— " Visual—
Computer

Approximating
CSG trees of
moving objects *

Hanan Samet
and Markku Tamminen '

Computer Science Department, University of
Maryland, College Park, MD 20742, USA

A discussion of the relationship between
two solid representation schemes is pre-
sented: CSG trees and recursive spatial
subdivision exemplified by the bintree, a
generalization of the quadtree and octree.
Detailed algorithms are developed and an-
alyzed for evaluating CSG trees by bintree
conversion. These techniques are shown to
enable the addition of the time dimension
and motion to the approximate analysis
of CSG trees. This facilitates the solution
of problems such as static and dynamic
intetference detection. A technique for
projecting across any dimension is also
shown. For “well-behaved” CSG trees the

- execution time of the conversion algorithm
is directly related to the spatial complexity
of the object represented by the CSG tree
(ie., as the resolution increases, it is
asymptotically proportional to the
number of bintree nodes and does not de-
pend on the size or form of the CSG tree
representation). The set of well-behaved
CSG trees include all trees that define mul-
tidimensional polyhedra in a manner that
does not give rise to tangential intersec-
tions at CSG tree nodes.

Key words: CSG — Solid modeling — Bin-
trees — Hierarchical data structures — Time
— Motion — Interference detection

* This is an expanded version of a paper titled “Bin-
trees, CSG Trees, and Time” which appeared in Pro-
ceedings of the SIGGRAPH '85 Conference, San
Francisco (July 1985), pp. 121-130. This work was
supported in part by the National Science Founda-
tion under Grants DCR-83-02118 and IRI-88-02457
and in part by the Finnish Academy

¥ Deceased on August 5, 1989

182

1 Introduction

Constructive solid geometry (CSG) uses trees (CSG
trees) of building block primitives (parallelepipeds,
spheres, cylinders, etc)), combined by geometric
transformations and Boolean set operations as a
representation of 3D solid objects (Requicha 1980;
Voelcker and Requicha 1977). Each primitive solid
can be decomposed into a subtree whose leaves
are halfspaces, each described by an equation of
the form:

F&x,p,2)>0.

Substitution of this subtree for every occurrence
of that primitive in the original CSG tree gives
rise to an expanded tree having only halfspaces
as leaves. In the present article we shall assume
this simple halfspace formulation of CSG (see also
Okino et al. 1973; Woodwark and Quinlan 1982).
Clearly, the CSG approach can be used to describe
objects of any dimensionality and many interesting
solid modelers have been based on it (Requicha
and Voelcker 1982, 1983).

A bintree represents discrete solid objects of arbi-
trary dimensionality {e.g., binary images in two di-
mensions) by a binary tree defining a recursive sub-
division of space and recording which parts are
empty (WHITE), and which are solid (BLACK).
The bintree is a dimension-independent variant of
the more familiar quadtree and octree representa-
tions. In Requicha’s (1980) taxonomy these meth-
ods are classified as cell decompositions. Samet
(19904, b) gives a comprehensive survey and bibli-
ography of quadtree- and octree-related methods.
Mentions of arbitrary dimensionality are found in
the literature (Hunter 1978; Jackins and Tanimoto
1983; Meager 1980; Yau and Srihari 1983); how-
ever, few concrete applications have been demon-
strated.

Figures 1 and 2 are examples of solids described
by CSG trees. The icosahedron of Fig. 1 is defined
by the intersection of 20 linear halfspaces, while
the carburetor of Fig. 2 is described by 55 linear
and 19 quadratic halfspaces (Jansen and van Wijk
1984). The latter contains 2 spheres and 1 ellipsoid,

- the rest being cylindrical halfspaces. The figures

have been generated by applying the methods dis-
cussed in this paper to hidden surface viewing (Ko-
istinen 1985a). Figure 1a contains a shaded image
in which voxels with more than one active half-
space (i.e., “edges”) are BLACK. This demon-
strates the conversion process. Figure 1b contains
the corresponding bintree at resolution 32 with
hidden lines removed.

The Visual Computer (1990) 6:182-209
© Springer-Vezlag 1990

£he

It has been known for some time that octree-like
recursive subdivision can facilitate the evaluation
of CSG trees; e.g., the analysis {Lee and Requicha
1982a, b; Wallis and Woodwark 1984) and display
(Woodwark and Quinlan 1982) of solid objects mo-
deled by them. See Cohen and Hickey 1979 for
an earlier reference to a similar method for analyz-
ing convex objects of arbitrary dimensionality. A
hardware processor with such a capability is de-
scribed by Meagher (1984). In this paper we con-
tinue this work by demonstrating the simplicity
and efficiency of algorithms based on bintrees.
Time and motion are important elements of ad-
vanced solid modeling. In particular, given a mov-
ing object we may wish to determine whether it
intersects a stationary object (static interference de-
tection) or whether it intersects another moving ob-
ject (dynamic interference detection). Even though
it appears that the time dimension can be added
to CSG trees in a conceptually simple fashion, rath-
er little attention has been focussed on CSG trees
in a dynamic situation (but see Cameron 1984).
Perhaps this is due to the difficulty of evaluation
in the now 4D space.

Static interference detection is discussed by Boyse
(1979) but only boundary representations are con-
sidered. Tilove (1981, 1984) has provided a good
analysis of the equivalent “NULL object detec-
tion” problem in the CSG setting. Our work seems
to complement that of Tilove. We do not repeat
his formal analysis of the “pruning” of CSG trees,
but show in detail how a CSG tree can be efficiently
pruned against an adaptable grid (i.e., bintree), even
in the case of nonbounded halfspace primitives. We
also show that for “well-behaved” CSG trees, the
amount of work involved in pruning the CSG tree
against all the cells of such an adaptable grid is
asymptotically proportional to the number of cells
and does not depend on the number of nodes in
the CSG tree representation.

Although we have worked mainly with the bound-
ary modeler GWB (Mantyla and Sulonen 1982)
and found bintrees useful in this setting also, here
we shall only discuss the CSG solid representation
scheme. We find the simplicity of the algorithms
relating the CSG and bintree representations strik-
ing when compared with algorithms for converting
boundary representations to bintrees (Tamminen
and Samet 1984).

In the rest of this paper we show how bintree con-
version provides an efficient and dimension-inde-
pendent tool for evaluating CSG trees. The time

Visual —

Computer

v
%

(’

(K
Pt

v

Fig. 1 a, b. Example of an icosahedron. a shaded image; b bin-
tree at resolution 32

dimension is handled without extra conceptual
overhead. Our emphasis is on CSG trees defined
by linear halfspaces and on motion along a piece-
wise linear trajectory; however, the techniques are
shown to extend to the general case. We present
and analyze the evaluation (conversion) algorithm
and compare 3D bintrees to octrees. We show that
asymptotically, as resolution is increased, the
amount of work involved in the conversion process
is directly related to the spatial complexity of the
object represented by the CSG tree. Thus, despite
the added dimension, dynamic interference detec-
tion by bintree conversion is often efficient (because
the object sought is the null object). Finally we

183

— Visual

Lomputer

Fig. 2. Example of a carburetor. (From Jansen and van Wijk
1984)

present some experimental results obtained by us-
ing the discrete solid modeler described in (Tam-
minen et al. 1984},

2 Definitions

The quadtree of a 2D binary image is formed by
a recursive quaternary partition of the image untit
homogeneous blocks (BLACK or WHITE) are
reached. A binary image tree or bintree is formed
analogously, except that af each level of recursion
we only divide into two parts. The first partition
is assumed to be in the x direction with partitions
in the y and x directions alternating thereafter. Fi-
gure 3¢ shows an example of a bintree correspond-
ing to a 2D binary image (Fig. 3a) consisting of
two connected regions. We have assigned the inter-
nal nodes names A, B, C, D, and E and the leaves
names 1, 2, 3, 4, 5, and 6. In the x partition we
postulate the left subtree to correspond to the west-
ern (W) half of the image; in the y partition it
corresponds to the southern (S) half.

In our algorithms we use a linear tree representa-
tion that is based on the preorder traversal of a
bintree. The traversal yields a string over the alpha-
bet “(7, “B”, “W?, corresponding respectively to
internal nodes, BLACK leaves, and WHITE leaves.
This string is called a DF-expression (Kawaguchi
and Endo 1980). For the image of Fig. 3 it becomes
(BWWW(BW. See Kawaguchi and Endo (1980),
Meagher (1980), Samet (1990b) and Samet and
Tamminen (1985) for more details on such linear
image tree representations.

184

Similar methods can be applied to 3D images (dis-
crete solid models). An octree is defined as a recur-
sive eight-way partition of a 3D image into octants
until homogeneous blocks (SOLID corresponding
to BLACK and EMPTY corresponding to
WHITE) are reached (Hunter 1978; Jackins and
Tanimoto 1980; Meagher 1980, 1982a, b; Srihari
1981). A 3D bintree is formed in an analogous
manner except that at ecach level of recursion we
only divide into two parts. Figure 4 is an example
of a 3D image and its corresponding bintree. We
have performed the partitions in the order x, y,
and z. In the x partition we postulate the left sub-
tree to correspond to the western (W) half of the
image; in the y partition it corresponds to the
southern (8} half. Let us speak similarly of the low
(L) and high (H) halves of the z partition and let
the left subtree correspond to the L half.

The preorder traversal of a 3D bintree yields a
string (DF-expression) over the alphabet “(”, “B”,
“W™ corresponding, respectively, to internal nodes,
SOLID leaves, and EMPTY leaves. For the image
of Fig. 4 this representation becomes (B(B(BW. It
should be clear that the same method (recursive
subdivision along a cyclically varying coordinate
axis) can be applied in a space of arbitrary dimen-
sionality to obtain a d-dimensional bintree. Note
that bintrees are size-independent; i.e., a given tree
can define an object in a universe of any size. How-
ever, we usually portray each bintree as embedded
in the d-dimensional unit cube. Let us say that
the resolution of a bintree, say M, is the maximal
number of units into which each side of the 4-
dimensional universe of a d-dimensional bintree
can be divided. A cube of side length 1/M is called
a voxel.

As already mentioned, we shall restrict our atten-
tion to CSG trees in the very simplest of settings,
that of halfspaces defined by hyperplanes (linear
halfspaces). We call such CSG trees linear. Note,
however, that in direct analogy with the approxi-
mation of objects having curved surfaces by poly-
hedra (as so-called faceted modelers do) arbitrary
CSG trees can be approximated by CSG trees
whose leaves are linear halfspaces. This is done,
for instance, in the system described by Woodwark
and Quinlan (1982).

We first need a few definitions on homogeneous
coordinates and linear geometric transformations.
For more detail see Newman and Sproull (1979).
In particular, we do not describe here how the
transformation matrix and its inverse are formed

Tiw

“Visual
Computer

Fig. 3a-c. Sample image and its bintree.
a image; b block decomposition; ¢ bintree

to correspond to given components for scaling,
translation and rotation.

A point x in a d-dimensional universe (d-space)
is represented by a row vector of d+1 homoge-
neous coordinates with x, denoting the scale fac-
tor.

[xo x4 ... x4l

We shall only consider the case with x,=1. In the
general case, the d-ordinary Euclidean coordinates
are obtained by dividing xg, ..., x; by xy. Note
that usually the scale factor is taken to be the last
component of x. With our choice, the scale factor
retains its original index when the time dimension
is added.

We shall use x4 to denote the multiplication of
row vector x by matrix 4 and a-x to denote the
dot product of vector a and vector x. Let x'=x4
denote a (linear) geometric transformation from co-
ordinate system x to x" in d-space. It is defined
by a (d+1)x(d+1) matrix A whose first column
is (1,0, ...,0).

A linear geometric transformation as we define it
leaves the scale factor of homogeneous coordinates
unchanged as 1. Two geometric transformations
A and B can be composed by matrix multiplication.
A transformation composed of scalings, rotations
and translations can thus be represented by a single
matrix A.

|

X

a b

Fig. 4. a A three-dimensional image and b its bintree

A (linear) halfspace in d-space is defined by the
following inequality on the 4+ 1 homogeneous co-
ordinates:

d
Za,--xl-_>_0 (1)
i=0

The halfspace is represented by a column vector
a. In vector notation (1) is written as a-x >0, with
column vector a representing the halfspace. In the
case of equality, (1) defines a hyperplane with a
as its normal. For example, Fig. 5 shows the half-
space represented by 4x—2y—1>0. The point set
satisfying this relation lies to the right of the line
(partially shaded). Given a point x, the value of
the left side of (1) at x is called the value of halfspace
a at x. Element a, corresponds to the scale factor
and is called the constant of a. For a description
of geometric modeling with non-linear halfspaces
see Okino et al. (1973} and Voelcker and Requicha
(1977), and also Requicha’s review (1980) and the
systems and articles referenced by Requicha and
Voelcker (1983). The geometric transformation 4
transforms halfspace a to halfspace ' as follows:

a=A4A'a

{o,n

©,0) {,0} X

Fig. 5. Halfspace corresponding to 4x—2y—1>0

185

— " Visual
Computer

To understand this, we observe that given a point
x and applying transformation A to it yields x 4.
The value of the transformed halfspace at x4 yields
(A ta) xA=xA-A 'a=x-a=ax.

