
COMPUTER VISION, GRAPHICS,AND IMAGE PROCESSING %,29-49(1990)

Set Operations for Unaligned Linear Quadtrees*

CLIFFORD A. SHAFFER

Department of Computer Science, Virginia Po!vtechnic Institute and State Universiy
Blacksburg, Virginia 24061

AND

HANAN SAMET

Computer Science Department, Center for Automation Research and Institute for Advanced
Studies, Universi<y of Matyland, College Park, Maryland 20742

Received July 1,198s; revised May 1,1989

An algorithm is presented that performs set operations (e.g., union or intersection) on two
unaligned images represented by linear quadtrees. This algorithm seeks to minimize the
number of nodes that must be searched for or inserted into the disk-based node lists that
represent the trees. Windowing and matching operations can also be cast as unaligned set
functions; these operations can then be solved by similar algorithms. r 19~ Academic press. Inc

1. INTRODUCTION

Creating the union or intersection of two maps (sometimes referred to as porygOn
ouerlay) is a fundamental operation performed by Geographic Information Systems
(GIS). These operations allow the user to determine spatial relationships between
objects without requiring that such relationships be explicitly stored by the database.
For example, a map of all wheatfields above 100 ft in elevation can be produced by
intersecting a wheatfield map with an elevation map whose regions representing
elevations below 100 ft are WHITE (or empty) and whose regions above 100 ft are
non-WHITE. The resulting map would have non-WHITE regions wherever the
corresponding regions of both input maps are non-WHITE. The quadtree data
structure has been used successfully as the underlying representation for maps in
several experimental GIS 118, 24, 11, 31. One variant, named the region quudtree [17]
decomposes an image into homogeneous blocks. If the image is all one color, then it
is represented by a single block. If not, then the image is decomposed into
quadrants, sub-quadrants,. . . , until each block is homogeneous. Figure 1 illustrates
the region quadtree. The region of Fig. l(a) is represented by a binary pixel array in
Fig. lb. The resulting quadtree block decomposition is shown in Fig. lc, and the
corresponding tree structure in Fig. Id. For the sake of brevity, we will use the
generic term “quadtree” to refer specifically to the region quadtree. .When a
quadtree is represented by means of a tree structure with explicit pointers from a
node to its children, it is referred to as a pointer-based quadtree.

Maps are sufficiently large that they normally cannot be represented in the
computer’s primary memory. The linear quadtree technique [5, l] has gained much
use since it allows the storage of quadtrees in such a way that they may be efficiently
manipulated when stored in disk files. The linear quadtree represents the position of

*The support of the National Science Foundation under Grant ISI- is gratefully acknowl-
edged.

29
0734-189X/90 $3.00

Copyright 67 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved

30 SHAFFER AND SAMET

7 6 910 15 16 17 16

03

FIG. 1. A region, its binary array, its maximal blocks, and the corresponding quadtree: (a) region; (b)
binary array; (c) block decomposition of the region in (a); blocks in the region are shaded; (d) quadtree
representation of the blocks in (c).

each leaf node by use of a locational code corresponding to a sequence of
directional codes that locate the leaf along a path from the root of the tree, as
illustrated in Fig. 2. These locational codes can also be derived by interleaving the
bits from the binary representation of the (TOW, col) coordinates of the blocks’
upper left pixel. These locational codes will be referred to as Morton sequences, after
the originator of their first use with GIS [12]. The resulting collection of quadtree
leaf nodes is usually stored as a list sorted in increasing order of locational codes;
this ordering is referred to as Morton sequence ordering. Such an ordering is useful
because it reproduces the order in which the leaf nodes of the pointer-based
quadtree would be visited by a depth-first traversal. Thus, this technique converts
the pointer-based tree representation into a sorted list of leaf nodes which can be
manipulated by traditional indexing schemes such as the B-tree [4].

The algorithm for computing the union or intersection of aligned quadtrees, i.e.,
quadtrees whose image size, pixel size, origin, and rotation angle with respect to the
coordinate axes are the same, is quite straightforward [9, 261. In fact, it was one of
the “classic” quadtree algorithms that sparked initial interest in the quadtree% use.
Its time complexity is proportional to the sum of the number of blocks in the two

UNALIGNED LINEAR QUADTREES 31

(4

100

000 c ----I 110

130 II 310

330 -l
(W

FIG. 2. Morton code addressing for the quadtree of Fig. 1: (a) the tree structure with the correspond-
ing directional codes at each branch; (b) the resulting block decomposition with each node labeled by its
upper left pixel’s Morton code.

input trees. In this paper, we show that set functions for unaligned quadtrees, i.e.,
quadtrees whose image size and origins may differ, can be computed in the time
required for a single access to each node in the two input trees plus a single write for
each node in the output tree. In particular, we present an algorithm for generating
the linear quadtree that is the result of computing the intersection of a pair of
unaligned linear quadtrees. In Section 3, we will further generalize the operation by
describing a method for performing set operations on maps with differing rotation
angles with respect to the coordinate axes.

Most of the algorithms presented here, while modifiable for implementation with
pointer-based quadtrees, are described using linear quadtree operations. One advan-
tage of this approach is that we can discuss these algorithms in terms of searches
and insertions into an abstract data type (conceptually a sorted list), rather than
lower level tree manipulation functions. Our linear quadtree algorithms access the
node list through two functions, OUTPUT(tree, row,col, level, value) and
FIND(tree,nocfe,row,col). OUTPUT inserts into linear quadtree tree a node with

32 SHAFFER AND SAMJZT

level level, upper left corner at (row,col), and node value ualue. All algorithms
discussed here output nodes strictly in Morton sequence order. FIND locates in tree
the leaf node containing (row,&), returning a description of this node in node.

The remainder of this paper is organized as follows. Section 2 contains our
unaligned set operation algorithm. Section 3 shows how to adapt this algorithm to
map windowing. Section 4 adapts our algorithm to template matching. Section 5
presents our conclusions.

2. COMPUTING THE INTERSECTION OF UNALIGNED MAPS

In this section we present an algorithm to compute the intersection of two images
represented by linear quadtrees. Other set functions such as union or difference can
be handled in an analogous manner. The intersection of two quadtrees representing
images with the same grid size, same map size, and same origin can be implemented
by a simple depth-first traversal of both trees in parallel. Each node of the first
image is compared with the corresponding node(s) in the second image. Algorithm 1
of the Appendix, named SIMPLE-INTERSECT, illustrates this procedure. For
clarity, it has been formulated for operation on pointer-based quadtrees.

