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ABSTRACT

Research into the use of the gquadtree data struc~.
ture for image processing applications is de-
scribed. A quadtree represents an image array by
a tree of out degree 4 which dis constructed by

- recursively subdividing the array into blocks of
constant value. This representation is particu-—
larly useful when applied to binary arrays repre-
senting regions (i.e., 1l's are region points).
Algorithms are informally discussed for comversion
between this and other representations, and for
measuring geometric properties of regions repre-
sented in this manner. Results of execution time
analyses of these alporithms are also given.

L.  INTRCDUCTION

Region representation is an important issue in
image processing, compuler graphiecs and cartogra—
phy. There are numercus representations currently
in use. In this paper we focus our attention on
.the quadtree [1,6-11] representation: We discuss
its relatienship to more traditional representa-
tions and present informal descriptions of algo~
rithms for cenverting between quadtrees and these
representations., We also show how geometric
properties of regions represented by quadtrees can
be measured. .

In our discussion we assume that a region is
a subset of a 27 by 20 array which is viewed as
being composed of unit-square. pixels. The most
common region representations used in image proces-
sing are the binary array and the run length repre-
sentation [14]. The binary array represents region
pixels by 1's and non-region pixels by 0's. The
run length representation represents each row of
the binary array as a sequence of runs of 1's al-
ternating with runs of 0's.

Boundaries of regions are often specified as

& sequence of unit vectors in the principal direc—

tions. This representaticn is termed a chain code
[5]. For example, letting i represent 90°% i

(4=0,1,2,3), we have the following sequence as the
_chain code for the region in Tigure la: )

03023° 2% 12137 g3 2% 45

0101030101

Note that this is a clockwise code which starts at

the leftwost of the uppermost border points., Chain
codes yield a compact representation; however, they
are somewhat inconvenient for performing operations
such as set union and intersectiom.

Regions can also be represented by a collection
of maximal blocks that are contained.in the given
region. One such trivial representation is the
run length where the blocks are 1 by m rectangles.
A more general representation treats the region as
a union of maximal blocks (of 1's) of a given
shape. The medial axis transform (MAT) {2,12] is
the set of points serving as centers of these
blocks and their corresponding radii.

The quadtree is a variant on the maximal hlock
representation in which the blocks have standard
sizes and positions (i.e., powers of two). It is
an approach te region representation which is
based on the successive subdivision of an image
array into quadrants. If the array does not
consist entirely of 1's or entirely of 0's, then
we subdivide it into quadrants, subquadrants,...
until we obtain blocks (possibly single pixels)
that consist of 1's or of 0's, i.e., they are
entirely conrtained in the region or entirely dis—
joint from it. This process is represented by a
tree of out degree 4 in which rhe root node
represents the entire array. The four sons of the
root node represent the quadrants {(labeled in
order MW, NE, SW, SE}, and the leaf ncdes corre-
spond to those blocks of the array for which no
further subdivision is necessary. ZLeaf nodes are
said to be "black" or "white" depending on
whether their corresponding blocks are entirely
within or outside of the region respectively. All
non-leaf nodes are said to be "gray'. Since the

. array was assumed to be 2" by 2%, the tree height

‘ig at most n. As an example, Figure 1b is a
block decomposition of the region in Figure la
while Figure lc is the corresponding quadtree.

2. PRELIMINARIES

In the quadtree representation, by virtue of
its tree-like nature, most operations are carried
out by techniques which traverse the tree. In
fact, many of the operations that we describe can
be characterized asg having two basic steps. The .



first step either traverses the quadtree in a
specified order or constructs a quadtree. The
second step performs a computation at each node
which often makes use of its neighboring nodes, i.e.
nedes representing image blocks that are adjacent
to the given node's block. Frequently these two
steps are performed in parallel.