In this paper we define a data structure for CSG
trees as follows. A CSG tree is a binary tree in
which internal nodes' correspond to geometric
transformations ? and Boolean set operations while
leaves correspond to halfspaces3. A node of a CSG
tree is described by a record of type csgnode with
six fields. The first two fields, LEFT and RIGHT,
contain pointers to the node’s left and right sons
respectively. The TYP field indicates the node’s
type. There are five node types —- UNION, INTER-
SECTION, BLACK, WHITE, and HALFSPACE.
Types UNION and INTERSECTION correspond
to the Boolean set operations. HALFSPACE,
BLACK, and WHITE correspond to leaves. The
field HSP contains an identifier for the halfspace.
It is an index to a table, HS, of d + 1 element coeffi-
cient vectors of the different halfspaces involved
in the CSG tree. The remaining two fields, MIN
and MAX, are used for auxiliary data in our algo-
rithms. They record the minimum and maximum
values, respectively, of a halfspace in a given bintree
block. These fields are only used in conjunction
with nodes of type HALFSPACE. Note that this
representation is chosen for its simplicity in de-
scribing the algorithms. In an actual implementa-
tion, leaf and nonleaf nodes could be implemented
as two different record types.

Our definition of a CSG tree allows for leaves that
are completely BLACK or WHITE. This is re-
quired as an intermediate stage in the algorithm
that prunes a CSG f{ree to a subuniverse corre-

sponding to a bintree block*. In addition, in con-

! Unfortunately, we will need to use the terms free and node
in the context of both bintrees and CSG trees. However, in
each case we will appropriately qualify their usage

2 Qur discussion assumes that the transformations have been
propagated to the leaves. We also assume a bounded universe,
for simplicity, in the form of the unit cube

3 Actually, so-called regularized versions of the set operations
must be used (Requicha 1980) in order to guarantee that the
resulting objects correspond to our intuitive notion of solids.
In such a case, the result of any set operation involving objects
in d-space is always either null or has a nonzero d-dimensional
measure. Regularized set operations form a Boolean algebra
{Requicha 1980} so that, for instance, De Morgan’s laws hold
for them. However, we shall not repeat the qualification regular-
ized in what follows

4 Note that any CSG tree with one or more BLACK or
WHITE leaves is equivalent to the whole universe, the empty
set, or a CSG tree with only halfspaces as leaves

186

trast to the conventional use of CSG, we only use
the Boolean set operations UNION and INTER-
SECTION, as the effect of the third one, MINUS,
can be achieved by substituting A UNION COM-
PLEMENT(B) everywhere for A MINUS B and
applying De Morgan’s laws to propagate the
COMPLEMENT operations to the leaves of the
tree. The regularized complement of a halfspace
is obtained by changing the signs of all the coeffi-
cients (i.e., the direction of its normal). Regulariza-
tion thus means that we consider the points sets
x-a>0 and x-a>0 to be equivalent. Note that
our universe is finite, as required by the bintree
representation.

3 Converting CSG trees
to bintrees

The conversion of a CSG free to a bintree can
proceed in two ways. One approach is to construct
the bintree by converting the individual halfspaces
in sequence and then performing the Boolean set
operations on the results. This is a relatively ineffi-
cient process that does not take advantage of not
processing areas that cannot possibly be in the final
bintree. As an example of the use of this technique,
consider the conversion of the triangle given in
Fig. 6 whose CSG tree is given in Fig. 7. It is com-
posed of the intersection of the three halfspaces
2x—1>0,2y—1>0and —2x—2y+3=0 labeled
A, B, and C respectively. Conversion starts with
the unit square universe. Recall that we partition
the x coordinate before the y coordinate. Process-
ing the halfspaces A, B and C in sequence forces
us to convert the segment of B between x=0 and
x=0.5 whereas that region will be WHITE in the
resulting bintree.

(X))}

0,0 (1,01

Fig. 6. Sample triangle image

M
A N
B C
Fig. 7. CSG tree corresponding to Fig. 6

The second approach is one that traverses the uni-
verse in a depth-first manner and evaluates each
successive subuniverse against the CSG tree. This
enables pruning areas of no interest. Whenever the
hyperplane of a halfspace, say H, passes through
a subuniverse (i.e., a bintree node), say §, then we
say that H is active in S (i.e., there exists a point
in 8 such that a-x=0). An internal node of a CSG
tree with only halfspaces as its leaves is said to
be active in S if both of its sons are active in S.
As an example of the use of these terms, let us
consider the conversion of the triangle of Fig. 6.
We start with the unit square universe. In this case
halfspaces A, B, and C are all active and so is
the CSG tree {in other words, it is not totally
BLACK or WHITE). Thus, we first have to split
the unit square into two halves (split along the
x coordinate). Now, evaluating the CSG tree
against the left half of the bintree, say L, we find
that A is WHITE and thus not active. Therefore,
L will have to be WHITE since A is combined
with the rest of the CSG tree by an INTERSEC-
TION node and the intersection of WHITE with
anything is WHITE. In the rest of this section we
focus on this approach. In our presentation we first
demonstrate how to construct a bintree corre-
sponding to a given halfspace. Next, we show how
to convert a CSG tree to a bintree. In both of
the constructions the resulting bintree is repre-
sented using a DF-expression.

3.1 Algorithm for a single halfspace

The construction of a bintree corresponding to a
halfspace as given by (1} is achieved by traversing
the universe in the DF-order and determining the
range of (i.e., the interval of values obtained by)

“Visoal —
Computer

the left side of (1) in each subuniverse. In essence,
what we are doing is intersecting the halfspace with
a bintree block corresponding to a BLACK subun-
iverse. Each BLACK node in the bintree in which
the halfspace is active is decomposed into two
BLACK sons and the intersection process is recur-
sively applied to them. The process stops when the
halfspace is not active in a bintree node or if the
bintree node corresponds to a voxel. In the version
of the algorithm presented here, all voxels in which
the halfspace is active are labeled according to the
value of a-x at the centroid of the vozel, ie., if
a-x>0, then the voxel is labeled BLACK and
WHITE otherwise.

Determining whether a halfspace is active in a bin-
tree node is facilitated by keeping track of the mini-
mum and maximum values of a-x for each bintree
node. Whenever the maximum is <0 the bintree
node is WHITE and whenever the minimum is >0
it is BLACK. Otherwise the halfspace is active and
subdivision is required. Initially, for the unit cube,
the minimum value of ¢ x is the constant of & plus
the sum of all of the negative coefficients in a. The
maximum value is the constant of a plus the sum
of all the positive coefficients of a. For example,
for Fig. 5, the initial minimum value is —3 and
the initial maximum value is 3.

Whenever a bintree node is subdivided, either the
maximum or minimum (never both at the same
time) of a- x for each son node changes with respect
to that of the father. Let the subdivision be per-
formed on a hyperplane (e.g., a line in two dimen-
sions) perpendicular to the axis corresponding to
coordinate (1 <i<d) and let w; be the width of
the side along coordinate i of the block resulting
from the subdivision. The amount of change is §;
=a;-w;. For the left son, if §;>0, then J; is sub-
tracted from the maximum: otherwise, J; is sub-
tracted from the minimum. For the right son, if
&;>0, then the minimum is incremented by J;; oth-
erwise, §; is added to the maximum.

As an example, consider again the halfspace given
by 4x—2y—1>0 as shown in Fig. 5. Assume that
the universe is the unit square. The maximum and
minimum values 3 and — 3 are attained respective-
Iy at (1,0) and at (0,1). Subdividing along the x
axis yields two sons. The maximum value of a-x
in the left son has decreased by 1/2 times the coeffi-
cient of the x coordinate (i.e., 2) to 1 and is attained
at (0.5,0), while the minimum value remains the
same. The minimum value of a-x in the right son
has increased by 1/2 times the coefficient of the

187

— " Visual
Computer

x coordinate (i.e., 2) to — 1 and is attained at (0.5,1),
while the maximum value remains the same.

The conversion of a halfspace to a bintree is per-
formed by procedures HALFSPACE_TO_BIN-
TREE and HTRAVERSE. They are listed below
using a variant of ALGOL. In these and all other
procedures we shall use the following global con-
stants: D is the dimensionality of the space and
VOXEL_LEVEL is the level of the bintree corre-
sponding to voxels. Procedure HALFSPACE_TO_
BINTREE serves to initialize the traversal process
by computing the minimum and maximum values
of the halfspace in the whole universe (i.e., the d-
dimensional unit cube). Procedure HTRAVERSE
traverses the universe by recursively subdividing
it corresponding to the depth-first traversal order
of the resulting bintree. Subdivision stops upon en-
countering a bintiree node at level VOXEL_LEV-
EL or when the block can be certified as WHITE
or BLACK by comparing the minimum or maxi-
mum values of the halfspace to zero (note that
some tolerance, say epsilon, should actually be
used here instead of zero). At level VOXEL_LEV-
EL the value of a linear halfspace at the centroid
of the corresponding geometric cell (i.e., bintree
node) is obtained simply as the average of the mini-
mum and maximum values of the halfspace at the
node. The range of the left side of (1) is determined
in each subuniverse by computing ¢ and as a result
of the traversal each resulting bintree node either
satisfies (1} completely or not at all {above voxel
ievel), or contains points satisfying it (at voxel lev-
el). Procedure HTRAVERSE could avoid recalcu-
lating the §’s by precomputing them and storing
them in an array indexed by level. In such a case,
the traversal can be implemented with only one
addition operation for each node whose subuni-
verse intersects the hyperplane defined by (1). Actu-
ally, in each internal node two addition operations
must be performed to obtain {wo son nodes.

Recall that procedures HALFSPACE TO_BIN-
TREE and HTRAVERSE do not construct an ex-
plicit tree representation of the bintree. Instead,
they output its nodes in an order corresponding
to its depth-first traversal (i.e., a DF-expression
representation). The sequence of nodes that is out-
put is not minimal in the sense that collapsing may
yet have to be performed (i.e., when two terminal
brother nodes are BLACK). For example, Fig. 8a
is the uncollapsed bintree with VOXEL_LEV-
EL =35 corresponding to the halfspace of Fig. 5.
The nodes have been numbered in the order in

188

7 8 10 11 1819 2 22 1o 21 22

a b

Fig. 8a, b. Bintree corresponding to the halfspace in
Fig. 5. a before collapsing; b after collapsing

which they were output. The result of the applica-
tion of collapsing is shown in Fig. 8b where nodes
7 and 8 were merged into A and nodes 18 and
19 into B. Collapsing is only necessary when two
brother nodes both become BLACK at voxel level.
In an actual system in which these techniques are
implemented, collapsing is performed on the DF
expression by utilizing a buffer whose size is
bounded by twice the maximal depth of the bintree
(Tamminen et al. 1984). Notice that the bintree
blocks at level VOXEL_LEVEL are rectangles in-
stead of squares. In general, bintree blocks at level
VOXEL_LEVEI are d-dimensional cubes only
when VOXEL_LEVEL mod d =0. Otherwise, they
correspond to d-dimensional rectangles the length
of whose sides take on one of two possible values
(e.g., 1/8 and 1/4 in Fig. 8}.
procedure HALFSPACE TO_BINTREE(HS);
/¥ Convert the D-dimensional halfspace HS to a bintree.*/
begin

global value real array HS[0:D];

real MIN,MAX;

1
|
i

integer 1;
/* Compute the minimum and maximum values of HS in
the D-dimensional unit cube*/
MIN « MAX « HS[0];
for I+ 1 step 1 until D do
begin
if HS[1]>0.0 then MAX « MAX +HS[T]
else MIN « MIN+HS[I];
end;
HTRAVERSE(((,1.0,MIN,MAX);

end;

recursive procedure HTRAVERSE(LEV, W MIN,MAX);

/* Convert the portion of the halfspace represented by HS that
intersects the D-dimensional subuniverse of volume 2~ LEY
whose smallest side has width W. MIN is the minimum value
of the halfspace in the subuniverse and MAX is its maximum
value. */

begin
value infeger LEV;
value real W MIN MAX;
integer I;
real DELTA;
if MAX <0.0 then output(WHITE’)
else if MIN > 0.0 then output{' BLACK’)
else if LEV=VOXEL_LEVEL then

if((MAX 4+MIN)/2 > 0.0) then output{' BLACK")
else output(WHITE")
else
begin /*The halfspace is active in the subuniverse (i, it
intersects it)*/
[« LEV mod D;
H I=0 then W « W/2;
DELTA « HS[I+1]*W;
/*Note that DELTA only depends on the level ¥/
output{NON_LEAF’);
HTRAVERSE(LEV + 1,W,
if DELTA <0.0 then MIN-DELTA
else MIN,
if DELTA >0.0 then MAX-DELTA
else MAX); /*Process the left son®/
HTRAVERSE(LEV +1,W,
if DELTA>0.0 thern MIN+DELTA
else MIN,
if DELTA <0.0 then MAX +DELTA
else MAX); /*Process the right son*/
end;
end;

Our method of checking the halfspace inequality
(1) at each bintree block involves just one addition
and one multiplication operation by keeping track
of minimum and maximum values of {1) in the par-
ent block. Thus, there is no need to check the value
of (1) separately at each of the 2¢ vertices of each
of the bintree blocks. In fact, the multiplication
operation is not necessary if we precompute é and
store it in a table indexed by level.