Little work has appeared on set operations between unaligned quadtrees (i.e.,
quadtrees that have compatible grid sizes, but differing origins and/or map sizes).
Earlier approaches to unaligned quadtree intersection involved translating one of
the images to be aligned with the other, and then performing aligned intersection
[6]. This section presents an algorithm for unaligned map intersection that performs
a FIND operation on each node of the two input quadtrees at most once, and
performs at most one OUTPUT operation for each node in the resulting quadtree.
Image translation will be discussed in Section 3.

The unaligned intersection algorithm works as follows. We select one of the input
quadtrees to be the aligned quadtree, named QA. The other input quadtree is the
unaligned quadtree, named QU. The nodes in the aligned quadtree are processed in
Morton order. For each node N of QA, the various nodes of QU that overlap N are
located. The algorithm starts with N’s upper left pixel and finds the node of QU,
say M, that covers that corner. Next, it determines the largest block, say B, that is
contained in both N and M. Finally, it computes the appropriate set operation
(intersection in this case) for the values of N and M, sets B to its result, and
transmits B to an output function which is responsible for creating the nodes in the
final quadtree. This processing sequence is repeated for the remaining unprocessed
pixels in N by proceeding in Morton order. The key to making the algorithm
efficient is to minimize the number of FIND operations performed on QV as well as
the number of OUTPUT operations.

As an example, let the simple block decomposition shown in Fig. 3a be QU. Let
the square region within the broken lines, labeled N, be the first node from QA and
assume that it is BLACK. The algorithm compares N against each node in QU that
it covers (i.e., B, E, G, H, I, and J). Figure 3b shows the resulting sub-blocks.

Note that sub-blocks 6, 7, 8, and 9 in Fig. 3b will form a single WHITE block in
the output tree, and likewise for sub-blocks 10, 11, 12, and 13. We say that a block
of the output quadtree is active if it is possible for it to merge with its siblings to
form a larger block. Since our goal is to minimize the number of OUTPUT
operations, we do not want to output the active blocks. Instead, we take advantage
of the fact that the blocks of the output quadtree are generated in Morton order and

UNALIGNED LINEAR QUADTREES 33

L.....

I J

(a) (b)

FIG. 3. An illustration of unaligned intersection: (a) the image to be intersected (Qol), with the
location of the first block (N) of Q,4 superimposed; (b) the block decomposition for the first block of QA
after intersection with the image in (a).

facilitate the grouping of identically colored blocks by maintaining a table named
outtub of the active output tree blocks. Since the blocks in the output quadtree are
generated in Morton order (matching the progress made in processing QA), four
active blocks that make up a larger block must be adjacent in the list of all currently
active output tree blocks created by the intersection algorithm. Four siblings of the
same color are immediately replaced by their parent block when the fourth sibling is
created. Once it is certain that active output tree blocks may not combine to form a
larger block, then the contents of outtab can be converted to nodes of the linear
quadtree and output by use of the OUTPUT function. This situation is quite easy to
detect as it arises whenever the color of an active block is different from the color of
the immediately preceding active block. The greatest possible number of active
blocks occurs when the NW, NE, and SW quadrants of the image are all of color C,
the first three subquadrants of the SE quadrant are also of color C, etc. This
situation can continue for at most n levels for a 2” x 2” image. Thus, outtub can
contain a maximum of 3 - n entries. Procedure ORDER-INSERT of Algorithm 2
encodes this method. Use of this procedure limits the number of calls to OUTPUT
to be the number of blocks in the output tree.

The number of FIND operations is minim&d by keeping track of which blocks
in QU can possibly cover pixels in QA that have yet to be processed. We say that a
block in QU is active if some, but not all, of its constituent pixels have already been
used to cover processed blocks in QA. The blocks of QA are processed in Morton
order. This means that the border of the region consisting of the blocks that have
already been processed in QA (termed the ucfive border) has the shape of a
staircase. For example, consider Fig. 4, where the blocks have been assigned labels
matching their Morton order. The heavy line represents the state of the active
border after processing block 6. The broken line along the southern and eastern
border of block 7 shows the change in the active border after processing block 7.
The active border of a 2” x 2” image consists of sets of horizontal and vertical
segments such that the total length of each of these sets is 2” pixel widths. At any

SHAFFER AND SAMET

FIG. 4. The active border after processing node 6 where quadtree Q,4 is the image of Fig. 1: “x”
marks indicate possible locations for the next node to be processed; “y” marks indicate positions for
table updating after processing node 7.

given instant, the active blocks of QU are those blocks that straddle (i.e., overlap)
the active border of Q.4.

A description of the active border is maintained in two arrays, named x-edge and
y-edge, each 2” records long. Each record contains the descriptor for a quadtree
node. Pixel-sized blocks are defined to be at level 0; a block equal in size to the
entire image is at level n. The active border implementation described here is related
to the implementation used by Samet and Tamminen [20]. The difference is that
Samet and Tamminen’s goal was to keep track only of the colors of the processed
blocks that are adjacent to the border whereas in the present application we want to
keep track of the blocks in QU that straddle the active border.

The unaligned intersection algorithm, named INTERSECT and presented as
Algorithm 2 in the Appendix, works as follows. For each node N of QA, the
function DOSET performs the following steps. Start with the pixel in the upper left
comer of N (i.e., at address (cy, cx) with respect to an origin at the extreme NW
comer of the image), find the block, say N’, in QU that covers the pixel. This is
achieved by examining y-edge[cy] and x-edge[cx]. There are three possible out-
comes :

(1) Both y-edge[cy] and x-edge[cx] contain N’. Nothing else needs to be done.
(2) One of y-edge[cy] and x-edge[cx], but not both, contains N’. The record

for N’ is copied from one array to the other.
(3) Neither of y-edge[cy] and x-edge[cx] contain N’ and thus we must search

(i.e., use the FIND operation) QU for N’. In such a case, once N’ has been found, it
is inserted into both y-edge[cy] and x-edge[cx].

Once N’ has been located, its size and position are compared with that of N to
generate the largest block, say B, with an upper left comer at (cy, cx) that is
contained in both N and N’. B is then passed to ORDER-INSERT. The process
continues at the next unprocessed pixel in Morton order until reaching the pixel in
the lower right comer of N. Note that no node in QU will ever be the subject of

UNALIGNED LINEAR QUADTREES 35

more than one FIND operation. This follows from the fact that the pixels of each
block in Q-4 are processed in Morton order. Consider the side of the active border
of Q-4 that corresponds to the unprocessed image. At any instant, the next pixel to
be processed can only be one of the pixels in the vertex of one of the convex angles
formed by the segments on this side (e.g., the upper-leftmost comers of blocks 7 and
11 in Fig. 4). Assume that after processing pixel (cy, cx) both y-edge[cy] and
x-edge[cx] contain a pointer to node N’ in QU and that the block that has been
generated is of width w. The new active border of Q,4 will have at most two new
convex angles-i.e., one at (cy + w, cx) and one at (cy, cx + w). When pixel
(cy, cx + w) is processed, y-edge[cy] still points at N’ since no other pixel with v
coordinate value cy was processed in the meantime. Similar reasoning applies to
pixel (cy + w, cx) and x-edge[cx].

