CAR-TR-704 IRI-92-16970
CS5-TR-3230 February 1994

Algorithms for Data-Parallel Spatial Operations
Erik G. Hoel!

Hanan Samet?

L2Computer Science Department
Institute for Advanced Computer Sciences
L2Center for Automation Research
University of Maryland
College Park, MD 20742

Abstract

Efficient data-parallel algorithms for three common spatial data structures (the bucket PMR
quadtree, R-tree, and R*-tree) are presented. The domain consists of planar line segment data
(i.e., Bureau of the Census TIGER/Line files). Parallel algorithms for building the data-parallel
spatial structures, as well as determining the closed polygons formed by the line segments, map
intersection, and a spatial range query are described. The performance of data-parallel algorithms
for spatial operations is also compared. The algorithms are implemented using the scan model
of parallel computation on the hypercube architecture of the Connection Machine. The results of
experiments reveal that the bucket PMR quadtree outperforms both the R-tree and R*-tree. This
is primarily because the bucket PMR quadtree yields a regular disjoint decomposition of space
while the R-tree and R*-tree do not. The regular disjoint decomposition increases the potential
for interprocessor communication and parallelism in the bucket PMR quadtree, thereby enabling
the execution times to decrease relative to those needed by the R-tree and R*-tree.

This work was supported in part by the National Science Foundation under Grant IRI-92-16970.

1 Introduction

Parallel database systems have been the subject of increasing attention. This is due, in part,
to the advent of highly parallel architectures, adoption of the relational model, and challenges
posed by object-oriented systems [DeWi90, Kim90]. Much of the parallel database research has
focused on multi-attribute declustering techniques (such as Bubba’s extended range declustering
[Bora90] and multi-attribute grid declustering [Ghan92]), data placement [Cope88], and intra-
operator parallelization [DeWi86]. Topics such as algorithms for manipulating relations containing

highly skewed attribute values, and parallel spatial data structures and algorithms, remain open.

1.1 Prior Research in the Parallel Spatial Domain

Prior research in the spatial domain has been limited to quadtrees, k-d trees, and R-trees, with
different approaches (i.e., image-space or object-space [Fole90]) and goals. The object-space ap-
proaches assign one processor per spatial object, while the image-space approach assigns one pro-

cessor per region of space.

The quadtree research has primarily focussed on area (raster) data and region quadtrees. Much
research has concentrated on algorithms for building (either in a top-down or bottom-up man-
ner) both pointer-based and linear region quadtrees [Hung89, Dehn91, Ibar93]. Other efforts have
focussed on developing neighbor finding techniques [Nand88, Hung89] as well as extracting re-
gion properties and performing set theoretic queries [Bhas88, Kasi88, Hung89, Dehn91]. Some of
the work has employed proprietary parallel architectures (e.g., two-dimensional shuffle exchange
network [Mei86], or DRAFT [Mart86]), mesh-connected computers [Hung89], or different program-
ming languages (e.g., Concurrent Prolog [Edel85]), while the majority has dealt with hypercube
architectures. Bestul [Best92] extended the quadtree research under the data-parallel SAM (for
Scan-And-Monotonic-mapping) model of parallel computation. In addition to dealing with linear
region quadtrees in the data-parallel [Hill86] context, algorithms were developed by Bestul for build-
ing and manipulating (e.g., set theoretic spatial queries) PR quadtrees [Oren82, Ande83, Rose83]
and PM quadtrees [Webb84, Same85b].

The k-d tree [Bent75] research was limited but resulted in a description of an important al-
gorithm for building the data structure for a collection of points using Blelloch’s scan model of

computation [Blel89b].

Some of the parallel R-tree research has focussed on algorithms for single cpu-multiple parallel

1

disk systems [Kame92]. Our R-tree research has concentrated on the development of algorithms
for building data-parallel R-trees and polygonization [Hoel93], as well as spatial joins [Hoel94a,
Hoel94b]. It differs significantly from the former approach in that we make use of many processors
to execute the spatial queries rather than merely store the data on parallel disks while operating
with a single cpu (e.g., [Kame92]). Interestingly, the partitioning of data across parallel disks can

be considered an image-space approach where one processor (or disk) is assigned to each region.

1.2 This Research

Our emphasis is on the performance of spatial operations in a data-parallel environment when the
data is represented using hierarchical spatial data structures [Same90a, Same90b]. Our approach
is similar in spirit to an earlier study [Hoel92] in that the same data structures are examined (i.e.,
the R-tree, the R*-tree, and the PMR quadtree). The difference is that here we test operations
requiring a significant amount of computation so that using parallelism may be attractive. Thus,
we do not study point operations such as finding the nearest line to a point as in [Hoel92]. Instead,
we examine more complex operations such as data structure creation, polygonization, and spatial
join. It should be noted that the data-parallel algorithms are assumed to be main memory resident.
Our application environment, a minimally configured Thinking Machines CM-5 with 32 processors,
contains 1 GB of main memory. The adaptation of these main memory algorithms to disk-based

variants is a subject of our ongoing research.

In this paper our sample spatial database is one that contains collections of line segments (i.e.,
maps) corresponding to features such as roads, railway lines, boundaries of political and economic
units, utility data, etc. Data structure creation is the time necessary to build the data structure
for a particular map. This is an important issue, because when the data structure is used for just
one query, it may not be worthwhile to expend much effort in its construction. Polygonization is
the process of determining all closed polygons formed by a collection of planar line segments. For
example, it can be used to find the boundaries of all the countries in the world. Both data structure
creation and polygonalization involve just one data set.

In contrast, the spatial join involves two data sets. It is one of the most common operations
in spatial databases [Rote91, Giint93]. This term is usually used in conjunction with a relational
database management system [Elma89]. In that context, a join is said to combine entities from
two data sets into a single set for every pair of elements in the two sets that satisfy a particular
condition. These conditions usually involve specified attributes that are common to the two sets.

2

In the spatial variant of the join, the condition is interpreted as being satisfied (i.e., two elements
are joined) when the elements of the pair cover some part of the space that is identical. In the
sequential domain, this problem has been studied with polygonal data both algorithmically and
empirically for the R-tree [Brin93], while in the data-parallel domain it has been studied with line

segment data both algorithmically and empirically [Hoel94a, Hoel94b].

We examine a variant of the spatial join that seeks to find all line segments that lie within a
given distance of line segments of another type (the line segments need not be contiguous). This is
the spatial analog of a range query (also termed a window) in a conventional database; however, in
our analog the query region is not limited to a rectangle. It is also known as a corridor or a buffer
zone in GIS, or image dilation in image processing. As an example, suppose that we have one map
corresponding to the roads in the United States and another map corresponding to the border of

Maryland and we want to determine all roads that lie within 10 miles of the border of Maryland.

1.3 Spatial Decompositions

In this paper we focus on representations that sort the data with respect to the space that it
occupies. This results in speeding up operations involving search. The effect of the sort is to
decompose the space from which the data is drawn (e.g., the two-dimensional space containing the
lines) into regions called buckets. One approach known as an R-tree [Gutt84] buckets the data
based on the concept of a minimum bounding (or enclosing) rectangle. In this case, lines are
grouped (hopefully by proximity) into hierarchies, and then stored in another structure such as a
B-tree [Come79]. The drawback of the R-tree is that it does not result in a disjoint decomposition of
space—that is, the bounding rectangles corresponding to different lines may overlap. Equivalently,
a line may be spatially contained in several bounding rectangles, yet it is only associated with one
bounding rectangle. This means that a spatial query may often require several bounding rectangles

to be checked before ascertaining the presence or absence of a particular line.

The non-disjointness of the R-tree is overcome by a decomposition of space into disjoint cells. In
this case, each line is decomposed into disjoint sublines such that each of the sublines is associated
with a different cell. There are a number of variants of this approach. They differ in the degree of
regularity imposed by their underlying decomposition rules and by the way in which the cells are
aggregated. The price paid for the disjointness is that in order to determine the area covered by

a particular line, we have to retrieve all the cells that it occupies. The reason is that each line is

decomposed into as many pieces (termed g-edges) as there are cells through which it passes. Here

we study two methods: the RT-tree [Falo87] and a variant of the PMR quadtree [Nels86].

The RT-tree partitions the lines into arbitrary sublines having disjoint bounding rectangles
which are grouped in another structure such as a B-tree. The partition and the subsequent group-
ings are such that the bounding rectangles are disjoint at each level of the structure. The drawback
of the Rt-tree is that the decomposition is data-dependent. This makes it difficult to perform
tasks that require composition of different operations and data sets (e.g., set-theoretic operations
such as overlay). In contrast, the PMR quadtree is based on a regular decomposition. The space
containing the lines is recursively decomposed into four equal area blocks on the basis of the number
of lines that it contains. We use a variant termed a bucket PMR quadtree that decomposes the
space whenever it contains more than b lines (b is termed the bucket capacity). The decomposition
process can be implemented by a tree structure. It is useful for set-theoretic operations, as the

partitions of the two data sets occur in the same positions.

As mentioned above, R-trees and R1-trees are closely related to B-trees. An R-tree or R*-tree
of order (m, M) has the property that each node in the tree, with the exception of the root, contains
between m < [M/2] and M entries. The root node has at least two entries unless it itself is a leaf
node. Thus we see that the node capacity M in the R-tree and Rt-tree plays the same role as the
bucket capacity in the bucket PMR quadtree. We will make use of this analogy in our discussion

where, at times, the terms will be used interchangeably.

1.4 Spatial Joins

There are a number of possible ways to implement a spatial join. In order to compare the three
representations we use algorithms that take comparable advantage of the different spatial decom-
positions. We have chosen a bottom-up approach with the data-parallel PMR quadtree, as the
quadtree structure naturally lends itself to this style of implementation (i.e., non-overlapping re-
gions with split axes in registration). In contrast, for the data-parallel R-tree and R*-tree, a
top-down algorithm (see [Brin93] for a similar algorithm in the sequential domain) is preferable,
as it can take advantage of the spatial decomposition by determining early which nodes cannot
possibly intersect. In the interest of providing a comparison we also implemented a bottom-up
algorithm for the R-tree, as well as a very simple data-parallel algorithm that does not employ any
spatial sorting and thus checks every line segment against every other line segment for satisfaction

of the join condition.

Ideally, we would like to take advantage of the decomposition of the underlying space from
which the lines are drawn and avoid comparing lines that cannot possibly intersect. This is quite
easy when using the data-parallel bucket PMR quadtree as it provides a sort of the underlying
space and a partition into disjoint blocks. Moreover, since the data-parallel bucket PMR quadtree
is based on a regular decomposition, it is easy to identify blocks in the two maps that correspond
to the same parts of the underlying space, thereby avoiding having to check for the intersection of
lines that cannot possibly intersect. However, this is not possible for the data-parallel R-tree and
the Rt-tree as they do not make use of regular decomposition. Furthermore, in the case of the
data-parallel R-tree, the bounding rectangles are not disjoint. Thus the best we can hope for is to
use the fact that some of the bounding rectangles do not intersect thereby avoiding the need to

test their constituent bounding rectangles or line segments for possible intersection.

The problem with using the R-tree and R*-tree data structures to perform a spatial join is that
they do not contain any information to help us in determining which bounding rectangles in one
map overlap with bounding rectangles in the other map. This means that little of the search space
can be pruned while performing the operations. The difficulty is that although the main utility of
the R-tree and RT tree is to enable the user to distinguish easily between occupied and unoccupied
regions in a particular map, they do not provide a means of correlating the contents of one map
with those of another map. Unfortunately, this is exactly the ability that is needed to implement
spatial join algorithms efficiently. As we will see, this places the data-parallel R-tree and Rt -tree at
a considerable disadvantage in comparison to the data-parallel bucket PMR quadtree as it reduces
the potential for interprocess communication thereby resulting in greater execution times for the

data-parallel R-tree and R*-tree.

The rest of this paper is organized as follows. Section 2 describes three useful models of
parallel computation: PRAM, Scan, and SAM. Section 3 gives the construction algorithms for
the data-parallel bucket PMR quadtree, R-tree, and R*-tree. Section 4 contains a description
of the polygonalization and spatial join algorithms for each of the three data-parallel structures.
Section 5 compares the three data-parallel data structures in terms of performance data for the
specified operations on a Thinking Machines CM-5 parallel computer. Section 6 contains concluding
remarks as well as a discussion of topics for future research. In our discussion of the various data
structures, in the interest of brevity, we will drop the qualifier data-parallel unless the distinction

needs to be emphasized in a case where there is a potential for misunderstanding a claim.

2 Models of Parallel Computation

In this section we describe three models of parallel computation: PRAM, Scan, and SAM. In the
process we elaborate on their suitability for operations on spatial data structures. As we will see,
the scan model is the most appropriate. For the scan model we also describe the types of primitive

operations, as they will be used in the description of the various algorithms.

2.1 PRAMs

An N processor Parallel Random Access Machine (or PRAM) consists of a collection of processors
Py, Py, ..., Py and a global shared memory [Kuck77, Leig92]. Figure 1 contains a simple represen-
tation of an N processor PRAM. Each of the N processors can read or write from any location

within the shared memory at each step of the computation.

global shared memory

Figure 1: Simple figure representing N processors connected to a common shared

memory in the PRAM model.

PRAMs are commonly classified according to concurrent access capabilities of the global shared
memory. The most restrictive of the models is the exclusive-read, exclusive-write (EREW) PRAM.
At any stage of the computation, only one processor is allowed to either read from or write to a
specific memory location in the global shared memory. If we relax the exclusive read constraint
and allow multiple processors to simultaneously read from a specific memory location, we obtain
the concurrent-read, exclusive write (CREW) PRAM. Finally, if the exclusive write constraint is
similarly relaxed, we obtain the concurrent-read, concurrent-write (CRCW) PRAM.

