-
niques. This improvement can be explained by noting that the bucketing methods use one-
dimensional primitives which can extend over distances of many pixels rather than the pixel
by pixel representation that is used by the MX method exclusively, and by the edge method
when the going gets rough. It should be mentioned that these results are actually for pure
PM; and PMR quadtrees since only complete line segments were inserted in the construction
of the maps. For maps containing cut points, the utilization of space would be expected to be
less efficient since additional splitting is required to localize the fragment ends.

Table 5-9 gives the sizes of the structures produced by intersecting the road map with
various areas. Comparing the sizes of the resulting maps reveals that the improvement in
storage requirements is indeed less dramatic. The degree of fragmentation varies, but in the
case of intersections with the pebble map and its complement, it is probable that few if any of
the original segments are intact. The improvement is still present however, with the PM
methods generally using between one half and one quarter of the space of the MX, and
significantly less than the edge quadtree. In no case do we see a change in the order of
decreasing sizes from MX to PMR, which was noted for the segment data. Finally, we observe
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that in all cases, the MX quadtree is by a wide margin the largest structure. This suggests
that the MX scheme is fundamentally inefficient in its use of space, at least when the data can
be described using high level primitives (e.g., line segments).

The intersection function is_a high level geographic computation which involves pro-
cessing the entire data structure. In the case of the bucket methods, it tests the efliciency of
the fragment representation, because the previously intact line segments are now cut where
they cross an area boundary. Because the bucket methods allow certain operations not possi-
ble with the local methods (e.g., reassembling split lines without data degradation), it is not
entirely clear that the different intersection computations are comparable; however, the results
may give a general idea of the practicality of high level operations. The intersections were
performed using the roadmap as the linear feature data set (the others being too small to pro-
vide a reasonable intersection) and three binary maps and their complements as templates.
The use of the complements is intended to permit the effects of the size and shape of the tem-
plates to be distinguished from the overall efficiency of the different algorithms. This precau-
tion is necessary because the intersection algorithm used with the bucket structures works
differently than the one used with the two other methods, and is affected differently by chang-
ing the shape of the template. Specifically, the intersection procedure for the first two
methods works by inserting into a blank map all linear sections that intersect the template,
while the procedure for the bucket structures works by erasing the sections of the line map
which do not intersect the template. It turns out that insertion and deletion of g-edges are
operations of comparable complexity. For a map produced by erasing portions of a preexisting
map, the number of deletions corresponds to the number of insertions necessary to produce the
complementary map since the same g-edges are involved. Hence it is more appropriate to com-
pare the intersections of the first two representations with the complementary intersections of
the bucket-based representations.

The three templates used are referred to as center, stone, and pebble, and represent a
floodplain in register with the road map, and unrelated binary images derived from thres-
holded photographs of stones and pebbles, respectively. Only the floodplain map has any geo-
graphic relevance. The other two were used with the intention of giving the system a more
stringent, if less realistic, test. In particular, the degree of fragmentation induced by the peb-
ble map probably exceeds anything that would normally be done in a geographic application.

The results of the test are given in raw form in Table 5-9, and are apparently ambigu-
ous. In some cases the bucketing methods take much longer than the MX and edge schemes,
but in others they take less time (though not correspondingly so). This inconsistency is due to
the complementary effect of the different intersection algorithms discussed above. Table 5-10
reorganizes the data so that the appropriate complements are compared, and a consistent
trend is now apparent. The time needed to perform an intersection generally increases from
MX to edge to PM; to PMR with the bucketing methods taking somewhere around twice as
long as their competitors. Note that the order in which the intersection times increase is the
same in which the structure sizes decrease, suggesting that what we are seeing is a time versus
space trade-off. In the step from the MX to the edge representation the increase in intersec-
tion time is not as sharp as this notion would suggest from the corresponding decrease in size,
but this might only indicate that the MX quadtree is not a very efficient representation of the
information for any purpose (something which we already suspect). For the other representa-
tions, coming up against this limit may suggest that the algorithms are making full use of the
information carried in the structure, and that the information carried is not redundant. This

56



would imply that no drastic improvements will be discovered which will change the relative
performance of the intersection algorithms for any of the structures. We suspect this, having
tried several radically different approaches in an attempt to reduce the intersection times for
the PM structures to at least that of the edge quadtree, all of which had similar performance.

