ALGORITHMS FOR CONSTRUCTING -
QUADTREE SURFACE MAPS!

Ron Sivan
Hanan Samet

Compuler Science Department and

Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland at College Park

College Park, Maryland 20742)
E-mail: sivan@umiacs.umd.edu, hjs@umiacs.umd.edu

Abstract

Two algerithras for constructing surface quadtrees from grid data, using
the design proposed in [Von Herzen, 1989] are presented. Both run in O(n)
time, where n is the size of the input. They differ in where they spend
most of their processing effort. Depending on the size of the input and the
storage medium it is on, cither algorithm could outperform the other.

1 Introduction

The advent of low-price, high-speed computers and high quality graphic monitors
has made the need for efficient methods for storing and manipulating image data for
use in solid modeling more immediate. One common technique of modeling multidi-
mensional data is to use a polyhedral approximation: the smooth, complex reality is
approximated by a set of planar polygons connected in three-dimensional (3d) space.
Based on the z and y coordinates of a point within the a polygon (relative o its
vertices) and the 3d coordinates of the vertices themselves, the approximate eleva-
tion (i.c., z value) of the point can be calculated, and need not be stored explicitly.
The space and time requiremnents are thereby reduced. By adjusting the degsity (i.e.,
number and size) of thé polygons, many applications can be adequately served.

To further improve vﬁ..monam:nm“ hierarchical multi-resolution structures may be
employed. Such slructures can assist in adapting the density of polygonal facels to
the variability in the object being modeled, and serve as an index for quick polygon
location.

_.H.__mm:vvo_._.oh.:-n29so=w_mnmm=nnmo::mw:o:::monﬂ_.wi ::..mc:u@u;ﬁw.h..::z
acknowledged. .

361

This paper deals with representing surface data, also known as mw-ﬁ:_:o:mmc:i
Qwﬁ: data, using quadtrees, Unlike multidimensional discrele data, for which
quadtrees are readily adaptable, using a quadtree to represent a surface suf-
fers from the formation of cracks, as discussed in Section 2. There are several
remedies suggested in the literature for this problem [Barrera and Hinojosa, 1987],
[Von Herzen and Barr, 1987]. The algorithms that we present use one of the solu-
tions given in [Von Herzen, 1989], termed a restricted quadiree, which is described in
Section 3. Two algorithms for the construction of a restricled quadtree for a surface
given by a regular sample of its elevations (also known as a Digital Terrain Map) are
given in Section 4. Section 5 contains concluding remarks.

2 The Problem of “Cracks”

. a1 L P . . .
In modeling 25d surfaces, use of a tradition dtree (ie., a version of Lhe region
quadtree, [Samet, 1990a, Samet, 1990b]) are prone to the formation of problematic
discontinuities. For example, consider Figure 1. On the boundary hetween two nodes

of different size, at least one vertex, say A, of the smaller node is not a vertex of jts)

larger neighbor. Since elevation data is stored only in vertices, the elevation of A4 in
the larger node must be interpolated from the elevations of the other vertices in that
node. On the other hand, A is a vertex in the smaller node, where elevation is stored.
These two elevations, associated with the same location, need not coincide, thereby
causing a “crack” to form, as shown in the figure.

Cracks"

o ion i
igure 1: Example of crack formation in surface quadtree representation.

362

3 Restricted Quadtree Scheme for Surface Representation

A possible remedy, presented in [Von Herzen, 1980], attacks the problem from two
aspects. First, the quadtree is restricted so that the occurrence of such “dangling”
vertices is controlled. Second, the node itself is enhanced to cope with the eventuality
that they do occur. In this solution, adjacent nodes are allowed to differ in size by
at most a factor of two. In such a quadtree, called a restricted quadiree, there can be
no more than one discontinuity per edge.

In addition, the traditionally square quadtree node is triangulated so that dis-
continuities are avoided. Every square is split into four right triangles by means of
its two diagonals, as in Figure 2. Any of the resulting triangular faces which border
smaller nodes are split again along their right angle bisector. This last step makes
the potential discontinuity point a vertex of the larger node as well. Thus we can
use a quadtree-like representation al the price of increasing the number of the nodes
required to model a given surface.

Type | restricted quadtree:
the commen edge between
equal sized nodes is not split,

The edge common with a
larger nods is not splil.

2 | The edge common with a
" smaller node is split.

..~ Type Il restricted quadtree;
the common edge between
equal sized nodes /s split.

IPigure 2: restricted quadtree node structure.

Equal-sized nodes may have their common border either whole or split. The
choice between the two makes for two variants of the restricted quadtree (see the top
and bottom boundaries of the node in Figure 2). The former reduces somewhat the
number of triangles in the tree, but the latter has been found empirically to provide
for better shading in display. Al examples in this paper assume this second variant
of the restricted quadtree [Samet, 1990b].

