CAR-TR-427 IRI-88-02457
CS-TR-2204 February 1989

IMPLEMENTING RAY TRACING WITH
OCTREES AND NEIGHBOR FINDING

Hanan Samet

Computer Science Department and
Institute of Advanced Computer Studies and
Center for Automation Research
University of Maryland
College Park, MD 20742-3411

| ABSTRACT | _
A ray tracing implementation is described that is based on an octree representation
of a scene. Rays are traced through the scene by calculating the blocks through which
they pass. This calculation is performed in a bottom-up manner through the use of

neighbor finding. The octrees are assumed to be implemented by a pointer representa-
. tion.

K_ejwords and phrases: ray tracing, octrees, quadtrees, neighbor finding

. The suéyport of the National Science Foundation under Grant IRI-88-02457 is gratefully ac-
knowledged. - . . _ '

1. INTRODUCTION

The most basic operation in computer graphics is the conversion of an internal
model of a three-dimensional scene into a two—dimensional scene that lies on the
viewplane. The purpose is to generate an image of the scene as it would appear from a
given viewpoint, and to display it on a two—dimensional screen. The situation becomes
complex when we take into account the position of the light source, the presence of mul-
- tiple light sources, and the possibility that light is reflected as well as refracted. This
requires a calculation of what light falls on the object position represented by a pixel in
- the viewplane and is known as the image rendering task. Ray tracing [Roge85] is an
image rendering technique that models light as particles moving in the scene.

In this paper we focus on the use of hierarchical data structures such as the octree
to speed up the determination of the objects that are intersected by rays emanating from
the viewpoint. Our presentation is organized as follows. Section 2 contains some
definitions and a description of our notation. Section 3 discusses the ray tracing task and
shows how to trace a ray using neighbor finding in a scene represented by an octree. Sec-
tion 4 gives a detailed implementation while Section 5 gives an example in two dimen-
sions. Section 6 concludes with a brief discussion of the some of the pitfalls of our solu-
tion, and those of alternative methods.

_ 2. DEFINITIONS AND NOTATION

The region octree [Hunt78, Jack80, Meag82| is an extension of the quadiree data
structure [Klin71] to represent three—dimensional data (for a detailed discussion of such
data structures, see.[Same84, Same88a, Same88b, Same89a, Same89b]). We start with a
2"X 2™X 2" object array of unit cubes (termed vozels or obels). The region octree is based
on the successive subdivision of an object array into octants. I the array does not consist
entirely of 1s or entirely of 0s, then it is subdivided into octants, suboctants, etc., until
cubes (possibly single voxels) are obtained that consist of Is or of Os; i.e., they are
entirely contained in the region or entirely disjoint from it. This process is represented
by a tree of degree 8 in which the root node represents the entire object, and the leaf
nodes correspond to those cubes of the array for which no further subdivision is neces-
sary. Leaf nodes are said to be black or white (alternatively, FULL or VOID) depending on
whether their corresponding cubes are entirely within or outside of the object, respec-
tively. All non-leaf nodes are said to be gray. Figure la is an example of a simple
three—dimensional object, in the form of a staircase, whose region octree block decomposi-
tion is given in Figure 1b, and whose tree representation is given in Figure lc.

One of the problems with the region octree is that when the faces of the object
are not orthogonal, the data structure requires much decomposition, and hence much
space. Ip order to remedy this problem, a set of decomposition criteria is used such that
- no node contains more than one face, edge, or vertex unless the faces all meet at the
same vertex or are adjacent to the same edge. We term the resulting structure a PM

. octree (see [Ayal85, Carl85, Fujiss, Hunt81, Nava86a, Quin82, Tamm81, Vand84]). For

example, Figure 2b is a PM octree decomposition of the object in Figure 2a. This
representation is quite useful since its space requirements for polyhedral objects are
significantly smaller than those of a region octree. In two dimensions, we have a PM,
quadtree which has the property that no node contains more than one edge or vertex

unless the edges all meet at the same vertex [Same85]). For example, Figure 3 is a PM;
quadtree of a 5-sided polygon. :

In order to understand the presentation of the algorithms, we first give some
definitions and explain our notation. Figure 4 shows the coordinate system that we are
using relative to a cube. It is slightly different than the one used to generate Figure 1.
Let L and R denote the resulting lower and upper halves, respectively, when the z axis is
partitioned. Let D and U denote the resulting lower and upper halves, respectively, when
the y axis is partitioned. Let B and F denote the resulting lower and upper halves, respec-
tively, when the z axis is partitioned. Figure 5 illustrates the labelings corresponding to
the partitions. ’ ‘

The labelings in Figure 5 are also used to identify the faces, edges, and vertices of
‘the cube as shown in Figure 6. The faces are L (left), R (right), D {(down), U (up), B(
back), and F (front); however, only R, U, and F are visible. The edges and vertices of the
cube are labeled by using an appropriate concatenation of labels of the adjacent faces.
Note that vertex LDB and edges LD, LB, and DB are not visible. Similarly, the octants are
labeled by using a concatenation of these labels as shown in Figure 7 (octant LDB is not
visible). Figure 8 is a numerical labeling for the octants (octant 0 is not visible).

The concept of a neighbor in an octree [Same89c] is defined analogously to that in
a quadtree [Same82]. We say that node ¢ is a neighbor of node R in direction I if @
corresponds to the smallest block (it may correspond to a non-leaf node) adjacent to R
(i.e., touching even if just at a point) in direction I of size greater than or equal to the
block corresponding to R. : '

In two dimensions, there are 8 possible neighbor directions. In three dimensions,
there are 26 possible directions. In particular, in two dimensions, two nodes can be adja-
cent, and hence neighbors, along an edge (4 possibilities) or along a vertex (4 possibili-
ties). In contrast, in three dimensions, two nodes can be adjacent, and hence neighbors,
along a face (6 possibilities), along an edge (12 possibilities), or along a. vertex (8 possibili-

ties). Such neighbors are termed face-neighbors, edge-neighbors, and vertex-neighbors,
respectively. These relations are shown in Figures 9a, 9b, and 9¢, respectively.

We now describe an octree implementation that uses pointers. Assume that each
octree node is stored as a record of type node containing ten fields. The first nine fields
contain pointers to the node’s father and its eight sons, which correspond to the eight
octants. If the node is a leaf node, ther it will have eight pointers to the empty record.
If Pis a pointer to a node and O is an octant, then these fields are referenced as FA-
THER(F) and SON(P,0), respectively. We can determine the specific octant in which a
node, say F, lies relative to its father by use of the function SONTYPE(P), which has a
value of O if SON(FATHER(P),0)==F. The tenth field contains type information. For
example, for a region octree it contains the color of the block of the image which the
node represents — i.e., black, white, or gray. The pointer from a node to its father is not
required but is introduced here to ease the motion between arbitrary nodes in the octree. -

3. THE RAY TRACING TASK

Ray tracing is an approximate simulation of how the light propagated through a
scene lands on the image plane. This simulation is based on the geometric optics
approach to reflection and refraction [Whit80]. Although the geometry of the reflection
and refraction of ‘particles’ of light from surfaces is straightforward, the formulation of
the equations to model the intensity of the light as it leaves these surfaces is a recent
development. The quality of the displayed image is a function of the appropriateness of
the model represented by these equations and the precision with which the scene is
represented. - ' ‘

From a procedural point of view, the term ray iracing (or ray casting) describes
the process of casting a ray from the viewpoint through a given pixel on the image plane
~ that appears between the viewpoint and the scene. The pixel is identified with the surface

of the nearest object that intersects the ray. This ray is termed the primary ray. If an
intersection is found, then a number of additional rays are often cast. These additional
rays are used to calculate shadows when there is another object between the light source
and the intersected object, and to calculate indirect paths between the light source and
the surface. : ' '