Algorithm 2 encodes the unaligned intersection algorithm described above. To be
precise, this algorithm produces an image whose value is WHITE at those pixels
where either QU’s corresponding value is WHITE or the pixel is beyond the
borders of one of the images; the value is that of the corresponding position in QA
for all other pixels. As an example of how the unaligned intersection algorithm
operates, Table 1 illustrates the workings of this algorithm for Fig. 3. Recall that in
this case the image in Fig. 3a is intersected with the BLACK region corresponding
to the square within the broken lines. The image in Fig. 3a corresponds to QU while
the BLACK square is the first node from QA. Table 1 shows the contents of the
active border arrays after processing the upper left comer of each sub-block formed
from node N in Fig. 3b.

Column 1 of the table indicates the coordinates of the pixel in QA that is
currently being processed. Columns 2 and 3 correspond to the contents of y-edge
and x-edge after processing the pixel specified in column 1. Column 4 shows the
sub-block generated for that pixel. The entries in columns 2 and 3 are of the form
p : b, where b is the block in QU that is stored in position p in the edge array. An
asterisk (*) next to a block means that it has been located by use of a FIND
operation. For example, when processing pixel (0,O) the array is empty, and thus the
record for block B (the block containing pixel (0,O)) is loaded into y-edge[O] and
x.-edge[O]. A minus (-) next to a block means that the corresponding y-edge (or
x-edge) entry did not contain a block that covers the current pixel at (cy, cx), and
that the block was copied from x-edge (or y-edge). A plus (+) appears next to the
copied entry. For example, after processing pixel (2,O) relative to the origin of Q4
(i.e., block 6 in Fig. 3b), y_edge[2] and x-edge[l] contain blocks G and H,
respectively. Pixel (2,l) is contained in block H and thus when it is processed, we
simply copy H from x-edge[l] to y-edge[2]. Thus for pixel (2,l) y_edge[2] and
x-edge[l] are marked with (-) and (+), respectively. Note that upon processing
pixel (3,0), block G is still contained in x-edge[O] and thus it is replaced by block I.
If G had been a large block covering pixel (3,0), then G would have still been
available and thus no change would have taken place.

Entries in column 4 marked with an asterisk (*) indicate those nodes which
initiate calls to OUTPUT to clear table outtub. Such nodes are of a different color
than their predecessor. Entries marked with a plus (+) indicate a SW sibling which
merges with its like-colored siblings already in outtab.

Earlier we mentioned that procedure ORDER-INSERT only outputs blocks that
cannot be aggregated to form larger blocks. As described above, OUTPUT is

36 SHAFFER AND SAMET

TABLE 1
Trace Table for Intersection Active Nodes

processed y-edge
Pixel Active node tables

x-edge
-

(03 0)
(0.1)

(17 0)

(1.1)

(0.2)

(27 0)

(2.1)

(3.0)

(3.1)

(272)

(2*3)

(3.2)

(3-3)

0: B*
0: H*

0: H
1: E*
0: H
l:H-
0: H +
1: H

0: H
1: H
2: G*

0: H
1: H
2: H -
0: H
1: H
2: H
3: I*

0: H
1: H
2: H
3: J*

0: H
1: H
2: H
3:J
0: H
1: H
2: H +
3: J
0: H
1: H
2: H
3: J +
0: H
1: H
2: H
3: J +

0: B*
0: B
1: H*
0: E*
1: H
0: E
1: H +
0: E
1: H
2: H -
0: G*
1: H
2: H
0: G
1: H +
2: H
0: I*
1: H
2: H

0: I
1: J*
2: H

0: I
1: J
2: H

0: I
1: J
2: H
3: H -
0: I
l:J
2: J -
3: H
0: I
1: J
2: J
3:J-

output

1
2*

4*

5

6

I

8

9+

10

11

12

13 + *

UNALIGNED LINEAR QUADTREES 37

invoked as many times as there are blocks in the final quadtree. It is possible to
design an algorithm that makes even fewer calls to OUTPUT. Such an algorithm
would use a largest block insertion policy. This policy always inserts the largest
block for which the current pixel is the upper-left corner, and keeps track of those
nodes that have been inserted that are still active. Thus future pixels of the same
color need not cause the insertion of more nodes. See [23] for an algorithm that
makes use of this approach. While ORDER-INSERT makes more calls to OUT-
PUT than a largest node insertion policy, ORDER-INSERT is more appropriate
when the underlying implementation can use the Morton sequence order of the calls
to OUTPUT to optimize the construction process. For further discussions on the
virtues of largest node insertion policies, see [22, 231.

The algorithm’s execution time is O(N, + F(N,) + M + M’), where NA and N,,
denote the number of nodes in Q,4 and QU, respectively; M and M’ are the
number of nodes in the output quadtree before and after merging. F(N,) is the cost
for the FIND operations that must be performed on QU. NA is the number of nodes
in QA that must be processed. M is the number of times nodes are inserted in
outtab. M is also the total number of subblocks that comprise the set of nodes of
QA. Clearly, NA I M. M’ is the number of calls to procedure OUTPUT. The
contribution of the factor M is overshadowed by M’ since M represents the number
of times that outtab is updated, while M’ represents actual calls to OUTPUT. In
particular, if the quadtree resides on disk, then calls to OUTPUT require disk
accesses, whereas updates to outtab are performed in core. Thus we get an asymp-
totic execution time of O(N, + F(N,) + M’). Fortunately, calls to OUTPUT are
strictly in Morton order, allowing the output tree to be constructed with a minimal
amount of disk I/O.

The cost of a FIND operation depends on the representation of QU. If QU is
implemented as a sorted list of locational codes, then each FIND operation takes
O(log N,) time. Therefore, a more precise measure of execution time is 0(NA + NC,
. log N, + M’). If QU is implemented as a tree structure (i.e., using pointers, or as
a linear quadtree indexed by a B-tree), then the worst-case cost for a FIND
operation is O(n) for a 2” x 2” image. However, since the node that is being sought
is always a neighbor of the current node in the active border array, neighbor-finding
methods [16, 211 can be employed for pointer-based quadtrees. These methods have
an average cost of O(1). Use of ropes [9] can guarantee an O(1) worst-case cost
(however, such an advantage would be countered by the need to create ropes in the
output tree). The cost of locating the nodes in QA can be analyzed in a similar
manner. However, nodes in QA are processed in Morton order, and it can be
assumed that they are also stored in Morton order. Thus the cost of accessing each
node in QA is O(1).