Lee and Requicha (1982b) make use of a technique
that checks the center of each block against two
offset halfspaces. The offset halfspaces are deter-

“Visual —
ompufer

mined so that if the center of a block of this size
is contained within one of these halfspaces, then
the whole block cither satisfies the halfspace in-
equality, or fails it. This method requires two hali-
space evaluations per block and is applicable to
nonlinear halfspaces as well.

Meagher (1982b} discusses the conversion of half-
spaces to octrees. His approach to halfspace evalu-
ation is one which checks the value of (1) at two
test vertices of a block. This is analogous to our
use of the minimum and maximum of (1) in the
parent block. Values at all vertices obtained from
those of the father node by averaging {in the linear
case) the value of (1) at two father vertices for each
son vertex. For each son node, 2¢ averaging opera-
tions are performed. This is clearly more efficient
than recomputing (1) at each of the 29 vertices.
Note that this technique is also applicable to the
nonlinear case.

The technique we use in the conversion of half-
spaces to bintrees could aiso be applied to octrees
in a straight-forward manner. We must compute
the minimum and maximum values of (1) in each
of the eight sons of the octree node, called P. These
values are contained in 15 points corresponding
to vertices of the sons of P. Figure 9 shows 10 of
these points labeled in a manner that facilitates
the subsequent discussion. The values of two of
the vertices are the same as those of P (enclosed
by a square in Fig. 9) and thus we only need to
compute (1) at 13 points (8 of which are visible
and enclosed by a circle in Fig. 9). Note that one
of the 13 points corresponds to the vertex in the
center of P’s block and is shared by two of P’s
sons (the ones whose vertices are enclosed by a
square in Fig. 9) in the sense that the value of (1)
at it serves as the minimum value of one son and
as the maximum value of the other son. Thus, we
need 13 addition operations to compute the mini-

/0'7
/O

b—b

0

Fig. 9. Some points at which the value of a halfspace
can be computed for an octree image

189

—"Vistal
_omputer

mum and maximum values at the sons of an octree
node. Equivalently, we obtain 8 nodes with 13 ad-
dition operations. In contrast, with bintrees we ob-
tain 2 nodes with 2 addition operations. Thus, if
we were to split a bintree node three times to get
the effect of an octree node, we would require
2+4+8=14 addition operations to compute the
minimum and maximum values of (1) at each of
the eight sons. Of course, not all of the operations
may be necessary because of possible merging. In
fact, bintrees and octrees corresponding to a poly-
hedron have been observed to have an approxi-
mately equal amount of nodes (Tamminen et al.
1984), so that the bintree conversion turns out to
be more economical beside being simpler to imple-
ment,

3.2 Algorithm for a CSG tree

A CSG tree is evaluated, i.e., converted, to a bintree
by traversing the universe in depth-first order and
evaluating each subuniverse against the CSG tree.
Leaf nodes (halfspaces) are evaluated using the
method described in Section 3.1 and their results
are combined by pruning the CSG tree to the sub-
universe. Pruning means that only that part of the
CSG tree that is active within the subuniverse is
retained (Tilove 1981, 1984; Woodwark and Quin-
lan 1984). Once pruning has reduced the CSG tree
to a leaf node (i.e., a halfspace), the conversion pro-
cedure becomes identical to that described in the
previous section for converting a halfspace to a
bintree. An alternative way to conceptualize the
conversion process is to note that it is equivalent
to intersecting the CSG tree with a bintree corre-
sponding to a BLACK universe. Each node in the
bintree, say B, in which the CSG ftree is active,
is decomposed into two BLACK sons and they
are in turn intersected with only that part of the
CSG tree that is active in B. This process stops
when the CSG tree is not active in a bintree node
or if the bintree node corresponds to a voxel. All
voxels in which a CSG tree is active are labeled
by procedure CLASSIFY_VOXEL. At its simplest
(as used in most experiments described in Sect. 6),
it treats all such voxels as BLACK (or WHITE).
At its most complex, CLASSIFY _VOXEL corre-
sponds to Tilove’s NULL object algorithm applied
to the active CSG subtree at the voxel (Tilove
1984). A compromise that is often good and used
in the algorithm below, is to have CLASSIFY_

190

VOXEL evaluate the CSG tree at the center of
the voxel to obtain a bintree that corresponds to
the true object at a certain spatial resolution. Note
that the value of each linear halfspace at the center
of the voxel is the average of the MIN and MAX
fields of the halfspace node. In such a case, CLAS-
SIFY_VOXEL becomes a version of the pruning
algorithm. Other implementors might prefer yet
different choices for CLASSIFY_VOXEL, e.g., one
applying Monte Carlo methods.

The conversion of a CSG tree to a bintree is per-
formed by procedures CSG_TO_BINTREE,
INIT_HALFSPACES, CSG_TRAVERSE,
PRUNE, and HSPEVAL. They are listed below
using a version of ALGOL. They make use of
BLACK_CSG_NODE and WHITE_CSG_
NODE, which are global pointers to BLACK and
WHITE CSG tree nodes. Procedure CSG_TO.
BINTREE serves to initialize the traversal process.
First, it invokes procedure INIT_HALFSPACE to
traverse the CSG tree to compute the minimum
and maximum values of each halfspace in the
whole universe (i.e., the unit cube). These values
are stored in the MIN and MAX fields of the CSG
tree node corresponding to each halfspace. Next,
it calls on CSG_TRAVERSE to perform the actual
conversion. Procedure CSG_TRAVERSE tra-
verses the universe by recursively subdividing it
corresponding to the depth-first traversal order of
the resulting bintree. At each subdivision step, pro-
cedure PRUNE is called to attempt to reduce the
size of the CSG tree that will be evaluated in the
bintree block. PRUNE traverses the CSG tree in
depth-first order and removes inactive CSG nodes
with the aid of HSPEVAL that determines if a
halfspace is active within a given bintree block.
Assuming that T is CSG node, PRUNE applies
the following four rules to the CSG tree.

1. BLACK UNION T=BLACK

2. WHITEUNIONT=T

3. BLACK INTERSECTION T=T

4. WHITE INTERSECTION T=WHITE.

As an example, consider the triangle of Fig. 6
whose CSG tree is given in Fig. 7. Figure 10a is
the corresponding bintree, with VOXEL_LEV-
EL=6. The nodes have been numbered in the
order in which they were output. Initially, the en-
tire CSG tree (i.e., Fig. 7) is assumed to be active
in the whole universe (i.e., the unit square). Node
1 is output as a NON-LEAF node and we process
its left son next. First, we attempt to prune the

Visual —
Computer

13 14 2t 22

0 0 1314 18 19 21 22
a b

Fig. 10a, b. Bintree corresponding to the triangle in
Fig. 6. a before collapsing; b after collapsing

CSG tree with respect to the left half of the uni-
verse. Since halfspace A is inactive here (ie., it is
WHITE), we can apply pruning rule (4) and there
is no need to further process the remainder of the
CSG tree in Fig. 7. We output node 2 as WHITE
and process the right son of node 1 next. Pruning
the CSG tree results in halfspace A being inactive,
but this time it is BLACK. Since both halfspaces
B and C are active here, pruning rule (3) leaves
us with the CSG tree given by Fig. 11. We now
output node 3 as NON-LEAF and process its left
son next. Pruning the CSG tree results in halfspace
B being inactive (i.e., it is WHITE). Pruning rule
(4) means that there is no need to further process
the CSG tree of Fig. 11. We output node 4 as
WHITE and process the right son of node 3 next.
This time pruning the CSG tree results in halfspace
B being inactive again, but now it is BLACK.
Pruning rule (3) leaves us with just halfspace C.

n

/\

B c

Fig. 11. Result of pruning the CSG tree of Fig. 7 in
the right haif of the root of its bintree

Node 5 is output as NON-LEAF and the conver-
ston process is next applied to its two sons.

The remainder of the conversion is equivalent to
that described in Sect. 3.1 for the conversion of a
halfspace as the CSG tree has been reduced to one
halfspace. The result is given in Fig. 10a. Once
again we have a DF-expression representation of
the bintree. In order to get the minimal DF-expres-
sion, we must perform collapsing (i.e., merge identi-
cally colored terminal nodes that are brothers). The
result of the application of collapsing is shown in
Fig. 10b where nodes 10 and 11 were merged into
A and nodes 18 and 19 into B.

Closer examination of procedures CSG_TRA-
VERSE, PRUNE, and HSPEVAL reveals that
there is much copying of CSG nodes. In particular,
each time that CSG_TRAVERSE is invoked to
evaluate a CSG tree in a bintree block, a copy
is made of the pruned CSG tree. Nevertheless, the
number of nodes that are copied is smaller than
the number of evaluations of CSG nodes. Thus,
the copying is not determinant to the complexity
of the algorithm. Copying is necessary because we
store the minimum and maximum values of the
active halfspaces in the MIN and MAX fields of
each leaf node of the CSG tree. Since these values
change dynamically as the bintree is constructed
and the CSG tree is evaluated, by keeping a copy
we are able to take advantage of recursion to impli-
citly restore their previous values. Notice that
whenever procedure CSG_TRAVERSE has com-
pleted processing a level of the bintree (i.e., both
sons), the storage that was allocated for the CSG
tree at that level and below is released. At worst,
we must make VOXEL_LEVEL copies of the CSG
tree before we can start to release and reclaim stor-
age. This situation arises when all of the halfspaces
are active in a single voxel. In practical cases the
CSG tree gets pruned rather quickly at increasing
levels of the bintree so that the total amount of

191

— " WVisual
“ompater

storage required is typically 2-3 times the size of
the original CSG tree. See also our asymptotical
analysis in Sect. 5.

procedure CSG_TO_BINTREE(P,N,HS);

/* Convert the D-dimensional CSG tree P to a bintree. HS con-
tains N halfspaces.*/

begin
value pointer csgnode P;
global value integer N;
globzl value real array HS[1:N,0:D];
INIT_HALFSPACES(P);

CSG_TRAVERSE({P,0,1.0);

end;

recursive procedure INIT_HALFSPACES(P);

/* Compute the minimum and maximum values of each of the
halfspaces in the CSG tree P of the D-dimensional unit uni-
verse. */

begin
value pointer csgnode P;
integer LT;
if TYP(P)=‘HALFSPACE’ then

begin
1+ HSP(P);
MIN(P) « MAX(P)« HS[1,01;
for ¥« 1 step 1 until D do
begin
if HS[1,J]> 0.0 then MAX (P)« MAX(P}+HS[LJ]
else MIN(P}« MIN(P)+HS[LJ];
end;
end
else
begin
INIT_HALFSPACES(LEFT(P));
INIT_HALFSPACES(RIGHT(P));
end;

end;

recursive procedure CSG_TRAVERSE(P,LEV,W);