The PRAM model of parallel computation frees the user from the tedious details of actually
implementing a parallel algorithm on a parallel machine. The programmer does not need to worry
about the processor interconnection topology and communication conflicts. Unfortunately, large
shared memory parallel computers are difficult to implement, and shared-nothing machines appear
to be more scalable and well-suited to developing parallel machines with large numbers of processors
[DeWi92]. It is possible, however, to emulate PRAMs on large shared-nothing machines (e.g.,
hypercubes [Leig92]) such as the CM-5, but with unknown performance penalties.

6

2.2 Scan Model

The scan model of parallel computation [Blel88, Blel89a] is defined in terms of a collection of
primitive operations that can operate on arbitrarily long vectors (single dimensional arrays) of
data. Three types of primitives (elementwise, permutation, and scan) are used to produce result
vectors of equal length. A scan operation [Schw80] takes an associative operator @, a vector
[ag, a1, ..., a,_1], and returns the vector [ag, (a0 @ a1),...,(acPD a1 P - - P @n—1)]. Such a scan is
said to be in the upward direction. The scan model considers all primitive operations (including
scans) as taking unit time on a hypercube architecture. This allows sorting operations to be

performed in O(logn) time.

2.2.1 Scanwise Operations

In addition to being classified as either upward or downward, scan operations may be segmented.
A segmented scan may be thought of as multiple parallel scans, where each operates independently
on a segment of contiguous processors. Segment groups are commonly delimited by a segment bit,
where a value of 1 denotes the first processor in the segment. For example, in Figure 2, there are

four segment groups, corresponding to segments of size 3, 4, 2, and 3.

dat a
sf:segnent flag

W
o~
oln
R
o|lo
o~
oln
V)
ol
=

1=

1=

up- scan(dat a, sf, +,in)
up- scan(dat a, sf, +, ex)

ofw
w(H
AlO
ol
Y[
=Y\
N~
ofn
N[

down- scan(dat a, sf, +,i n)
down- scan(dat a, sf, +, ex)

[0%][e)]
N[W
[@]]\¥]
[GS] BN
w|w
N[W
[@][\¥]
=W
Ol

Figure 2: Example segmented scans for both the upward and downward directions
(as well as inclusive and exclusive).

Finally, scan operations may be further classified as being either inclusive or exclusive. For
example, an upward inclusive scan operation using the associative operator € returns the vec-
tor [ag, (ao P a1),...,(acP a1 B - D an—1)], while an upward exclusive scan returns the vector
[0,a0,...,(a0@ a1 P - B an—2)]. Various combinations of segmented scans, where @ is bound to

the addition operator, are shown in Figure 2.

2.2.2 Elementwise Operations

An elementwise primitive is an operation that takes two vectors of equal length and produces
an answer vector, also of equal length. The i*® element in the answer vector is the result of the
application of an arithmetic or logical primitive to the it" elements of the input vectors. In Figure 3,
an example elementwise addition operation is shown. A and B correspond to the two input vectors,

and ew(+,A,B) denotes the answer vector.

Al0 1
B[4]7]

NN
Ol
w(H
(o]0}
(a2}
1N
ol
Ao

LB
ew(+, A B)[48

-t

D=
=

~N|-
Ol=-
~ |-
~ |-
O©O=-
Ol=

Figure 3: Example highlighting an elementwise addition operation.

2.2.3 Permutations

A permutalion primitive takes two vectors, the data vector and an index vector, and rearranges
(permutes) each element of the data vector to the position specified by the index vector. Note that
the permutation must be one-to-one; two or more data elements may not share the same index
vector value. Figure 4 provides an example permutation operation. A is the data vector, index is

the index vector, and permute(A,index) denotes the answer vector.

(o]

position 0 1
Ala b
index [3[2 6 0/1]

position 0 1 2
pernute(A, index) [d e b

ola|w
(AR
oo|—+|un
~@ |o
IN{E= BN
ol—

2
c
6

W
g SN
—|on
(@2[e)]
—{ o ©ol—|w©

i~
—hl0o

Figure 4: Example of a permutation.

2.3 SAM Model

A similar but more restrictive model of parallel computation, the SAM (Scan-And-Monotonic-
mapping) model of parallel computation [Best92], may be defined by one or more linearly ordered
sets of processors which allow element-wise and scan-wise operations to be performed. Instead of

the permutation operation, the SAM model only allows the performance of monotonic mappings

both within and between each linearly ordered set of processors. A monotonic mapping is defined
as one in which the destination processor indices are a monotonically increasing or monotonically
decreasing function of the source processor indices. For example, consider the situation depicted in
Figure 5 where the source processors are contained in processor set A, and the destination processors
are located in processor set B. Figure 5a is a valid monotonic mapping, while the mapping in

Figure 5b is not a monotonic mapping (as £ comes before c in the linear ordering).

A[TT2[3[4]

/ /
Bla[b[c[d[e[f [g|h]i [j | B[a[b[c[d]e]f[g[h]i]j]
(@) (b)

Figure 5: (a) An example monotonic mapping between two sets of processors, and
(b) a similar mapping which is not monotonic.

Being more restrictive than the scan-model by requiring monotonic mappings, the SAM model
also considers scan operations as taking unit time, thus allowing sorting operations to be per-
formed in O(logn). The SAM model was deemed inappropriate for our research as it is unable to
efficiently facilitate the manipulation of R-trees. This is due to the difficulties involved in main-
taining monotonic mappings between two different R-trees when performing spatial queries such
as map intersection (see [Hoel94a, Hoel94b] for more details). Note however that our algorithm
for building data-parallel R-trees as described in Section 3.2 does not violate the more restrictive

SAM model. Bucket PMR quadtrees, with their regular disjoint decompositions, are a structure

for which the SAM model is well-suited.

Because of the bucket PMR quadtree’s regular decomposition, a unique linear ordering may
readily be obtained given a particular linear ordering methodology such as a Peano curve [Pean90].
As will be shown later, the R-tree, with its irregular decomposition, does not have a unique linear
ordering. When performing operations on two maps with non-unique linear orderings, the main-
tenance of the monotonic mappings becomes expensive due to the necessary processor reorderings
in the data-parallel environment. For example, consider the situation depicted in Figure 6 where
two sets of processors (set (A,B) and set (C,D)) correspond to the overlapping regions in Figure 6a.
Suppose each processor in one group must communicate with each intersecting processor in the

other group (i.e., A with C and D, and B with C and D). For the first round of communication shown

in Figure 6b, a monotonic mapping may be maintained. The second round (depicted in Figure 6c¢)
however violates the monotonic mapping. If processors A and B in the first set are reordered (an
expensive operation for a large collection of processors), the monotonic mapping may once again

be maintained as shown in Figure 6d.

oA [A[B] [A[B] [B]A]
I N
iy
oL LD Yy 4 Yy
B [c[o] [c[p] [c[D]
(a) (b) (©) (d)

Figure 6: (a) An example collection of intersecting bounding boxes, (b) a valid
monotonic mapping, (c) an invalid monotonic mapping, and (d) a valid monotonic
mapping following processor reordering.

3 Data-Parallel Spatial Data Structures

We have selected three spatial data structures that represent fundamentally different approaches to
storing spatial data for implementation in the data-parallel environment. The first structure, the
bucket PMR quadtree [Nels86], employs a disjoint, regular decomposition. The second structure,
the R-tree [Gutt84], utilizes a non-disjoint, irregular decomposition. Finally the third structure,
the Rt-tree [Falo87], uses a disjoint, irregular decomposition. Below, we show how to adapt the

three spatial data structures to a data-parallel environment. This results in data-parallel variants.

3.1 Data-Parallel Bucket PMR Quadtree

In the data-parallel environment, all lines are inserted simultaneously when constructing a spatial
data structure. Thus there is no particular ordering of the data upon insertion. The conventional
(i.e., sequential) PMR quadtree’s node splitting rule is one that splits a node once and only once
when a line is being inserted. This is the case even if the number of lines that result exceeds
the node’s capacity. Such a splitting rule is nondeterministic in the sense that the decomposition
depends on the order in which the lines are inserted. For example, consider the situation depicted
in Figure 7 where changing the insertion order of lines 3 and 4 results in different decompositions.
This nondeterminism is unacceptable when many lines are inserted in a node simultaneously as we

do not know how many times the node should be split. In order to avoid this situation, we chose

10

the bucket PMR quadtree for the data-parallel environment because its shape is independent of the
order in which the lines are inserted and because of its well-behaved bucket splitting rule (i.e., there

is no ambiguity with respect to how many subdivisions take place when several lines are inserted

simultaneously).
1 2 1 2
o« 'd
N 3
3 4
(@) (b)

Figure 7: (a) An example sequential PMR quadtree with a splitting threshold of
2, with the lines inserted in numerical order, and (b) the resulting PMR quadtree
when the insertion order is slightly modified so that line 4 is inserted before line 3.

nodes

lines|a|b[c|d|e|f|g|h]i]

Figure 8: Initial data-parallel PMR quadtree processor assignments.

A bucket PMR quadtree is built as follows. Initially, a single processor is assigned to each line
in the data set, and one processor to the resultant bucket PMR quadtree as depicted for the sample
data set in Figure 8 (with the example dataset, assume we have an 8 x 8 quadtree of maximal
height 3). Using a downward scan operation, the number of lines associated with the single node
processor (9 in the example) is determined and then passed to the node processor. If the number
of lines associated with the node processor exceeds the bucket capacity (2 in our example), then
the node must be split into four subnodes and each of the lines must be regrouped, according to
the nodes it intersects.

The splitting occurs in two stages. The regrouping is applied after each split and is achieved with
an unshuffle operation [Best92] (where two intermixed types are rearranged into two disjoint groups
termed segments via two monotonic mappings). The unshuffle is used to concentrate those line

11

nodes

/A VA
lines|ala|b[b|c|d][e|f]|g]h]i|

nodes

ok ATA
lines|ala|b[b|c|d[e|f]|g]h]i|
[AN g

Figure 10: Application of the unshuffle operation to the y coordinate value of the
center of the block associated with the node 1 processor.

processors together into two new segments, each of which corresponds to all of the line processors
lying either in whole or in part above or below the y coordinate value of the center of the block
associated with the node processor (regrouping without monotonic mappings has also been termed
packing [Krus85] and splitting [Blel89a]). The unshuffle operation is depicted in Figure 10. This
is achieved by monotonically shifting to the left (right) all line processors with a midpoint less
(greater) than the split coordinate value. Note that a line may span two or even three nodes,
thus requiring the line to be duplicated or even triplicated and hence either one or two additional
processors in the line processor set are allocated for it (termed cloning [Best92]). For example,
consider lines a and b during the process of subdividing the first node in Figure 9. Because lines a

and b intersect both the top and bottom halves of the root node, they are cloned.

The second stage first clones line i (depicted in Figure 11 with a heavier line), and then applies
the unshuffle to the resulting two segments, thereby creating two sets of two segments each of
which corresponds to all of the line processors which lie either in whole or in part to the left and
right of the = coordinate value of the center of the block associated with the node processor. The

application of this unshuffle operation is depicted in Figure 12.

Continuing with this iterative process, each line segment group determines the number of lines

12

’

c

g
h

nodes

/X
lines|a|b[d[e|f[alb|c|g|h]i]i]

Figure 11: Cloning line i due to its intersection with the horizontal split.

’

T
|
|
|
|
|
|
|
ic

g
h

nodes

A iR VA.TA.TA.|
lines[a[b]d]e[f[a[b]c[g[h]i]i]
| V) | WA S

Figure 12: Application of the unshuffle operation to the z coordinate value of the
center of the block associated with nodes 1 and 2.

it contains, and then communicates the count to the associated node processor. For example, in

Figure 13, the first line segment group transmits a count of 3 to node 1, the second line segment

group transmits a count of 2 to node 2, etc. Each of the node processors then determines whether or

not the transmitted line count exceeds the bucket capacity. If the bucket capacity is exceeded, the

node will subdivide, and the associated lines will be regrouped according to which of the resulting

subnodes they intersect. For example, in Figure 13, nodes 1 and 4 will subdivide, resulting in the

situation depicted in Figure 14.

This iterative subdivision process continues until all nodes in the bucket PMR quadtree have

a line count less than or equal to the bucket capacity, or the maximal resolution of the quadtree

1

d

e
b
3 NG
|

nodes

lines|b|d[e[alf[b]i]alc|[g|h]i]

Figure 13: Result of the first node subdivision, line duplication, and un-shuffling.

13

2 5

¢
3 L\b4(:ﬂ:
6 \><é 71 8

}19 10| lines[d[d][e[b]e[a[f][b]ialc][g]i][g[h]

nodes|1[2[3[4]5]6]7]8]9]10]

Figure 14: Result of the second round of node subdivisions.

has been reached (i.e., a node of size 1 x 1). This is not a problem, because for practical bucket
capacities (i.e., 8 and above), this situation is exceedingly rare and will not cause any algorithmic
difficulties provided that the bucket PMR quadtree algorithms do not assume an upper bound on

the number of lines associated with a given node.

1 g 2 5
i nodes|1/2[3[4[5[6]7]8]9]1011112]13

Y
3 (3;1 ﬁ:
6 \\g} 8] 11
I\g

12 1
h

Figure 15: Result of the bucket PMR quadtree build process.

Iines|d|d|e|b|e|a|f|b|i|a|C|C|9|iwg|h1

W

Because node 7’s bucket capacity is exceeded (shown in Figure 14), and the maximal resolution
has not yet been reached, another round of subdivision is necessary. The result of the third and
final subdivision for our example data set is shown in Figure 15. Note that one of the quadtree
nodes (node 9) still has its bucket capacity exceeded. In the example, the maximal resolution
has been reached (i.e., 8 X 8). Therefore, node 9 will not be subdivided further. Given an s X s
image, the data-parallel bucket PMR quadtree building operation takes in the worst-case O(log s)
time, where each of the O(log s) subdivision stages requires O(1) computations (a constant number
of scans and unshuffles). In the average case where the n line segments are “roughly” uniformly
distributed, the height of the tree and number of subdivision stages is O(logn) as when a node
containing k lines is subdivided, it results in four children that contain approximately &/4 lines.
The bucket size of the quadtree only affects the height of the resulting tree, with larger bucket sizes
yielding shallower trees. The bucket size has no bearing on the number of computations performed

during each subdivision step. Thus, in the average case, a data-parallel PMR quadtree containing

14

n line segments can be built in O(logn) time (i.e., O(log) subdivision stages, each of complexity

O(1))-

N [1]

lines|alblc|d|el[f[g]h]i]

Figure 16: Initial processor assignments.