3. WINDOWING

Another function commonly provided by GIS allows the user to extract a window
from an image. A window is simply any rectangular subsection of the image.
Typically the window will be smaller than the image, but this is not necessarily the
case. The window could also extend beyond the image border. Most importantly,
the window’s origin (or upper left comer) could potentially be anywhere in relation
to the input map’s origin. This means that large blocks from the quadtree represen-
tation of the image must be broken up, and possibly recombined into new blocks in

38 SHAFFER AND SAMET

the quadtree representation for the windowed image. Details of the resulting block
decomposition are discussed in [25, 281.

Shifting an image represented by a quadtree is a special case of the general
windowing problem-taking a window equal to or larger than the input image but
with a different origin will yield a shifted image. Shifting is important for operations
such as finding the quadtree representation of an image that has the fewest nodes. It
can also be used to align two images.

If windowing is viewed as a set function on two unaligned maps, an algorithm
requiring at most a single call to OUTPUT per output tree node can be derived
from Algorithm 2 in the following manner. Let QA correspond to a BLACK region
with the same origin as the window and whose size is the least power of 2 greater
than or equal to the maximum of the window’s width and height. Let QU be the
image from which the window is extracted. The resulting image would have QA’s
size and position, with the value of QU’s corresponding pixel at each position that
falls within the window (pixels beyond QU’s border may be set to WHITE. The
equivalence between windowing and unaligned set intersection should be clear. In
fact, the windowing algorithm is slightly simpler, since a single BLACK node of the
appropriate size takes QA’s place in the algorithm, and thus only one call to
procedure DOSET is needed. The calculation of the largest block contained within
both the current nodes of QA and QU must be modified since the window may be
smaller than the full extent of QA. The set function value calculation must be
modified to return QU ‘s value; otherwise, the windowing algorithm is identical to
INTERSECT.

Algorithms have been discussed in the literature [14] for extracting a window
from images represented by pointer-based quadtrees with time complexity O(N, +
n * M) where n is the output tree’s depth, NL is the number of leaves in the input
tree, and M is the number of leaves in the output tree. Van Lierop [27] presents an
O(M . (log, NL + n)) algorithm for a linear quadtree. Samet et al. [19] have
presented a windowing algorithm with time complexity 0(NL + M). Algorithms for
the translation of 3D objects represented by octrees have also been presented [7, 13,
2, lo]. Unfortunately, for each of these algorithms, M represents the number of
nodes in the output tree before merging together nodes split by the windowing
process (e.g., the block decomposition produced in Fig. 3b if N of Fig. 3a is the
desired window). M can therefore be significantly greater than the number of nodes
in the output tree once merging has been performed (again in Fig. 3b, the SW and
SE quadrants should each merge to form a single WHITE node; M is the count of
all pre-merge fragments). When such algorithms are translated to a linear quadtree
implementation, this increase in node insertions will greatly affect the algorithm’s
performance.

Our windowing algorithm locates (only once) those input tree nodes that cover a
portion of the window and performs at most one insert operation for each output
node. The number of calls to ORDER-INSERT will be M, i.e., the number of
nodes before merging. However, ORDER-INSERT handles merging before calling
OUTPUT, resulting in great savings in the time required to manipulate the disk-
based node list.

Walsh [28] attempts to minimize the work required to merge node fragments by
producing the fragments associated with input quadtree node N in sorted order.
The fragments of each node are combined with the remainder of the node list by

UNALIGNED LINEAR QUADTREES 39

FIG. 5. An example of windowing with rotation showing the block decomposition of the resulting
quadtree. Pixel centerpoints in window space are indicated by dots; a pixel P in window space
corresponds to the cell in original space containing P’s centerpoint.

merging the (sorted) lists. Condensation of the fragments occurs during this process.
The major difference between Walsh’s algorithm (as well as the others referenced
above) and the algorithm presented in this paper is that our algorithm processes the
output tree in Morton order, whereas the other algorithms process the input tree in
Morton order. Thus, condensation of the fragments is a trivial matter for our
algorithm. Instead, we must pay a cost in that nodes of the input tree may be visited
more than once. Our active border arrays make this an efficient operation.

With only minor modifications, our set function/windowing algorithms can
handle rotated windows (or set operation on two images which are rotated with
respect to one another) as in Fig. 5. This is done by transforming each node of the
image (or of I2 in the intersection case) to the window’s coordinate system
(equivalently, the coordinate system of image QA). For improved efficiency, this can
be done by means of pre-computed transformation tables. Computation of the
largest block contained within the window (or the current nodes of QA) and QU
must also be modified. The edge arrays used to store active nodes of the output
image require no modification. Figure 5 shows an illustration of the results of the
rotated windowing algorithm. Algorithm 3, named WINDOW, presents the rotated
windowing algorithm along with code for setting up the transformation tables. The
algorithm as presented works for any rotation angle in the range of 0 to 90”
(measured as a clockwise angle from the horizontal). Rotation by arbitrary angles
would require minor modifications to the transformation tables. Unfortunately, as
with any point sampling approach to rotation our algorithm is subject to serious
aliasing errors.

4. TEMPLATE MATCH MEWWREMENT FOR QUADTREES

Template matching is an important operation for applications such as character
and feature recognition. A simple measure of the “goodness” of the match between
two images can be defined as the number of positions where the images’ correspond-
ing pixels have equal values. In some cases, the locations or origins of the objects to
be matched are known. An example of this is the validation process performed when
adding new maps to a database system. Those portions of the new map that overlap

40 SHAFFER AND SAMET

existing maps should be compatible with the old data; if not, then they may need
special attention to resolve inconsistencies. In this application, the operation is
primarily limited by the efficiency of the matching algorithm. In other applications,
the template origin is known, but the object’s location in the input image is not. A
search for the position producing the best match will be necessary. Even here, some
measure for the match at various positions must be computed, and thus, an efficient
matching calculation algorithm is desirable.

The matching function, once a relative positioning for the two images has been
selected, can be viewed as an unaligned set function. A simple match function
will set to BLACK those blocks for which both images have the same value and to
WHITE those blocks for which they do not (the value of blocks within the
borders of one image, but beyond the borders of the other, will depend on the
application). Actually, this algorithm needs only to count the matching pixels, not to
create an output image. Thus, a match evaluation function can replace calls to
ORDER-INSERT. In the simplest case a counter for the matched pixels is
maintained and updated as indicated by the values passed to ORDER-INSERT.
Where a node portion of size 2’ x 2’ matches in both images, 2” is added to the
counter. Other match measurements could easily be computed using this framework.
One such example would be to add the differences between the corresponding node
values (for multi-colored images). As each block is processed, its size would be
multiplied by the difference in the corresponding node values and this total added to
the counter.