/¥ Convert the portion of the CSG tree P that overlaps the
D-dimensional subuniverse of volume 2"V whose smallest
side has width W. The bintree is constructed by evaluating
the CSG tree in the subuniverse. The evaluation process con-
sists of pruning the nodes of the CSG tree that are outside
of the subuniverse. A new copy of the relevant part of the
CSG tree is created as each level is descended in the bintree.
This storage is reclaimed once a subumverse at a given level
has been processed. */

begin
value pointer csgnode P;
value integer LEV;
value real W;
pointer esgnode FS; /* Pointer of stack of free nodes ¥/
if TYP(P)="BLACK’ or TYP(P)="WHITE’ then

output (TYP(P))
else if LEV =VOXEL _LEVEL then
output{TYP(CLASSIFY_VOXEL(P)))
else /* Subdivide and prune the CSG trees ¥/
begin
FS « first_{ree(csgnode);
/*Save pointer to free storage stack */
output(NON-LEAF’);
if LEV mod D=0 then W « W/2;
CSG_TRAVERSE(PRUNE(P,LEV+ 1L, W,/LETFT"),
LEV +1,W),
192

free(FS); /* Free storage allocated for CSG tree nodes start-

ing at FS*/
CSG_TRAVERSE(PRUNE(P,LEV + LW/RIGHT?),
LEV+1,W)
free(FS);
end;
end;

recursive pointer csgnode procedure PRUNE(P,LEV,W,DIR);
/*Evaluate the portion of the CSG tree P that overlaps the
D-dimensicnal subuniverse of volume 275 whose smallest
side has width W. The subuniverse corresponds to the DIR
(LEFT or RIGHT) subtree of its father bintree node.*/
begin
value pointer csgnode P
value integer LEV;
value real W;
value direction DIR ;
pointer csgnode T,Q; /* Auxiliary variables*/
pointer csgnode LR ; /* Auxiliary pointers to left and right
pruned subtrees*/
if TYP(P)="HALFSPACE’ then
return(HSPEVAL(P,LEV,W,DIR))
else
begin
T «if TYP(P)="UNION’ then BLACK_CSG_NODE
else if TYP(P)=‘INTERSECTION then
WHITE_CSG_NODE
else (error); /% Enable the quick application of prun-
ing rules (1) and (4)*/
L+ PRUNE(LEFT(P),LEV,W,DIR);
if L=T then return(T)
else
begin
R« PRUNE(RIGHT (P),LEV,W,DIR);
if R=T then return{T)
else if TYP(L)=0PPOSITE(TYP(T)) then
return(R)
/* OPPOSITE of BLACK is WHITE and vice
versa®/
else if TYP(R)=0PPOSITE(TYP(T)) then
return{L)
else /* Evaluation has not eliminated one of P’s
sons */
begin
Q « create(csgnode);
TYP(Q)«TYP(P);
LEFT(Q)«L;
RIGHT(Q)«R;
return{Q};
end;
end;
end;
end;
recursive pointer csgnode procedure CLASSIFY_VOXEL(P);
/* Evaluate the portion of the CSG tree P that overlaps a voxel.
Return BLACK_CSG_NODE if the centroid of the voxel
satisfies P, and WHITE_CSG_NODE otherwise. Note that
the maximum and minimum values of a halfspace at a given
voxel have been computed at the time of evaluation of the
voxel's father node. */
begin
value pointer csgnode P;
pointer csgnode T,Q; /* Auxiliary variables™*/

[

pointer esgnode LR ; /* Auxiliary pointers to left and right
pruned subtrees ¥/
if TYP(P)="HALFSPACE’ then /* Evaluate centroid. */
return(if (H_MAX(P)+ H_MIN (P))/2 > 0.0) then
BLACK_CSG_NODE)
else WHITE_CSG_NODE)
else
begin
T« if TYP{(P)="UNION’ then BLACK CSG NODE
else if TYP{P)="INTERSECTION then
WHITE _CSG_NODE
else{error); /*Enable the quick application of
pruning rules (1) and (4)*/
L « CLASSIFY _VOXEL(LEFT(P),LEV,W,DIR);
if L=T then return(T)
else
begin
R« CLASSIFY_VOXEL(RIGHT(P),LEV,W,
DIR};
if R=T then return{T}
else if TYP(L)=OPPOSITE(TYP(T)} then
return(R)
/¥*OPPOSITE of BLACK is WHITE and vice
versa*/
else if TYP(R)=OPPOSITE(TYP(T)} then
return{L)
/*Note that evaluation always eliminates one of P's
sons*/
else {error); /* Impossible case*/
end;
end;

end;

pointer csgnode procedure HSPEVAL(P,LEV,W,DIR);

/# Determine if the D-dimensional subuniverse of volume 2 7%
and smallest side of width W intersects halfspace P or corre-
sponds to a BLACK or WHITE region. The subuniverse
is the DIR {(LEFT or RIGHT) subtree of its father. If the
halfspace intersects the subuniverse, then the subuniverse will
have to be subdivided again and a new CSG tree node is
allocated for the halfspace to record the new minimum and
maximum values of the halfspace. */

begin
value pointer csgnode P;
value integer LEV;
value real W;
value direction DIR;
integer 1J;
real DELTA;
pointer csgnode Q;

Q « create_and_copy(P);
J« HSP(P);
1« LEV mod D;
DELTA « HS[LI+ 1]*W;
if DIR="LEFT’ then
begin
if DELTA <0.0 then MIN(Q) « MIN(Q)}— DELTA
else MAX(Q)— MAX(Q)—DELTA;
end
else
begin
if DELTA >0.0 then MIN(Q)+ MIN(Q)+ DELTA
else MAX(Q)+ MAX(Q)+DELTA;
end;

Hisual —
Computer

if MIN(Q)>0.0 then return{BLACK_CSG_NODE}

else if MAX(Q)<0.0 then return(WHITE_CSG_NODE)

else return(Q)}); /* The halfspace intersects the subuniverse*/
end;

4 Time and motion

Often a geometric representation, such as CSG, is
not convenient for a desired computation. The so-
hution that is frequently adopted is to transform
the object into another representation, i.e., one in
which the computation is simpler. In the previous
section we saw how a CSG representation can be
converted to a bintree. In this section we show
how the time dimension can be added to a CSG
representation so that motion can be analyzed us-
ing the algorithm of the previous section. Our ap-
proach is different from that of Meagher (1982b)
and Weng and Ahuja (1987) that remain in the
scope of pure octree modeling. In particular,
Meagher computes the volume swept by an object’s
(modeled as an octree) motion along a curve that
is specified by its chain code; whereas Weng and
Ahuja (1987) are concerned with the translation
and rotation of objects represented by octrees. We
shall define motion by a time-dependent linear
transformation A4(t) (i.e., trajectory). Our imple-
mented algorithms are related to linear motion,
ie., the case that the trajectory is a piecewise linear
function of ¢+ and can be decomposed into se-
quences of translations. However, we also show
how similar methods can be applied to handle gen-
eral motion. We conclude by showing how to im-
plement a projection operation that eliminates the
time dimension. This is not easy to perform directly
in the CSG representation and thus we accomplish
it by first approximating the (location,time) CSG
tree by a (location, time) bintree, on which a projec-
tion can be performed. Projection is useful in com-
puting swept areas.

4.1 Straight-line motion

Let T be a solid model described by a CSG tree
and assume that it is defined in some model-specific
coordinate system. We describe the motion of T
in some common world coordinate system by a
time-varying geometric transformation matrix A(r).
Each value of A(f) is a matrix defining a rigid mo-
tion from the local coordinates of T to its position
and orientation in world coordinates at time .

193

Tie

— " Visual
LOnputer

Note that if our world coordinate system is the
unit cube, then we may also have to include a scal-
ing in A(f). We call A(t) the trajectory of T Let
A(t) be piecewise linear, meaning that it can be
broken down into a series of segments defined by
time points (tg, ¢, ...) so that 4;,;=A4; B;, where
B, is a transformation matrix corresponding to a
translation describing the motion during that time
segment. In the following we discuss the motion
accomplished in one time segment in a more con-
crete setting.

Translating a halfspace, say given by (1), along a
vector v gives rise to the translated halfspace

d d
Y oarx— Y a;v;20 @
i=0 i=0

If point x satisfies (1), then the transformed (trans-
lated) point x + v satisfies (2). For example, translat-
ing the halfspace 4x—2y—12=0 given in Fig. 5 by
the wvector (0.5, 0.5 yields the halfspace
4x—2y—2>0. In order to be dimensionally con-
sistent with the d-dimensional unit cube, our dis-
cussion always assumes a unit time interval. Mo-
tion in a unit time interval, at a fixed speed defined
by vector s with s,=0, is described by a vector
v such that for all i, v;=s;-t. Thus, using » to trans-
late halfspace (1) we find that at each instant, say
t, it corresponds to the halfspace given by (3), be-
low. Letting ¢ vary, we obtain a linear halfspace
with an additional variable t.

d d
Zai-xi—(z ai-s,-)-tzo (3)
i=0 i=0

When we have a CSG tree in motion, transforma-
tion (3) can be applied to each halfspace separately
and the tree of Boolean set operations applied to
the resulting (d + 1)-dimensional halfspaces to de-
fine a set of points in (focation, time) space satisfy-
ing the CSG tree.

For dynamic interference detection, we must deter-
mine whether the intersection of two (location,
time) objects is empty, while for static interference
detection, we must check whether two stationary
objects intersect or whether a moving object inter-
sects a stationary one. The intersection of two dif-
ferent (location, time) CSG trees, (each derived from
a separate motion but with a common “time axis™)
is obtained by attaching them as sons to a newly
created CSG node of type INTERSECTION. The
actual evaluation of the intersection can be per-
formed by applying the bintree conversion algo-

194

rithm of Sect. 3.2 in the (d+ 1)-dimensional space
with time included. For static interference detec-
tion there is no need to add time as an extra dimen-
sion if we can otherwise solve it for the swept area
of the moving object. Note also that in the case
of interference detection there is often little motiva-
tion for storing the entire resulting tree. Instead,
a variable can be included in the tree taversal algo-
rithm to indicate the minimal ¢ value of a BLACK
node encountered so far in the traversal. Any sub-
tree whose minimum value of ¢t is greater than this
value need not be inspected.

Usually primary interest is not in motion along
a straight vector but in more complicated trajector-
ies. Assume that such trajectories can be approxi-
mated by a sequence of segments, each with motion
corresponding to a linear translation at a fixed
speed. For example, suppose that we wish to deter-
mine whether two motions, defined by piecewise
linear trajectorics A,; and 4,; of objects T; and
T,, respectively, intersect in the unit time interval.
Let the time intervals defining the n; and », linear
pieces of the trajectories be (ty4,%;4,..-), reSpec-
tively. Now, during the time interval
(0, min(t, 9, £,g)) both motions are straight-line and
their intersection can be determined as discussed
above, ie., by evaluating the CSG tree resulting
from the addition of a node of type INTERSEC-
TION with T, and T;, as sons. This same procedure
is applied to the remaining intervals (2 maximum
of ny +n,—1 intervals), each preceded by an appli-
cation of the appropriate transformations A4;; to
the halfspaces of 77 and T;.

4.2 General motion

In the general case, a CSG tree can contain nonlin-
ear halfspaces or the motion itself cannot be de-
scribed as a series of translations. Instead, 4;.,
is derived from A4; by multiplying it by, say, a rota-
tion matrix with the rotation angle depending on
t. In this case the trajectory is no longer a (piece-
wise) linear matrix function of t. Nevertheless, we
can still use methods similar to the ones described
in Sect. 4.1. In particular, each bintree node corre-
sponds to a (d + 1)-dimensional interval such that

Xog<x<Xy
Yo=y<yi

to<t<t

Interval arithmetic is a method of evaluating func-
tions f(x,y, ...) in cases where the arguments are
not exact values but intervals corresponding to the
range of the true value. The result of the interval
function corresponding to function f is also an in-
terval, ie., a range of values covering any values
that f can obtain given as arguments any values
in the argument intervals. It should be clear that
interval arithmetic is appropriate for the CSG tree
to bintree conversion process since for an arbitrary
function the value of the corresponding interval
function covers the function’s possible values in
the bintree node. If zero does not belong to this
range, then the bintree block need not be subdi-
vided.