3.2 Data-Parallel R-trees

The data-parallel R-tree construction algorithm differs from the sequential algorithm in that, rather
than inserting line segments sequentially into the data structure, all line segments are inserted
simultaneously. The data-parallel R-tree construction algorithm proceeds as follows. Initially, one
processor is assigned to each line of the data set, and one processor to the resultant data-parallel
R-tree, as depicted for a sample dataset in Figure 16. Our example assumes an order (1,3) R-tree.
In the figure, the label N 5 denotes the R-tree node processor set, with the associated square region
containing the identifier of the R-tree node associated with the R-tree node processor. We use the
term segment to refer to the collection of line processors associated with a particular R-tree node
processor. Within the line processor set, the nine square regions contain the line identifiers. A
downward scan operation is performed on the line processor set to determine the number of lines
associated with the single R-tree node processor. This is shown in Figure 16 as the count field
beneath the line processor set. The number of lines in the segment is then passed by the first line
in the linear ordering to the single R-tree node processor (depicted in Figure 16 by the arrow from
line a to node 1). If the number of lines in the segment exceeds the node capacity M, then the
data-parallel R-tree root node must be split into two leaf nodes and a root node (as is similarly done
with the sequential R-tree). The two new leaf nodes are inserted into the R-tree node processor

set, with the former root node/processor updated to reflect the two new children.

15

Node Splitting Algorithms

The topic of how to split an overflowing node has been the subject of much research on sequential
R-trees. For example, the R*-tree [Beck90] is an R-tree variant that uses a more sophisticated node
insertion and splitting algorithm than those provided with the conventional definition of the R-tree
[Gutt84]. For the data-parallel R-tree, we have developed two node splitting algorithms, each of

varying computational complexity.

In the first and simplest algorithm, the splitting axis (i.e., or y-axis in the two-dimensional
case) and the coordinate value are determined by finding the mean values along each axis of the
midpoints of all bounding boxes in the line processor set in parallel via a sequence of scan operations.
For each axis and segment group, the midpoints of the bounding boxes are first summed using a
downward inclusive segmented scan operation (with the addition operator). The first node in the
segment group then divides the sum by the number of bounding boxes in the segment group in
order to obtain the mean value of the midpoints of the bounding boxes. This mean value is then
used as the split coordinate value and is broadcast to all other nodes in the segment group with an
upward segmented scan (using the copy operator). At this point, each node determines whether it
lies in the left or right resulting bounding boxes by comparing the midpoint of its bounding box
with the broadcasted split coordinate value. In the case of an z-axis split, if the node’s bounding
box midpoint is less than the broadcast split coordinate value, then the node’s bounding box is
assigned to the left resulting bounding box. If the node’s bounding box midpoint is greater than the
broadcast split coordinate value, then the bounding box is assigned to the right resulting bounding
box. Finally, a small sequence of upward and downward inclusive scan operations (using either a
min or max operator, depending upon the nature of the scan) is used to determine the physical

extents of the two resulting bounding boxes.

The split axis and coordinate value are chosen from the two possible splits (i.e., the bounding
box means along the z-axis and the y-axis) so as to minimize the amount of area common to the two
resulting nodes. Next, the first node in each segment group, which contains the physical extents
of the two resulting bounding boxes along each axis, selects the best split. A final upward scan
operation communicates the selection among each node in the segment group. This operation is of
complexity O(1) at each stage of the building operation, as a constant number of scans dominates

the computation.

An example illustrating this node splitting algorithm is shown in Figure 17. Consider the four

16

L Bbox

B R Bbox

10 20 30 40 50 60 70 80 90
A B C D

|s: left side| 10 25 35 60

rs: right side| 30 45 65 90

m mdpoint| 20 35 50 75
- scan type

| nms: midpoint sum[180 160 125 75][down-scan(np,, +,in) \

[

mm i dpoi nt nmean| 45 45 45 45 |up-scan(ns,,copy,in)
lr: L/ R side L L R R|if (m<m) then L else R
L Bbox left side| 10 25 - - |L: down-scan(ls,,nn,in)
L Bbox right side| 45 45 - - |L: down-scan(rs,, max,in)
R Bbox left side - - 35 35|Rup-scan(ls,,nin,in)
R Bbox right side - - 65 90 |R up-scan(rs,,mx,in)

Figure 17: Example highlighting the various scan types and their application to
determining the z-coordinate values for the left and right bounding box.

bounding boxes labeled A-D, which are assumed to comprise the same segment group. In this
example, which depicts the selection of the z axis split coordinate value, we are only considering
the z-coordinate values of the bounding boxes. In Figure 17, the coordinate values of the left and
right sides of the four nodes are indicated on the lines labeled 1s:1eft side and rs:right side,
respectively. For example, node C has left and right z-coordinate values 35 and 65, respectively.
To begin the node splitting process, each node in parallel determines the z axis midpoint value
of its bounding box. The values are found in the figure on the line labeled m:midpoint. Once
all midpoints are computed, a downward inclusive scan operation using the addition operator
determines the sum of the midpoint values; this is depicted in line ms:midpoint sum. The first
node in the segment group then determines the midpoint mean by dividing the midpoint sum by
the number of nodes in the segment group. This midpoint mean is then broadcast with all other
nodes in the segment via an upward inclusive scan operation using the copy operator (shown in
the line labeled mm:midpoint mean). The midpoint mean functions as the z axis candidate split
coordinate value. Each node then in parallel determines whether its midpoint lies to the left or

right of this midpoint mean value. If a node’s midpoint value is less than the midpoint mean, it

17

will be grouped with all nodes to the left of the midpoint mean; otherwise, it will be grouped with

nodes falling to the right of the midpoint mean.

A sequence of scan operations can be used to determine the resulting left and right bounding
boxes. Initially, the bounding box left and right coordinate values will only be found in the first
and last nodes of the segment group (i.e., nodes A and D, respectively). Of course, these values
may later be broadcast to all nodes in the segment group via a sequence of four scan operations
using a copy operator. As shown in Figure 17, a downward minimum inclusive scan on the left
x coordinate value for all nodes to be grouped in the left bounding box is used to determine
the left z-coordinate value for the left bounding box (L Bbox left side). Similarly, a downward
maximum inclusive scan on the right z-coordinate values for nodes grouped on the left will establish
the right z-coordinate value for the resulting left bounding box (L Bbox right side). Thus, for
the resulting left bounding box, the left and right z-coordinate values are 10 and 45, respectively.
These values are found in the first node (node A) on rows of Figure 17 labeled L Bbox left side
and L Bbox right side. Analogous upward min/max exclusive scans are used to determine the
left and right z-coordinate values of the resulting right bounding box. We observe that the left and
right z-coordinate values for the resulting right bounding box are 35 and 90, respectively. These
values are found in the last node of the segment group (node D) on lines R Bbox left side and R

Bbox right side, respectively.

The second node splitting algorithm first sorts all lines in the segment according to the left edge
of their bounding boxes. A sequence of upward scan operations are used to determine the extents
of the bounding box formed by all lines preceding a line in the sorted segment. A similar sequence
of downward scans will determine the bounding box for all following lines in the segment. For all
legal splits (i.e., where each of the two resulting nodes receives at least m/M of the lines being
redistributed), the amount of bounding box overlap is calculated, with the split corresponding to
the minimal amount of overlap being selected as the z-axis candidate split coordinate value. An
analogous procedure is employed for the y-axis in obtaining the y-axis candidate split coordinate
value. Once the two candidate split coordinate values are determined, the one corresponding to the
minimal bounding box overlap is selected. In the event of a tie, some other metric such as choosing
the split with the minimal bounding box perimeter lengths may be employed.

Given n lines, this node splitting algorithm takes O(logn) time in the worst-case, as we employ
two O(log n) sorts (in the scan model of computation, one can perform a radix sort of n items using
O(logn) scans) and a constant number of upward and downward scan operations.

18

L Bbox

B R Bbox
C
A D
10 20 30 40 50 60 70 80
A B C D
ls: left side|{10 20 40 60
rs: right side/{30 50 70 80
___________________ > scan type
L Bbox left side|{10 10 10 10 |up-scan(ls,-,mn,in)
L Bbox right side|{30 50 70 80 |up-scan(rs,-, max,in)
4. ___________________
R Bbox left side[{20 40 60 O |down-scan(ls,-, mn,ex)
R Bbox right side{80 80 80 O |down-scan(rs, -, max, ex)

Figure 18: Example highlighting the various scan types and their application to
determining the z-coordinate values for the left and right bounding boxes.

Below we illustrate how to calculate the legal splits. Consider the example shown in Figure 18
consisting of four bounding boxes labeled A-D where the nodes have been sorted according to their
left z-coordinate values. In this example, we are only considering the z-coordinate values of the
bounding boxes, though incorporation of y-coordinate values is straightforward. In the figure, the
left and right coordinate values of the four nodes are indicated on the lines labeled 1s:1left side
and rs:right side, respectively. For example, node B has left and right z-coordinate values 20
and 50, respectively; while node C has left and right z-coordinate values 40 and 70, respectively.
Assuming that a node is grouped with all nodes on its left when forming the bounding boxes (i.e.,
node C is grouped with nodes A and B when forming node C’s left and right bounding boxes), the
following sequence of scan operations can be used to determine the bounding boxes on the left and
the right for each node. In particular, as shown in Figure 18, an upward minimum inclusive scan on
the left coordinate value is used to determine the left z-coordinate value for the bounding box on
a node’s left side (L Bbox left side). Similarly, an upward maximum inclusive scan on the right
z-coordinate values will establish the right z-coordinate value for the bounding box on a node’s left
side (L Bbox right side). Thus, for node B, we see that the left and right z-coordinate values
for the bounding box to its left (i.e., the bounding box containing nodes A and B, labeled L Bbox

in Figure 18) are 10 and 50, respectively. These values are found in the rows of Figure 18 labeled

19

L Bbox left side and L Bbox right side. Analogous downward min/max exclusive scans are
used to determine the left and right z-coordinate values of the bounding box to the right of each
node. We observe that the left and right z-coordinate values for the bounding box to the right
of node B (i.e., a bounding box containing nodes C and D, labeled R Bbox left side and R Bbox

right side, respectively in Figure 18) are 40 and 80, respectively.

datala b c
segnent flag|1 0/ 0

el ements 101
| egal split N

Z o
z5
<5
<5
<5
z5
z5
zB5
z5
z5
zs
z5
<5
<5
<5
z5
zs5
z5
z5

Figure 19: Example legal splits where the minimal occupancy level is 40%.

When selecting the locally optimal node split with the R-tree, it is necessary to ensure that
the chosen split results in each node receiving at least m/M of the lines being redistributed. All
candidate splits that satisfy this criterion are termed legal splits. For example, given a minimum
occupancy level of 40%, the right edges of lines d—f and n—p in Figure 19 are legal split positions).
The legal splits may be determined by first enumerating the elements in the segment group with a
single upward inclusive scan operation (denoted by position in Figure 19). A downward inclusive
scan operation is then used to copy the number of elements in the segment group across the segment
group (denoted by the elements field in the figure). Finally, each element determines whether or
not it corresponds to a legal split by dividing its enumerated position (position) by the number of
elements in the segment group (elements). If the result is between m/M and (1 — m)/M, then it
corresponds to a legal split. In the example, the result of this determination is shown in the legal

split field.

No[1]

. VATA VA
lines|alblc|d]e|[f[g|h]i|
\ VL VLV, V)

Figure 20: Unshuffle operation.

Once the splitting axis and the coordinate value are chosen, an unshuffle operation is used to
concentrate those line processors together into two new segments, each of which will correspond to

20

one of the two R-tree leaf node processors as depicted in Figure 20. For example, all lines which
have a midpoint that is less than the split coordinate value are monotonically shifted toward the
left, while those whose midpoint is greater than the split coordinate value are monotonically shifted
toward the right among the line processors. The result of the unshuflle operation on the lines in
Figure 20 is shown in Figure 21. Note that the root node of the data-parallel R-tree is associated
with two segments in the line processor set A (i.e., (a,b,e,h)and (c,d,f,g,1)), and must itself be

subdivided in an analogous manner.

No [1]

lines|blc|d|e]i |a[f[g]|h]

Figure 21: Result of the unshuffle operation.

Thus, at this stage after the first root node split and line redistribution, we will wind up with
two segments in the line processor set, and two different R-tree processor sets N g and N 1 (each set

corresponding to a node at a different height in the data-parallel R-tree), as shown in Figure 22.

Ny [1]

N [2[3]

lines|b|c[d]eli |a[f[g]|h]

Figure 22: Completion of root node split operation.

The building algorithm will now proceed iteratively, with each segment in the collection of line
processors determining the number of lines it contains, and transmitting the count to the associated
R-tree node processor. If the number of lines in the segment exceeds the node capacity M, then
the segment (and corresponding R-tree node processor) will be forced to subdivide. Note that this
subdivision process may result in processors that correspond to internal nodes in the data-parallel
R-tree splitting themselves (with these splits possibly propagating upward through the data-parallel
R-tree).

21

N,

M%ﬂ

lines [blc|delilalf|g|h]|
5< ------------------------------ [B—

43214321

count:

Figure 23: Broadcasting the line counts to the associated nodes.