In general, we prefer to avoid having to use
position (i.e., coordinates) and size information
when making relative transitions (i.e., locating
neighboring nodes) in the quadtree since they in—
volve computation (rather than simply chasing
links) and are clumsy when adjacent blocks are of
different sizes (e.g,, when a neighboring block is
larger). Also, we do not assume that there are
links from a node to its neighbors, because we do
not want to use links In excess of four links from
a non-leaf node to its sons and the link from a
non-root node to its- father. Thus all of our
operations are implemented by algorithms that make
use of the existing structure of the tree. This
is in contrast with the methods of Klinger and
Rhodes [11] which make use of size and position
information, and those of Hunter and Steiglitz
[6-8] which locate neighbors through the use of
explicit links (termed nets and ropes). )

Locating neighbors in a given direction is

- quite straightforward. Given a node corresponding
to a specific block in the image, its neighbor in

a particular direction (horizomtal or vertical) is
determined by locating a common ancestor. For
example, if we want to find a eastern -neighbor, the
common ancestor is the first ancestor node which is
reached via its NW or SW son. Next, we retrace the
path from the commen ancestor, but making mirror
image moves abour the appropriate axis, e.g., to
find an eastern or western neighbor, the mirror
images of NE and SE are NW and SW, respectively.
For example, the eastern neighbor of node 32 in
Figure lc is node 33. It is locatred by ascending
the tree until the common ancestor, H, is Found.
This requires geing through a SE link to reach L
and ‘a2 NW link to reach H. Node 33 is now reached
by backtracking along the previous path with the
appropriate mirroy image moves (i.e., going -through
2 NE 1ink to reach M and a SW link to reach 33).

In general, adjacent neighbors need not be of
the same size. If they are larger, then only a
part of the path to the common ancestor is re-
traced. If they are smaller, then the retrdced
path ends at a "gray" node of équal size. HNote
that similar techniques can be used to locate di-
agonal neighbors (i.e., nodes corresponding to
blocks that touch the given node's block at a cor-
ner}. For example, node 20 in Figure lec is the
NW neighbor of node 22. For more details, see [211

3. CONVERSION

3.1 Quadtrees and Arrays

The definition of a quadtree leads naturally
to a '"top down" quadtree construction process.
This may lead to excessive computation because the
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process of examining whether a quadrant contains
all 1's or all 0's may cause certain parts of

the region to be examined repeatedly by virtue of
being composed of a mixture of 1's and O's., Alter—
natively, a "bottom-up" method may be employed
which scans the picture in the sequence

5 617 18 21 22

7 819 20 23 24

3 14 25 26 29 30

5 16 27 28 31 32

where the numbers indicate the sequence in which
the pixels are examined. As maximal blocks of 0's
or 1's are discovered, corresponding leaf nodes
are added along with the necessary ancestor nodes.
This is done in such a way that leaf nodes are
never created until they are known to be maximal.
Thus there is never a need to merge four leaves
of the same color and change the color of their
common parent from gray te white or black as is
appropriate. See {19] for the details of such a
algorithm whose execution time is proportional to
the number of pixels in the image.

If it is necessary to scan the picture row by -
row (e.g., when the input is a run length coding)
the quadtree construction process is somewhat more
complex. We scan the picture a row at z time.

For odd~numbered rows, nodes corresponding to the
pixel or run values are added to the tree, one
node per pixel. For even-numbered rows, nodes
«re added for the pixéls and attempts are made to
discover maximal blocks of 0's or 1's whose size
depends ou ::e row number {e.g., when processing
the fourth row, maximal blocks of maximum size
4-by-4 can be discovered). In such a case
merging is said to take place., See [18] for the
details of an algorithm that constructs a quadtree
from a row by row scan such that at any instant
of time a valid quadtree exists. This algorithm

.. has an execution time that is proporticnal to the
number- of pixels in the image. ‘

Similarly, for a given quadtree we can output
the corresponding binary picture by traversing
the tree in such a way that for each row the
appropriate blocks are visited and a row of 0's or
1's is output. "In essence, we visit each gquadtree
node once for each row that intersects it (i.e.,

a node corresponding to 4 block of size

2K by 2™ is visited ZK-times). For the details see
[20] where an algorithm is described whose execu=-
tion time depends only on the number of blocks of
each size that comprise the jmage ~ not on their
particular configuration.

3.2 Quadtrees and Borders

In order to determine, for a given leaf node

M of a quadtree, whether the corresponding block

is on the border, we must visit the leaf nodes
that correspond to 4-adjacent blocks and check
.whether they are black or white. For example, to
find M's right hand neighbor we use the ueighbor
finding techniques outlined in Sectrion 2. If the
neighbor is a leaf node, then its block is at
least as large as that of M and so it s M's sole




neighbor te the right. Otherwise, the neighbor is
the root of a subtree whose leftmost leaf nodes
correspond to M's right-hand neighbors. These
nodes -are found by traversing that subtree.