For example, let us apply the above to determine
the (location,time) bintree of a linear halfspace a
subjected to general motion defined by the matrix
function A (). Denoting intervals by capital letters,
the interval function that must be evaluated at each
node of the bintree is F(X,T)=(A"Y(T)a)-X
where X is an interval in d-dimensional space and
T is a time interval. Remember that at each time
instant ¢, A{t) is a linear transformation and the
image of a halfspace, say q, is obtained by multiply-
ing a by the inverse of 4({t). When A({t) contains
a rotation, the interval function will be a linear
composition of sine and cosine functions with re-
spect to T, For instance, in the 2D case of motion
around the origin with angular speed x, the func-
tion 4~ !(T) would be given by the matrix

cos(ee-T) sin{e-T) 0
—sin(a- T} cos{e-T) 0
] 0 1

In any sub-interval of 7, where each component
of the composite function is monotonic, interval
arithmetic can be applied in such a way that tight
bounds are provided for the resulting interval.

Interval arithmetic is easy to incorporate in our
‘CSG tree to bintree conversion since the main
change is only to recast procedure HSPEVAL in
terms of interval evaluations. Procedure INTER-
VAL_HSPEVAL, given below, achieves this and
a call to it can be substituted for the call to proce-
dure HSPEVAL in procedure PRUNE of Sect. 3.
Notice the use of INTERVAL EVALUATE to
determine the range of the function corresponding
to the nonlinear halfspace. Its value is a pointer
to a record of type interval with two fields MIN
and MAX corresponding to an interval covering

“Visual —
Computcr

the function values in the node. Nevertheless, if
procedure HSPEVAL is replaced by INTERVAL_
HSPEVAL, CLASSIFY_VOXEL still has to cor-
rectly classify each voxel. CLASSIFY _VOXEL
would ordinarily be implemented by computing
the value of the active halfspaces at the centroid
of the voxel by ordinary arithmetic.

pointer csgnode procedure INTERVAL_HSPEVAL(P,LEV,W,
DIR);
/*Use interval arithmetic to determine if the D-dimensional
subuniverse of volume 271V intersects nonlinear halfspace
Poris BLACK or WHITE. W is its smallest side. The subuni-
verse is the DIR subtree of its father. ¥/
begin
value pointer csgnode P; /* A leaf of the CSG tree*/
value integer LEV;
value real W;
value direction DIR ;
interval I;
[« INTERVAL_EVALUATE(P,LEV,W DIR);
return(if MAX(I) <0.0 WHITE_CSG_NODE
else if MIN(I)> 0.0 then BLACK_CSG_NODE
else ‘HALFSPACEY;
end;

Interval arithmetic has been applied to the some-
what similar task of evaluating curved surfaces by
recursive subdivision (Alander 1984; Mudur and
Koparkar 1984). Nevertheless, this technique
should be used with caution. In particular, interval
arithmetic does not necessarily yield the minimal
range covering the function’s values given the do-
mains of the arguments; instead, it may be a wider
interval guaranteed to cover the function’s values.
This estimate may sometimes be very poor, and
the poorer the substitute for the true range of func-
tion wvalues, the more unnecessary subdivisions
must be performed in the bintree conversion. This
problem can usually be overcome by use of suitable
transformations on functions. Alander et al. (1984)
have built a practical system and shown that func-
tion transformations greatly enhance and simplify
interval arithmetic algorithms for curved sur-
faces.

A conversion algorithm based on interval arith-
metic evaluates an interval function once for each
active halfspace at each node. Furthermore, an or-
dinary function evaluation has to be performed by
CLASSIFY_VOXEL for each active halfspace at
each voxel. Thus, the performance of the conver-
sion algorithm depends on the precision with
which interval arithmetic estimates the intervals of
halfspace values within nodes. Note that whenever
INTERVAL EVALUATE returns an interval

195

4,74

—"Yisual
Computer

containing ¢ when the true interval does not con-
tain 0, then superfluous subdivision will result.
Implementation experience has shown interval ar-
ithmetic extensions to be from 5 to 15 times slower
than ordinary arithmetic (Clemmesen 1983; Cohen
and Hickey 1979). The tightness of the range given
by interval arithmetic depends completely on the
characteristics of the function within the argument
range (Moore 1979), The more that is known about
the function, the better the estimates are that can
be obtained. For instance, Mudur and Koparkar
(1984} decompose functions into monotonic parts
in order to be able to use the tighter intervals appli-
cable in such a case.

A general treatment of the characteristics of inter-
val arithmetic is outside the scope of the present
paper. However, our experience has shown that
from the standpoint of performance it is generally
advisible to consider interval arithmetic more as
a conceptual model than as an automatic computa-
tional device. Thus, efficient custom-tailored meth-
ods for obtaining precise range estimates should
be developed for each class of halfspaces that is
being used. In our case this has been done for qua-
dratic halfspaces (Koistinen 1985). However, that
work reveals that standard techniques for enhanc-
ing the efficiency of interval arithmetic, as pre-
sented by Ratschek and Rokne (1984), lead to com-
putational methods that are identical to our spe-
cialized ones.

4.3 Projecting on time

Usually we are not interested in time as such. Often
it merely serves as an auxiliary variable for describ-
ing motion. For example, the process of determin-
ing the swept area for static interference detection
is equivalent to a transformation that eliminates
the time dimension. In geometric terms it is a pro-
jection parallel to the f-axis. In general, we do not
know how to perform such a projection directly
in the CSG representation. Given a CSG tree hav-
ing A OP B as its root, we cannot necessarily dis-
tribute the projection operation, i.e.,

PROJECTION(A OP B)=PROJECTION(A) OP
PROJECTION(B)

For example, suppose we are given two noninter-
secting objects, as in Fig. 12, that are moving at
identical speeds in the direction of the x-axis.

196

<

Fig. 12. Example of two disjoint objects, A and B,
whose projection on the y-axis is nonempty

Clearly, their swept areas intersect, whereas the ob-
jects themselves do not intersect.

Fortunately, projection in the discrete bintree do-
main is simple. Approximate evaluation of a CSG
tree involving a projection operation is a two-step
process. We first generate the (d+ 1)-dimensional
bintree and then project it to d dimensions to ob-
tain an evaluation of the projected CSG tree as
a d-dimensional bintree. Projection consists of
eliminating one coordinate and keeping track of
all occupied locations in the resulting d-dimension-
al space. In three dimensions, the projection algo-
rithm is almost identical to that for viewing a 3D
bintree in the direction of a coordinate axis (Tam-
minen et al. 1984). The only difference is that in
viewing, some shading information must be re-
corded at each 2D pixel that is “covered”, whereas
the projection discussed here only records whether
or not such a pixel is covered. In order to simplify
our presentation, the subsequent discussion uses
the terminology of projecting from two to one di-
mension and is illustrated by the projection of the
2D image of Fig. 3 on the y-axis (i.e., the elimina-
tion of the x coordinate).

Projection is performed by procedure PROJ given
below. A bintree node is implemented as a record
of type node with three fields, LEFT, RIGHT, and
TYP. LEFT and RIGHT correspond to the left
and right sons, respectively, of a node while TYP
indicates a node’s type, ie., BLACK, WHITE, or
NON-LEAF. PROJ is invoked with a pointer to
the bintree corresponding to the object whose pro-
jection is desired and the name of the coordinate
(i.e., dimension) that is being eliminated. The out-
put bintree (i.e., corresponding to the projection)
is initialized to the WHITE universe. Procedure
PROJ traverses the input and cutput trees in tan-
dem. Two input brother nodes may be either “side-

AAA R

a b c d e

"Visuwal —
Computer

Fig. 13a-1. State of the projection tree

5 6
corresponding to Fig. 3 projected on the y-
axis after processing nodesa 1, b 2, ¢ 3, d

f 4, e 5 and f6

by-side” in the projected universe (in cases in which
the division is not with respect to the axis of projec-
tion} or “on top” of each other. In the latter case
the same subtree of the projection tree is processed
against both brothers. For example, in Fig. 3 node
pairs Cand 4, 5 and 6, and 1 and 2 are side-by-side
while node pairs B and E, and D and 3 are on
top of each other. Note that while processing the
projection tree we must create nodes as well as
release them. The latter is necessary when an input
nede is BLACK and the corresponding node in
the projection tree is not a leaf (e.g., when process-
ing node 5 in Fig. 3). This situation may also arise
when the union of two input brother nodes that
are on top of each other in the projection tree is
BLACK (e.g, suppose that node 3 in Fig. 3 is re-
placed by a NON-LEAF node having a WHITE
left son and a BLACK right son). Whenever the
projection tree is known to be BLACK, then the
corresponding part of the input bintree need not
be processed. For example, if node 3 in Fig. 3 is
replaced by a NON-LEAF node, then once a node
corresponding to node 1 has been created in the
projection tree, there is no need to process the left
son of node 3. Of course, a WHITE input bintree
leaves the projection tree unchanged (e.g., when
processing nodes 2, 3, 4, and 6 in Fig. 3). Figure 13
shows the state of the projection tree correspond-
ing to Fig. 3 after processing nodes 1, 2, 3, 4, 5,
and 6.

recursive procedare PROJ(IN,OUT,C,X);

/* Construct a (D — 1)-dimensional bintree rooted at OUT cor-
responding to the projection of the D-dimensional bintree
rooted at IN such that coordinate X is eliminated. Initially,
OUT corresponds to a single WHITE node. The node
pointed at by IN partitions the universe along coordinate
C.*

begin
value pointer node IN,OUT;
value integer C,X;

global integer D;
if TYP(IN)="NON-LEAF’ then
begin

if TYP(OUT)="BLACK" then
return /* The output is totally covered ¥/

else if C NEQ X then /* Coordinatc C is not eliminated */
begin /* The two sons are “side-by-side” in the pro-
jected universe®/
if TYP(OUT)="WHITE’ then
begin /* Allocate two son nodes */
LEFT(OUT) < create(node);
RIGHT(OUT} « create(node);
TYP{LEFT(OUT)) « TYP{RIGHT(OUT))
«— ‘“WHITE’;
TYP{OUT)« ‘NON-LEAF’;
end;
PROJ(LEFT(IN)LLEFT(OUT),(C+ 1} mod D,X};
PROJ(RIGHT(IN),RIGHT(OUT)L(C+ 1) med
D.X);
if TYP(LEFT(OUT))="BLACK" and
TYP(RIGHT(OUT))="BLACK then
begin /* Merge left and right sons*/
TYP(OUT) «—‘BLACK;
returntoavail (LEFT(OUT));
returntoavail (RIGHT (CUT));
end;
end
else /* Eliminate this coordinate by projecting on top
of the brother ¥/
begin
PROJ(LEFT(IN),OUT{C+ 1) mod D,X);
PROJ(RIGHT(IN),0UT,(C + 1) mod D,X);
end;
end
else if TYP(IN)="BLACK" then
/¥Output must be BLACK */
begin
if TYP(OUT)="NON-LEAF’ then
begin /¥ Merge left and right sons*/
retarntoavail (LEFT (OUT));
retarntoavail (RIGHT{OUT));
end;
TYP(OUT) « ‘BLACK’;
end;
/*Nothing needs to be done for a WHITE input node. ¥/
end;

Procedure PROJ has an execution time that is pro-
portional to the number of nodes in the input bin-
tree. The algorithm as given assumes an explicit
tree representation for both the input and projec-
tion bintrees. However, it can be easily modified
to process a bintree represented by a DF-expres-
sion. In particular, the only change that is required
is to skip the subtrees of a node in the input tree

197

thr

— " Yisual
Computer

when encountering a BLACK projection tree. The
projection tree cannot be as easily handled by a
DF-expression since parts of the tree must be retra-
versed and possibly modified as is the case when
two sons in the input tree are on top of each other
in the projection tree.

5 Analysis

A quick perusal of procedure CSG_TO_BIN-
TREE, as given in Sect. 3.2, reveals that the
amount of work performed in the conversion is
proportional to the sum of the sizes of the CSG
trees that are active at the bintree nodes (ie.,
blocks) that are evaluated. This number can be
quite large even though procedure CSG_TRA-
VERSE attempts to prune the CSG tree each time
it descends to a deeper level in the tree. The fact
that the unpruned part of the CSG tree is copied
at each level of descent does not affect the time
complexity, nevertheless some of the copying can
be avoided by more careful programming as out-
lined in Sect. 3.2. However, in a typical case, as
we descend in the bintree, many of the CSG tree
nodes are no longer active, thereby reducing the
number of CSG nodes that must be visited. In par-
ticular, in this section we will show that for “well-
behaved” CSG trees, as the resolution increases,
the number of CSG tree node evaluations per bin-
tree block approaches unity. We first examine,
heuristically, the average number of halfspaces that
are active in a node of voxel size. Next, we prove
an asymptotical result concerning the average
number of active CSG tree nodes in an arbitrary
bintree block.]