The building process terminates when all nodes in the R-tree node processor set have at most
M child processors (either internal R-tree nodes or line processors) as shown in Figure 23 for our
example dataset. The data-parallel R-tree root node corresponds to the single processor in set N o,
the leaf nodes are contained in processor set N g, and all lines are grouped in segments of length less
than or equal to 3 in the line processor set (recall that we are dealing with an order (1,3) R-tree

in our example).

N [1]
N [2] 3]
No[4]5]6]7]

lines|d]e[b[c]|i|g[h[a]f]

Figure 24: Completion of the data-parallel R-tree building operation.

Given n lines, the data-parallel R-tree is of worst-case maximal tree height O(logn) which is
obtained by observing that each R-tree node contains at least two elements. In practice, each node
of the R-tree contains considerably more than two elements; thus the tree height is much smaller.
Assuming a maximal tree height O(logn), the data-parallel R-tree construction operation takes
O(log? n) time, where each of the O(logn) subdivision stages requires O(logn) computations (a

constant number of scans along with two bounding box sorts).

3.3 Data-parallel R*-trees

The R*-tree construction algorithm is similar to that of the R-tree with a few modifications. In
order to facilitate the R*-tree’s disjoint decomposition, the method for handling splitting nodes
must be modified. The R*-tree node splitting algorithm first sorts all lines in the node according

22

to the left edges of their bounding boxes as is similarly done for the R-tree. Note that this splitting
process is described for selecting a possible z-axis split; an analogous procedure will be followed for
selecting a possible y-axis split. Next, for each node split whose result satisfies a pre-established
minimal occupancy levelof m/M lines in the two resulting nodes (termed a legal split in Section 3.2),

the coordinate value of the left edge is broadcast to each of the lines in the node being split.

In an iterative process which depends on the number of legal splits in a node, each node that
corresponds to a legal split in turn broadcasts the coordinate value of its right side. Each line, in
parallel, clips itself against the split coordinate value. The clip results in either one (the line does
not intersect the split coordinate value) or two lines (the line intersects the split coordinate value).
Each resulting line determines in which of the two new nodes it is contained. For example, in the
case of an z-axis split, a line can lie in either the node which is comprised of all lines to the left of
the split coordinate value, or the node which consists of all lines to the right of the split coordinate
value. The definition of an R*-tree requires that each node at a given level of the tree is disjoint
from all other nodes. In order to ensure this disjoint decomposition, some lines will have to be
split across multiple nodes in the final decomposition. This situation also arises in the bucket PMR
quadtree. Once each line determines the node in which it lies, a sequence of scan operations is used
to determine the bounding box that contains the lines in the two new nodes. Finally, the perimeter
of the two resulting bounding boxes is computed.

The splitting process continues for each of the legal node splits and split axes. Once all legal
node splits have been determined and the resulting node perimeters are computed, the split axis
and coordinate value that correspond to the minimal perimeter of the two resulting nodes is selected
as the final node split value. In the event of a tie, some other metric such as the split with the
minimal bounding box areas may be employed. After choosing the splitting axis and the coordinate
value, an unshuffle operation concentrates those line processors together into two new nodes, each
of which corresponds to one of the two R*-tree leaf node processors.

The building algorithm proceeds iteratively, with each node determining the number of lines it
contains, and transmitting the count to the associated RT-tree node processor. If the number of
lines in the node exceeds the node capacity M, then the node (and corresponding R*-tree node
processor) are split. Similar to the R-tree building algorithm, the R*-tree construction process
terminates when all nodes in the RT-tree node processor set have at most M children as shown in

Figure 26 for our example dataset.

Note that the leaf node subdivision process may result in processors that correspond to internal

23

N, [1]

N [2]3]

lines [a[b]d][e[f[alc]g[h]i]

Figure 25: Result of the first round of R*-tree node splitting for the data in Figure 8.

N, [1]
N [2] 3]
No[4]5]6]7]

lines|{b[d][e]a]f|c]i [g][h]

Figure 26: Completion of the data-parallel RT-tree building operation.

nodes in the RT-tree being forced to split when the number of their children (e.g., leaf nodes)
exceeds the node capacity. These internal node splits may possibly propagate up to the root node

of the RT-tree (and are termed upward splils).

An additional complication in the node splitting process arises if the splitting of an internal
node forces the splitting of some of the descendents (both nodes and lines) of the node being split.
Unlike the R-tree which does not enforce a disjoint decomposition, an upward internal node split
may result in the selection of a split axis and a coordinate value that intersects the descendents of
the splitting node. The fact that the decomposition induced by the R*-tree must be disjoint requires
that any intersecting descendents (nodes or lines) must also be split. Splitting the descendents of
a node is termed a downward split. The RT-tree construction process terminates when all nodes
in the node processor set have at most M child processors (either internal R*-tree nodes or line

Processors).

It is important to note that unlike the R-tree or R*-tree, the R*-tree does not have a minimal
node occupancy level m. This is a direct result of the downward node splits. When a downward
node split is chosen, the resulting node occupancy levels of any descendent nodes that may be
affected is not considered. Thus, a downward node split may result in a descendent node being

split into two subnodes of very unbalanced capacity (i.e., a node with 20 elements could be split

24

into two nodes, the first containing two elements, and the

second

containing 18 elements).

B B B A2
i Lle e
| 2 2
***** C I
AlE F AEZE = Alg':l
(a) (b) (©)

Figure 27: Example of upward and downward splits; (a) shows nodes E and F
splitting, (b) shows the result of the two node splits and the resulting upward split
of node A, and (c) depicts the result of the upward split of A.

For example, consider the situation depicted in Figure 27 where node A is the parent of nodes
B, C, D, E, and F. Assume that the node capacity is 5, and that nodes E and F in Figure 27a are
being split. The result of their subdivision into nodes E 1, E o, F 4, and F 5 is shown in Figure 27b.
Because parent node A now has seven children, the splitting of nodes E and F results in an upward
split of A. Assuming that node A splits along the dashed line shown in Figure 27b, a downward split
of child node E 5 will be necessary in order to maintain the disjoint decomposition. The result of
parent node A’s subdivision into nodes A y and A 5, and the downward split of node E 5 is shown

in Figure 27c.

Figure 28: Example highlighting the left and right bounding boxes which correspond
to the split coordinate value 2 associated with bounding box C during the Rt -tree
node splitting process.

In comparison to the the data-parallel R-tree, the data-parallel RT-tree construction process

suffers with respect to the number of scan operations necessary to choose the locally optimal node

25

split. As was described in Section 3.2 (and depicted in Figure 18), a sequence of approximately ten
scans is all that is necessary to select the node split axis and coordinate for a data-parallel R-tree.
For the R*-tree and its disjoint decomposition of space, the process requires significantly more scan
operations. Due to the disjoint decomposition, it is sometimes necessary to split the children of
internal nodes (i.e., downward splits) during the subdivision process as shown in Figure 27. For this
reason, it becomes necessary to make use of additional knowledge of the contents of the children of

a splitting node (e.g., the spatial extents of the grandchildren) when splitting the node.

Consider the situation shown in Figure 28 where nodes A-E represent five siblings in a node
which is being split. Assume that z represents the chosen z-axis split coordinate value. When
regrouping nodes A-E, node C is grouped in its entirety with the portions of nodes A and B that
fall to the left of the split coordinate value z. Similarly, nodes D and E are grouped with the
portions of nodes A and B that fall to the right of the split coordinate value z. If we were to apply a
similar sequence of scan operations as was done with the data-parallel R-tree, then each node could
independently (and in parallel) determine the two associated bounding boxes that correspond to
all portions of nodes to the left of the split coordinate value z (i.e., the left halves of nodes A and
B, and all of node C), and all portions of nodes to the right of the split coordinate value z (i.e., the
right halves of nodes A and B, and all of nodes D and E).

For example, in Figure 28, the left bounding box corresponding to the split associated with node
C consists of the left portions of nodes A and B, as well as node C in its entirety. Similarly, the right
bounding box consists of the right portions of nodes A and B, and nodes D and E in their entirety.
Note that this approach ignores the contents of all nodes (i.e., nodes A-E) when determining the
left and right bounding boxes corresponding to a given split axis and coordinate value.

However, employing the R-tree-like approach to forming the bounding boxes for an R+-tree
is flawed. Because of the disjoint decomposition of space and the standard requirement that all
bounding boxes inside either the R-tree or the R+-tree be minimal bounding boxes, it sometimes
becomes necessary to consider the contents of the nodes (i.e., nodes A-E in the example) when
determining the left and right bounding boxes that would result from a candidate split. Consider
the situation depicted in Figure 29a where node A contains only two children, labeled a 1 and
a 9. Similarly, let node B also contain two children, labeled b 1 and b 5. For the purpose of this
discussion, it is not necessary to show any children of nodes C-E.

If one were to use the R-tree-like approach (as detailed in Section 3.2), which ignores the
distribution of the children nodes when determining a node split, then the left and right bounding

26

e e T e e
c | o c |'p c | |p
val AN v3—1
VN : \ / N ! \ / AN /
- ag B 1 ag X |LE ! az/\ E
A | \ A 1V A | \

(@ (b) (©

Figure 29: (a) Example from Figure 28 with the assumption that nodes A and B
only have two children (depicted as crossed boxes), (b) the node split which results
from using the standard R-tree-like approach, and (c) the correct R+-tree node
split which considers the contents of the nodes (i.e., the crossed boxes).

boxes would correspond to the two shaded regions in Figure 29b. Given that nodes A and B only
contain two children as described above, the correct bounding boxes that would result from the
z-axis split using split coordinate x are quite different. For the example dataset in Figure 29a, the
correct left bounding box corresponding to split coordinate value z contains the region formed by
the portions of nodes A and B that lie to the left of the split coordinate (i.e., regions a y and b 1), as
well as node C in its entirety. The correct bounding box containing a 1, b 1, and C is shown as the
left shaded region in Figure 29c. Notice that this shaded region is considerably smaller than the
left bounding box formed using the R-tree-like technique in Figure 29b. Similarly, the actual right
bounding box that corresponds to split coordinate value z is shown as the right shaded region in
Figure 29c. As we cannot accurately determine the left and right bounding boxes corresponding to
each candidate split using the simple but fast R-tree-like method, it becomes necessary to employ

a much more computationally expensive technique.

From this example, it is clear why the simple R-tree node splitting technique that uses a small
sequence of scan operations is not applicable to the RT-tree, as knowledge of the contents of the
nodes being regrouped and possibly split must also be considered when determining the locally
optimal node split. Interestingly, if one were to employ the R-tree-like node splitting technique

along with the disjoint decomposition of space requirement, the ensuing construction algorithm

would build a data-parallel k-d-B tree [Robi81].

27

4 Data-Parallel Spatial Queries

Parallel spatial queries were examined for the three implemented data-parallel spatial data struc-
tures in order to further understand their behavioral tradeoffs and differences in the data-parallel
environment. We chose to implement three different spatial queries for each data structure. The
first spatial query was polygonization. Polygonization is the process of determining all closed poly-
gons formed by a collection of planar line segments. We identify each polygon uniquely by the
bordering line with the lexicographically minimum identifier (i.e., line number) and the side on
which the polygon borders the line. Polygonization can be achieved without using a spatial data
structure. Basically, the n lines could be sorted in parallel based upon their identifier in O(logn)
time, then each line in sorted sequence would transmit its endpoint coordinates, line identifier,
and current left and right polygon identifiers to all following lines via a sequence of O(n) scan
operations. Each line can independently determine the identifiers of the left and right polygons.
The drawback is that it is an O(n) operation with a large number of scans. Data-parallel variants
of spatial data structures such as the bucket PMR quadtree, as well as the R-tree and R*-tree, can
reduce the number of global scan operations (i.e., a scan across the entire processor set) by instead

relying upon segmented scans executed in parallel.

The second and third queries fall into the classification of spatial joins. In particular, we look at
map intersection and a spatial range query (e.g., find all lines in one map that are within distance d
of any line in a second map). Each of these queries could similarly be solved by having all the lines
in one map broadcast their endpoint coordinates to the lines in a second map in an O(n) process.
As is the case with polygonization, data-parallel spatial data structures can be used to reduce the

number of scan operations (again by employing segmented scans), thus speeding the computations.

4.1 Data-Parallel Bucket PMR Quadtree Spatial Queries

As the bucket PMR quadtree has q-edges, spatial query algorithms for both sequential and data-
parallel bucket PMR quadtrees are required to take into consideration the complexities introduced
by the existence of g-edges (i.e., multiple feature representation). As was previously mentioned,
g-edges are a by product of the disjoint decomposition imposed by the bucket PMR quadtree (this
is also the case with R*-trees, another disjoint decomposition). The existence of q-edges requires
additional computation (i.e., duplicate deletion) when merging sibling nodes during the execution

of some of the algorithms.

28

4.1.1 Polygonization

Given a bucket PMR quadtree, the polygonization process begins by constructing a partial winged-
edge representation [Baum72] (an association between the incident line segments forming the min-
imal and maximal angles at each endpoint of each segment). This representation enables us to
determine all edges that comprise a polygon, and all edges that meet at a vertex in time propor-
tional to the number of edges. In constructing the partial winged-edge representation, the endpoints
of each line in a node are broadcast to all other lines in the node through a series of scans. By
broadcast we mean the process of transmitting a constant value from a single processor to all other
processors in the same node via a scan operation (i.e., the vector [a;, a;, ..., a;]). Locally, each line
processor maintains the minimal and maximal angles formed at each endpoint of the corresponding
line as well as the identities of the lines formed by these angles. Once the broadcasts are done, each
line processor locally assigns an initial polygon identifier for the bordering polygon on the left and

right side (moving from source to destination endpoint).

W _ y

max

Figure 30: Selecting the initial polygon identifiers.