Let M,N be black and white leaf nodes whose
associated blocks are 4~adjacent. Thus the pair
M,N defines a common border segment of length 2K
(2K is the minimum of the gide lengths of M and N)
which ends at 2 corner. of the smaller of the two
blocks {they may both end at a common point).

In order te produce a boundary code representation
for a region in the image we must determine the
next segment along the border whose previous seg-
ment lay -between M and N. This is achieved by
locating the other leaf P whose block touches the
end of the segment between M and K:

If the M,N segment ends at a corner of both M and
N, then we must find the other leaf R or. 1eaves
P,Q whose blocks touch that corner:

or l ny

Fla

Again, this can be accomplished by using neighbor
finding techniques as outlined in Section 2.

For the non-common corner case, the next bor-

der segment is the common border defined by M and P

if P is white, or the common border defined by N
and P if P is black. 1In the common corner case,
the pair cf blocks defining the next border seg-
ment is determined exactly as in the standard
"erack following" algorithm {13] for traversing
region borders. This process is repeated until we
re-encounter the bleck pair M,N. At this point
the entire border has been traversed. The succes—
sive border segments constitute a 4-direction chain
code, broken up into segments whose lengths are
sums of powers of two, The time required for this
process is on the order of the number of border
nodes times the tree height. Tor more details

see [4],
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Using the methods described in the last two
paragraphs, we can traverse the quadtree, find all
borders, and generate their codes. During this
process, we mark each border as we follow it, so
that it will not be followed again from a different
statting point. Note that the marking process is
complicated by the fact that a node’s block may be
on many different borders.

In order to generate a guadtree from a set of
4-direction chain codes we use a two-~step process.
First, we trace the boundary in a clockwise
direction and comstruct a quadtree whose black leaf
nodes are of a size equal to the unit code length,
All the black nodes correspond te blocks en the
intericr side of the boundary. All remaining ncdes
are Ieft uncolored. Second, all uncolored nodes
are set to black or white as appropriate. This is
achieved by traversing the tree, and for each
uncolored leaf node, examining its neighbors. The
node is ceclored black uniess any of its neighbors

is white or is black with a border along the shared

boundary. At any stage, merging occurs if the
four rows of z non-leaf node are leaves having the
same color, The details of the algovithm are
given in [15]. The time required is proportional
to the product of the perimeter (i.e., the 4-
directior chainr code length) and the tree height.

3.3 Quadtrees of Derived Sets

Let 8 be the set of 1's in a given binary
array, and let § be the complement of 5. The quad-
tree of § is the same as that of 5, with black
leaf nodes changed to white and vice versa. To
get the quadtree of 5 U T from those of S and T, we
traverse the two trees simultaneously. Where they
agree, the new treé is the same and if the two

nodes are gray, then their subtrees are traversed.

If S has a gray (=nonleaf) node where T has a black
node, the new tree gets a black node; if T has a
white node there, we copy the subtree of § at that
gray ncde into the new tree. TIf § has a white
node, we copy the subtree of T at the corresponding
node.” The algorithm for & N T is exactly analo-
gous, with the roles of black and white reversed.
The time required for these algorithms is propor-
tional to the number cf nodes in the smaller of the
two trees [23].

3.4 SKeletons and Medial Axis Transforms

The medial axis of a region is a subset of its

- points each of which has a distance from the com-

plement .of the region (using a suitably defined
distance metric) which is a local maximum. The
medial axis transform.{MAT) consists of the set of
medial axis or "skeleton' points and their asso-
ciated distance values. The quadtree representa-
tion may be rendered even more compact by the use
of 2 skeleton-like representation. Recall that a
quadtree is a set of disjoint maximal square blocks
having sides whose lengths are powers of 2. We
define a quadtree skeleton to be 2 set of maximal

- square blocks having sides whose lengths are sums

of powers of twe. The maximum value (i.e., "chess—

~ board") distance metric [13} is the most appropri-

ate for an image represented by a quadtree. See
[21] for the details of its computation for a =~



quadtree; see also [24] for a different quadtree

" distance transform. A quadtree medial axis trans-—
form (QMAT) is a quadtree whose black nodes cor~
respend to members of the quadtree skeleton while
all remaining leaf nodes are white. See [22] for
the details of a quadtree to QMAT conversion al-
gorithm whose execution time is on the order of the
mumber of nodes in the tree.