We are not interested in the absolute worst-case
value of the complexity. Very poor cases can be
attained by constructing a complicated CSG tree
that evaluates to the NULL object in such a way
that the whole CSG tree is active in a large number
of nodes. For example, consider the intersection
of a halfspace with its complement. Instead, we
shall focus on the “practical” efficiency of these
algorithms. This emphasis is recognized as central
in most of the references on the CSG solid repre-
sentation scheme (e.g., Tilove 1984), In order to
do so we refer to the results of Hunter (1978) and
Meagher (1980) on the complexity of quadtrees and
octrees corresponding to polygons and polyhedra
respectively. In particular, the worst-case size (i.e.,
number of nodes) in the bintree of a polygon (poly-

198

hedron) is proportional to its perimeter (surface
area) measured at the given resolution. This is also
a lower bound for polygons (polyhedra) whose
edges (faces) do not coincide with the boundaries
of quadtree {octree) blocks.

Prior to presenting a more formal analysis, we say
something about the number of halfspaces that are
active at each node of voxel size in a bintree of
a polyhedron. This discussion is heuristic in that
we assume that we speak of voxels as if they were
infinitely small. At each vertex, at least three half-
spaces are active. Elsewhere, at each edge of the
polyhedron, exactly two halfspaces are active. Else-
where, at each face, only one halfspace is active,
We can estimate the fotal number of active half-
spaces by counting the number of voxels that inter-
sect the edges, vertices, and faces of the polyhedron.
Recalling the results of Hunter (1978) and Meagher
(1980), we know that the total number of voxels
intersecting faces is proportional to the surface
area, while the total number of voxels that intersect
edges is proportional to the sum of the edge lengths
at the given resolution. The number of voxels con-
taining vertices is always bounded by the number
of vertices, irrespective of resolution. Assuming a
resolution of M, the number of voxels with more
than one active halfspace grows only linearly with
M, while the total number of voxels grows with
M?. Thus, the average number of halfspaces active
in a node of voxel size approaches one asymptoti-
cally in a CSG tree that corresponds to a polyhed-
ron. A similar result will hold for polyhedron-like
objects of arbitrary dimension. In the remainder
of this section we shall prove more formally a simi-
lar result for CSG tree nodes active at bintree
blocks. We shall also elaborate on the meaning
of “well-behaved.”

It should be clear that the amount of work neces-
sary in performing the conversion is at least pro-
portional to the number of nodes in the bintree.
Thus, the goal of our analysis is to try to define
a class of CSG trees for which the complexity of
their evaluation is of the same order as the number
of nodes in the bintree of the corresponding object.
Generalizing Hunter’s and Meagher’s image com-
plexity results for polygons and polyhedra to 4 di-
mensions leads to a complexity of O(M“~ 1) bintree
nodes for bintrees of resolution M. Attaining this
bound is feasible if we can show that the propor-
tion of bintree nodes in which more than one CSG
tree node is active approaches zero as the resoluo-
tion increases. Such CSG trees are said to be “well-

The

L R
14 15a

Fig. 15a, b. a A CSG tree and b its corresponding object

/U\
L=y R
A B

Fig. 14. Example of an intersection of two halfspaces, L and R

“Visual
ompiter

I S N

UJ-—- '“-'-D

b

behaved”, and this concept applies alse to CSG
trees with nonlinear halfspaces. This characteristic
is determined solely by the way the objects defined
by the pair of brother subtrees of the CSG tree
intersect each other. In a well-behaved CSG tree
the intersections are not allowed to be “tangen-
tial”. In two dimensions, this means that the
boundaries of the objects corresponding to brother
subtrees intersect at only a finite number of points.
In three dimensions, for polyhedra, the boundaries
should not coincide, but are permitted to intersect
along one-dimensional edges. In the general case,
for d dimensions, the permitted intersection must
similarly be at most (d — 2)-dimensional (see below
for more details). Note that at such bintree nodes
(with more than one active CSG tree node) the
number of active CSG tree nodes is bounded by
the total number of CSG tree nodes. Thus, the
average number of CSG tree nodes active at bintree
blocks approaches one as the resolution is in-
creased.

At this point let us examine more carefully what
constitutes a “well-behaved” CSG tree. However,
let us first make a few observations. By the nature
of CSG@, the objects with which we are dealing are
multidimensional polyhedra. Let T, I, R, and U
refer to CSG tree nodes such that U is some node
in T having L and R as its left and right subtrees
respectively. Being CSG tree nodes, T, L, R, and
U also correspond to some geometric objects. In
our discussion when we speak of boundaries of
T L, R, and U we are referring to the boundaries
of the corresponding objects.

In the following we analyze the number of CSG
tree node evaluations that are required to evaluate

T at a given bintree level. We shall use the term
block to denote nodes of the bintree at some arbi-
trary level k. w(k) indicates the longest distance
(i.e., diagonal) within a bintree block at level k and
w'(k) indicates the shortest side length of such a
block. The CSG tree T is evaluated with respect
to descendants of a bintree block B only if T does
not evaluate to BLACK or WHITE with respect
to B. The size of the tree to be evaluated with
respect to the sons of B depends on the result of
the pruning algorithm applied in B. The CSG
nodes that remain in the tree pruned with respect
to B are active in B. Let U be a CSG node whose
sons L and R are leaves (halfspaces). Node U is
active only in bintree blocks that intersect the
boundary of the corresponding object. Now, due
to the pruning that has been applied in our evalua-
tion algorithm, we see that all three CSG tree nodes
U, L, and R are active only in those bintrees blocks
at level k that intersect portions of boundaries of
L and R (termed critical portions) where the dis-
tance to the brother boundary (i.e, L for R and
vice versa) is at most w. In all other bintree blocks
at level k only one of CSG tree nodes L or R is
active. For example, consider Fig. 14 that illus-
trates the 2D case and shows that U, L, and R
are all active in three bintree blocks for the given
value of w.

In the example above the subtrees of U were leaves.
The following lemma shows that a similar corre-
spondence between pruned trees and boundaries
of objects corresponding to subtrees is valid even
when the subtrees of U are not leaves. Note that
the result is not trivial: a pruned CSG tree may
be active in a bintree block even though the CSG

199

—"Visual
Computer

tree defines a NULL object in the region corre-
sponding to the block. For example, consider the
CSG tree given in Fig. 15a consisting of the two
circles L1 and R and the halfspaces A and B as
shown in Fig. 15b. The CSG tree of Fig. 15a is
active in the bintree block represented by the
dashed square in Fig. 15b even though the object
defined by it does not extend so far.

Lemma 1. Let T be a CSG tree and B a bintree
block. If the CSG tree resulting from pruning T with
respect to B contains more than one halfspace, then
B intersects the boundaries of both the left subtree
L and right subtree R of some node U of T.

Proof. Assume that the lemma is not true. That
is, there exists a block B, whose pruned tree TP
contains at least two leaves (i.e., halfspaces) such
that at no node U of T does B intersect the bound-
aries of L and R (ie, sons of U). Let TP have
d levels where the root is said to be at level 0.
First, we will show that B must intersect the bound-
aries of the two sons (i.e., leaves) of some internal
node of TP at level d— 1. Assume that B does not
intersect the halfspace boundaries of both sons at
any node at this level. This means that at each
such node at least one of the halfspaces will be
pruned away, and the depth of the pruned tree
is at most d— 1, which contradicts the assumption
that the depth is d. Therefore, B must intersect
two leaves that are halfspaces and are brothers in
TP. Let these halfspaces be H, and H,. Now, the
pruning algorithm operates so that H, is the result
of pruning one subtree of TP with respect to B,
and H, is the result of pruning its brother with
respect to B. Clearly, H, and H, define the part
of the boundaries of these subtree that lie within
B. Thus we have proved the lemma by contradic-
fion.

Given internal CSG tree node U with sons L and
R, define ¢(U, k) to be the number of bintree blocks
at level k that intersect the boundaries of both L
and R. When U is a CSG tree leaf node, c(U, k)
is zero. ¢(U, k) must be bounded if we are to achieve
our goal that the proportion of bintree nodes with
more than one active CSG tree node approaches
zero with increasing resolution. ¢(U, k) is bounded
only if the objects intersect in a well-behaved man-
ner so that their critical boundary portion is situ-
ated around the intersection points of their bound-
aries and the “size” of the critical boundary por-
tion goes to zero with w. For polyhedra this situa-

200

tion arises when there are no tangential intersec-
tions (i.e., intersections where L and R coincide
along a portion of boundary with a non-zerc
(d — 1)-dimensional measure). We show below in
the 2D case (i.e, d=2), that ¢(U,k) remains
bounded as k increases by proving that the length
of the critical portion divided by w remains
bounded. Note that irrespective of whether the op-
eration at a CSG node is UNION or INTERSEC-
TION, the complexity of evaluating the node de-
pends on how the objects corresponding to L and
R intersect each other.

Theorem 1. If L and R correspond to two polygons
that are nowhere tangential to each other, then
c(U, k) remains bounded as k increases.

Proof. Let i be the number of intersection points
between the boundaries of L and R, § be the mini-
mum distance between nonintersecting edges of the
boundaries, and « be the minimal angle (measured
as an absolute value) between edges of L and R
at the intersection points of the boundaries (e.g.,
Fig. 16). Let level k be such that w(k)< 4. For such
a k, only bintree blocks that intersect portions of
boundaries of both L and R around intersection
points can contribute to the value of ¢(U, k). The
remaining bintree blocks at level k evaluate to
BLACK or WHITE, or merely intersect the
boundary of L, or that of R by our choice of 4.
Around each intersection point, the length of those
portions of the boundary of L that are within w(k)
of R is bounded by 2. w(k)/sin(e) since there are
two such segments and each has a maximum length
of w(k)/sin(e). An upper bound on the number of
bintree blocks that can be intersected by a line
segment of length x is 2-(2+ x/w'{k)). Therefore,
the total number of bintree blocks at Ievel k that
are intersected is bounded by i-(4+2-w(k)/(w'(k)

[~
3

Fig. 16. Example of § and «

-sin(a))}, which is bounded by a constant as k in-
creascs.

Results similar to Theorem 1 can be obtained for

d=3 and arbitrary dimensions. Let ¢(U, k, d) den-
ote the number of bintree blocks of level k that
intersect the boundaries of both L and R, corre-
sponding to d-dimensional polyhedra, sons of CSG
tree node U. We say that a node U of a d-dimen-
sional CSG tree is well-behaved if there exists a
constant K{U,d), such that c(U,k,d)
<2@-2k. K(U, d). Now, let us place an interpreta-
tion on this bound. When d=23, the intersection
of two halfspaces is well-behaved if the halfspaces
intersect each other in a nontangential fashion (i.c.,
along a line and termed an intersection edge). More
generally, if L. and R define two polyhedra, U is
well-behaved if the faces of these polyhedra do not
coincide with each other, but intersect along 2D
edges. In the case of L and R intersecting along
such intersection edges, we know that the intersec-
tion edges, in turn, intersect O(2¥) bintree blocks
of level k. Using an analysis similar to that used
in the proof of Theorem 1, we can show that in
the neighborhood of each bintree block that inter-
sects an intersection edge, there can exist only a
bounded number (i.e., O(1)) of bintree blocks that
intersect the boundaries of both L and R. Thus,
by multiplying the two quantities O(2%) and O(1),
the number of blocks where both L and R can
be active is O(2%).

At this peoint let us apply these bounds to d-dimen-
sional polyhedra represented by CSG trees. A CSG
tree is well-behaved if all of its nodes are well-
behaved. From Lemma 1 we know that a CSG
node, say T, is active in a bintree block, say B,
only if B intersects the boundaries of both the left
and right subtrees (say L and R) of some node
U of T Equivalently, if two or more halfspaces
of T are active at some bintree block B, then B
must intersect the boundaries of both L and R at
some node U of T. Assuming a well-behaved CSG
tree rooted at T with N nodes, let C(T, k,d) be
the maximum of ¢(U, k, d) over all CSG tree nodes
U. Therefore, the total number of bintree blocks
at level k& where more than one CSG tree node
is active is at most N-C(T, k, d). Summing up over
all k levels of the resulting bintree results in the
total number of bintree nodes where more than
one CSG tree node is active being bounded by
k-R-C(T, k,d), where R is some constant. We are
now ready to prove our main result. In doing so
we assume a d-dimensional polyhedron with irra-

Visual —
omputer

tional vertex coordinates so that the vertices do
not coincide with bintree subdivision points. This
guarantees that the bintree grows with increasing
resolution.