In Figure 30, the left polygon identifier for line segment z is selected from the minimum identi-
fiers of the source endpoint minimal angle (w g, where w is the line identifier and R denotes the right
side of w), the destination endpoint maximal angle (y g), and the line identifier itself (z). For
the right polygon identifier, select the minimum identifier among the source endpoint maximum
angle (x g), the destination endpoint minimal angle (v g), and the identity line identifier (z g). In
Figure 30, line z is assigned w g as the initial left polygon identifier, and v g as the right polygon
identifier. Figure 31 shows the initial polygon assignment for the depicted example where the left

and right polygon identifiers are contained in L 1p and R 1p, respectively.

Starting at the leaf level, sibling nodes are then merged together into their parent nodes (i.e., in
Figure 31, leaf nodes 4-7 are merged together, resulting in leaf node 4 in Figure 32). All the lines
in the merged sibling leaf nodes are sorted, and any duplicate lines are marked. In Figure 31, the

merging of sibling leaf nodes 4-7 will result in one pair of duplicate lines (line b) as line b occurs

29

nodes [1[2]3]4]5]6]7]8]9]10)

a
/W
f —
lines|a|f|h|a|b|b|bje|g|c|e|d|f|c|d|g
d g Liopla|f|alala|b|ble|b|c|c|d|d|c|{d|d
c LILIRILILJILJLJIL/R|LJLJLJL|L]L]L
Ropol|a|f|a|ala|b|b|bje|c|c|d|d|c|c]|c
RIRILIRIRIRIRILILIR[RIRIRIR|R|L
Figure 31: Initial polygon assignments.
nodes [1]2[3]4[5]6]7]
a//\b
/W e
f —
lines|a|f|h|a|b|b|bje|g|c|e|d|f|c|d|g
d g Liola|f |alala|b|ble|b|c|c|d|d|c|d|d
c LILIRILILJLJLILI/R|LJLJL{L|L]L]L
Ropo|a|f |a|ala|b|b|bje|c|c|d|d|c|c]|c
RIRILIRIRIRIRILIL|R[RIR|[RIR|R|L

Figure 32: Result after first round of merging and prior to duplicate deletion (du-
plicate instances of lines are shown shaded).

in both nodes 5 and 7. The duplicate instances of line b are highlighted by the use of shading in

Figure 32 which shows the results of merging nodes 4-7 prior to duplicate deletion.

Mo

e

nodes [1]2]3]4[5]6]7]

lines|a|f|h|a|b|bje|g|c|e|d|f|c|d|g

d g Lip[a[falalal[blelb]c[c|d[d]c[d]|d
c LILIR|L|L|L|L|R|L|L|{L|L|L|L|L
Rpla|f|alala|b|ble|c|c|d|d|c|c]|c
RIR|LIR|R/R|/L|L|R|R|R|R|IR|R|R

Figure 33: Polygon assignments after the first round of leaf node merging and
duplicate line deletion.

In order to ensure that each duplicate line has consistent polygon identifiers as well as correct
winged-edge representations, each duplicate line has its endpoints and polygon identifiers broadcast
to the other duplicate lines in the merged node. If any of the duplicates’ polygon identifiers are
updated, the identifier updates must also then be broadcast among all other lines in the merged
nodes. By update, we mean assigning a lexicographically smaller polygon identifier. For instance,

in Figure 33 the merging of sibling leaf nodes 2-5 will result in two pairs of duplicate lines (i.e.,

30

lines b and e) as shown in Figure 34. With the duplicate line b in the merged node, initially one
instance has left and right polygon identifiers a 1, and a g, and the second instance has polygon
identifiers b 1, and b g. The left and right polygon identifiers of the second instance of line b are

updated from b, to a, and b g to a g respectively.

nodes|1]2]3[4]
a b
W e

lines|a|f|h|la|b|b|c|e|e|g|d|f|c|d|g
d g Lio[alf]alala|b|c[e[c[b[d[d[c[d]|d
c LILIRIL|L|L|L|LJL|R|L|L|L|L|L
Rp|a|f|alala|bjc|b|c|e|d|d|c]|c|c
RIRILIR|IR|R|R|L|R|L|RIR|R|IR|R

Figure 34: Result of the second round of merging prior to duplicate deletion (du-
plicate instances of lines are shown shaded).

When the second instance of line b is updated, the two identifier updates are then broadcast
to all other lines in the merged node. For each other line in the merged node, if the transmitted
polygon identifier update matches either of its current left or right polygon identifiers (i.e., the by,
to aj, update matches any line’s left or right polygon identifier having value by), then the line’s
polygon identifier is changed to aj, in order to reflect the broadcast update and the lexicographically
smaller identifier. Similarly, the duplicate line e results in two additional identifier updates—that

is, cg to by, and e, to cp. Actually, line e’s by, value was previously updated to aj, during line b

update broadcasts.

lines|a|b|blc|e|e]|g alblbjc|e|e|g alb|bjc|e|e|g
Liplalalblc|e|c|b ajalajcl|elc]|a ajalajc|c|c]|a
LIL/L/L|L|L\R| |L|L|LJL|L|L|R LILILILILIL|R
Roplalalbl[cib\c]|e aaa@ace alalalalalalc
RIRIR/R\L/R|L RIRIR L|R\L RIRIRILILIL|L
b|_—>a|_ e|_—>C|_
bre»ar Cr»a
(@) (b) (©)

Figure 35: (a) Example of duplicate line b polygon identifier updating during the
polygonization merging process for the situation also depicted in Figure 34, (b) the
updating of duplicate line e’s polygon identifiers, and (c) the result of updating all
duplicate polygon identifiers.

For example, consider the situation depicted in Figure 35 which is taken from the merging nodes

shown in Figure 34. The duplicate line b’s result in two polygon updates (i.e., b toap and b g

31

to a g) being broadcast to the other lines in the segment group. The other lines whose left or right
polygon identifiers are then updated are shown as circled items in Figure 35a (i.e., the right polygon
identifier of the first line e, and the left polygon identifier of line g). Additionally, duplicate line
e also results in two broadcasted polygon updates (e 1, to ¢ 1, and c g to a , in Figure 35b). The
final result of the broadcasting of polygon identifiers necessitated by the duplicate lines is shown

in Figure 35c.

(b)

Figure 36: (a) Example of two leaf nodes A and B merging (the contents of sibling
nodes C and D are not shown), and (b) the result of the merge operation.

Finally, when merging four sibling nodes together, any line whose endpoint falls on the shared
node border (e.g., lines a and b in Figure 36a) must also have its endpoints and polygon identifiers
broadcast among the merged nodes. Consider the example in Figure 36a where four sibling nodes
labeled A-D are being merged (for sake of clarity, the contents of nodes C and D are not shown).
There are no duplicate lines in the merging nodes, but lines a and b have an endpoint that intersects
the common node border. The endpoint coordinates and polygon identifiers of these two lines are
broadcast among the merged lines, and any appropriate winged-edge updates are made (i.e., the
source endpoint of line b is updated to reflect the incidence of line a). For all lines whose winged-edge
representations are updated, the polygon identifiers are checked for possible updates. Figure 36b

shows the resulting polygon identifiers.

a b
h
] g

nodes

linesfa|f|hla|b|c|e|g|d|f|c|d|g

d g Liolalf]alalalclcla]d[d[c|d[d
c LILIRILILIL|L/RJL|L|L|L|L
Rpl|a|f|alalalalalc|d|d|c|c|c

RIRL RRRILILILIRIRIRIR|L

Figure 37: Polygon assignments after the second round of leaf node merging.

32

The merging and updating process continues up the entire bucket PMR quadtree until all
lines are contained in a single node and all necessary broadcasts have been made (as shown in

Figures 37-39, with the final assigned polygon identifiers circled).

nodes|[1]
a b
h
I e

lines|aja|blc|c|d|d|e|f|f|g|g|h

d g Liolalalalclc|d[d|c|[f[d[ald[a
c LILILJL|L|JL|L|L|L|L|RIL|R
Rpl|alalalalc|d|c|a|f|d|c|c|a
RRRRILIRRIRILIRIRIL|L|L

Figure 38: Result of final round of merging, prior to duplicate deletion (duplicate
instances of lines are shown shaded).

nodes[1]

lines|albjc|d|e|f|g|h
Liplalalclalclalala
LILILIRIL|R|RIR
Rplalalalalalalc]a
RIRIL|L|L|L|L|L

Figure 39: Result of the polygonization operation.

The bucket PMR quadtree’s spatial sort greatly limits the amount of inter-segment commu-
nication necessary as compared with a non-spatially sorted dataset where all lines would have to

communicate their endpoints and polygon identifiers to all others.

In the worst case, where all of the n line segments in the PMR quadtree intersect the first
split axis in either the z or y dimension, no lines may be removed from consideration during the

node merging process. Thus, in the worst case, the polygonization process will be of complexity

O(nlogn).

4.1.2 Map Intersection

In the following algorithm description, assume that we are starting with two data-parallel bucket
PMR quadtrees; one termed the source quadtree, and the second termed the larget quadtree. The
quadtrees are of equal size (i.e., they represent the same s x s area). The source quadtree will
contain the reference set of lines to intersect against (e.g., the border of the city), and the target

33

quadtree contains the lines which will be determined to intersect the objects in the source quadtree

(e.g., the roads found in the county).

o f lines[d[d]e[blelalf[blialc]clg]i[g]h]
CLE

'\]9 nodes[1]2]3[4]5]6]7]8]9 10111213
h

\

source quadtree

nodes

mappi ng quadtree

SR
n> nodes[1[2[3]4[5[6[7[8]9[1011121314[1516|

B
jp t\I lines|mlo[nlg[nfu[m[p]s|pls]r]s]ulr]r]t]

target quadtree

Figure 40: Example of a source and target data-parallel bucket PMR quadtree (each
with a bucket capacity of 2) and a mapping quadtree prior to the first mapping
node subdivision.

Given the data-parallel source and target bucket PMR quadtrees, we first establish a corre-
spondence between the source and target quadtree nodes. This will facilitate the lessening of
communication between the two quadtrees when performing the actual intersection. While estab-
lishing the source and target node correspondence, a third temporary set of quadtree nodes, termed
the mapping quadiree, is employed. The mapping quadtree is discarded following completion of the

operation.

The mapping quadtree initially consists of a single large node, equal in physical size to the
exterior dimension of the source and target quadtrees (i.e., s x s). The single mapping node is
associated with the entire collection of both source and target quadtree leaf nodes (as an example,

consider the situation depicted in Figure 40). The mapping quadtree nodes (of which there is

34

b5
= f lines[d[d]e[b]elalf[b]i]alc]c]g]ilg]h]
G
NG,
g

nodes[1[2[3[4]5]6][7][8] 910111213

source quadtree

nodes
mappi ng quadtree
o Y
n> nodes|[1]2[3[4[5]6][7][8[9[10/1112[13[14[15]16|
u

\/S/&
;
jp \I lines[mo[nlg[nfulmpls]pls]r]sfulr]r]t]
t

target quadtree

Figure 41: Mapping quadtree nodes at the completion of the first subdivision phase
with completed mappings shaded.

initially only one) are then repeatedly subdivided until each mapping node is associated with either
a single source node or a single target node. These subdivisions are performed using collections of
scan and cloning operations in an analogous fashion to that employed in constructing the bucket
PMR quadtree. Essentially, the mapping nodes are subdivided until there is a one-to-one, one-to-
many, or many-to-one relationship established between the source and target nodes through the
mapping nodes. For our example dataset shown in Figure 40, the single mapping node is associated
with thirteen source nodes and sixteen target nodes. Thus the mapping node must be split and
the source and target nodes reassigned to the appropriate mapping node. The result of the first
mapping node split is shown in Figure 41. Continuing with this process, the shaded mapping nodes
1,2, and 3 in Figure 41 have satisfied the termination condition and do not need to be split further.
Mapping node 4 must be subdivided further as it is associated with seven source nodes and seven
target nodes. The result of splitting mapping node 4 in Figure 41 is shown in Figure 42. The final
mapping node split (of mapping node 4 in Figure 42) results in the situation depicted in Figure 43,

where each mapping node corresponds to either a single source or a single target node.

Once the mapping quadtree subdivisions are completed (see Figure 43 where each mapping

35

Nd
\e f lines[d]d[e[bJelalf[b]i Jalc[c]g]i [g]h]
{b a
NG
N\ nodes[1]2]3]4]5]6]7]8]9[10111213

source quadtree

nodes [1[2314]5[6]7]

mappi ng quadtree

o b
\ nodes|[1[2[3[4[5[6]7[8]9]10111]121314[1516
)
S
r
lp } lines[mo[n]q[nfulmlip]s]p[s[r[sulr]r]t]
t

target quadtree

Figure 42: Mapping quadtree nodes at the completion of the second subdivision
phase.

node corresponds to either a single source or target node), there exists a one-to-one, many-to-one,
or one-to-many association between source and target nodes through the mapping nodes. The
source and target quadtree nodes are then merged as necessary in order to establish a one-to-one
relationship between the nodes in the two input maps. Merging four sibling nodes is accomplished
by adjusting the Morton code! of the first node (to correspond to the Morton code of their parent),
and deleting the three other siblings via a sequence of scans and a permutation operation. Similarly,
the corresponding lines in the four segment groups are merged by resetting the segment flags to
zero for the first lines in the second, third, and fourth segment groups. Once the segment flags
are properly reset, the lines in the four sibling nodes are then sorted, and then any duplicate lines
are deleted. For instance, if there are four source nodes associated with a single target node (refer
to the first mapping node in Figure 43), then the four source nodes (which share the same parent

node in the quadtree decomposition) are merged together (with duplicate line segments removed).

1A Morton code (or z order) is a mapping from two dimensions (or higher) to one which preserves the spatial
locality of the multi-dimensional space in the one-dimensional space. The result of such a mapping is also termed
a space-filling curve as the curve determined by the Morton code will pass through each point in the image (see
[Oren86, Same90a] for further details).