363

4 Restricted Quadtree Construction Algorithms

We present two algorithms for constructing a restricted quadtree. They follow the
classic bottom-up and top-down paradigms, and are therefore identified using these
names. The description of these algorithms uses several terms which are defined in
Section 4.1, The smallest, indivisible nodes in a restricted quadtree, called atomic
nodes, deserve special consideration and are discussed in Section 4.2. The actual
construction algorithms are described in Sections 4.3 and 4.4.

4.1 Assumptions and Terminology

The restricted quadtree describes an area whose shape is a square and whose side is
a power of 2. For datasets that are not square areas, the smallest appropriate square
large enough to contain the dataset is assumed. A value of zero is used for elevations
of localions within the square which are nonctheless outside the dataset.

In order to form a node in a restricted quadiree, we need the elevations of the
surface at its ninc vertices; the center, the four corners and the midpoints of the
four edges of the square. A node is constructed by obtaining these elevation values
from the input and generating a structure appropriate for insertion into the restricted
quadtree being built. For most nodes, these values are not consecutive in the input.
However, since the input data is essentially a two-dimensional array, the offset to any
datum can be caleulated and its value retrieved in O(1) time even if the input resides
in secondary storage. This can also be done even il the actual input is embedded
within a larger square, as described above.

The elevation at a node’s vertex is a stored value, corresponding to that existing
in the input. At any other point within the node, the elevation is computed by
interpolating stored valnes. Every non-root node in a restricted quadtree shares some
vertices with its immediate parent. We call such verlices persisten! vertices. The
vertices at the four corners of a node are persistent; the vertex at the center and
those at the midpoints of its edges are not. For example, the elevation al a non-
persistent vertex is a stored value at the node but a computed one at its parent.

4.2 The Construction of Atomic Nodes

In terms of implementation, the relationship between the smallest nodes and the
input needs clarification. Each node has at least 5 vertices (4 at its corners and one
at its center) and possibly as many as 9 (adding the midpoints of its edges when it is
necessary to decompose them). The elevations stored at each of these vertices, in the
ideal case, are the actual input values. However, it is conceivable to store interpolated
values, corresponding to virtual data points, at locations that are not in the original
dataset (i.e., non-grid points).

364

H
i
!

|
i
i
i
!

The following are three possible atomic node construction schemes:

1. Build a node around each data value, making it the center vertex and assign
interpolated values to the other vertices, as in Figure 3a. Each atomic node then
represents a single elevation sample.

2. Each four input data values whose positions form a unit grid square are used as
the basis for an atomic node. The elevation at the center vertex is interpolated
from the other four. See Figure 3b. FEach atomic node uses four elevation
samples.

3. Atomic nodes may be constructed from a 3x3 subgrid (see Figure 3¢). Here all
vertices, even at this low level, represent actual input data values. Each atomic
node uses nine elevation samples.

e » e e o e °o » 8 e
e e & o
® s e e e . .
.
e . . 4 .
. o . . .
(a) (b} ’ (c)

w..,mm_,:.o 3: The construction of alomic nodes from raw input data. The black dots represent the
grid; the open circles are virtual data points whose value is interpolated. The ratio of input values
per atomic node are (a) 1:1; (b) 4:1; (c) %:1. Note that when nodes merge to form larger nodes, only
scheme (a) ends up with persistent interpolated values.

Approach (a) simplifies the relationship between the input data and the resulting
tree, but most of the elevation values that will eventually be stored will not correspond
to actual input elevation data samples, but instead are averages of two or four adjacent
locations. Moreover, when the corresponding nodes merge, the true data points do
not persist in the resulting node, so that the final tree may contain no elevation
values that correspond to actual input values. This may cause smoothing and other
undesirable effects on the resulting model. In approach (b), the number of elevation
values that will eventually be stored which do not correspond to actual input values
is much smaller. Moreover, when four atomic nodes are merged, all the vertices of
the resulting node correspond to actual input values. Approach (c) suffers from none
of the above maladies, but is somewhat complex, particularly at the periphery of the
dataset. :

365

4.3 Bottom-Up Construction Algorithm

The bottom-up construction algorithm has two operation

¢ Input phase: construct the bottom level of atomic nodes.

o Merge phase: coalesce all mergible nodes,

In the input phase, the input is read and the atomic nodes are constructed.
Depending on the implementation of atomic nodes in terms of data samples (as dis-
cussed in Section 4.2), the input is read in one, two, or three rows at a time. Note
that this is done in the input’s natural order. Since all the nodes have the same size,
the restriction on the ratio of sizes of neighboring nodes is automatically satisfied.