Theorem 2. Let T be a well-behaved CSG tree defin-
ing a d-dimensional polyhedron with irrational ver-
tex coordinates and a nonzero (d—1)-dimensional
boundary measure. The proportion of bintree nodes
where more than one CSG tree node is active ap-
proaches zero asymptotically as the resolution in-
creases.

Proof. From Hunter (1978} and Meagher (1980),
and extrapolating to d dimensions, we know that
the number of nodes in the bintree of the object
defined by 7, say B(T), with resolution M =2* is
of the order of the (d—1)-dimensional boundary
measure, which in turns is 0(2“"1¥), Let R and
K (T, d) be constants. From Theorem 1 and its gen-
eralization to d dimensions we know that in a well-
behaved CSG tree T the total number of bintree
nodes in which more than one CSG tree node is
active is k-R-C(Lk,d), where C(Tk,d)
<2W@-2k. K(T.d). The ratio of this quantity to
B(T) is of the form k/2* that approaches zero
asymptotically as k increases.

The above analysis and discussion have been re-
stricted to polyhedra defined by linear halfspaces.
In fact, Theorem 2 and the concept of a CSG tree
being well-behaved are not limited to planar faced
polyhedra and can be generalized to arbitrary d-
dimensional objects including those whose corre-
sponding CSG trees contain nonlinear halfspaces
in the following manner. Let T be a CSG tree defin-
ing a d-dimensional object S. Moreover, let
B(S, k, d) denote the number of nodes in the bintree
of S at resolution 2% Recall that the bintree of
an object is defined as the bintree obtained by clas-
sifying voxels as BLACK if they are contained in
the object or intersect its surface, and WHITE oth-
erwise.

We say that S is d-dimensionally nondegenerate if
there exists a constant A>0, such that
B(S, k,d)/29~ V%> 4 for all k. Aside from not al-
lowing the dimensionality of the object to be “ioo
small”, nondegeneracy implies that the object is
not representable exactly by a finite bintree. In ad-
dition we say that T is well-behaved if at each node
of T, locally, the number of bintree blocks at level
k where both subtrees of T are active is O (24~ 2%,
In other words, the objects defined by the two sub-

201

— Wisual —
Computer

trees do not intersect “tangentially”. With these
definitions we can recast Theorem 2 as Theorem 2’
given below, which can be proved in a similar man-
ner.

Theorem 2'. Let T be a well-behaved CSG tree defin-
ing a d-dimensionally nondegenerate object. The pro-
portion of bintree nodes where more than one CSG
tree node is active approaches zero asymptotically
as the resolution increases.

The above results lead us to draw the following
unexpected but practical conclusions about the
performance of our algorithms for the conversion
of CSG trees to bintrees when the CSG trees are
well-behaved.

1. The “practical” compiexity of CSG tree evalua-
tion is O(M“~ ') as resolution M is increased.

2. The average number of active CSG tree nodes
in a bintree block approaches one asymptotically
as resolution is increased.

3. The computational complexity of converting a
CSG tree approximation of a given object to a
bintree is asymptotically independent of the
number of halfspaces used in the approximation.

Result (3) means that the linear approximation of
curved halfspaces can be computationally practical
even though it leads to a great increase in the size
of the CSG tree.

Our definition of well-behaved ecliminates many
practically relevant CSG trees from the analysis.
This limitation is discussed further, and partially
remedied, in Sect. 7. Of course, the above results
are asymptotical and thus are directly relevant only
when the number of halfspaces is not Iarge in com-
parison to the resolution. Nevertheless, the next
section shows that in such cascs the observed be-
havior correlates well with our predictions.

6 Empirical results

In order to verify the analysis of Sect. 5 we con-
ducted a number of experiments with polyhedron-
like objects in several dimensions. Qur experiments
have been performed with versions of the algo-
rithms of Sect. 3.2, as implemented in C in the sys-
tem (Tamminen et al. 1984} and executed on a
VAX 11/750 running version 4.2 BSD of UNIX. In
the experiments, unless indicated otherwise, a sim-
plified version of procedure CLASSIFY VOXEL

202

was used that classified all GRAY voxels as
BLACK. Note that the contribution to CPU time
incurred by writing the packed DF-expresion into
a file is quite noticeable.

At each bintree node a fixed amount of work is
performed for each CSG tree node that is active
in it. Thus, an implementation-independent mea-
sure of work is the total number of CSG tree nodes
active at all of the bintree nodes. This is reported
as the statistic “CSG evaluations” in Table 2. The
statistic “Halfspace evaluations™ forms part of it
and denotes the number of halfspace value range
computations performed. Note that the statistic
“BIN nodes” gives the number of bintree node
evaluations and not the size of the f{inal bintree,
in which brother leaves with identical color have
been merged. This is the statistic that we need to
compare with the theorems of the previous section
since collapsing is an artifact of the way we choose
to deal with nodes at the voxel level and does not
enter into the analysis. Note that collapsing could
reduce the number of nodes by at most one half
(e.z, when all GRAY voxels are classified as
BLACK). However, the theorems pertain to the
conversion process and are still valid. From these
values we can derive the average number of CSG
tree nodes (or halfspaces) evaluated at each poten-
tial bintree node for the purpose of comparison
with the theoretical analysis of Sect. 5. Note that
the program that we instrumented used a linear
CSG tree representation, which allows less pruning
than the algorithm we have described in Sect. 3.2,
Thus, the number of CSG node evaluations re-
ported below is an upper bound on the true value
obtained by the algorithm, although the number
of halfspace evaluations is valid.

For our first experiment we approximated a circle
with an 11-gon and formed its bintree at resolution
4096. The corresponding CSG tree with 10 IN-
TERSECTION nodes is shown in Fig. 17. This ap-
proximation produced a bintree with 80828 nodes
and required 87592 CSG tree node and 81283
halfspace evaluations. Of course, collapsing re-
duced the number of nodes by about one half
Thus, prior to collapsing, on the average, each bin-
tree node contained less than 1.1 active CSG tree
nodes, which correlates with our prediction. The
CPU time required was 19.2 s, including about 6 s
necessary to output the packed DF expression. The
time reuired to perform the same task by a pro-
gram specifically designed to convert convex poly-
hedra was 17.1 CPU s, so that the overhead of

A M
n n o 78slol
123456

Fig. 17. CSG tree for approximating a unit circle by
an 1l-gon

the general CSG tree representation was not very
large.

The second experiment demonstrates that the com-
plexity of CSG tree evaluation is O(M?~!) as reso-
[ution M is increased. For this experiment we tabu-
late in Table 1 the CPU conversion times for a
series of approximations of a unit circle by 5, 11,
and 19 halfspaces at various resolutions. Notice
that the execution time doubles with resolution as
predicted for d=2. The different approximations
are not completely comparable as they represent
different objects. Thus, the bintree at resolution
4096 contains 76294, 80628 and 81410 nodes for
5, 11 and 19 halfspaces, respectively.

The third experiment shows that the size of the
3D bintree of a polyhedron is proportional to the
square of the resolution, and a 4D bintree is pro-
portional to the third power of the resolution. The
execution times for large values of resolution exhib-
ited similar behavior. For this we modeled the mo-
tion of two identical square blocks situated at op-
posite corners of the unit square, moving towards
each other, so that at time t=1 they overlap on
an area of size 0.05 by 0.05. We also performed

Table 1. Conversion times (CPU seconds) for different discs

Number of Resolution
halfspaces
256 512 1024 2048 4096
5 1.2 21 42 8.5 16.2
11 1.7 29 47 94 171
19 2.5 38 6.1 10.8 18.6

"Visual —
ompuater

an identical 3D experiment {two moving boxes)
resulting in a 4D bintree. The halfspaces (including
the additional variable t) of the block in the lower
left corner for the 2D case are given below. Note
that, even though the objects are defined by half-
spaces parallel to the coordinate axes, the compu-
tations in the program are performed as in the
general case.

x—0.30%¢>0
x—0.30%£<0.25
y—0.30%¢>0
y—0.30% <025

The halfspaces corresponding to the second block
are formed in a similar manner. In the 2D case
we have a total of 8 halfspaces and in the 3D case
we have a total of 12 halfspaces. Figure 18 illus-
trates the 2D case. Tables 2 and 3 contain the re-
sults of the evaluations of the 3D and 4D trees
at varying resolutions. Note that for these exam-
ples, the maximum sizes of the universes are 2°°
and 23® voxels, respectively.

The above experiments verify the intuitively plausi-
ble fact that bintrees of objects in motion tend to
become very large when represented in the (loca-
tion,time) space. However, often when analyzing
motion, we are only interested in checking whether
or not an interference exists. For this purpose we
modified the CSG tree conversion algorithm so
that it searches only for the first BLACK leaf, and
outputs a tree where all the rest of the universe
is WHITE. Unlike the previous experiments, voxels
are classified according to the color of their cen-
troid.

Tables 4 and 5 show the results of experiments
identical to those of Tables 2 and 3, respectively,

Y4

r—'l
el

0.25

0.25 X

Fig. 18. Intersection of two moving blocks

203

— Wisual
ompter

Table 2. Intersecting two moving two-dimensional blocks

Resolu- CPU BIN Halfspace = CSG
tion seconds nodes evaluations evaluations
64 0.7 826 1641 3124
128 1.3 2898 4357 7300
256 32 10866 13552 19358
512 103 42514 47684 59254
1024 37.6 172802 183335 207248
2048 144.1 699362 720631 769768

Table 3. Intersecting two moving three-dimensional blocks

Resolu- CPU BIN Halfspace CSG
tion seconds nodes evaluations evaluations
16 0.8 370 1846 3900
32 1.2 898 3354 7008
64 3.1 4658 10471 21326
128 12.5 31458 49969 90614
256 67.4 231570 295662 430730
512 428.0 1826466 2071158 2695692

Table 4. Interference test for two moving two-dimensional
blocks

Table 5. Interference test for two moving three-dimensional
blocks

Resolution CPU BIN Halifspace CSG
seconds nodes evaluations evaluations
i6 0.4 54 343 712
32 04 70 409 856
64 0.4 70 419 872
128 0.5 86 485 1016
256 0.5 86 507 1048
512 0.6 102 573 1192

except that the interference-detection program has
been used instead of the conversion program.
These experiments demonstrate that interference
detection employing the proposed methods is not
expensive, and that a high resolution can be used
when necessary without an appreciable increase in
cost.

Figure 19 shows the number of halfspace evalua-
tions per bintree node as a function of resolution
in the experiment of Table 2. Notice that the
asymptotical bound obtained in Sect. 5 does hold
in this case. Nevertheless, inspection of Tables 2
and 3 shows that the convergence to this bound
is not necessarily very fast in the high dimensional
(location,time) space. Therefore, this method
should be used primarily when the CSG tree is
expected to evaluate to NULL, in which case the
performance will be similar to that depicted by Ta-
bles 4 and 5.