When the cobject is opaque, then the additional rays are only used for modeling
- reflection and shadows. On the other hand, when we can see through the object, then the
additional rays are also used for modeling transparence or translucence (in which case the
ray may undergo refraction). These additional rays are termed secondary rays. Figure
10 illustrates these terms. Although the distinction between reflected and refracted rays
is interesting from a physical standpoint, this distinction has little effect from an algo-
rithmic standpoint. In this paper, any reference to reflected rays is actually a reference to
both reflected and refracted rays. ' : '

The amount of time required to display a scene is heavily influenced by the cost
of tracing the path of the rays of light as they move backward from the viewer’s eye,
through the pixels of the image plane, and out through the scene. The motivation for
using the octree in ray tracing is to enable the calculation of more rays with a greater
amount of accuracy. Since light-modeling equations rely on the availability of accurate
information about the location of the normal to the surface at the point of its intersec-
tion with the ray, PM octrees are generally more appropriate than region octrees, This is

“especially true for PM octrees that can represent curved, rather than planar, surfaces
using either curved patches [Nava86b] or curved primitives [Wyvi85).

Octrees have been used to speed up intersection calculations for ray tracing
[Glas84, Fuji86, Wyvis85, Kaplss, Kapl87, Jans86). The basic speedup can be seen by exa-
mining the PM; quadtree in Figure 3. We use a quadtree instead of an octree in order to
simplify the presentation. A naive ray tracing algorithm would have to test the ray
_-emanating from the viewpoint against each of these sides, sort the resulting intersections,
calculate the reflected ray, and finally test the reflected ray to see if it intersects any
.~ other portion of the polygon. '

For example, consider ray S in Figure 3 and assume that the boundary of the
polygon is opaque (i.e., no light is transmitted through it). Thus, the only secondary ray

3

corresponds to reflection. From Figure 3, we see that a quadiree-based algorithm would
perform the calculation for ray s by visiting only 4 cells (i.e., cells 1, 7, 8, and 9).

Once the scene’s octree has been built (consisting of cells), we must trace each ray
through it. We adopt the convention that for a ray to pass through a cell (as well as
intersect an ob]ect) it must enter and exit the cell (or object) at two distinet points.
Thus, a ray that is tangent to a cell (or object) at just one pomt does. not pass through
(intersect) the cell {object). On the other hand, a ray that is tangent to a cell (object)
-along an edge or a face of a cell (object) is said to pass through (intersect) the cell
(ob]ect) For example, ray R in Figure 3 passes directly from cell 2 to cell 3, without
passmg through cell 10. This convention is very important: as otherwise an error may
arise (see Section 6).

For each cell through which the ray passes, we only intersect the ray with the
objects in that cell. If it intersects more than one object, then we determine the appropri-
ate object and continue to trace the secondary rays, if necessary. If the ray does not
intersect any of the objects in the cell, then we project the ray into the next cell and try
again. As long as the cost of moving between adjacent cells is relatively low, we will save
time over the cost of intersecting the ray with every object in the scene.

There are a number of methods of projecting the ray into succeeding blocks. Jan-
sen [JansSﬁ] discusses these methods in a general manner. They can be best characterized
‘as being either top-down or ‘bottom-up. In this paper we focus on the ‘bottom-up
method. It follows the ray in the sense that first the closest bounding volume or cell, say
C, to the viewpoint that is intersected by the ray is located. Let P be the point at which
the ray leaves C. If ¢ does not contain an object that intersects the ray, then locate the

smallest cell or bounding volume, say ¢, that contains the point Q=P+ A. There are

many methods of locating ¢!. One possibility is to perform a point location algorithm
which starts at the root of the tree. Another variation, and the one we descnbe, is to use
neighbor-finding methods [Same82, Same89¢].

Assume that the ray is defined parametrically by

z=mt+b, - ' : ()
y=myt+b, o 2
z=m,t+b, DR @)

One way to determine the parameters is to choose two points on the ray and let one
correspond to =0 and the other to t=1, and then to solve the six equations. The ray
tracing computation is simplified when the parameters are integers. This situation is
assured when ¢=0 corresponds to the viewpoint, and when the viewpoint and the point
corresponding to t=1 both have integer coordinates. Note that {20 for every point on
the ray. We also assume that the origin of the three—dimensmna.l space containing the
scene is at (0,0,0) and the width of the space is a power of 2. The smallest possible cell is
of width 1. : .

In practice, the situation is not so simple. In particular, when the viewplane is in
an arbitrary position in space, it is usually not the case that every pixel on the viewplane
has integer coordinates relative to the viewpoint. Nevertheless, we do know that (bz.0,,0,)
are equal to the coordinate values of the viewpoint. In the following, we describe a more
general solution which permits the m; to be rational numbers while assuming that the
viewpoint has integer coordinates. Note that our solution can be modified to permit the
viewpoint to have rational coordinates, but this is not done here. : o

Let B=(b,,b,b,) be the viewpoint. Assume that the viewplane is defined by thg
-three Doints @, R, and § such that @=(4;,9,,9;) is the the origig’ of the viewplane. Let J
and K be the base vectors in the viewplane. Assume that J=3,00+ jyc?y+j35’ » and
K=k, &+ k,aj+k,&,, where j; and k; are rational numbers, and &; are unit vectors in
the z, y, and # directions. Note that J and K are base vectors, although j2+ 2+ 52 and
k,f+k§+ k2 do not necessarily equal 1. A point P{u,v} on the viewplane (u and v are
viewplane coordinates) can be written as: - o

Plu,v)= ulHvK+ e _
_Ra.j R from thé viewpeint B through point P(%,v) on the viewplane can be expressed as:
R - R=(P-Bp+B o |
Expanding this equé.tion y-ields; '

z=(jyu+k, v+ g:—b;)t+b, o R (4)
v=lyutbyvbgbytry, ()
.z=(jg“u+ kz_v_'_ qz_bz)'t+ bz - | . R (6)

The coefficients of ¢ in (4)}{6) correspond to the values of m; and are rational
numbers. In fact, as can be seen below, by redefining the parametric equations for the
ray in terms of the lowest common denominator of m,, my, and m,, say, ¢, all of the
parameters are integers. In the following, #=1/c, and the values of m/; are the remaining
numerators once the denominators have been set to c. S

- z=ml, i+ b, : S . (1)
F_m'y?t""by ‘ .)
e=ml b, e

In the remainder of the discussion, we assume that the p"a,ra.metric equations have
been manipulated in such a manner. We shall use m; and ¢, although we are actually
referring to m'; and ¢/, respectively. ' '

Tracing the ray is achieved by the following three-step process. First, we must
‘show how to compute the points at which the ray enters and exits the cell (i.e., clip the
ray). This process is a simplification of the Cyrus-Beck clipping algorithm [Cyru78,
Roge85] and is the one used by Glassner [Glas84], as well as by Wyvill and Kunii

5

[Wyv185] Glassner does not describe an 1mplementatlon Wyvill and Kunii’s 1mplemen-
tation is discussed in Section 6.

The nature of the implementation is very important and requires much care since
the computation must be exact. In particular, we can not use floating point arithmetic.
Instead, we use rational arithmetic. Next, we process the cell by intersecting the ray with
the objects in the cell. Finally, if necessary (i.e., the ray does not intersect any of the
objects in the cell), we compute the direction of the next cell 1ntersected by the ray and
also loca.te it. : :

To determine the points at which a ray enters and. exits a three~dimensional cell,

~ each of whose sides is of width W, we test the ray against the bounding planes (i.c., fa.ces) :
of the volume corresponding to the cell. For example, consider a cell bounded by 2==X,
and X+ W, y=y, and y,+W, and z=z; and z,+W. We compute a value of t for each of
T=Xg, T=Xg+W, y=Yo, ¥=Yo+W, 2=32;, and z=z5+W.