36

N
- f lines[d[d]e[b]elalf[b]i [alc]c]g]i [g]h]
kb a
NP
e nodes[1]2]3]4[5]6]7[8]9]10111213
h

source quadtree

nodes[1][2]3[4]5[6]7[8]9]10

mappi ng quadtree

{
(o]
\ nodes[1]2]3]4[5]6[7[8[9]1011121314]1516|
)
s
r
jp T lines[mo[n[g[nlulm[p[s]pls]r]s]ulr]r]t]
t

target quadtree

Figure 43: Mapping quadtree nodes at the completion of the subdivision phase
which creates one-to-one, many-to-one, or one-to-many mappings between the
source and target quadtrees.

This results in a one-to-one correspondence between these source and target nodes (see Figure 44).
At the completion of the source and target node merging, the mapping quadtree may be discarded.
The mapping quadtree can be conceptualized as the lowest common denominator (node-wise) of

the source and target quadtrees.

It is important to note that the mapping quadtree is not a uniform grid. A naive algorithm
might employ a uniform grid in order to establish a one-to-one mapping between the source and
target quadtree nodes. The problem with this approach is that the size of the grid cells depends
on the size of the largest possible quadtree node (i.e., the one whose corresponding block is the
largest). Thus, if one of the two maps contained a significant amount of empty space, then the
resulting large quadtree nodes would dictate a uniform grid composed of large cells. Thus, there
might be many source quadtree nodes associated with a similarly large collection of target quadtree
nodes prior to node merging. In order to avoid this behavior, we favor using a mapping quadtree

which adapts to the decompositions of the source and target quadtrees.

The final mapping resulting from the use of a uniform grid rather than a quadtree is shown in

37

A ff lines[bld[e[alf[b]i[alc]c]g]ig]h]
a

] nodes[1]2[3[4[5]6][7]8][9]10]
h

source quadtree

nodes[1]2[3]4][5]6][7][8][9]10]

mappi ng quadtree

nodes[1]2[3[4]5]6][7][8]9]10|

»
}c:

r

lines[moln[qlulmp[s]sr]s]ulr]r]t]
o T

target quadtree

Figure 44: Quadtree nodes highlighting the one-to-one source to target node cor-
respondence after node merging.

Figure 45. The size of the grid cells is dependent upon the largest-sized nodes in the source and
target quadtrees (i.e., nodes 5 and 6 in the source quadtree, and node 1 in the target quadtree).

Note that we are left with a many-to-many mapping in grid cell 4 prior to the node merging phase

The actual process of determining the line segment intersections begins with each source node
broadcasting the endpoints of all associated line segments (i.e., all the line segments that are found
in the quadtree node) to the set of line segments in the associated target quadtree node. Figure 46
highlights the source to target line communication for the example dataset. In the figure, the
shaded nodes and lines represent inactive processors for which no action is necessary as there are
either no source lines or target lines associated with the nodes. This is accomplished by the first
line processor associated with each active source node (where an active line or node is defined as one
that is participating in the current operation) passing its endpoints to the first line processor in the
corresponding target node. In Figure 46, the first line processors are shown with arrows emanating
from them directed at the corresponding source nodes. The source line endpoint coordinates are

then shared among all line processors in the associated target node via a sequence of scan operations.

Fach active target line processor then simultaneously determines whether or not the line that

38

\d
\e f lines[d][d]e[blelalf[b]i]alc[c][g]i]g]h]
kb a
“Z
e nodes|[1]2[3[4]5][6]7[8[9][10/11]12[13]

source quadtree

cells

mappi ng uniformgrid

q(
[0}
n> nodes[1]2[3]4[5]6]7 8] 9[10[L112[13[14[15]1¢]

=
r
IP \I lines[molnlg[nfu[mpls]pls]ris]ulr]r]t]
t

target quadtree

Figure 45: Alternative source to target quadtree mapping when employing a uniform
grid rather than a quadtree.

it represents intersects the broadcasted source line segment. If the target line intersects the broad-
casted source line, then the target line records the identifier of the intersecting line. Continuing this
process, the collection of second line processors associated with each active source node passes their
coordinates to the first processor in each active associated target node. Again, the line coordinates
are then communicated among all line processors in the target node via a sequence of scan opera-
tions, and each target line processor determines in parallel whether or not it intersects the source
line. Once all active source line processors have transmitted their coordinates to the associated
target line processors, the intersection operation is complete and all target lines intersecting any
of the source lines contain a list of the identifiers of the intersecting source lines. Figure 47 shows
the result of the sequence of source line broadcasts. Intersecting source line identifiers are listed
beneath the appropriate target line.

Given an s X s image, n line segments, and an associated quadtree with a bucket capacity b and
height log s, the data-parallel bucket PMR quadtree map intersection operation takes O(n) time in
the worst case. This degenerate case would arise if the final mapping quadtree contained a single

node. In the average case where the expected tree height is O(logn), if we assume that there are

39

d

f/ lines|b|d|elalf [bli|alc|[c|g]i[g]|h]
a

] nodes|1\2\3\4\5\6\7\8\9\1q
h

sour ce quadtree

0 a YYYY Y Y
A nodes|1]2/3[4]5]6]7[8]9]1(]
m u
S/Kr Y

p

lines{mlo[n|qglulmlp|s|s|r]s]ulr][r][t]
t\I > - -

target quadtree

Figure 46: Source to target quadtree line endpoint communication channels for
determining intersection. Shaded nodes and lines are not the recipient of any
communications.

at most m source nodes that corresponded to a single target node, then the complexity of the map
intersection operation is O(logn + mb). This is obtained by observing that establishing the source
to target node mapping requires O(log n) operations (i.e., a fixed number of scans and reshuffles at
each level of the quadtree), and that the actual intersection determination phase of the algorithm

requires O(mb) scans.

4.1.3 Spatial Range Query

The data-parallel bucket PMR quadtree spatial range query algorithm proceeds in a fashion sim-
ilar to the intersection algorithm where the quadtree decomposition is employed to maximize the
number of parallel operations. In the following description, again assume that there are two input
data-parallel bucket PMR quadtrees of the same size. We will term the quadtree that contains the
line segments to be expanded the source quadtree (also referred to as the expansion set), and the
quadtree containing the line segments from which to test for intersection with the expansion set

the target quadtree.

The algorithm begins by establishing a mapping between source and target nodes in an identical
manner to that employed at the beginning of the intersection algorithm. Once the one-to-one

40

d

o f lines|b|d|elalf [bli|alc|[c|g]i[g]|h]
i
pNC
\]9 nodes [1[2]3]4]5[6]7]8[9 10
h

sour ce quadtree

q

nodes|1]2/3[4]5]6][7[8]9]1(]

n
u
S

r

lines|mo[n|glulm[p|s|s[r[s]ulr][r]t]
p t\I i nt f i c
l'ist

target quadtree

Figure 47: Result of the source line broadcast operation with intersecting source
line identifiers shown beneath the appropriate target line.

source to target node mapping is established (refer to Figure 48 for an example source to target
node mapping and an example expansion region which is denoted by the gray region superimposed
on the source quadtree), the process of determining all target lines that intersect the region defined

by the source line expansion set and the expansion radius proceeds in an iterative fashion.

The spatial range query algorithm operates on a single size set of nodes at a time (i.e., all
nodes of size 7 x r where r < s), iterating upward from the smallest sized nodes to the root node
in the quadtree representation. Each node in this set of smallest-sized nodes (shown unshaded
in Figure 49) broadcasts in parallel the coordinate values of the endpoints of all associated line
segments (i.e., all the line segments that are found in the quadtree node) to the set of line segments
in the associated target quadtree node. This is accomplished in a similar fashion as was done
with the intersection algorithm, with the first line processor associated with each active source
node passing coordinate values of its endpoints to the first line processor in the corresponding
target node. These coordinate values are then shared among all line processors in the associated
target node via a sequence of scan operations. Each active target line processor then simultaneously
calculates the Fuclidean distance between itself and the communicated source line. If the separation
distance is less than the radius of expansion, then the target line records the identifier of the source
line as lying within the space defined by the source expansion set.

41

Aég> lines[b[d[elalf[b]i [alc][c]g]i[g][h]
N~
};;2 nodes [1[2]3]4]5[6]7]8[9 10

source quadtree

nodes|1]2/3[4]5]6]7[8]9]1(]

n
u
s A

r

p

lines[mo[n[q[u[m[p[s[s[r[s[ulr[r[t]
)

target quadtree

Figure 48: One-to-one source to target node mapping and region formed by the
expansion set and expansion radius.

Continuing this process, the second line processor associated with each active source node
passes the coordinate values of its endpoints to the first processor in each active associated target
node. Again, the coordinate values of the line’s endpoints are then communicated among all line
processors in the target node via a sequence of scan operations, and each target line processor
calculates the distance between itself and the source line. Once all active source line processors
have transmitted the coordinate values of their endpoints to the associated target line processors,
the communication stage for the currently active quadtree node size is complete. In our example,
only line segment s is found to intersect the expanded region in the first iteration, intersecting line

C.

Before the source node iteration continues and nodes of twice the current active node size
are made active, each of the currently active source and target sibling nodes is merged. As an
optimization to lessen the number of source line segment communications, all source line segments
in the currently active source nodes whose distance from the border of their corresponding block
is greater than the expansion radius are deleted. If a source line lies at distance less than the
expansion radius from the border of the source node’s corresponding block, then the source line
must be retained for later rebroadcast. This is because a source line’s region of expansion (the
area within the expansion radius of the line) may intersect target lines that are not associated

42

Aé2> lines[bld[elalf[b]i [alc]c]g]i [g]h]
NV

\\C nodes|1]2]3[4]5]6/7[8]9]1q

0 ‘ LA |
nodes|1[2[3[4[5[6[7[8]9]10

(2]
e

lines[moln[qlulm[p[s|s|r[s]ulr]r][t]
p t\I -
i nt c
target quadtree l'ist

Figure 49: Active source and target nodes of minimal size (with other larger inactive
nodes shaded) during the first iteration of line communications. The expansion
region is superimposed in darker gray on the source quadtree.

A B

Figure 50: Example where one source line a may be deleted, and the second line
b may not be deleted during the source node merge phase. For the given radius
of expansion r, line b's expansion region might intersect a target line c in another
currently unassociated node B.

with the block corresponding to the source line’s node (i.e., a target line may lie very close to the
border in an adjoining node). For example, consider the situation depicted in Figure 50 of two line
segments a and b in a source node corresponding to block A. Given the example situation (with
the expansion radius r), a may be safely deleted as its expansion region can not possibly intersect
any other blocks outside of A, while b may not be deleted as its expansion region intersects other
blocks (i.e.,block B). Note that there is no need to delete any target lines as all the target lines are

checked for intersection with a source line in parallel. Thus removal of a target line does not affect

43

performance. Of course, if there are more target lines than processors, then this may be a useful
optimization.

The result of the node merging and line deletion after processing the smallest-sized nodes is
depicted for our example dataset in Figure 51. Note that no source lines were deleted as each of
their expansion regions intersected the border of the blocks corresponding to their nodes in the

initial quadtree.

f lines[b[d[ela]f |b]i |alc|gli |g|n]

gg/ nodes|1[2]3]4|5/6]7]

i

source quadtree

| AN |
nodes|1/2[3]4]5[6]7]|

% q
n
u
= | Vines [WenlanMEE S F It
———
o] t\I i nt c
list g

target quadtree i

Figure 51: Active source and target nodes of minimal size (with other larger in-
active nodes and lines shaded) after the first iteration of line communication and
node merging. Note that the dashed target line s indicates that it was marked as
intersecting the expansion region during the iteration that was just completed. The
expansion region is superimposed in darker gray on the source quadtree.

After all currently active source and target nodes have been merged, we continue the above
process, making all nodes of twice the size as the currently active nodes active. Basically, we are
climbing one level of the quadtree as we move from the deepest node toward the root node. The
result of the second iteration is shown in Figure 52 with no new intersecting target tree lines being
detected. Once the level of the root of the quadtrees has been processed, the spatial range query
operation is complete, with all lines in the target quadtree that intersect the source expansion set
having a list of identifiers of the source lines that lay within the radius of expansion. Figure 53

depicts the situation immediately prior to the final round of source to target line communications.

44

[Kf lines[b[d[elalfb[i Jalclg[h]i]
A\
- Y

nodes[1]2[3]4

source quadtree

Yyvyvy
0 q nodesL} 2134
n
> Y
| 1ines[molnTaTulpls [[sTrTu]
) - - - - —--- -
p t 1 nt | Cc
list g

target quadtree

Figure 52: Active source and target nodes after the second iteration of line commu-
nication and node merging. The expansion region is superimposed in darker gray
on the source quadtree.

Notice that during the algorithm, a line in the target quadtree could be marked as intersecting
the query region several times. However, the reporting of the intersection only happens once at the
conclusion of the algorithm. In order to avoid this duplication, once all processing of the spatial
range query is completed, the set of intersecting target lines is sorted according to identifier. This
results in all pieces of a line in the original target map occupying a contiguous space in the linear
ordering of processors. An upward inclusive segmented maximum scan, and a downward inclusive
segmented copy scan operation can be used to resolve any inconsistencies, resulting in all target
lines being properly marked. Duplicate target lines may then be safely deleted (as each instance of
a line is properly marked) and the result of the join may then be reported. This is important as it

avoids the need to eliminate duplicate answers [Aref92].

Given an s X s image, n line segments, and an associated quadtree with a bucket capacity b and
height O(logs), the data-parallel bucket PMR quadtree map spatial range query operation takes
O(nlog s) time in the worst case. This degenerate behavior would occur if at each of the O(logs)
stages of the spatial range query, none of the source lines were removed from consideration. This is
possible if the radius of expansion is equal to the length of the diagonal across the space spanned

by the quadtree.