As an example of the conversion of a more compli-
cated 3D object, consider an icosahedron (ie., a

Fig. 19. The number of halfspace evaluations per
bintree node as a function of resolution for the
experiment of Table 2

Resolu- CPU BIN Halfspace CSG
tion seconds nodes evaluations evaluations
64 03 130 511 1036
128 0.3 154 585 1190
256 0.3 178 661 1344
512 0.4 202 736 1498
1024 05 226 811 1652
2048 0.4 250 286 1806
4096 0.5 290 998 2030
20 |- LI T T T T]
2
|\
S¥ ol .
wz
g o
]
%‘ o
J | 1 i 1 i
64 128 256 52 1024 2048
RESOLUTICN

204

Ehe

Table 6. Converting an icosahedron

Resolution CPU BIN Halfspace
seconds nodes evaluations
64 227 51102 76331
128 721 204638 255257
256 212.0 818864 919187
Table 7. Icosahedron in motion
Resolution CPU BIN Halfspace
seconds nodes evaluations
16 9.9 6380 35132
32 348 42296 128917
64 1731 320042 607340
128 1019.0 2522602 3553646
Table 8. Two icosahedra in opposite motion
Resolution CPU BIN Halfspace
seconds nodes evaluations
16 4.6 1014 13801
32 72 2830 23559
64 14.9 10888 49529
128 43.2 62190 153018

Table 9. Interference test of two icosahedra in opposite motion

Resolution CPU BIN Halfspace
seconds nodes evaluations
16 1.0 92 1285
32 1.0 144 1447
64 1.1 262 1942
128 1.1 360 2090
256 1.3 422 2195
512 1.3 474 2289
1024 14 604 2479
Table 10. Two icosahedra in touching motion
Resolution CPU BIN Halfspace
seconds nodes evaluations
16 3.7 556 8429
32 4.8 968 11260
64 5.9 1816 15660
128 8.8 4302 25359
256 19.2 15338 56020
512 61.3 85743 191647

Viswal —
Compuater

20-faced regular solid) similar to that shown in
Fig. 1. Table 6 summarizes the conversion effort for
the icosahedron, while Table 7 describes the 4D
bintree conversion related to its motion (scaled by
0.5) when moving from one octant to the opposite
octant along the main diagonal of the unit cube.
Again, it is seen that 4D bintrees become large,
so that swept area should, whenever possible, be
determined by more efficient methods than by first
forming the (location,time) bintree and then pro-
jecting it back to location space.

The size of a (location, time} bintree of a 3D object
in motion depends on the 4D extent of the object,
as measured by the volume of its 3D boundary.
In the experiment of Table 7 the extent of the ob-
ject is “big”, as compared to the experiments re-
ported in Tables 8 and 10. Table 8§ describes the
(location, time) object obtained when two identical
icosahedra move towards each other along oppo-
site courses: one moves from the first to the last
octant, the other one from the last to the first oc-
tant. The 4D object of Table § is described as the
intersection of 40 halfspaces. The extent of the in-
tersection of the 4D objects is obviously smaller
than each one of them, ie., what is depicted in
Table 7. This is reflected in the descriptors of the
amount of conversion effort in Table §. For the
purpose of comparison, Table9 reports the
amount of resources required to just detect interfer-
ence.

The final icosahedron experiment consists of inter-
secting the (location,time) object of Table 7 with
another one, obtained as follows:

Move the centroid of the icosahedron in the last octant of the
unit cube from location (0.75,0.75,0.75) to [location
(0.25,0.25,0.75) — i.e., along a diagonal parallel to the (x, y)-coor-
dinate plane.

Note that the two objects do not move at the same
velocity. The original object of Table 7 moves a

distance of]/5/2 in a time unit, while the new one

moves a distance of]ﬁ/2 in the same time. From
the description of the experiment, it is not obvious
whether the two moving objects meet at any in-
stant (they do). The results of the experiment are
reported in Table 10. Because the objects will bare-
ly touch, the 4D extent of their intersection is
small. However, the coarseness of approximation
at low resolutions means that all of the voxels in
which there is a potential for overlap are evaluated
— a relatively large number. Therefore, as resolution

205

— Wisual
Lompuicr

inverse halfspaces, it can be replaced by a BLACK
leaf.

Our algorithms have several useful applications
aside from volume-like computations and interfer-
ence checking. Viewing 3D CSG models is a prime
application (Koistinen et al. 1985). In this case bin-
tree conversion would be performed solely for the
sake of generating shaded output. The method of
viewing 3D bintrees in the direction of a coordi-
nate axis described by Tamminen et al. {1984) can
be used in this case because the eye-point depen-
dent operations (e.g., perspective transformation of
halfspaces, etc) can precede bintree conversion.
Shading would be generated from the normals of
the halfspaces active at each visible node at voxel
level. Evaluation would proceed from front to back
and be combined with projection so that the nodes
known to be covered would not be generated. The
simplicity of our conversion algorithm is such that,
especially with suitable hardware support, it might
provide a practical alternative as a system for view-
ing 3D CSG trees (Atherton 1983).

Acknowledgements. We are deeply indebted to Petri Koistinen
who produced the shaded figures (i.e, Figs. 1, 2, and 21) and
performed the experiments with CSG trees with quadratic half-
spaces. We are grateful to Prof. A.R. Forrest for his encourage-
ment. We thank Jarmo Alander, Olli Karonen, Petri Koistinen,
Walter Kropatsch, Martti Mantyla, Reijo Sulonen, and Robert
E. Webber for their comments. Erik Jansen at Delft University
of Technology provided us with the CSG model shown in Fig. 2.

References

Alander J (1984) Interval arithmetic methods in the processing
of curves and sculptured surfaces. Proc 6th Int Symp CAD/
CAM, Zagreb, Yugoslavia

Alander J, Hyytia K, Hamalainen J, Jaatinen A, Karonen O,
Rekola P, Tikkanen M (1984) Programmer’s manual of in-
terval package IP. Report-HTKK-TKO-B59, Laboratory of
Information Processing, Helsinki University of Technology,
Espoo

Atherton PR (1983) A scan-line hidden surface removal proce-
dure for constructive solid geometry, Comput Graph 17:73—
82

Boyse JW (1979) Interference detection among solids and sur-
faces. Commun ACM 22:3-9

Cameron SA (1984) Modelling solids in motion. PhD disserta-
tion, Univ Edinburgh

Clemmesen M (1983} Interval arithmetic implementations using
floating point arithmetic. (Institute of Datalogy Report 83/9)
Univ Copenhagen, Copenhagen

208

Cohen J, Hickey T (1979) Two algorithms for detecting volumes
of convex polyhedra.] ACM 26:401-414

Cole AJ, Morrison R (1982) Triplex: a system for interval arith-
metic. Software Pract Experience 12:341-350

Hunter GM (1978) Efficient computation and data structures
for graphics. PhD dissertation, Princeton University

Jackins CL, Tanimoto SL (1980} Oct-trees and their use in rep-
resenting three-dimensional objects. Comput Graph Image
Processing 14:249-270

Jackins C, Tanimoto SL. (1983) Quad-trees, oct-trees, and k-
trees — a generalized approach to recursive decomposition
of Euclidean space. IEEE Trans Patt Anal Machine Intelli-
gence 5:533-539

Jansen FW, Wijk IT van (1984) Previewing techniques in raster
graphics, Comput Graphics 8:149-161

Kawaguchi E, Endo T {1980) On a method of binary picture
representation and its application to data compression.
IEEE Trans Pattern Analysis Mach Intell 2:27-35

Koistinen P (1985) Viewing solid models by bintree conversion.
MS Thesis, Helsinki Univ Technol

Koistinen P, Tamminen M, Samet H (1985) Viewing solid mod-
els by bintree conversion. Vandoni CE (ed) Proc EURO-
GRAPHICS 85 Conf, North-Holland, Amsterdam, pp 147-
157

Lee YT, Requicha AAG (1982 a) Algorithms for computing the
volume and other integral properties of solids: I. Known
methods and open issues. Commun ACM 25:635-641

Lee YT, Requicha AAG (1982b) Algorithms for computing
the volume and other integral properties of solids: II. A
{amily of algorithms based on representation conversion and
cellular approximation. Commun ACM 25:642-650

Mantyla M, Sulonen R (1982) GWB: a solid modeler with Euler
operators. IEEE Comput Graph Appl 2:17-31

Meagher D (1980) Octree encoding: a new technique for the
representation, manipulation and display of arbitrary 3-D
objects by computer. (Rep IPL-TR-80-111) Rensselaer Poly-
technic Institute, Troy, NY

Meagher D (1982) Geometric modeling using octree encoding,
Comput Graph Image Processing 19:129-147

Meagher D (1982) Octree generation, analysis and manipula-
tion. (Rep IPL-TR-027) Renssclaer Polytechnic Institute,
Troy NY

Meagher D (1984) The Solids engine: a processor for interactive
solid modeling. Proc NICOGRAPH "84 Conf, Tokyo, No-
vember

Moore RE {1979} Methods and applications of interval analysis.
SIAM, Philadelphia

Mudur SP, Koparkar PA (1984) Interval methods for processing
geometric objects, IEEE Comput Graph Appt 4:7-17

Newman WM, Sproull RF (1979) Principles of interactive com-
puter graphics, 2nd edn. McGraw Hill, New York

Okino N, Kakazu Y, Kubo H (1973) TIPS-1: technical informa-
tion processing system for computer aided design, drawing
and manufacturing. In: Hatvany J (ed) Computer languages
for numerical control. North-Holland, Amsterdam, pp 141—
150

Ratschek H, Rokne J (1984) Computer methods for the range
of functions. Ellis Horwood, Chichester

Requicha AAG (1980) Representations of rigid solids: theory,
methods, and systems. ACM Comput Surv 12:437-464

Requicha AAG, Voelcker HB (1982) Solid modeling: a histori-
cal summary and contemporary assessment. IEEE Comput
Graph Appl 2:9-24

e

Requicha AAG, Voelcker HB (1983) Solid modeling: current
status and research directions. IEEE Comput Graph Appl
3:25-37

Samet H (1990a) The design and analysis of spatial data struc-
tures. Addison-Wesley, Reading, Mass

Samet H (1990b) Applications of spatial data structures: com-
puter graphics, image processing, and GIS. Addison-Wesley,
Reading, Mass

Samet H, Tammincn M (1985) Computing geometric properties
of images represented by linear quadtrees. IEEE Trans Pat-
tern Anal Mach Intell 7:229-240

Srihari SN (1981) Representation of three-dimensional digital
images. ACM Comput Surv 13:399-424

Tamminen M, Samet H (1984) Efficient octree conversion by
connectivity labeling. Comput Graphics 18:43-51 (also pre-
sented at the SIGGRAPH ’84 Conf, Minneapolis, July 1984)

Tamminen M, Koistinen P, Hamalainen J, Karonen O, Kor-
honen P, Raunio R, Rekola P (1984) Bintree: a dimension
independent image processing system. (Report-HTKK-
TKO-C9) Helsinki Univ Technol, Espoo

Tilove RB (1981) Exploiting spatial and structural locality in
geometric modeling, TM-38. Production Automation pro-
Jject, Univ Rochester

Tilove RB (1984) A null-object detection algorithm for con-
structive solid geometry. Commun ACM 27:684-694

Voelcker HB, Requicha AAG (1977) Geometric modeling of
mechanical parts and processes. IEEE Comput 10:48-57

Wallis AF, Woodwark JR (1984) Creating large solid models
for NC toolpath verification. Proc CAD 84

Weng J, Ahuja N (1987) Octrees of objects in arbitrary motion:
representation and efficiency. Comput Vision Graph Image
Processing 39:167-185

Woodwark JR, Quintan KM (1982) Reducing the effect of com-
plexity on volume model evaluation. Computer-aided De-
sign 14:89-95

Yau M, Srihari SN (1983) A hierarchical data structure for
multidimensional digital images. Commun ACM 26:504-
515

Visuwal —
Computer

HANAN SAMET received the B.S. degree in engineering from
the University of California, Los Angeles, and the M.S. Degree
in operations research and the M.S. and Ph.D. degrees in com-
puter science from Stanford University, Stanford, CA.

In 1975 he joined the Computer Science Department at the
University of Maryland, College Park, where he is now a Profes-
sor. He is a member of the Computer Vision Laboratory of
the Center for Automation Research and also has an appoint-
ment in the University of Maryland Institute for Advanced
Computer Studies.

His research interests are data structures, computer graphics,
geographic information systems, compufer vision, robotics, pro-
gramming languages, artificial intelligence, and database man-
agement systems. He is the author of the books The Design
and Analysis of Spatial Data Structures, and Applications of
Spatial Data Structures: Computer Graphics, Image Processing,
and GIS both published by Addison-Wesley, Reading, MA,
1990.

MARKKU TAMMINEN (M’83) received the M.Sc. degree in
applied mathematics in 1966 from the University of Helsinki,
Finland, and the Ph.D. degree in computer science from the
Helsinki University of Technology in 1982,

He had been with the Laboratory of Information Processing
Science, Helsinki University of Technology, since 1980. From
1973 to 1980 he was Chief Mathematician at the Data Center
of the Helsinki Metropolitan Area. His research interests in-
chude data structures based on address computation, computa-
tional geometry, image data structures and algorithms, com-
puter aided design, and the management of spatially referenced
data.

Dr. Tamminen was a member of the Association for Computing
Machinery, the IEEE Computer Society, and the Operations
Research Society of America.

The world of computer science, especially computer graphics,
has lost one of its main contributors.

209