Let t* and tf* correspond to the range of values of ¢ taken by coordinate 7. In
particular, 1f m;<0, then ¢/* and 1% correspond to 1=ig+W and ?=1i;, respectively,
whereas if m; >0 then #/* and t{" correspond to i=iy and 4=is+W, respectively. The
intersection of these t;hree ranges of ¢ yields the values that the ray may assume while it
is in the cell. In particular, ¢ will range between max(¢{") and min(t{™).

To process the next cell ¢/, we must locate it. This requires us first to determine
its direction, say I, relative to the current cell C. The computation of I is a critical part
of the location process and can not be ignored (see Section 6). The direction depends on
the location of the point, say P, at which the ray exits C. We have three possible posi-
tions — P is either on a vertex, edge, or face of G. Pis on a vertex if f** has the same
value for each coordinate <. Pis on an edge if tf** has the same value for two of the coor-
dinates 3. Otherwise, Pison a face (ie., t hasa different value for each coordinate z).

Since the values of ¢ are not necessarily mtegers and as we need to perform a test
involving equa.hty (not within a tolerance!), we represent ¢ as a rational number {i.e., an
ordered pair consisting of a numerator and a denominator). Comparisons involving dlf-
ferent values of ¢ are made by cross-multiplying the numerators and denominators of the
comparands and comparing the results.

Now that we know the direction of ¢’ with respect to ¢, we must locate it. We
have two alternatives. The first alternative is to use a point location algorithm. We com-
pute a point, say @, that is guaranteed to be in ¢’. Finding the cell containing pomt Qis
- easy. We start at the root of the octree, say G, and descend it based on a comparison of
@ with the center of the block corresponding to @. The descent ceases once we reach a
" leaf node. Thls approach is commonly used [Kapl87, Wyvi85].

The computation of @ is relatively straightforward, although its implementation
Tequires us to pay close attention to details. Q depends on the location of P, the point ai
which the ray exits ¢. Let P=(P,F,P,) and @=(q,,9,,Q,). Let I=(I,I,,1,) be the direc-
~tion of the next cell ¢!. We follow the convention that the left, down, and back fa.ces of

a cell are closed - i.e., if a point lies on one of these faces, then it is in the cell bounded

by them. To calculate @ using this convention we subtract A (where A is very small)
from P; if I;is in the negative (i.e., decreasing) direction of j. A must be no larger than
the width of the smallest possible cell - i.e.,, 1. A can not be smaller than 1 because we
are using integer arithmetic in the process of locating the cell containing Q.

For example, if I='LUB’, then we must subtract one from P, and P, with the

result that Q=(P,—1,F,P,—1). On the other hand, when I=‘RD’, we need only subtract

~one from F, while the remaining values remain the same - i.e.,'Q=(Px,Py—1,Pz). Note that

our conventions with respect to which faces are closed enable us to use the integer parts
of the coordinate values that are not in the 7 direction.. Thus, when I=‘RD’, we use the -

integer parts of P, P, and Py are already integers by virtue of being on the edge of a cell.

The second alternative, and the one we use, makes use of neighbor-finding
methods [Same82, Same89c]. In particular, we find the neighbor of G, say N, in direction
I having a width which is greater than or equal to that of C, If such a neighbor does not
‘exist, then we are at the border of the three—dimensional space, and we exit. If N does
not correspond to a gray node, then we are done (i.e., ¢'=N). Otherwise, we now calcu-
late a point @ that is guaranteed to be in ¢’ which is a descendant of N (recall that N’s
node is gray). We locate ¢’ by applying the point location algorithm described above.

The advantage of this approach over just using the point location algorithm is
that fewer nodes will be visited since we need not descend from the root of the tree. Also,
traversing links in the octree by using neighbor finding is considerably cheaper than the
arithmetic operations that are part of the point location algorithm. : C

‘ When the octree is represented using pointers, .then neighbor finding is imple-

mented by using the FATHER links. On the other hand, a pointer-less octree representa-
tion can also be used [Garg82]. One example is as a collection of the leaf nodes compris-
ing the octree where each leaf node, say P, is represented by a pair of numbers known as
its locational code. The first number is the depth of the tree at which P is located. The
second number is formed by concatenating the base 8 digits corresponding to directional
codes that locate P along a path from the root of the octree. .In such a case, a neighbor-
ing node is located by first manipulating the bits that comprise the second number
corresponding to P based on the direction of the desired neighbor, and then performing a
search. ' - S S

4. SAMPLE IMPLEMENTATION

An implementation of the bottom-up process of tracing a ray through a scene,
represented by an octree, that uses neighbor finding to locate successive cells is given by
the following procedures. The process is controlled by procedure RAY_TRACER. It is
invoked with parameters corresponding to the parametric representation of the traced
ray, a pointer to the root of the octree, and the width of the scene. oo

RAY_TRACER's first action is to determine the value of ¢, if any, for the point,
given by POINT, at which the ray first enters the cell corresponding to the entire scene
and the direction of the ray relative to the face, edge, or vertex containing POINT. This -
is achieved by procedure FIRST.POINT. If POINT lies outside of the sceme, then the

.7_7

process. stops since there are no intersections. Otherwise, the particular cell containing
'POINT is located by use of procedure FIND_3D_BLOCK. The function OFFSET, given in
Table 1, contains multiplicative factors that facilitate the calculation of the coordinate
values of the furthest corners of the sons of each node in procedure FIND-3D_BLOCK. In
particular, OFFSET(A,0) is the multiplicative factor for the calculation of the value of
coordinate A when descending to the son in octant O.

Once the first cell intersecied by the ray has been located, the ray is traced
through successive cells. For each cell through which the ray passes, a record of type cell
- is created that has 6 fields called T_IN, T_OUT; SIZ, PTR, CORNER, and DIRECT. Letting ¢
be a pointer to a record of type cell, T_IN(C) and T_OUT(C) indicate the values of ¢ for
the points at which the ray enters and exits from . SIZ(C) is the width of C’s cell.”
PTR(C) is a pointer to C’s node in the octree. CORNER{C)[1] is the value of the I** coordi-
nate of cell ¢’s furthest corner from the origin. DIRECT(C) is the direction of the next
cell, relative to cell ¢, through which the ray must be traced. Procedure RAY..INTER-
SECTS.. OBJECT-IN-CELL, not given here, performs the actual intersection tests of the ray
with the objects associated with cell ¢. ' I ' ' '

: If procedure RAY_INTERSECTS_OBIJECT..IN-CELL determines that the ray inter-
sects the object, then a reflection or refraction calculation must be made. This is
equivalent to tracing a new ray and is not in the code given here, although it is discussed
below. Otherwise, the ray is traced into the next cell. This cell is determined by use of
neighbor finding via a call to procedure OT_GTEQ.-NEIGHBOR that returns a pointer P.
OT-GTEQ-NEIGHBOR is aided by the function TYPE to determine the type of the
neighbor’s direction (i.c., face, edge, or vertex) so that it can invoke the appropriate
neighbor-finding routine (OT-GTEQ_FACE_NEIGHBORZ, OT-GTEQ-EDGE_NEIGHBOR2, or
OT-GTEQ-VERTEX NEIGHBOR2). - - = ' .