45

In the average case, assume that each of the n line segments is broadcast a small number of
times (i.e., O(n)) over the entire spatial range query operation. Each of the O(logs) stages will
require O(logn) time to sort and merge the lines prior to broadcast and marking. Combining the
time required to broadcast the line segments with the sorting and merging costs, the data-parallel

bucket PMR spatial range query will take O(n + log nlog s) time in the average case.

nodes

lines{mnlo[p|q|r[s]|t]u]

i nt c
list g

target quadtree

Figure 53: Active source and target nodes immediately prior to the final iteration
of communication. Note that target lines n and s have been marked as intersecting
the expansion region on previous iterations. Additionally, source lines d, e, £, and h
were deleted during a prior source node merge phase as their expansion regions did
not lie outside of the blocks corresponding to their source nodes. The expansion
region is superimposed in darker gray on the source quadtree.

4.2 R-tree Spatial Queries
4.2.1 Polygonization

The polygonization process for other data-parallel spatial structures such as the R-tree is similar to
that described for the bucket PMR quadtree in Section 4.1.1. Given a data-parallel R-tree, we start
by constructing a partial winged-edge representation. Once the partial winged-edge representation
is completed, each line processor locally assigns an initial polygon identifier for the bordering

polygons on the left and right sides (see Section 4.1.1 for details).

46

N [1]

Ny
No [4]5]6]7]

lines|f|hja|b|d|g|c|e
Lio(f|flalald|d|c|c
LIL|L|LJL|L|L|L
Rp|f|f|ala|d|d|c|c
R RIRIR RIRIR R

Figure 54: Initial polygon assignments.

The initial polygon assignment is shown in Figure 54 for our example dataset where the left and
right polygon identifiers are contained in processor sets L 1p and R 1p respectively. Next, beginning
with the nodes at the leaf level of the R-tree, we merge all sibling lines together into the parent
nodes. All lines that intersect any of the overlapping regions formed by the bounding boxes of
the nodes that have been merged are marked for rebroadcasting among the lines in the merged
nodes. This is necessary in order to propagate the equivalence between the different identifiers
in the merged nodes which represent the same polygon. For example, consider Figure 55a where
we have two R-tree nodes A and B that are to be merged. In this example, node A contains lines
(a,c,g,h), and node B contains lines (b,d,e,f). In the figure, lines (a,b,d) must be rebroadcast
to the merged set of lines (i.e., lines (a,b,c,d,e,f,g,h)) as they intersect the overlapping region
formed by the bounding boxes of nodes A and B. The purpose of this operation is to update the
winged-edge representations of any necessary lines (i.e., lines a and b in Figure 55a). When the
winged-edge representation is updated, we note any polygon identifiers that must also be updated.
In the example in Figure 55, line b has both its left and right polygon identifiers updated; by in
Figure 55a becomes ap, in Figure 55b, and similarly, by becomes ag. Line a does not have either
of its polygon identifiers updated because its left and right polygon identifiers are lexicographically

minimal.

For all such polygon identifier updates (e.g., by, to ap, and by to ag in Figure 55), we broadcast
the updates to all other lines in the merged node via scan operations. Locally, if the transmitted
polygon update matches either the left or right polygon identifiers of the local line, the local polygon

identifier is updated to reflect the polygon identifiers that have been broadcast. For example, in

47

(b)

Figure 55: (a) Example of two nodes merging and which lines must be rebroadcast
to all the merged lines; and (b), the result of the merge operation.

Figure 55a, the right polygon identifier of line e is updated to reflect the fact that polygon identifier
bgr becomes ag. Similarly, the left side polygon identifiers of lines d and f are updated to reflect
the fact that polygon identifier by, becomes aj,. The resulting polygon identifiers and merged nodes
are depicted in Figure 55b. This process continues up the entire R-tree until all lines are contained
in a single node and all necessary broadcasts have been completed. The first round results in the
merging of leaf nodes 4, 5, 6, and 7 in Figure 54 into leaf nodes 2 and 3 in Figure 56, which depicts
the result of the first round of leaf node merging. The final configuration of our original example
dataset is depicted in Figure 57. The identifiers assigned to the three polygons are shown in the

figure by enclosing the identifiers within circles.

N, [1]

Ny

lines|a|b|f|h|c|d|e|g
Lipfalalalalc|d|c|d
LILIRIR/L|L|L|L
Rplalalalalc|d|c|cC
R RL L RRRL

Figure 56: Polygonization after first round of leaf node merging.

The R-tree’s spatial sort greatly limits the amount of inter-segment communication necessary
as compared with a non-spatially sorted dataset where all lines would have to communicate their
endpoints and polygon identifiers to all others. However, the non-disjoint decomposition of the
R-tree causes increased computational complexities in the local broadcasting phase of the sibling

48

lines|ajbjc|d|e|f|g|h
Lipjalalc|alc|alala
LILILIRILIRIRIR
Rp|alalalalalalc|a
RRILILILIL|LJL

Figure 57: Completion of the polygonization operation with the final polygon labels
encircled.

merge operation in comparison to an analogous disjoint decomposition spatial data structure such as
the PMR quadtree [Nels86, Nels87] or the R+-tree [Falo87]. This is because it is often the case that
many lines fall in the intersecting areas when the R-tree nodes are merged. With representations
based on a disjoint decomposition of space, only those lines that intersect the splitting lines (i.e.,

cell boundaries) would need to be locally broadcast during the sibling merge operation.

Now, let us estimate the number of broadcasts necessary during the polygon identification
process due to the lines intersecting overlapping regions. In the average case, assume that each
R-tree node has a fanout of M. Let ¢ (where 0 < ¢ < 1) be the fraction of the lines in each node
that intersect one or more of the overlapping regions formed by the bounding boxes of the nodes
that have been merged. Also, let h denote the height of the R-tree (without loss of generality,
h = logy, n, where n is the number of lines in the tree). Using the fact that M" = n, it can be
shown that the number of local broadcasts B that must be made during the merging phases due

to the intersection of lines with the overlapping regions is

h
B=> cM' <n (MM 1) :

1=2

This is in the worst case O(n). However, the average-case complexity is expected to be lower. In
particular, the average-case complexity of the line broadcasting step is dependent upon the ability
of the node splitting algorithm to partition the buckets as much as possible (therefore lowering the
fraction ¢ of lines intersecting the overlapping regions). A more detailed analysis is a subject for

further research.

49

4.2.2 Map Intersection

Given data-parallel source and target R-trees, a correspondence between the source and target R-
tree nodes must be established which will be used to determine patterns of parallel communication.
Basically, for each source R-tree leaf node s, we must determine the intersecting target leaf nodes.
Any source line in s might intersect another target line contained in a target leaf node ¢ that
intersects s. For example, in Figure 58, source line segment ¢ (contained in source node B), might
intersect target line s (contained in target node L) as nodes B and L intersect. If a source and target
leaf node do not intersect, then it is not possible for the associated contained lines to intersect. In
Figure 58, source line ¢ cannot intersect target line r (contained in target node N) as nodes B and

N do not intersect.

e % lines[dle[b[c]i[g[h]alf]

g | eaf

? nodes
Le |C

source R-tree

o M/ | f1234
ea
n nodes
m u
K N > r
lines|molp[s|n|qlulr]t]
p|_ \ t

target Rtree

Figure 58: Example data-parallel R-trees for the same set of source and target lines
as in Figure 40. Leaf node bounding rectangles are shown for both source (4, B, C,
and D) and target (K, L, M, and N) data-parallel R-trees. Internal R-tree nodes and
bounding boxes are omitted for clarity.

For each source leaf node, the process of determining which target leaf nodes it intersects is
determined in a top-down manner (in the sequential domain, this problem has been studied for the
R*-tree [Brin93]). We first check if the bounding rectangles of the two root nodes do not intersect. In
this case, no leaf nodes can intersect. Otherwise, beginning at the root node level of the source and

target R-trees, the children of the source root node are intersected with the children of the target

50

root node. The resulting intersections are then communicated to the child of these child nodes (i.e.,
the grandchildren of the root nodes) in each map. The grandchildren in the target R-tree then
selectively communicate their bounding rectangles to the appropriate grandchildren in the source
map (i.e., those source R-tree grandchildren whose parent was previously found to intersect the

parent of the target R-tree grandchildren). This process continues on down the tree until the leaf

nodes in each R-tree have determined all intersecting leaf nodes in the other data-parallel R-tree.

S,[0] T,[A]

So[4]5]6[7]8]9] ToE[F[GIH]I [J]

Figure 59: Example of first level node intersection determination in the top-down
algorithm where three source nodes sequentially broadcast to the corresponding
target nodes.

For example, consider Figure 59 where three source nodes in processor group S 1 must sequen-
tially determine which target nodes in processor group T 1 they intersect. Because nodes 1, 2, and
3 are attempting to communicate with the same target node segment, the communications must
be done sequentially (i.e., node 1 to node B, followed by node 2 to node B, etc.). In Figure 59, the
dashed arrow beneath processor group T 1 signifies that a scan operation will be used to share the
communicated information from the nodes in processor group S 1 (i.e., to nodes C and D). Thus, it

is not necessary for nodes 1, 2, and 3 to independently communicate with target nodes C and D.

Once the example first level node intersection determination is completed in Figure 59, each
source node in processor set S 41 will have established a list of intersecting target nodes in processor
set T 1. This intersection information is then passed along to their children (i.e., the source nodes
in processor set S). In this example, we assume that source node 1 intersects target nodes B and
C, source node 2 also intersects target nodes B and C, and source node 3 intersects target nodes C
and D. The iterative process then continues, with the source nodes in processor set S g determining
which target nodes in processor set T g they intersect. In Figure 60, source nodes 4, 6, and 8 may
communicate in parallel with target nodes E, G, and I, respectively, in processor set T g (who in
turn share the communicated information with target nodes F, H, and J, respectively, via segmented

scans). In the next iteration (which is not shown), source nodes 5, 7, and 9 will also communicate

51

S, [0] T,[A]

S:[1]2]3] T:[B[C[D]

So|4|5
i ntersect (B)
list|[C] @ D

lvs 2]
)| o

Figure 60: Example of second level node intersection determination in the top-down
algorithm where three source nodes broadcast in parallel to the corresponding target
nodes.

in parallel with target nodes E, G, and I, respectively.

Alternatively, we could employ a more straightforward though less elegant bottom-up approach
to the problem of determining all source and target leaf node intersections. Each target node in
turn transmits its bounding rectangle coordinates to the first source leaf node in the arbitrary linear
ordering (i.e., source leaf node A in Figure 58). These coordinates will then be shared among all
source leaf nodes via a series of scan operations. Once each source leaf node knows the coordinates
of the communicated target leaf node, in parallel, each source leaf node then determines whether
or not it intersects the target node. If there is an intersection, then the index of the target node
is appended to the source leaf node’s list of target node intersections. This situation is depicted
in Figure 58, where the communication path between first target leaf node (node K) and the first
source leaf node (node 4) is shown. The dashed arrow beneath the source leaf nodes represents the
scan operation that is employed to share the target node bounding rectangle coordinates among all
of the source leaf nodes. This is more of a brute force approach where the spatial decomposition

induced by the data-parallel R-tree is only used at the leaf level.

Figure 61 represents the situation found after all of the target leaf nodes have communicated
their bounding rectangle coordinates to the source leaf nodes, and each source leaf node has com-
piled its intersection list. The intersection lists for each source leaf node are depicted as the col-
lection of boxes beneath each source node identifier (e.g., source node B’s intersection list contains

target node identifiers K and L).

Once all source/target node intersections have been determined, the source leaf nodes will then

transmit the endpoint coordinates of all contained line segments to all intersecting target leaf node

52

d
e ‘ lines[dle[blc]i[g][hlalf]
A b a
\ ca D
B | 3 | eaf
> nodes|A|B|C|D
h , KIKILTL
Ldlc i ntersect L M
source R-tree list N
(0]
| eaf
nodes
K r

lines|molp[s|n|qlulr[t]

target R-tree

Figure 61: Source and target R-trees after all source and target leaf node intersec-
tions have been determined and recorded in the appropriate source nodes.

line segments. Each target line then determines whether or not it intersects any source line segment.

Unlike the data-parallel bucket PMR quadtree source to target node communication process,
the non-disjoint irregular partitioning of space induced by the data-parallel R-tree decomposition
creates additional communication difficulties. Instead of all active source nodes communicating
in parallel with the associated target node in the one-to-one mapping provided by the mapping
quadtree in the data-parallel bucket PMR quadtree, the data-parallel R-tree source to target leaf
node communications are scheduled and made in an iterative process. This is due to the situation
arising when multiple source nodes intersect a single target node (e.g., in Figure 61, source nodes

B, C, and D each intersect target node L).

The scheduling problem is analogous to the Chromatic Index problem [Gare79] where the set of
source and target leaf nodes may be thought of as a set of vertices, and the intersections between
the nodes as edges between the vertices. These edges and vertices form a bipartite graph, and
it has been shown that there exists a polynomial time algorithm for scheduling the necessary

communications [Gabo76].

In solving the communication scheduling problem, a non-optimal solution was chosen using

a greedy approach. At each iteration of source to target communications, the first source node

53

lines|d[e[blcli[g|h|alf|

wid

nodes |A

e

B

i nt t K
i ntersec 7T
list \9

N
Y V/

| eaf
nodes |_K L{MN

r Y

lines|m[o|p]

t - -
c
i

(72
—h|?
o
|
= |
= |

i nt
target Rtree l'ist

Figure 62: Source and target data-parallel R-trees with first round of communi-
cation scheduling highlighted using circles. Inactive lines and nodes are shaded.
Target lines are marked with the names of the intersecting source lines.

requiring communication selects the first target node in its intersection list (e.g., in Figure 62,
source node A selects target node K). The next source node requiring communication then selects
the first target node that has not been previously selected by the first source node (e.g., in Figure 62,
source node B selects target node L). Continuing in this fashion, all following source nodes requiring
communication select the first target node in their intersection lists that has not been previously

selected by another source node during the current communication iteration.