A different approach to image matching can also be performed efficiently using
linear quadtrees. This technique involves computing moments for two images and
comparing these numeric values rather than comparing the images directly [8, 151.
The (i, j) moment for an image is defined as

“ij = C CfXjf(Y, X),

where f(y, x) is the value of the pixel at (y, x). Shneier presents an algorithm for
computing the centroid of a pointer-based quadtree that visits each node exactly
once during a tree traversal [26]. Other moments for images represented by linear
quadtrees can be calculated in a similar manner, requiring one visit to each node
during a node list traversal. One advantage of this technique is that the moment for
the image with respect to a different origin can be calculated without translating the
quadtree. Alternatively, moments can be used to compute a normalized origin,
orientation, and scale for an image. Translation and scaling algorithms similar to
the windowing procedure described above can then be used to adjust the image.
Algorithm 4, named MOMENT, provides a generalized moment calculation func-
tion for linear quadtrees.

5. CONCLUSIONS

We have presented efficient algorithms for set operations such as union and
intersection, as well as related algorithms for windowing and template matching. In
addition, a generalized moment calculation algorithm is presented. These algorithms
are optimal in terms of the worst case number of FIND and OUTPUT operations.
In particular, our intersection algorithm requires that every node of the first input
tree be visited in Morton order, every node of the second input tree also be visited,
and the output tree be constructed in Morton order.

UNALIGNED LINEAR QUADTREES 41

TABLE 2
Unaligned Quadtree Intersection Algorithm Statistics

(07 0) (1, 1) VW 100)
Map Nodes Time NOdf3 Time Nodes Time Nodes

Floodplain 5206 3.3 4693 9.1 5665 4.2 4279
Landuse 28549 9.0 10243 13.3 10303 8.8 6532
Topography 24859 1.1 5659 12.5 5803 7.8 5527
Pebble 44950 11.6 6217 16.2 6304 11.6 6536
Stone 31969 9.0 4210 13.7 4150 8.8 3862
ACC 3253 3.0 670 8.7 646 3.4 619

~--___-___.

Most tree or list implementations for quadtrees should allow the Morton code
order traversal and creation operations to be implemented in O(1) time for each
node. Tables to support in-core caching of nodes from the second input tree
guarantee that each node is read from disk only once. Thus, any quadtree represen-
tation that efficiently supports Morton order traversal, Morton order construction,
and random access FIND operations would be able to support an efficient imple-
mentation of these algorithms.

As an empirical test of the efficiency of our methods, we calculated intersections
between several pairs of maps. The test maps were taken primarily from a testbed
used in a prototype quadtree-based GIS [24]. Maps are represented as a linear
quadtree whose node list is indexed by a B+-tree. Table 2 shows the sizes of the test
maps and the time required to compute the intersections on a VAX 11/785 running
BSD 4.3 UNIX, each pair computed for a series of origin offsets. QU’s origin is
positioned at (O,O), (1, l), and (100, lOO), respectively. Note that offset (0,O) is
equivalent to a registered intersection (and thus should require the least amount of
work), offset (1,1) is the “worst” possible offset since all nodes larger than a single
pixel will be misaligned in the two trees, while offset (100,100) falls between these
extremes. All times are in CPU seconds. In each test, QU was the hundred year
floodplain region from our testbed. This map contains 4693 leaf nodes when
represented as a linear quadtree. The six maps tested against were a slightly
modified version of the same floodplain map, a topography map, a landuse survey
map, a map derived from the landuse class map containing ,a single landuse class
(named ACC), and two thresholded texture images of pebbles and a stone block,
respectively. Their sizes, in terms of the total number of leaf nodes, are indicated in

TABLE 3
Quadtree Rotated Windowing Algorithm Statistics

256 x 256 128 x 128

Map Time

Floodplain 3.9
Landuse 14.5
Topography 18.5
Pebble 18.9
Stone 13.5
ACC 2.3

Nodes Time Nodes

1660 2.1 X59
9598 3.7 2479

12934 3.9 2560
12613 5.0 3547
1945 2.1 1267

817 0.2 1

42 SHAFFER AND SAMET

the table. For a given map pair and origin positioning, the size of the resulting map
measured as the number of leaf nodes is also indicated.

Table 3 shows the timing results for extracting windows rotated 45” for two
positions taken from each of the test images. The first column shows the result of
calculating a window of size 256 x 256 with origin at (0,256). The second column
shows the result of calculating a window of size 128 x 128 with origin at (0,128). As
with the intersection test, times are measured in CPU seconds and the number of
leaf nodes in the resulting maps are indicated.

APPENDIX

The following algorithms make use of a number of primitive operations not
further defined in the code. Boolean functions WHITE(node) and BLACK(node)
return TRUE if the value of node is WHITE or BLACK, respectively. SON(n, i)
returns the i th son of node i. CREATE~POINTER~NODE(uaZ) creates a pointer-
based quadtree node with value ual. COPYTREE(tree) returns a complete copy of
subtree tree. Y-OF, and X-OF return the appropriate coordinate for the upper-left
comer of a node or map. WIDTH(node), DEPTH(node), and VALU’E(node) return
the appropriate attribute for node. MAX-NODE-DEPTH is a global constant
containing the maximum depth allowed for a quadtree. OUTPUT and FIND are
the abstract node write and node locate functions discussed in the text.

ALGORITHM 1. Intersection of two aligned images represented by quadtrees.

function SIMPLE-INTERSECT(intreel, intree : f NODE) : t NODE;
{Return the intersection of two pointer-based quadtrees by calculating the node
value if either intreel or intree is a leaf node; otherwise, recursively calculate
the intersections of their corresponding sub-trees.}

var n : TNODE;
begin

if WHITE(intreel) or WHITE(intree2) then
return (CREATE-POINTER-NODE(‘ WHITE’));

if BLACK(intree1) then {return a copy of intree2)
return (COPYTREE(intree2));

if BLACK(intree2) then {return a copy of &reel}
return (COPYTREE(intree1));

n := CREATE-POINTER-NODE(‘ GRAY’);
for i in {‘SW’, ‘SE’, ‘NW’, ‘NE’} do

SON(n, i) := SIMPLEJNTERSECT(SON(intreel, i), SON(intree2, i));
if WHITE(SON(n, ‘NW)) and WHITE(SON(n, ‘NE’)) and

WHITE(SON(n, ‘SW)) and WHITE(SON(n, ‘SE’)) then
return (CREATE-POINTER-NODE‘ WHITE’)) {merge}

else return (n);
end;

ALGORITHM 2. Intersection of two unaligned images represented by linear
quadtrees.

inltree, in2tree, outtree : QUADTREE; {input and output trees}
ofiety, ofiefx : integer; {(ofieq, ofieetx) is position of in2free w.r.t. inltree}