The code for the neighbor finding procedures makes use of the predicate ADJ, and
the functions REFLECT, COMMON_FACE, and COMMON_EDGE to aid in the expression of
operations involving a block’s octants and its faces, edges, and vertices. ADJ(1,0) is true if
and only if octant O is adjacent to the I** face, edge, or vertex of O’s containing block.
REFLECT(1,0) yields the SONTYPE value of the block of equal size (not necessarily a
brother) that shares the 7™ face, edge, or vertex of a block having SONTYPE value O.
COMMON_FAGE(L,0) yields the type of the face (i.e., label) of 0’ containing block that is
common to octant O and its neighbor in the 7 ** direction (1is an edge or a vertex). COM-
MON-EDGE(1,0) yields the type of the edge (i.e., label) of 0’s containing block that is
common to octant O and its neighbor in the '™ direction (7 is a vertex). Tables 2-5 con-
tain their definitions. 2 denotes an undefined value.

If the cell pointed at by P does not correspond to a leaf node, then the point at
which the ray first enters the next cell is calculated and FIND_3D_BLOCK is used to locate
it, starting at P.. The entire process stops when either a ray intersects an object within a
cell or the ray exits the scene (i.e., OT_ GTEQ-NEIGHBOR returns a pointer to NIL). -

To be able to compare different values of £ so that the direction of the next cell

can be determined, we need to compute the minimum and maximum values of ¢£. This
must be done in an exact manner and, thus, we represent the values of # as rational

8

numbers by use of a record of type rational, with two fields NUM and DEN corresponding
to the numerator and denominator, respectively.

The actual comparisons are aided by using procedure COMPARE_T to precompute
pairwise comparisons — i.e., CYX, CZX, and CZY. These comparisons are used by pro-
cedure NEXT_ CELL-DIRECTION to determine the direction of the next cell, relative to the
present cell, that is intersected by the ray. This is facilitated by making use of the sign
of M and functions FACE.DIR, EDGE-DIR, and VERTEX.DIR given in Tables 6, 7, and 8,
- respectively. ' ' : :

At times, we need to calculate the coordinates of a point in a specific cell. This
situation arises when attempting to locate the first cell that is ‘intersected by the ray,.
when attempting to locate a neighboring cell that is smaller than the current cell, and
when setting the CORNER field of a record of type cell. The function CHANGE(Z,4) facili~
tates this task by indicating the smallest amount, with the appropriate sign, by which-
the value of coordinate A changes due to motion in direction I, For example,
CHANGE('RB’,'Z’)=-1 as the value of coordinate z will decrease as a result of motion in .
_ direction ‘RB’. On the other hand, CHANGE(‘RB’,*Y’}=0, as the value of coordinate y is

unaffected by motion in direction ‘RB’. CHANGE is given in Table 9. ' ' P

As stated above, to handle reflection and refraction at a surface properly, we need
to trace the appropriate ray anew. This can be done in the same manner starting at the
point at which the primary ray intersects the surface. The secondary (i.e., reflected and
refracted) ray is also defined parametrically. The only difficulty is that the definition of
the secondary ray will require a larger computer word size to cope with the increase in
the number of binary digits necessary to specify the parameters and values of ¢ correctly.
This is a direet result of the use of rational arithmetic. It can be avoided in part by
using parametric equations in the form of (4)(6) instead of (7)(9). However, this requires
that m be treated as data of type rational in procedure RAY_ TRACER. T

procedure RAY._ TRACER(M,B,W,R);
/* Trace a ray given parametrically by M and B - i.e., 2= m,'#4-b,, through the octree rooted at
R which corresponds to the three-dimensional space of width W with origin at (0,0,0). Wisa
. power of 2. Procedure RAY_INTERSECTS_ OBJECT._IN_ CELL performs object tests in each
each cell through which the ray passes. It is not given here. Its argument is a pointer to a
record of type cell which has fields T_IN,” T.OUT, SIZ, PTR, CORNER, and DIRECT
corresponding to the value of the parameter £ for the entry and exit points, the width of the
cell, a pointer to its node in the octree, the coordinates of its furthest corner (from the origin),
and the direction of the next cell through which the ray must be. traced, respectively. */
begin : . L
- global integer array MB[{X','Y",‘2}; -
value integer W, :
value pointer node R; " :
global integer array SIGN.M{{X’,'Y",'Z’});
" pointer cell C; '
rational pointer array T({X,"Y",'Z'}; -
integer array POINT[{X’,'Y",‘2'}; = -
direction DIR; T
_ integer CYX,CZX,CZY:;
- axis [MIN_AXIS;
~ pointer node P;
P «R;

C+ create(cell) '
for I in {X’,'Y",'Z'} do /* Keep track of the direction of the ray */
SIGN_MI[[] + if M[I]>0 then 0 .
else 1;
/* Find # {or the first entry point of the ray: */
T_OUT(C) + FIRST-POINT(W,DIR);
for I in {X''Y",'2'} do
begin /* Calculate the first entry pomt ¥/
CORNER(C){l] « W; _
POINTII} + [{(M]I]s NUM(T-. OUT{C)))/DEN(T- OUT(C))} + B[1]
. -+ SIGN_MII}+ CHANGE(DIR,I); /* 2] is the fioor of z */
end;
if POINT['X'} <0 or POINT[Y’] <0 or POINT['Z] <0 or
POINT[X'|> W or POINT[‘Y’]> W or POINT[‘Z']|>W
then return /* The ray never enters the space */
else /* Locate the closest cell to the entry point */
FIND_3D_BLOCK(P,POINT,CORNER(C), W);
while true do /* Follow the ray through the spa.ce * /
begin
. PTR(C) « P;
SIZ(C) « W;
T-IN(C) « T-OUT(C);
for Iin {X',"¥",'2'} do
begin /* Oompute a ¢ value for the exit point for each plane */
NUM(TJl]) « CORNER(C)[I] — SIGN-M]l}+ W - BJI};
DEN(T[I]) + M]I]; | - P
end;
COMPARE_ T(T CYX,CZX,CZY);
/* Find the minimum of the values of ¢ usmg ratlonal a.r:thmetlc * /
MIN_AXIS « if CZY<0 then R
: if CZX<0 then ‘2’
else X’ :
else if CYX<0 then ‘Y’
else ‘X’;
DIRECT(C) « NEXT_ CELL_ DIRECTION(MN...AXIS CYX,CZX CZY)
T_OUT(C) + T{MIN. AXIS];
if RAY. INTERSECTS.. OBJECT.IN_ CELL(C) then return
else
begin
'/* Locate the next cell in direction DIRECT(C) usmg nelghbor ﬁndlng */
OT.GTEQ-NEIGHBOR(PTR{C),DIRECT(C),P,W);, - _ _
if null(P) then return; /* Neighbor does not exist */
for I in {XC,'Y",‘2'} do /* Compute location of next cell */
OORNER(C)[I] CORNER(C)[I]
+ if CHANGE({DIRECT(C),I)= 1 then W . :
else if CHANGE(DIRECT(C),I)=-1 then -SIZ(C) .
else if (CORNER(C)[I] mod W)= 0 then 0
else W - (CORNER{C)[I] mod W); o
if GRAY(P) then /* Neighbor is smaller */
begin / * Compute a point within the neighbor */
for I in {X',*Y",'2’} do f* |z} is the floor of z ¥/ —
POINT(I] « |(M]I]s NUM{T_ OUT(C)))/DEN(T-. OUT(C))] + B[I}
+ SIGN_M[I}» CHANGE(DIRECT(C),T); .
FIND_SD_BLOGIQP POINT,CORNER(C),W); /* Locate celi *
end;
end;
end;
.end;

10

pointer rational procedure FIRST_POINT(W,DIR);: SRR
/* Return a pointer to a record containing the value of the ray parameter ¢ corresponding to the
point at which the ray first enters the three-dimensional space of width W through which the
ray is traced. DIR is set to the direction of the ray. */ . - ' :
begin
value integer W;
reference direction DIR;
rational pointer array T[{'X’,'Y’,'2'};
global integer array M,B,SIGN_M[{X’,Y",*Z'}];
integer CYX,CZX,CZY;
axis L MAX AXTS;
for I in {X,'Y",‘2'} do
begin /* Compute a ¢ value for the entry point for each plane */
NUM(TII]) « SIGN_M]I]+ W — B[1];
DEN(T(T]) + M{1);
end;
COMPARE.. T(T,CYX,CZX,CZY);
/* Find the maximum of the values of ¢ using rational arithmetic: * /
 MAX_AXTS + if CZY>0 then ' R T
if CZX>0 then ‘7’
else X
else if CYX>0 then ‘Y’
' else ‘X’; : N
DIR « NEXT- CELL_DIREOTION(MAX.AXIS,CYX,CZX,CZY); s
return(TMAX.. AXIS)); o o
end;

procedure COMPARE_ T(T,CYX,OZX,CZ'Y); S - .