In the merge phase, cach level of the tree, starting with the one just above the
one constructed in the input phase, is visited in turn. At each level, every leaf node
is tested for mergibility. If a node is mergible, then coalesce it with its three siblings
with which it shares a common parent. The four siblings are then deleted from the
tree and the coalesced parent is inserted in their place.

A leaf node is mergible if the all of the following conditions hold:

» The node is the NW son of its immediate parent. (This relationship is established
based on the properties of the regular decomposition rules, and is independent
of whether or not such a parent node actually exists in the tree at this time.)

¢ The size of the node is equal to the sizes of its currently existing east, south and
SE neighbors.

Neither the node nor its above specified neighbors have any smaller-sized neigh-
bors. Note the if such neighbors existed, then the proposed merge would create
a node at least four times larger than those smaller neighbors, in violation of the
restricted quadtiree definition.

» The elevation values stored at the non-persistent vertices of the nodes being
merged must be within tolerance of the values computed for their locations in a
parent node when it is created. See Figure 4.

The algorithm terminates once all the nodes at a given level have been processed
and no more merges can be performed. Termination is guaranteed since at least at
the root level, if indeed the map may be merged into a single node and the process
continues that far, no more merges can take place.

The input phase consists of O(n} operations: there are O(n) data items to be
read, and each may be accessed in O(1) time. O(n) atomic nodes are produced, but
since the construction of an atomic node is independent of all other nodes, this only
requires O(1) time.

366

he A) - g i -

(2 (b)

Figure 4: Merging nodes: (a) initial four leaf nodes; {b) resulting merged node. Open circles denote
vertices that do not persist in the resulting merged node. Their elevations must agree, within a given
tolerance, with the average of the elevations at the nodes with which they share an edge for the
merge to proceed.

In the merge phase, every possible node in each tree level is tested. The total
number of nodes in all levels above the bottom one is known to be of the number of
the nodes in the bottom level, which is also O(r). Since each node in the restricted
quadtree is tested only once, the merge phase also requires ((n) operations. Thus

the total execution time of the two phases is O(n).

The advantage of this algorithm is that it scans the input in sequence. This
is important in applications which store their data on a medium which does not
support random access (e.g., magnetic tape). On the other hand, the amount of work
it performs is insensitive to the size of the output. Processing surface which could
adequately be modeled by a map with a single node will still take as long as building
a map with nothing but atomic nodes. We shall see that the next algorithm, the
top-down one, is different in these two respects.

4.4 Top-Down Construction Algorithm

This algorithm attempts to adapt the ideas of the predictive quadtree build algorithm
described in [Shaffer and Samet, 1987]. In the course of constructing an area quadtree
from raster data, the predictive algorithm only splits nodes — it never merges any.
The algorithm is therefore optimal in the sense that the work it does is proportional
to the size of the desired output. In principle, that algorithm maintains a partially-
constructed minimal quadtree which is still consistent with the data read so far, by
making the most convenient assumptions about the unread portion of the input.
When all the input is processed, the existing tree is the desired result.

367

Like the predictive quadtree build algorithm, the top-down construction algo-
rithm maintains a partially constructed restricted quadtree which is consistent with
the data processed so far. However, the order in which the construction procoeds is
driven by the levels in the tree rather than the order of the input.

As a first step, the root node is constructed, using the input elevation values
associated with the locations indicated in Figure 5a. Once this has been done, (and
throughout the construction process), an elevation value is associated with every point
within the map’s extents, reflecting either an input {stored) value or an interpolated
(computed) value. Initially these values will probably be only a poor approximation
of the input surface, since only 9 values are stored and the rest are computed. But as
more nodes are inserted, the computed values approach those of the desired surface.

0000000 C
¢ Q0000000 0.

(=]
Q
[+]
o
o
Q
<
o

(b)

Figure 5: Locations of non-persistent vertices in the first few levels of the restricted quadtree:
(a) root level; (b}, {¢), and (d) describe levels 2, 3, and 4, respectively. The square represents the
extent of the restricted quadtree.

In cach leve! after the first, cach possible node is considered in turn. For each
node, the non-persistent vertices are determined. The relative locations of these
vertices for levels 2, 3, and 4 are shown in Figures 5b, 5¢, and 5d, respectively, At
each such non-persistent, veriex, the elevation value computed from the current tree
is obtained. The actual input elevation value for the same point is also read in. The
two values are compared for agreement within the predefined tolerance. If a node
contains a vertex whose input and computed elevations are sufficiently different, the
node is inserted into the current tree.