UNALIGNED LINEAR QUADTREES 43

cy, cx : integer; {(cy, cx) is current location of traversal in inltree)
y-edge : array [O..WIDTH(in2tree)] of NODE; {Initially all zeros}
x-edge : array [O..WIDTH(in2tree)] of NODE; {Initially all zeros}
outtab : array [0..3 *MAX-NODE-DEPTH - l] of NODE;
outcurr : integer; {current position in outtab}

procedure INTERSECT;
{Calculate the intersection of two (possibly unaligned) input maps, producing an
output map whose size and position is identical to that of the first map.}

var nd : TNODE;

o@ety := Y-OF(in2tree) - Y-OF(inltree); {Calc. upper left comer of in2tree
o@etx := X-OF(in2tree) - X-OF(inltree); {w.r.t. upper left comer of inltree
cy := 0; cx := 0; {Start at upper left comer of inltree }
foreach nd in inltree do DOSET (nd);

end:

procedure DOSET(inlnode : t NODE);
{For inlnode, a node of inltree, break it into pieces matching the nodes of
in2tree (active in2tree nodes are stored in y-edge and x-edge), compute the
intersection value on the node pieces, and insert the result into outtree through
procedure ORDER-INSERT. (stopy, stopx) is position beyond inlnode; depth
is depth of output node fragment; max is largest dimension of matching blocks
in both trees.}

ViU

stopy, stopx, depth, max : integer;
in2node : t NODE; {node found in in2tree)
uaf : color; {value of output fragment}

begin
stopy := cy + WIDTH(inlnode); stopx := cx + WIDTH(inlnode);
while (cy < stopy) and (cx < stopx) do begin

if (Y-OF(x-edge[cx]) + WIDTH(x-edge[cx]) < = cy) and
(X-OF(y-edge[cy]) + WIDTH(y-edge[cy]) < = cx) then begin

{Locate new node in the tree. Assume FIND will return an appropriate
‘WHITE’ node if (cy, cx) is not contained in in2tree }

FIND(in2tree, in2node, cy - ofiety, cx - ofietx);
Y-OF(x-edge[cx]) := Y-OF(y-edgeIcy]) := Y-OF(in2node) + oflety;
X-OF(x-edge[cx]) := X-OF(y-edge[cy]) := X-OF(in2node) + ofietx;
VALUE(x-edge[cx]) := VALUE(y-edge[cy]) := VALUE(in2node);
WIDTH(x-edge[cx]) + WIDTH(y-edge[cy]) := WIDTH(in2node)

end
else if Y...OF(xvedge[cx]) + WIDTH(x-edge[cx]) < = cy then

x-edge[cx] := y-edge[cy]
else if X-OF(y-edge[cy]) + WIDTH(y-edge[cy]) < = cy then

y-edge[cy] := xvedge[cx];
{Compute biggest block starting at (cy, cx) contained in both input nodes}
max := min(min(stopy - cy, stopx - cx),

44 SHAFFER AND SAMET

min(X-OF(x-edge[cx]) + WIDTH(x-edge[a]) - cx,
Y-OF(x-edge[a]) + WIDTH(x-edge[a]) - cy));

depth := 0;
while (2 depth+1 -c = max) and (cx mod 2dep’h+1 = 0) and (cy mod 2depth+1 = 0)

do depth := depth + 1;
vu1 := if VALUE(inlnode) =‘WHITE’ then ‘WHITE

else VALUE(x-edge[cx]) {Compute intersection value}
ORDERJNSERT(ual, depth); {Insert result into output tree, update (cy, cx)}

end {while (cy < stopy)...}
end;

procedure ORDERJNSERT(ualue : color; depth : integer);
{Accept blocks in Morton sequence order, merging four siblings of the same
color. Call OUTPUT only for maximal blocks.}

var i : integer;

begin
if (outcurr < > 0) and (value < > VALUE(outtab[outcurr - 11)) then begin

{Different value-flush current nodes in outtub}

for i := 0 to outcurr - 1 do
OUTPUT(outtree, Y-OF(outtub[i]), X-OF(outtub[i]),

DEPTH(outtub[i]), VALUE(outtub[i]));
outcurr := 0

end;
while outcurr > = 3 and depth = DEPTH(outtub[outcurr - 31) and

cx - 2deJ’th = X-OF(outtub[outcurr - 31) and
CY - 2deprh = Y-OF(outtub[outcurr - 31) do begin

{Collapse 4 siblings with same value}
depth := depth - 1; outcurr := outcurr - 3;
cx := cx - 2depth; cy := cy - 2deprh {adjust upper-left comer}

end;
X-OF(outtub[outcurr]) := cx; Y-OF(outtub[outcurr]) := cy;
DEPTH(outtub[outcurr]) := depth; VALUE(outtub[outcurr]) := value;
outcurr := outcurr + 1;
GET-NEXT-MORTON(cx, cy, depth); {compute location of next block}
if cx = WIDTH(outtree) then {at end of tree; flush outtub}

for i := 0 to outcurr - 1 do
OUTPUT(outtree, X-OF(outtub[i]), Y-OF(outtub[i]),

DEPTH(outtub[i]), VALUE(outtub[i]))
end;

ALGORITHM 3. Rotated windowing algorithm.

{Transformation functions}
define DOXTRNS(y, x) trunc(X-OF(xtruns[x]) + X-OF(ytruns[y]))
define DOYTRNS(y, x) trunc(Y-OF(xtruns[x]) + Y-OF(ytruns[y]))
define PI 3.14159

UNALIGNED LINEAR QUADTREES 45

type
POINT = record

y, x : real
end;
QUADRANT = {NW, NE, SW, SE};

var
intree, outtree : QUADTREE;
insize, outsize : integer;
{Tables xtruns and ytruns translate from coordinates relative to the window into
coordinates relative to the input map. Table xtruns gives the absolute coordinate
transform for a point in the window offset by x units from the origin. It takes
the translation as well as the rotation into account. Table ytruns gives the
relative coordinate transform for an offset of y units; i.e., it takes only the
rotation into account (since translation was done for x offset).}

xtruns : array [O..outsize] of POINT; {Transformation table-x coordinate}
ytruns : array [O..outsize] of POINT;{Transformation table--y coordinate}
inurs : array [QUADRANT] of POINT; {Inverse trans. for corners of input map}
cy, cx : integer; {(cy, cx) is current position in window}
y-edge : array [O..WIDTH(intree)] of NODE; {Initially all zeros}
x-edge : array [O..WIDTH(intree)] of NODE; {Initially all zeros}
outtab : array [O..3*MAX_NODE_DEPTH - l] of NODE;
outcurr : integer; {current position in outtab}

procedure WINDOW(rotate : trigtype; fv, fx, wy, wx : integer);
{Compute the output tree representing the window with origin (with respect to
intree ‘s origin) of (fj~, fx), size wy X wx, and rotation rotate. Rotate should be
in degrees or radians as required by trig functions.)