/* Compute CYX, CZX, and CZY. CYX is the pairwise comparison of Tf'Y"] and T['X], CZX is-
: the pairwise comparison of T[‘Z’] and T[X’], and CZY is the pairwise comparison of T{'Z’] and
Y], */ : _ e T
" begin

value rational pointer array TH{X, Y, 2};
- reference integer CYX,CZX,CZY: .

CYX + abs{NUM(T['Y’]}+ DEN(T['X])) - abs(NUM(T["X’])}« DEN(T[Y"]));
CZX « abs(NUM(T|'%|)« DEN(T['XC])) ~ abs(NUM(T[XC|}s DEN(T|'2")));
CZY « abs(NUM(T|'Z']}+ DEN(T{"Y"]}) ~ abs(NUM(T[Y"]}s DEN(T[‘Z"})):

end;

direction procedure NEXT_CELL_DIRECTION(A,CYX,CZX,CZY);
~/* Return the direction of the next cell through which the ray must be traced. ‘A is the axis

il

corresponding to the value of ¢&. CYX, CZX, and CQZY are pairwise comparisons of the values of - o .' .

! for the bounding sides of the cell through which the ray is exiting: */ -

begin e e ARSI

- value axis A; ' '
value integer CYX,CZX,CZY: '
global integer array SIGN-M[{X',"Y",'Z"}};
return(if A= ‘2’ then FACE_DIR(‘Z’,SIGN_M['Z"])

else if A=‘Y" then

it CZY=0 then EDGE_DIR(‘YZ'-,SIGN..M[‘Y’],SIGN_M[‘Z’])
else FACE_DIR(‘Y’,SIGN-M[Y’]) .

else if CZX=0 then . R) S o
if CYX=0 then VERTEX..DIR(SIGN...M{‘X'],SIGN..M{‘Y’],SIGN..M[‘Z']) o
else EDGE“DIB(‘XZ’,SIGN_M[‘X’],SIGN_M[‘Z’}) R

else if CYX=0 then EDGE_DIR(‘XY SIGN-M[X'|, SIGN_M[Y"]} = -

else FACE_DIR(‘X",SIGN_M[X"]}); A T

end;

procedure FIND. 8D_BLOCK(P,POINT, FAR,W);

11

/* P points to a node corresponding to a block of width W having its furthest corner from the ori-
gin at FAR (i.e., FAR[X'|, FAR['Y’], and FAR['Z')}. Find the smallest block in P containing
the voxel whose nearest corner to the origin is at POINT. -If P is black or white, then return
the velues of P, W, and FAR, otherwise, repeat the procedure for the son of P that contains
POINT. */

begin

reference pointer node P;

' value integer array POINT[{X’,‘Y’,'Z’}];
reference integer array FAR[{'X','Y",'2’}];
reference integer W,
axis [;
octant Q;
while GRAY(P) do

begin
W« W/2;
Q + GET- OCTANT(POINT|'X'], FAR[X| - W,
POINT|'Y'] FARY'] - W,
POINT['Z"|,FAR['Z"] -
for I in {'X’,'Y",'2’} do FAR[]] + FAR[I] - OFFSET(I QeW;
P + SON(P,Q);
end;
" end;

octant procedure GET_ OCTANT(X, XCENTER .Y, YCENTER,Z,ZCENTER);, -
/* Find the octant of the block rooted at (XCENTER YCENTER,ZCENTER) that conta.ms
XYz). */
begin
value integer X, XCENTER, Y,YCENTER,Z, ZC'ENTER
return (if X < XCENTER then - .
if Y < YCENTER then :
it Z < ZCENTER then ‘LDB’
~ else ‘LDF
else if Z < ZCENTER then ‘LUB’
else ‘LUF"
else if Y < YCENTER then
if Z < ZCENTER then ‘RDB’ :
else ‘RDF '
else it Z < ZCENTER t.hen 'RUB’
. else ‘RUF");

end;

. procedure OT_ GTEQ_NEIGHBOR(P D Q,W’) - ; :

/* Determine the type of direction D and invoke the a.ppropna.te nenghbor—-ﬁndmg procedure Q
will contain the neighbor of node P, of size greater than or equal to P, in direction D. W
denotes the length of a side of node P and the length of a s1de of node Q If a nelghbonng
node does not exist, then return NIL. */

begin

value pointer node P;
value direction D;
reference pointer node Q;
reference integer W;

- if TYPE(D)=FACE’ then OT_GTEQ__FACE_NEIGHBORz(P D Q,LOG2(W)) e
/¥ LOG2 returns the base 2 log of W */

else if TYPE(D)= ‘EDGE’ then
OT- GTEQ-EDGE_NEIGHBOR2(P,D,Q, LOGZ(W)) .
else OT_GTEQ- VERTEX. NEIGHBOR2(P,D,Q,LOG2(W));

end;

recursive pointer node procedure OT..GTEQ_FACE_NEIGHBOR(P1,Q,L);

12

/* Return in Q the face-neighbor of node P, of size greater than or equal to P, in direction I. L

denotes the level of the tree at which node P is initially found, and the level of the tree at o

which node Q is ultimately found. H such a node does not exist, then return NIL. For an
octree corresponding to a 27X 2" 2" image array, the root is at level 1 and a node at level §is
ab a distance of n—1 from the root of the tree. */ R L ' .
begin :
value pointer node P,
value face [; :
reference pointer node Q;
- reference integer L;
L+L-+1; :
if not(nul{FATHER(P))) and ADJ(I,SONTYPE(P)) then
/* Find a common ancestor */
OT_GTEQ- FACE NEIGHBOR2(FATHER(P),1,Q,L)
else Q « FATHER(P);
/* Follow the refiected path to locate the neighbor ¥
if not(null(Q})) and GRAY(Q) then

begin .
Q+ SON(Q,REFLECT(I,SONTYPE(P)));
LelL-y1; T B ’
“end; '
end;

recursive pointer node procedure OT_ GTEQ-EDGE_NEIGHBOR2(P,IQL);