The insertion operation is not as simple as it was in the case of the bottom-
up algorithm. In particular, the insertion of a node may initiate a cascade of splits
among other nodes already in the tree due to the restricted quadtree definition which
constrains the sizes of adjacent nodes. For example, consider Figure 6. figure 6a
depicts a node in the tree being constructed, say at level £. A pass over the next
level, £ + 1, has not yielded any discrepancy with the input within the bounds of this
node, as seen in Figure 6b. In the next step, at level £42, an input value which differs
sufliciently from the computed elevation for that location is detected (solid triangle in
Figure 6¢). The node at level £+ 2 which contains this point should now be inserted.

368

!
’
;
|
:
m

Figure 6: Example of node insertion in top-down construction: () Initial state of some node;
(b) the situation after the construction pass over the level below the one containing the node;
(c) the state when, during the pass over the second level below the node, an input ,.a_c.m (marked by a
triangle) which significantly differs from the elevation omputed for the same location is m:no.._Emme
(d) first split; {e) final split. Solid circles denote stored elevation values; open circles are ._ogmz_usm
where the input and computed values were found tc be in agreement. For the sake of simplicity,
changes required at the node boundary (which depends on its neighbors) are not entirely shown.

However, it is too small 1o be inserted directly, since its neighbors would be larger
than twice its size. Its parent node in level €+ 1 needs to be {nserted first, along with
its siblings, as in Figure 6d. Only then can the small node be inserted (Figure 6e).

As we see, a node may be inserted once if it is a part of the final output, or,
in the worst case, may then be split once as a result of the necessity to insert one
of its descendants. No node, however, is processed more than once. Since the total
number of possible nodes in the tree is bounded by O(n) (as argued in Section 4.3),
the algorithm’s total execution time is also O(n}.

Unlike the bottom-up approach, in the top-down construction atomic nodes re-
main in the tree if and only if they are part of the final result. In that sense, the
top-down algorithm is faster. However, if the input is stored lexicographically in (z,y)
(as DTMs usually are), then the top-down algorithm means that the input is scanned
completely out of sequence. Moreover, some input values may be read twice. As seen
in the example in Figure 6, a node may be skipped when its level is processed (and
its input data read), but nonetheless be inserted later due to a cascade split (when
its input is read again). Clearly, none of these concerns apply if sufficient RAM is
available to store the entire input dataset.

369

[P e . T

Very large datasets may still be supported by a combination of both the bottom-
up and the top-down algorithms. Qualitatively, the area covered by the input may
be decomposed into a Square array of square blocks, each small enough to fit entirely
into the available RAM. The top-down algorithm may be run on cach one separately,
yielding a forest of restricted quadirees. Next, the bottom-up algorithm may be
applied to the level of the roots of the existing trees, performing any merges required
to form a single tree from all of them. Theoretically, the combined algorithm may now
merge nodes and therefore no longer possesses the optimality the top-down algorithm
claims. However, al lcast topographical surfaces tend to be sufficiently uniform so
that most of their leal nodes concentrate within a few levels far from the root, and
under these conditions, merges are not likely even in the combined algorithin.

5 Conclusion

We have described two algorithms for consiructing a restricted quadtree to mode} a
surface given by its digital terrain map. Although one does less work, it reads the
input nonsequentially, which may cause it jn practice to run slower on large datasets,

A combination of the two algorithms is proposed, which for many practical datasets
may alleviate the restriction on size.

References

[Barrera and Hinojosa, 1987] R. Barrera and A. Hinojosa, Compression meshod for
terrain relief. Technical report, CINVESTAV - PN, Enginecring Projects
section, Department of Electrical Engineering, Polytechnic University of
Mexico, Mexico City, 1987,

[Samet, 1990a] H. Samet. The Design. and Analysis of Spatial Dalq Structures.
Addison-Wesley, Reading, MA, 1990,

[Samet, 1990b} H. Samet. Applications of Spatial Data Structures: Computer Graph-
ics, Image Processing, and GJS. Addison-Wesley, Reading, MA, 1990.

[Shaffer and Samet, 1987] C.A. Shaffer and H. Samet. Optimal quadtree construction
algorithms. Computer Vision, Graphics, and Image Processing, 37(3):402-
419, March 1987.

[Von Herzen, 1989] Brian Von Herzen. Applications of Surface Networks to Sampling
Problems in Computer Graphics. PhD thesis, California Institute of Tech-
nology, Pasadena, CA, July 1989,

[Von Herzen and Barr, 1987) 13. Von Herzen and AL Barr, Accurate triangulations
of deformed, intersecting surfaces. Compuler Graphies, 21(4), July 1987.

370

PROCEEDINGS

>TIl

INTERNATIONAL SYMPOSIUM ON

SPATIAL DATA HANDLING

IGU Commision on GIS |

August 3 - 7, 1992
Charleston, South Carolina
USA