var
thsin, thcos : real:
di : integer;

begin
{Initialize global variables and transformation tables}
insize : WIDTH(intree); outsize := WIDTH(outtree);
outcurr := 0;
thsin := sin(rotute); thcos := cos(rotute);
for di := 0 to outsize do begin

xtrans[di]. x := thcos * (di + 0.5) + fx;
xtruns[di]. y := thsin * (di + 0.5) + fy;
ytruns[di].x := -thsin *(di + 0.5);
.vtruns[di]. y := thcos * (di + 0.5)

end;
{ invrs holds the inverse transformation for the input map’s corner points; used

by OVERLAP.}
invrs[NW].x := - thsin * fy - thcos * fx;
inurs[NW]. y := - thcos * fv + thsin * fx;
inurs[NE].x := - thsin * fv - thcos * (insize - fx);
inurs[NE]. y := - thcos * fv + thsin * (insize - fx);
inurs[SW].x := - thsin * (insize - jj~) - thcos * fx;

46 SHAFFER AND SAMET

invrs[SW]. y := - thcos * (insize - fr) + thsin * fx;
invrs[SE]. x := - thsin * (insize - fv) - thcos * (insize - fx);
invrs[SE].y := - thcos * (insize - fv) + thsin * (insize - fx);
DO-WIND(fy, fx, wy, wx, outsize)

end;

procedure DO-WIND(fy, fx, wy, wx, outsize : integer);
{For each node of the input file, break it into pieces matching the node positions

of the output file, storing active nodes in the edge tables. Output fragments are
passed to ORDER-INSERT. The output fragment is of size 2moxd; (trcy, trcx) is
(cy, cx) in rotation space.}

VW

innode : TNODE;
vu1 : color; {output fragment color)
maxd, trcy, trcx : integer;

begin
cy := 0; cx := 0;
while ((cy < > outsize) and (cx < > outsize)) do hegin

{working on part of node}
maxd := 0;
if ((cy > = wy) or (cx > = wx)) then begin {outside window}

color :=‘WHITE’; {insert WHITE node}
while ((cy + 2maxd+1 < = outsize) and (cx + 2maxd+1 -c = outsize) and

(cy mod 2maxd+1 = 0) and (cx mod 2mnxd+1)) do
maxd := maxd + 1

end {if ((cy > = wx)...}
else begin {in window}

while ((cy + 2moxd+1 < = wy) and (cx + 2maxd+1 < = wx) and
(cy mod 2moxd+1 = 0) and (cx mod 2maxd+1 = 0)) do

maxd := maxd + 1
trcy := DOYTRNS(cy, cx); trcx := DOXTRNS(cy, cx);
if ((trcy < 0) or (trcx < 0) or (trcy > = insize) or (trcx > = insize)) then
begin

{off the input map-insert largest possible WHITE node}
while (OVERLAP((cy, cx, 2maxd)) do

maxd := maxd - 1;
color := ‘ WHITE

end {if}
else begin {node is on the input map-calculate node size}

{first update tables}
if (PTIN(x-edge[trcx], trcy, trcx) = ‘FALSE’) then

if (PTIN(y-edge[trcy], trcy, trcx) = ‘FALSE’) then begin
{locate new node in the tree}
innode := FIND(intree, trcy, trcx);
x-edge[trcx] := y-edge[trcy] := innode

end
else x-edge [trcx] := y-edge [trcy]

UNALIGNED LINEAR QUADTREES 47

else if (PTIN(y-edge[trcy], trcy, trcx) = ‘FALSE’) then
y-edge[trcy] := x-edge[trcx];

{compute biggest block starting at (cy, cx) within input tree node}
while (CONTAINS(x-edge[trcx], trcy, trcx, 2mnxd) = ‘FALSE’) do

maxd := maxd - 1;
ual := VALUE(x-edge[trcx])

end {else (node is on the input map)}
end; {else in window}
ORDER-INSERT(ual, 2maxd) {Insert result into the output tree}

end {while ((cy < > outsize)...}
end;

function OVERLAP(cy, cx, csize : integer) : boolean;
{TRUE iff square (cy, cx, csize) anywhere overlaps the input map. Check by
determining if node corner is in map, then if map corner is in node. Will work as
long as node size is at most half of input map size.}

var trcx, trcy : integer;
besin

csize := csize - 1; {want to compute actual comer points for actual square}
trcx := DOXTRNS(cy, cx); trcy := DOYTRNS(cy, cx);
if ((trcy > = 0) and (trcx > = 0) and (trcy < insize) and (trcx -C insize)) then

return (‘TRUE’);
trcx := DOXTRNS(cy, cx + csize); trcy := DOYTRNS(cy, cx + csize);
if ((trcy > = 0) and (trcx > = 0) and (trcy < insize) and (trcx < insize)) then

return (‘TRUE’);
trcx := DOXTRNS(cy + csize, cx); trcy := DOYTRNS(cy + csize, cx);
if ((trcy > = 0) and (trcx > = 0) and (trcy < insize) and (trcx < insize)) then

return (‘TRUE’);
trcx := DOXTRNS(cy + csize, cx + csize);
trcy := DOYTRNS(cy + csize, cx + csize);
if ((trcy > = 0) and (trcx > = 0) and (trcy < insize) and (trcx -C insize)) then

return (‘TRUE’);
{No comer of node is in input map, but still might overlap}
if (inurs[NW].x > = cx and inurs[NW].y > = cy and

inurs[NW].x < cx + csize and inurs[NW].y -C cy + csize) then
return (‘TRUE’);

if (inurs(NE1.x > = cx and inurs[NE].y > = cy and
inurs {NE].x -C cx + csize and inurs[NE]. y -c cy + csize) then

return (‘TRUE’);
if (inurs[SW].x > = cx and inurs[SW].y > = cy and

inurs[SW].x < cx + csize and inurs[SW].y < cy + csize) then
return (‘TRUE’);

if (inurs[SE].x > = cx and inurs[SE].y > = cy and
inurs[SE].x -C cx + csize and inurs[SE].y -C cy + csize) then

return (‘TRUE’);
return (‘FALSE’)

end;

function CONTAINS(trcy, trcx, csize : integer) : boolean;