/* Return in Q the edge-neighbor of node P, of size greater than or equal to P, in direction I, L
denotes the level of the tree at which node P is initially found, and the level of the tree at
which node Q is ultimately found. If such a node does not, exist, then return NIL. */

begin

value poiater node P;
value edge I
reference pointer node Q;
reference integer L;
L«L+1
- /* Find 2 common ancestor */
_ if nuli(FATHER(P)) then Q + NIL
else if ADJ(I,SONTYPE(P)) then
OT-GTEQ-EDGE.. NEIGHBOR2(FATHER(P),1,Q,L)
else if COMMON_FACE(I,SONTYPE(P)) © then .
OT_GTEQ-FACE. NEIGHBOR2(FATHER(P), COMMON._FACE(L,SONTYPE(P)),Q,L)
else Q «+ FATHER(P); ' _ N
/* Follow opposite path to locate the neighbor */
if not{null(Q)) and GRAY(Q) then

begin
Q + SON(Q,REFLECT(I, SONTYPE(P)));
L+«L-1; '
end;
end; |

- recursive pointer node procedure OT_ GTEQ-VERTEX. NEIGHBOR2(P,I,Q,L);
/* Return in'Q the vertex-neighbor of node P, of size greater than or equal to P, in direction I. I
_denotes the level of the tree at which node P is initially found, and the level of the tree at
. which node Q is ultimately found. If such a node does not exist, then return NIL. */ - '
begin : : :
value pointer node P;
value vertex I; : ' : : : S
" reference pointer node Q; ' : ' '
reference integer 1.
L«L+1;

13

/* Find a common ancestor */
if null(FATHER(P)) then Q + NIL
else if ADJ(I,SONTYPE(P)) then
OT-GTEQ_VERTEX_ NEIGHBORz(FATI-IER(P) LQL)
else if COMMON_ EDGE(L,SONTYPE(P)) {J then .
OT-.GTEQ. EDGE_ NEIGHBOR2(FATHER(P), COMMON_ EDGE(], SONT’YPE(P)) QL)
else if COMMON_FACE(I,SONTYPE(P)) Q then :
OT_GTEQ_FACE.. NEIGHBORZ(FPATHER(P), COMMON- FACK(L,SONTYPE(F)),Q.L)
else § « FATHER(P); -
/* Follow opposite path to locate the neighbor */
return(if not{null{Q)) and GRAY(Q) then

begin
Q + SON(Q,REFLECT(], SONTYPE(P)))
L+L 1;
end;
end;
Table 1. OFFSET(A,0).
O (octant
A (axis) ()
IDB | IDF ; LUB | LUF | RDB | RDF | RUB | RUF
X 1 | 1 1 1 o |. 0 0 0
Y 1 i 0 0 1|1 0 0
Z 1 0 1 0 1.1 0] 1 0

14

Table 2. ADJ(1,0).

for Bt B B B B B B fo oy BB B T B B B R e B B B B B

el NN NN S A R R A A A T

FTm.._FFTFFFFTFFTFTF,FFFF.FFTF.F

N o L I o S o Ty

O (octant)

LUF | RDB | RDF | RUB | RUF

R R B R BB B R B B fe b B B BB B B B e [B f

TFFTTFFTTFFFFFFFT.FFF.TFFFFF

TFTFF‘TTFFTF.FFFFTFFFTFFFFFF

LDB | LDF | LUB

T..‘FKT.FTFTFTFF.FFFTFFFTFFFFFFF

I (direction)

amamanARANAREEAREEEEEEE50Y

LD

15

Table 3. REFLECT(I,0).

 EEFTTEFEEEE EEEEEEEEEEEEEE forcnncncarsacnnanand
F88885588558555505555555585Y | | [Herecnccnnmcrnaananas
Buazpissssaysasspssesesszey | Jacercuaadonaccncans
FlEEEEEEEEEEEEEEEEEFEEEEEETE B E T Py
S ETEEF LI TR EFEEE LT TEFEEEE BN | I o,
 EEEEEEEEL LI F L L L EEEEEr T r L N B E T T T T T T
N5B558585800285855528888588 3] [denrceceranancenanaes
45829358200 80002802EREE00E | | [geocreonconnonconnnas
M “mabmnARANEREEANSEAEE5858 m B334RRRRAASERE8R858)

18

Table 5, COMMON_EDGE(],0).

. O (octant)
I (direction)
LDB | LDF | LUB | LUF.| RDB | RDF | RUB | RUF
LDB o LD | LB o DB 0| @ n
LDF LD 0 n {LF | q DF n 0
LUB LB Q Q8 | w 0 Q| uB 0
LUF a IF |Ww | a | o o o | UF
RDB DB a 8.1 @ | Q| RD | RB a
RDF a DF | 0 o RD 0 g | RF
RUB | 2@ |uvB| o | RB o o RU
RUF o o g | UF g- | RF | RU Q
Table 6. Fe=FACE-DIR(A,SIGN_M[A]),
A (normal axis) | SIGN.M[A] | F (direction)
X 1 L
X 0 R
Y 1 D
Y 0 U
Z 1 B
z 0 F
Table 7. E=EDGE- DIR(P1J,SIGN- M[T},SIGN_M[J}).
P1J (normal plane) | SIGN_M[1] | SIGN-M{[J] | E (direction)
XY ' 1 1 LD
XY 1 o ‘LU
XY 0 1 RD
XY 0 0 RU
Xz 1 1 LB
Xz 1 0 LF
. XZ 0 1 ‘RB.
Xz 0 0 RF
L YZ “1 1 DB
B ¢/ 1 0 DF
YZ 0 1 UB
Y2 0 0 UF
Table 8. V= VERTEX_DIR(SIGN-.M[X],SIGN_M[Y],SIGN_M(z)). |
SIGN-M[X] | SIGN.M[Y] SIGN-M[Z] V (direction)
1 1 0 - LDF
1 0 1 LUB
1 o 0 LUF
0 1 1 . RDB
0 1 .0 RDF
0 0 1 RUB
0 0 0 RUF

_17

Table 9. CHANGE(LA).
A . Afaxis) |
I (direction) -
- x|y lzf
L- -1} 0] o
R 1] o] o
D 0|-1}¢ 0
U ofp 1] o
B o o] -1
" F cop ol 1.
LD -1{-1} o]
LU 1| 1{ 0
LB -1 0]
LF -1 0of 1
RD. 1f~1] 0]
'RU 11110
RB 1] 0f-1
" RF 1{ o0} 1
DB o|~1]-1
DF o[-1] 1
UB 0] 1}-1
UF 6| 1] 1
LDB -1]-14-1
LDF -1|-1] 1
LUB “-1] 1{-1
LUF -1] 1) 1
RDB 1{-1]-1
- 'RDF | 11| 1}
RUB - 1| 1}-1
RUF 1l 1] 1

5. EXAMPLE

It is difficult to give an exa,mple of the aIgorlthm in three dimensions. Thus,
instead, we show below how ray R is traced through the two—dimensional scene given in
Figure 3. The algorithm, as.encoded by procedure RAY_ TRACER and the associated pro-
cedures, is also valid for two—dimensional scenes. The only necessary modlﬁcatlons are
minor and are described briefly below:

(1) 'Repla,ce loops and data structures that cycle through X', Y, and ‘2’ by just X’ and..
Y. Thus FIND-. 3D_BLOCK is replaced by FIND_ 2D_BLOCK .

(2) Remove variables 0ZX and CZY, as well as all tests mvolvmg them. This means that
the conclusion of the test (i.e., the action, or actions, to be taken had the test’s
evaluation yielded a value of true) is also removed.

(3) Remove all tests mvolvmg ‘2’ and the associated actions to be ta,ken had the test’s
' eva.lua.tlon yielded a va.lue of true :

(4) Let the directions W, E, s, N correspond toL, R, D, U, respectwely, and snnphfy '
- Tables 6, 7, and 9. Table 8 is no longer necessary.

18

Continuing with our example, the scene is represented as a PM; quadtree in a
25% 25 space with an origin at the lower left corner. The viewpoint is assumed to be at
the point (-8,23). Ray R is assumed to pass through the point (12,16). Therefore, R is
defined parametrically by : ' -

2=20-1—8

y=—T--+23.