4. PROPERTY MEASUREMENT

4.1 Connected Component Labeling

Traditionally, connected component labeling
is achieved by scanning a binary array row by row
from left to right and labeling adjacencies that
are discovered to the right and downward. During
this process equivalences will be generated. A
subsequent pass merges these equivalences and up-
dates the labels of the affected pixels, In the
case of the quadtree representation we also scan
the image in a sequential manner. However, the
sequence’s order is dictated by the tree structure
~- i.e., we traverse the tree in postorder. When-
ever, a black leaf node is encountered all black
nodes that are adjacent to its south and east
sides are also visited and are labeled accordingly.

-Again, equivalences generated during this traversal
are subsequently merged and a tree traversal is
used to update the labels. The interesting result
is that the algorithm's execution time is propor—
tional to the nuber of blocks in the image’ and
dees not depend on their size. In contrast, for
the binary array representation thé execution time
1s proporiional to the number of pixels. An analo-
gous result is described in the next section. See
[17) for the details of an algorithm that labels
connected components in time on the order of the
number of nodes in the tree plus the product of
B-log B where B is the number of black leaf nodes.

4,2 Component Counting and Genus Computation

Once the comnected components have been
labeled, it is trivial to count them, since their
aumber is the same as the number of inequivalent
labels. We will next describe a method of deter-
mining the number of components minus the number
of holes by counting certain types of local pat-
terns in the array; this number, g, is known as the
genus or Euler number of the array.

Let V _be the number of 1's,” E the number
of 11's and l's, and F the number of
%%'s in the array; it is well kmown [13] that
g=V-E+F. This result can be generalized to the
case where the array is represented by a quadtree
[3}.. In fact, let V be the number of black leaf
nedes; E  the number of pairs of such nodes whose
blocks are horizontally or vertically adjacent;
"and F the number of triples or quadruples of
such nodes whose blocks meet at and surround a
common point, e.g.

ar

a

Then ~g=V-E+F These adjacencies can be found
(see Section 3.2) by traversing the tree: the
time required is on the order of the number of
nodes in the tree.

4.3 Area and Moments

The area of a region. represented by a guadtree
can be obtained by summing the areas of the black
leaf nodes, i.e., counting 4% for each such node
that represents a 2" by 20 Block. Similarly, the
first x and y moments of the region relative to a
given origin can be computed by summing the first
mements of these blocks; note that we know the
position (and size) of each block from the coordi-
nates of its leaf in the tree. Knowing the area
and the first moments gives us the coordinates of
the centroid, and we can then compute central
moments relative to the centroid as the origin.
The time required for any of these computations is
proportional to the number of nodes in the tree.
Further details on moment computation from quad-
trees can be found in [23].

4.4 Périmeter

An obvious way of obtaining the perimeter of a
region representéd by a quadtree is to simply tra-
verSe its border and sum the number of steps.
However, .there is no need to traverse the border
segments in order. Instead, we use a method which
traverses the tree in postorder and for each
black leaf node examines the colors of its
neighbors on its four sides. For each white
neighbor the length of the corresponding border
segment is included in the perimeter. See [16]
for the details of such an algorithm which has
execution time proporticnal to the number of nodes
in the tree. ' : .

5. CONCLUDING REMARKS

We have briefly sketched algorithms for accom-
plishing traditional region processing aperations
by use of the quadtree representation. Many of
the methods used on the pixel level carry. over to -
the quadtree domain {e.g., connected component
labeling, genus, etc.). Because of its compact—
ness, the quadtree permits faster execution of
these operations. Oftea the quadtree algorithams
require time proportional to the number of blocks
in the image, independent of their size.

Quadtrees constitute an interesting alterna-
tive to the standard methods of digitally repre-
senting regions. Their chief disadvantage is that
they are non shift-invariant; two regions differ-
ing only by a translation may have quite different
quadtrees. (but see [22]). Thus shape matching




from gquadtrees is not straightforward.
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Neverthe-

less, in other respects they have many potential

_advantages.

They provide z compact and easily

constructed representation from which standard
region propertles can be efficiently computed. In
effect, they are "variable-resolution arrays"

in Wthh detail is represented only when it is
available, without requiring excessive storage for
parts of the image where detail is missing.
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Figure 1. A region, its maximal blocks, and the corresponding quadtree. Blocks
: in the region are shaded, background blocks are blank.