48 SHAFFERAND SAMET

{‘TRUE’ iff the square (trcy, frcx, csize) in rotation space is completely con-
tained in the node represented by p (in input space)}

begin
csize := csize - 1; {want to compute comer points for this square}
if (not PTIN(p, trcy, trcx)) then return (‘FALSE’);
trcx := DOXTRNS (cy, cx + csize); trqy := DOYTRNS (cy, cx + csize);
if (not PTIN(p, trcy, trcx)) then return (‘FALSE’);
trcx := DOXTRNS (cy + csize, cx); trcy := DOYTRNS (cy + csize, cx);
if (not PTIN(p, trcy, trcx)) then return (‘FALSE’);
trcx := DOXTRNS (cy + csize, cx + csize);
trcy := DOYTRNS (cy + csize, cx + csize);
return (PTIN(p, trcy, trcx))

end;

function PTIN(p : NODE; x, y : integer) : boolean;
{‘TRUE’ iff point (x, y) is in the node represented by p.}

begin
return ((x > = X-OF(p) and (y > = Y-OF(p) and

(x < X-OF(p) + WIDTH(p)) and (Y < Y-OF(p) + WIDTH(p))
end:

ALGORITHM 4. Generalized moment calculation.

var counter : integer;

function MOMENT(intree : quadtree; i, j, shiftx, shif2y : integer) : integer;
{Calculate moment M(i, j) for quadtree intree which is shifted (shiftx, shifty)
from the origin.}

var nd : TNODE;
begin

foreach nd in intree do DOMOMENT(nd, i, j, shijtx, shifty);
return (counter)

end;

procedure DOMOMENT(nd : t NODE; i, j, shijtx, shiftr : integer);
var val, row, col, ctl, ct2, x, y, width : integer;
begin

val := COLOR(nd); width := WIDTH(nd);
x := X-OF(nd) - shijlx; y := Y-OF(nd) - shifty;
for row := 0 to row = width do begin

for co1 := 0 to co1 = width do ctl := (co1 + x)‘;
ct2 := ctl*(row + y)j

end;
counter := counter + (ct2 * val)

end;

REFERENCES
1. D. J. Abel, A B+-tree structure for large quadtrees, Comput. Vision Graphics Image Process. 27, No.

1,1984,19-31.
2. N. Ahuja and C. Nash, Octree representations of moving objects, Compuz. Vision Graphics Image

Process. 26, No. 2, 1984, 207-216.

UNALIGNED LINEAR QUADTREES 49

3. M. CaBen, I. James, D. C. Mason, and N. Quarmby, A test-bed for experiments on hierarchical data
models in integrated geographic information systems, in Spatial Data Processing Using Tesseral
Methods (B. M. Diaz and S. B. M. Bell, Eds.), Swindon, Great Britain, 1986.

4. D. Comer, The ubiquitous B-tree, ACM Comput. Surveys 11, No. 6, 1979, 121-137.
5. I. Gargantini, An effective way to represent quadtrees, Commun. ACM 25, No. 12, 1982, 905-910.
6. I. Gargantini, Translation, rotation and superposition of linear quadtrees, Int. .I. Man-Mach, Srud.

18, No. 3, 1983, 253-263.
7. T.-H. Hong and M. 0. Shneier, Rotation and translation of objects represented by octrees, in

Proceedings, 1987 Int. Conference on Robotics and Automation, Raleigh, NC, 1987, pp. 947-952.
8. M.-K. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory 8, No. 2.

1962, 179-187.
9. G. M. Hunter and K. Steiglitz, Operations on images using quadtrees, IEEE Trans. Pattern AMJ/.

Mach. Intell. 1, No. 2. 1979, 145-153.
10. D. Meagher. Geometric modeling using octree encoding, Comput. Graphics Image Process. 19, No. 2.

1982, 129-147.
11. D. M. Mark and J. P. Lauzon, Approaches for quadtree-based geographic information systems at

continental or global scales, in Proceedings, Auto-Carlo London, London, September 1986, pp.
344-364.

12. G. M. Morton, A computer oriented geodetic data base and a new technique in file sequencing, IBM
Canada, 1966.

13. W. M. Osse and N. Ahuja, Efiicient octree representation of moving objects, in Proceedings, 7th lnt.
Conference on Pattern Recognition, Montreal, 1984, pp. 821-823.

14. F. Peters, An algorithm for transformations of pictures represented by quadtrees, Compur. Vision
Graphics Image Process. 32, No. 3, 1985, 397-403.

15. A. P. Reeves and A. Rostampour, Shape analysis of segmented object using moments, in Proceedings,
Pattern Recognition and Image Processing 81, August 1981, pp. 171-174.

16. H. Samet, Neighbor finding techniques for images represented by quadtrees, Comput. Gruphics Image
Process. 18, No. 1, 1982, 37-57.

17. H. Samet, The quadtree and related hierarchical data structures, ACM Comput. Surueys 16, No. 2.
1984, 187-260.

18. H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber, A geographic information system using
quadtrees, Pattern Recognit. 17, No. 6, 1984, 647-656.

19. H. Samet, A. Rosenfeld, C. A. Shaffer, R. C. Nelson, and Y.-G. Huang, Application of Hierurchicai
Duta Structures to Geographical Information Systems, Phase III. Computer Science TR-1457.
University of Maryland, College Park, MD, November 1984.

20. H. Samet and M. Tamminen, Computing geometric properties of images represented by linear
quadtrees, IEEE Trans. Pattern Anal. Mach. Intell. 7, No. 2, 1985, 229-240.

21. H. Samet and C. A. Shaffer, A model for the analysis of neighbor finding in pointer-based quadtrees.
IEEE Trans. Pattern Anal. Mach. Intell. 7, No. 6. 1985, 717-720.

22. C. A. ShafIer, Application of Alternative Quadtree Representations, Ph.D. dissertation, Computer
Science Department, University of Maryland, College Park, MD, 1986; University of Maryland
TR-1672, June 1986.

23. C. A. Shaffer and H. Same& Optimal quadtree construction algorithms, Comput. Vision Graphicx
Image Process. 37, No. 3, 1987, 402-419.

24. C. A. Shaffer, H. Samet, and R. C. Nelson, QUILT: A Geographic Information System Based on
Quadtrees, Int. J. Geographic Informations Systems, to appear: University of Maryland TR 1885.
July 1987.

25. C. A. Shaffer, A formula for computing the number of quadtree node fragments created by a shift.
Pattern Recognit. Len. 7, No. 1, 1988, 45-49.

26. M. Shneier, Calculations of geometric properties using quadtrees, Comput. Graphics Imuge Process.
16, No. 3. 1981,296-302.

27. M. L. P. van Lierop, Geometrical transformations on pictures represented by leafcodes, Comput.
Vision Graphics Image Process. 33, No. 1, 1986, 81-98.

28. T. R. Walsh, Efficient axis-translation of binary digital pictures by blocks in linear quadtree
representation, Comput. Vision Graphics Image Process. 41, No. 3, 1988, 282-292.

29. R. E. Webber, Analysis of Quadtree Algorithms, Ph.D. dissertation, Computer Science Department,
University of Maryland, College Park MD, 1983; University of Maryland TR-1376, March 1984.