R first enters the scene at the point defined by t=2/5 - i.e., (0,101/5). This'is -
obtained by taking the maximum- of ti"=9/5 computed at z=0 ‘and £"=—9/7 com-
puted at y=32. The point (0,101/5) is contained in cell 1. Cell 1 is exited at the point
defined by ¢=4/5 — i.e., (8,87/5) in the easterly direction, and is obtained by taking the
minimum of {2%=4/5 computed at z=8, and tJ¥=1 computed at y=16. This process is
repeated for the rest of the cells intersected by the ray and its result is shown in Table

Values of ¢ are tabulated as ordered pairs where ‘num’ and ‘den’ correspond to t's.
numerator and denominator, respectively. Notice that ot t2% for cell 2, which means
that CYX=0 and MIN.AXIS is set to ‘X’ in procedure RAY_ TRACER. Procedure NEXT..-
CELL-DIRECTION indicates that the direction of the next cell is to be found in EDGE_-
DIR(‘XY",0,1) ~ i.e., ‘RD’, which is the same as ‘SE’. The ‘SE’ neighbor of cell 2 is cell 3
and is located by use of the two-dimensional analog of procedure OT-GTEQ.-NEIGHBOR..
Since cell 3 is larger than cell 2, there is no need to make use of procedure FIND_2D.-
BLOCK to locate it. . B - SR ' : '

Table 10. Result of tracing ray R throughk Figure 3.
¢ # t
cell | size " £ l & z v direction of | neighbor
¢ t
num | den | num | den | num | den | " | mext cell type
1 8 16 20 =7 | -7 16 20 8 87/5 R E
2 4 20 20 -7 -7 20 20 12 | 16 RD SE
3 16 24 20 -23 =T 24 20 16 73/5 R E
4 8 32 20 -15 =7 32 | 20 24 59/5 R E
5 4 36 20 -15 -7 36 20 28 52/5 R E
6 | 4 | 40 | 20 [15] 7] 40 { 20| 32| o R E

6. CONCLUDING REMARKS

We have given an algorithm for tracing a ray in a scene represented by an octree
by using neighbor finding. As with any application in computer graphics numerical preci-
sion is an important issve. We have skirted this issue, in part, by using rational arith-
metic. Such an approach is adequate as long as secondary rays do not result in the crea- .
tion of more secondary rays (e.g., a ray is reflected off several surfaces). - The problem is
that the number of bits that are required to maintain the same amount of precision
~ grows geometrically. i o ' o - R

19

Our algorithm is quite long because a correct implementation requires the con-
sideration of many subtle points. In fact, Wyvill and Kunii [Wyvi85] give a much shorter
algorithm. Their algorithm has a similar structure to ours although it uses point location
rather than neighbor finding. Also, it adheres to different conventions. In the following,
we briefly point out how their solution could go awry.

First, let us examine more closely our convention that for a ray o pass through a
cell (as well as intersect an object), it must enter and exit the cell (object) at two distinct
points. As an example of what could go wrong if we don’t adhere to this convention, con-
sider Figure 3. Assume the existence of a ray that passes from cell 5 to cell 11 through -
the SW corner of cell 5, and suppose that we say that the ray passes through cell 4 before
reaching cell 11. Let (a;,a,) denote the point at which cells 5 and 11 touch. Cell 4 is the
next cell intersected by the ray if we apply procedure FIND_2D_BLOCK to the point -
(a;—1,ay). Now, suppose cell 4 is completely occupied by an object such that. the object’s
southern and eastern boundaries coincide with the southern and eastern boundaries of the
cell. This means that a false object intersection will be reported. On the other hand, cell
12 is the next cell intersected by the ray if we apply FIND-2D.BLOCK to the pomt
(@z,8,~1) in which case no false object intersection is reported. SR o

Wyvﬂl a.nd Kunii’s a.lterna,tzve algorlthm identifies the next cell by calculating the - -
coordinates of a point {i.e., POINT) that is purportedly guaranteed to be in that cell and
then locates it by use of a process similar to that given by FIND_3D_BLOCK. It does not
compute 2 dlrectlon as done in RAY_ TRACER. This method of calculating POINT is similar
to the method used in RAY.TRACER with the following minor difference. It subtracts
- SIGN_M(I] from the numerator of the ¢ value corresponding to the 1** coordinate of the
exit point while we, instead, add the term SIGN_M][i}* OHANGE(D[RECT(C) I) in the compu-
tation of POINT(I]. Thelr a}gorlthm is given below: '

begin
rational array T[{‘X’ Y, ‘Z'};
axis LK;
for I in {'X’,Y",'Z2’} do
begin
NUM(T[I]) « GORNER{I]-SIGN_ M[I]# W—B[I]—SIGN_M[I]
DEN(T]I]) « M[I}
end;
K+« X"
forIin {'Y°'Z'} do
begin
if abs(NUM(T{K])» DEN{T[I]))>abs(NUM(T]{I]}* DEN(T[K])) then KeI;
end; ’
for I in {'3C,'Y",'Z’} do
POINTI} + M[I]+ NUM(T[K])/DEN(T[K))+BI[I];
end; . SR o

_ This algorithm works for ray R in Figire 3. However, if we modify Figure 3 so
that cell 3 is subdivided in the same way as the SE quadrant of the entire quadtree, then
this algorithm can yield an erroneous result. This can be seen by tracing ray R through
the modified figure. The problem is that procedure RAY. TRACER goes to cell 3 after cell
2, whereas the alternative algorithm calculates POINT=(12,16), which FIND_2D_BLOCK
determines to be in cell 10. From cell 10, the alternative algorithm computes

20

POINT=(14,15) instead of the correct value of POINT=(12,15). Although in the case of
the original Figure 3, FIND..2D_BLOCK determines both of these points to be in cell 3, this
is not the case in the modified figure. The result is that a transition is made to the
wrong cell. o

One way to fix the alternative algorithm is to remove the subtraction of SIGN_M]l]
from the numerator of the ¢ value corresponding to the I coordinate of the exit point.
Instead, SIGN-M[J] is subtracted in the computation of POINT[J] - where J is the coordinate
corresponding to the minimum value of £, Wyvill and Kunii claim that it is not necessary
to compute the exact direction of motion. In particular, when a ray reaches more than _
one boundary simultaneously, they arbitrarily pick one of the boundaries, and move in a
direction perpendicular to it.

Unfortunately, the above fix will not always yield the correct result. For example,
in two dimensions, a motion in the SW direction is decomposed into two motions — one
each in the S and W directions. This can lead to an error as described earlier in this sec-
tion when we discussed the ramifications of the convention that for a ray to pass through
a cell (as well as intersect an object), it must enter and exit the cell {object) at two dis-
tinct points. Thus, the only way to ensure the correctness of the alternative algorithm is
to make it identical to procedure RAY_ TRACER (i.e., to compute the exact direction of
the neighboring cell relative to the current cell).

ACKNOWLEDGMENTS

I have benefitted greé.tly _from discussions with Robert E. Webber.

REFERENCES

. [Ayal85] ~ D. Ayala, P. Brunet, R. Juan, and I. Navazo, Object representation by
means of nonminimal division quadtrees and octrees, ACM T raﬂsactsons on G'raphzcs 4,
1(January 1985), 41-59. :

‘2. [Carl85] - I. Carlbom, I. Chakravarty, and D. Vanderschel, A hierarchical data struc-
ture for representing the spatial decomposition of 3—D objects, IEEF Oomputcr G-'raphws
and Applications 5, 4(Apr11 1985), 24—31

_ [Cyru78] - M. Cyrus and J. Beck, Generalized two— and three—dimensional clipping,
C’omputera é’d Graphzcs 3 1(1978), 23-28. .