In one sense, the results are disappointing because we have come to expect, since so
many quadtree algorithms can be made to run in time proportional to the number of nodes,
that a decrease in the size of a structure will imply a corresponding decrease in execution time
for operations performed using that structure. There is, however, no reason to expect this to
hold across different structures, since the constants of proportionality will certainly differ, as
will the amount of work done per node. On the other hand, the increased time is by no means
severe enough to damage the value of the representation. The PM structures have capabilities
and a certain elegance that the MX and edge quadtrees completely lack. This is worth a cer-
tain price. Moreover, if the space versus time tradeoff is authentic, then a PM type structure
could be implemented using a different splitting rule, which, at the cost of using more space,
would perform intersections as quickly as the edge quadtree.

Table 5-8. Building times and sizes.
Map/Structure | Time Leaves Qnodes
powerline

MX 2.0 1600  ecenn
edge 0.8 226  -----
PMR 0.7 32 19
PM3 : 0.9 82 G4
railroad
MX 2.8 2101 -
edge 1.0 301 -
PMR 0.6 35 19
PM3 0.9 92 70
city ‘
MX 3.4 2347 -eeee
edge 29 835 e
PMR 1.9 151 70
PM3 3.3 310 214
road
MX 31.5 19699 -
edge 27.4 P PF S—
PMR 25.8 2078 874
PM3 36.0 3939 2350
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Table 5-9. Intersection times and sizes,

Map/Structure Time Leaves Qnodes
road & center
MX 5.1 3094 -
edge 6.3 1756 -
PMR 15.8 910 775
PM3 17.0 1019 874
road & centercomp
MX 21.4 17314 -a---
edge 16.2 8320  -----
PMR 8.9 2568 1402
PM3 8.0 4275 2677
road & stone
MX 6.5 3397 e
edge 10.0 2344 ee-
PMR 31.0 1853 1651
PM3 24.8 2011 1774
road & stonecomp
MX 26.4 17776 e
edge 22.1 8803  -ew--
PMR 249 3270 2122
PM3 17.3 4684 3244 -
road & pebble
MX 13.6 9022 e
edge 19.3 5653  em---
PMR 50.0 4034 3370
PM3 34.7 4530 3760
road & pebblecomp .
MX 20.2 13564  -eee-
edge 23.2 7459 eeem-
PMR 45.5 4250 3436
PM3 32.7 . 5086 4078
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Table 5-10. Reordered intersection times.

Map Structure | Time

road & center MX 5.1
edge 6.3

road & centercomp PMR 8.9
' PM, 8.0

road & centercomp MX 21.4
edge 16.2

road & center PMR 15.8
PM3 17.0

road & stone MX 6.5
edge 10.0

road & stonecomp PMR 24.9
PM3 17.3

road & stonecomp MX 26.4
edge 221

road & stone PMR 31.0
PM3 24.8

road & pebble MX 13.6
edge 17.3

road & pebblecomp PMR 45.5
PM3 32.7

road & pebblecomp MX 20.3
edge 23.2

road & pebble PMR 50.0
PM3 34.7

Table 5-10: Reordered intersection times
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6. Conclusions

This project had both specific and general goals. The specific goals dealt with choosing
appropriate representations for areas, points, and lines so that responses can be easily made to
queries such as “Find all cities with a population in excess of 5000 people in wheat-growing
regions within 20 miles of the Mississippi River.” For areas we used the region quadtree. For
points we used the PR quadtree, a regular decomposition point quadtree. For lines we used the
PMR quadtree as discussed in the previous section. Since all of these representations are based
on a regular decomposition, queries having the structure of the sample query can be handled
by our system.

The general goal of this project was to demonstrate the utility of hierarchical data
structures for use in the domain of geographic information systems. We have achieved this
goal in that we have produced a prototype geographic system which represents images with a
linear quadtree. This system is capable of manipulating area, point, and linear feature data in
a reasonably efficient manner. It seems to perform well compared to vector-based systems
which make up the majority of geographic systems at this time. Many of these vector-based
systems have serious deficiencies due to the extreme difficulty of implementing certain features
(most such systems do not do polygon overlays for this reason).

Our experience during this project has been that while area and point data are easily
dealt with by an area based representation, dealing with linear feature data is much harder.
We have come up with a new solution to this problem which is compatible with our other data
representations.

The major deficiency of the system in its present form is the attribute attachment sys-
tem. Since the main goal of the project was to investigate geographic data representations,
relatively little time was available to develop the large database techniques necessary to pro-
duce an effective solution to this problem. Clearly, it is a major research topic in itself, and is
increasingly being recognized as such. As such techniques become available, it should be an
easy matter to combine the geographic representation methods embodied in this system with
an attribute database.
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