4. [Fuji85] ~ K. Fujimura and T.L. Kunii, A hierarchical space mdexmg method
_Proceedmgs of Computer Grapkzcs ’85, Tokyo, 1985 Ti-4, 1—14 :

5. [Fuji86] — A. FuJImoto T. Tanaka, and K. Iwata, ARTS Accelerated ray-tracing sys-

. tem, IEEE Oomputer Graphzcs and Apphcatw'ns 6, 4(Apr11 1986) 16-26.

[Garg82] - L Ga.rga.ntml, Linear octtrees for fast processing of three~dimensional

21

objects, C’omputer Graphics and Image Processing 20, 4(December 1982), 365-374.

[Gla584] A.S. Glassner, Space subdivision for fast ray tra.cmg, IEEE C’omputer
G’raphzcs and Applications 4, IO(October 1984), 15-22.

8. [Hunt78] — G.M. Hunter, Efficient computation and data structures for graphics;
Ph.D. dlsserta.tlon, Department of Electrical Engineering and Computer Sclence, Prince-
ton University, Princeton, NJ, 1978. - :

[Hunt81] - GM Hunter, . Geometrees for interactive vmuallza.tmn of geoIogy an
evalua.tlon System Science Department -Schlumberger-Doll Research, Rldgeﬁeld CT,; .
1981. '

10. [Jack80] — C.L. Jackins and S.L. Tanimoto, Oct~trees and their use in representing -
three—dimensional objects, Computer Graphics and Image Pracessmg 14, 3(November
1980), 249-270. o | | .

11. [Jans86] — F.W. Ja.nsen, Data structures for ray tra.cmg, Data Structures Jor Raster
- Graphics, F.J. Peters, L.R.A. Kessener, and M.L.P. van Llarop, Eds., Sprmger Verlag;
Berhn, 1986, 57-73. _

[Kapi85] — M.R. Kaplan, Space—tracing: a constant tlme ray—-tracer, SIGGRAPH’85
: Tutorla.l on the Uses of Spa,tIa,l Coherence in Ray-Tracing, San Francisco, ACM, July
1985.

13. [Kap187] M. Kaplan, The use of spatial coherence in ray tracing, in Techniques for
Computer Graphics, D.F. Rogers and R.A. Earnshaw, Eds. , Springer—Verlag, New York,
1987, 173-193.

14. [Klin71] — A. Klinger, Patterns and search statistics, in Optimizing Methods in
Statistics, J S. Rustagi, Ed., Academic Press, New York, 1971, 303-337..

15. [Meag82] — D. Meagher, Geometnc modelmg using octree encodmg, Computer
‘Graphics and Image Processing 19, 2(June 1982), 129-147.

16. [Nava86a] — I Na,vazo C’ontnbucm a les tecnxques de modela.t geometrlc d’objectes
poliedrics usant la COdlﬁc&ClO amb arbres octals, Ph.D. dissertation, Escola Tecnica Supe-
rior d’Enginyers Industrials, Department de Metodes Informatics, Universitab Pohtech-
~ nica de Barcelona, Barcelona. Spain, January 1986. L '

17. [Nava86b] — I. Navazo, D. Aya.la. and P. Brunet, A geometric modeller based on the
exact octree representation of polyhedra, Escola Tecnica Superior d’Enginyers Industrials,
Department de Metodes Informatics, Universitat Politechnica de Barcelona, Barcelona,
Spain, January 1988.

8. [Quin82] - KM. Quinlan and J.R. Woodwa,rk A spa.tla,lly—segmented solids da,ta,base
- justlﬁcatlon and design, Proceedmgrs of 0AD’82 C’onference, Butterworth Gulldford
Great Britain, 1982 12&~132 Dol _

22

19. [Roge85} — D.F. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill,
New York, 1985. :

20. [Same82] — H. Samet, Neighbor finding techniques for images represented by quad-
trees, Computer Graphics and Image Processing 18, 1(January 1982), 37-57.

21. [Same84] - H. Samet, The quadtree and related hierarchical data structures, ACM
Computing Surveys 16, 2(June 1984), 187-260.

22. [Same89a] — H. Samet, Design and Analysis of Spatial Data Structures: Quadirees,
Octrees, and Other Hierarchical Methods, Addison-Wesley, Reading, MA, 1989.

23. [Same89b] — H. Samet, Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS, Addison—Wesley, Reading, MA, 1989.

24. [Same89c] ~ H. Samet, Neighbor finding in images represented by octrees, Computer
- Vision, Graphics, and Image Processing, 1989 (also University of Maryland Computer
Science TR-1968). o :

25. [Same85] — H. Samet and R.E. Webber, Storing a collection of polygons using quad-
trees, ACM Transactions on Graphics {, 3(July 1985), 182-222 (also Proceedings of
Computer Vision and Pattern Recognition 83, Washington, DC, June 1983, 127-132; and
- University of Maryland Computer Science TR-1372). _ ‘ ' ’

26. [Same88a] ~ H. Samet and R.E. Webber, Hierarchical data structures and algorithms
for computer graphics. Part I. Fundamentals, IEEE Computer Graphics and Applications
8, 3(May 1988), 48-68.

27. [Same88b] — H. Samet and R.E. Webber, Hierarchical data structures and algorithms
for computer graphics. Part Il. Applications, IEEE Computer Graphics and Applications
8, 4(July 1988), 59-75. | . -

28. [TammSi] — M. Tamminen, The EXCELL method for efficient geometric access to
data, Acta Polytechnica Scandinavica, Mathematics and Computer Science Series No. 34,
Helsinki, Finland, 1981, '

- 29. [Vand84] - D.J. Vanderschel, Divided leaf octal trees, Research Note, Schlumberger—

- .Doll Research, Ridgefield, CT, March 1984, '

30. [Whit80] — T. Whitted, An improved illumination model for shaded ._display. Com-
munications of the ACM 23, 6(June 1980), 343-349. '

- 31. [\NyyiSE] - G. Wyvill and T.L. Kunii, A functional model for constructive solid
geometry, Visual Computer 1, 1{July 1985), 3-14. ‘ '

23

*uoTieluassadexr 9913 S3T (0) pue uco.ﬂuﬁmomso_om@ : .
-~ YPOTY 9231300 uorbex s3T (q) {303[Ho TRPUOCTSUSWTD-59aY]} STdwexy "(B) °*T 2anbtg

(o) | _ (@ . R (e)

2IN0l68L9S

(2}

(b)

S e

Figure 2. (a) Example three-dimensional object and
: - (b) its corresponding PM octree. R

S

r

00

Figure 3. _ PMl quadtree representation of a polygon. The
cells intersected by rays R and S, emanating from
~ the viewpoint, are labeled. . ' |

Figure 4. tghree-dimensional | Figure 5. Three orthogonal
' coordinate system. - partitions of a
cube.

LUF¢

LOF

_ Figure 6. Labeling of faces, edges, and vertices based on the
o partitioning defined in Figure 5. -

v

S S
RDB | | | E

Figure 7. Labeling of octants
based on the 7
partitioning defined
in Figure 5 (octant

- LDB. is not visible).

Figure 8. Numeric labeling of
octants based on the
partitioning defined
in Figure 5 (octant 0
is not wvisible).

(a) . (b) (c)

- Figure 9. Example of (a) a face neighbor, (b) an.edge neighbor, and
(c) a vertex neighbor.

Light source —:(;1—

| / Lcighf source

I . . r .
Viewpoint ,’ d _» Reflected

- ray

{—

Secondary rays

- ~a_ Refracted
ray

Primary rays

N
<
\\

Figure 10. Illustration of ray tracing. Solid lines correspond
L - to primary rays while broken lines correspond to
secondary and light source rays.