Once all possible communications have been determined for the current iteration, each source
leaf node that has a scheduled communication is made active (in Figure 62, this corresponds to
source nodes A, B, and D). Using a technique similar to that employed in the data-parallel bucket
PMR quadtree intersection algorithm, each active source node broadcasts the endpoints of all
associated line segments (i.e., all the line segments that are found in the R-tree node) to the set of
line segments in the associated target R-tree node. This is accomplished by the first line processor
associated with each active source node passing its endpoints to the first line processor in the
corresponding target R-tree node. In Figure 62, the first line processors (i.e., source lines d, b, and
a) are shown with arrows emanating from them directed at the corresponding source nodes. Once

the source line endpoint coordinate values have been communicated to the first target line processor

54

in the associated target R-tree node, they are then shared among all target line processors in the

same target node via a sequence of scan operations.

Each active target line processor then simultaneously determines whether or not it intersects
the broadcasted source R-tree line segment. If the target line intersects the broadcasted source
line, then the source line identifier is included in a list of intersecting lines that is associated with
the target line. Continuing this process, the collection of second line processors associated with
each active source R-tree node (e.g., in Figure 62, source lines e, c, and f) passes its endpoints
to the first processor in each active associated target node. Again, the line endpoints are then
communicated among all line processors in the target node via a sequence of scan operations, and
each target line processor in parallel determines whether or not it intersects the source line. If a
target line intersects the broadcast source line, then the source line identifier is included in the list
of intersecting lines that is associated with the target line. Once all active source line processors
have transmitted their coordinates to the associated target line processors, the current iteration
of communications is complete, and all active source nodes delete the target node that was the
recipient of their communications from their intersection lists. The target nodes to be deleted from

the intersection lists at this point are the circled identifiers in Figure 62.

Continuing with this process, the second round of source node to target node communications
must be scheduled. Following an identical selection process as before, the first source node requiring
a communication makes its selection. Each following node (in our arbitrary linear ordering of
source leaf nodes) requiring a communication first determines whether or not any of its remaining
intersecting target nodes has not been selected by a preceding source node. If this is the case, the
selection is made, and the following source nodes requiring communication make their selections
(provided an unselected target node in their intersection lists is available). In Figure 63, the selected

target nodes are shown in the intersection lists enclosed in circles.

Once all source nodes have communicated their enclosing source lines with all of the target
nodes in their intersection lists, and all intersecting target lines have been marked if they intersect
a broadcasted source line, the intersection operation is complete. For our example data set, the
third and final round of communications is shown in Figure 64, with only source node D broadcasting
source lines a and £ to the target lines p and s contained in target node L.

Given n line segments and an associated R-tree with a node capacity M and height logn (recall
from the discussion of the R-tree building process that an R-tree containing n lines is of worst-
case height O(logn)), the data-parallel R-tree map intersection operation takes O(n + M logn)

55

lines|d[e[blcli|[g|h|alf|

T

nodes|A|B|C
KIL)L
i ntersect KJC)
list N
° | eaf
nodes
K r Y
lines|mo[p|s|n|q|ulr]t]|
t - - -
i nt c f
target Rtree l'ist I

Figure 63: Source and target data-parallel R-trees with second round of communica-
tion scheduling highlighted using circles. Shading indicates nodes not participating
in the current round of communication. Note that source node intersection lists
have been modified following the first round communication depicted in Figure 62.
Target lines are marked with the names of the intersecting source lines.

time. This is obtained by observing that establishing the source to target node mapping requires
O(M log n) operations (i.e., O(M) scans at each level of the data-parallel R-tree). The target line
marking phase of the algorithm requires at most O(n) scans. This is the case when each source
leaf node intersects each target leaf node, causing each of the O(n/M) source leaf nodes which
contains M lines to communicate with each of the O(n/M) target leaf nodes. Recall that we have

a maximum of M lines in each source leaf node, and that there is a total of n lines.

4.2.3 Spatial Range Query

The algorithm for performing the spatial range query for data-parallel R-trees is very similar to
that employed when computing the intersection as described in Section 4.2.2. There are two small
modifications that are necessary in adapting the data-parallel R-tree intersection algorithm to a

spatial range query algorithm.

The first modification involves the process of determining the target nodes with which each

source node must communicate. In the intersection algorithm, this required finding all source/target

56

lines|d[e[blcli[g|h|alf|

| eaf
nodes [A|B|C|D
L
i nt ersect =
list
. | eaf
nodes
K r
lines|molp|s|n|qlulr]|t]|
t -
i nt c f
target Rtree l'ist i

Figure 64: Source and target data-parallel R-trees with final round of communica-
tion scheduling highlighted by use of circles. Inactive lines and nodes are shaded.
Note that only source node D needs to communicate with a target node. Target
lines are marked with the names of the intersecting source lines.

node intersections. If the bounding rectangles for each source node are extended by the radius of
expansion in each dimension prior to calculating all node intersections, we ensure that no necessary

source line to target line communications are overlooked.

The second and final modification to the data-parallel R-tree intersection algorithm concerns
the source line to target line intersection calculation. Rather than determining whether or not two
lines intersect, we calculate the distance between the source and target lines. If the distance is
less that the radius of expansion, the target line will clearly intersect the expansion region of the
associated source line and should thus be marked. Once these two small modifications are made to

the data-parallel R-tree intersection algorithm, it also functions as a spatial range query algorithm.

The data-parallel R-tree map spatial range query operation also takes O(n + M logn) time,
with the complexity analysis being identical to that of the data-parallel R-tree map intersection

operation at the end of Section 4.2.2.

57

Figure 65: Example where the enlargement of the source data-parallel R-tree bound-
ing rectangle A by the expansion radius r (creating bounding rectangle A") prior to
node intersection detection is necessary. The dashed bounding rectangle B repre-
sents a target data-parallel R-tree node that contains target line c.

4.3 RT-tree Spatial Queries

Give that the R*-tree makes use of an irregular decomposition like the R-tree, the R*-tree spatial
query algorithms are quite similar to those described in Section 4.2 for the R-tree. The RT-tree’s
disjoint decomposition does however enable line segments to exist in different leaf nodes in an
analogous fashion to the bucket PMR quadtree. This small difference from the R-tree (which does
permit a line segment to lie in more than one leaf node) results in some additional processing in
the R*-tree algorithms as compared with the corresponding R-tree algorithms due to increased

numbers of lines and nodes.

4.3.1 Polygonization

The RT-tree polygonization algorithm is very similar to that for the R-tree as described in Sec-
tion 4.2.1. Because the RT-tree employs a disjoint decomposition, a single line may reside in more
than one leaf node (similar to the bucket PMR quadtree). In order to handle this difference with
respect to the R-tree, the polygonization algorithm must be changed somewhat during the node

merging phase.

Rather than marking all lines that intersect any of the overlapping regions formed by the
bounding boxes of the nodes that are merging (as there are none with a disjoint decomposition),
the update procedure follows the technique described in the bucket PMR quadtree polygonization
algorithm in Section 4.1.1. All the lines in the merged sibling node are first sorted according to

identifier, and all duplicate lines are marked for rebroadcasting among the lines in the merged

58

nodes. This enables the correct updating of duplicate lines in the merged nodes. The duplicate
node rebroadcasting operation is used to update the winged-edge representations of all duplicate
lines and maintain consistency. During the update, we note any polygon identifiers that must also
be updated (i.e., among duplicate lines, if one line has polygon identifiers that are less than the
polygon identifiers of the second line). In addition, all lines whose endpoints fall on a common
node border are marked for the rebroadcast of their endpoint coordinates in order to update the
winged-edge representations and polygon identifiers of any line that may share an endpoint but lie

in another node.

If any line has its polygon identifiers updated during the first round of rebroadcasting, then the
polygon identifier update must be communicated in a second round of broadcasting to all other
lines in the merged node. Locally, if the transmitted polygon update matches either the left or
right polygon identifiers of the local line, then the local polygon identifier is updated to reflect the

polygon identifiers that have been broadcast.

Asis the case with the bucket PMR quadtree and R-tree polygonization algorithms, the merging
and updating process continues up the entire R*-tree until all lines are contained in a single node

and all necessary broadcasts have been made.

4.3.2 Spatial Join

The R*t-tree spatial join algorithms (intersection and spatial range query) are identical to the
ones used with the R-tree in Section 4.2.3, with one small modification at the end of processing.
Because the disjoint decomposition of the RT-tree may cause some lines to be split across multiple
leaf nodes, it may be the case that a line in the source map is only within a given distance of a
portion of a line that has been split in the target map. Thus, a line in the target map may be
marked as within a given distance more than once. This is analogous to the situation encountered
at the end of the PMR quadtree spatial join (see Section 4.1.3). In a similar fashion, target lines
are first sorted by identifier, then an upward inclusive segmented maximum scan, and a downward
inclusive segmented copy scan operation are used to remove any duplicates and false negatively
marked lines. Lines are considered false negatively marked if another instance of the same line is
marked as intersecting, and they are not marked. The removal of the duplicates and false negatives

results in all target lines being properly marked.

59

5 Performance Comparison

The performance of the three spatial structures in the data-parallel environment is compared using
the Bureau of the Census TIGER /Line File map of Prince Georges County, MD (containing approx-
imately 35,000 line segments, shown in Figure 66). Our data-parallel algorithms assume that the
entire data structure resides in main memory of the Thinking Machines CM-5 (32 processors, 1 GB
RAM). Thus measurements of I/O performance are meaningless in this context (the development

of disk-based data-parallel analogs to the described algorithms is a subject for future research).

/ A e

LIy

o9 y--'(¢='1‘< ¢
S

Figure 66: Map of Prince Georges County, MD.

5.1 Data Structure Build Performance

Figure 67 presents the build times for the three data structures for node capacities ranging from
5 to 50. The RT-tree was built with a 49.5% minimal occupancy level (see the discussion below).
From the figure, all three structures exhibit decreasing build times as the node capacities increase.

This behavior is due to the decreased amount of spatial sorting that takes place with the increased

60

2000 T T | T |

1500 _
_1000 _
. R
e +-tree ——

S 500 adiree o
) bucket PMR quadtree -&--
2 250 + _
PO
< 100 _
c -
o o
g 50| o _
g \~+»"‘4‘“\-0—7—*-*“\—#"‘*
-} B
85 o,
BHE.BE-B—*DB-B—BB'E*r}B'B'B’E'B'
10 I | I | |

Node Capacity

Figure 67: Build times for the three data structures for the map of Prince Georges

County, MD (35,000 lines).

node sizes. Building times for the three data structures exhibit analogous behavior in the sequential
environment [Hoel92]. It is also apparent that building the bucket PMR quadtree is approximately
3—4 times faster than the R-tree for similar node capacities. The relative difference in build perfor-
mance is attributable to the use of a regular decomposition in the case of the bucket PMR quadtree
which makes it very easy to split an overflowing node as there is just one choice. In contrast, the
R-tree and the RT-tree make use of irregular decomposition which requires testing a possibly large

numbers of split axis/coordinate pairs in determining a locally optimal node split.

Figure 69 shows the build times for the R*-tree of the Fredericksburg, VA map containing
approximately 1700 line segments (see Figure 68 for a map of Fredericksburg). In addition to
varying the node capacity between 10 and 50, we also varied the minimal occupancy levels between
25% and 50% (as a point of reference, the best performance for an R-tree, termed an R*-tree
[Beck90], has been observed to be 40% and is the one that we use in our experiments). When
splitting a node, a minimal occupancy level of £% ensures that each of the two resulting nodes is at
least £% full. Hence, when the minimal occupancy level is raised, fewer split axis/coordinate pairs
are tested when choosing the best split. This results in increasing the speed of of the build process
as can be seen in Figure 69. As is the case for the Prince Georges map in Figure 67, increasing the

node capacity also results in decreased build times.

It is important to note that although the data of Figure 69 corresponds to a map that is

61

Figure 69: Execution times in seconds for the R*-tree build algorithm for the map

of Fredericksburg, VA (1700 lines).

approximately 5% of the size of that in Figure 67 (i.e., 1700 lines versus 35,000 lines), the R*-
tree takes 198.8 seconds to build while the R-tree (using a node capacity of 50 and a minimal
occupancy level of 40%) for the same map requires 37.8 seconds to build and the bucket PMR
quadtree requires just 13.0 seconds. We found that despite the R-tree and RT-tree being quite
similar in structure, the R*-tree takes approximately two orders of magnitude longer to build per

line segment in the dataset (e.g., see Figure 67). This difference is attributable to a combination

62

Table 1: Data structure build statistics for the R-tree and R+-tree both using an
artificially high 49.5% minimal occupancy level for the Prince Georges map. All
times are in seconds.

node R-tree R+-tree
capacity | time scans | time scans
25 37.2 865 1309.3 28,212
30 35.6 823 1274.6 27,545
35 33.5 739 1268.0 27,305
40 30.4 654 | 1269.2 27,187
45 29.5 614 | 1261.3 27,040
50 28.5 614 | 1246.6 26,691

of the use of the scan model and the fact that the R-tree does not employ a disjoint decomposition
of space (thus preventing the children of a splitting node from themselves splitting), making it
possible to determine the locally optimum node split with a constant number (approximately 10)
of upward and downward scan operations. In contrast, the node splitting process in the RT-tree,
with its disjoint decomposition of space, is an iterative process where the number of iterations is
directly proportional to the number of items in the node that is being split. This testing for splits
means that a large number of clipping operations must be performed as we need to determine which

part (or parts) of the line is associated with the two nodes resulting from the split.

Note that although the bucket PMR quadtree (with its disjoint decomposition) also requires
line clipping, each line is clipped in parallel a maximum of four times the height of the tree. Also
the fact that the bucket PMR quadtree employs a regular decomposition means that when a node

is split, there are effectively only two candidate split axis/coordinate pairs.

It is interesting to observe that the RT-trees that we built for the Prince Georges map used a
minimal occupancy level of 49.5% (resulting in approximately 3000 line clips) and a node capacity
varying between 25 and 50. This took between 1309.3 seconds and 1246.6 seconds as shown in
Table 1. The analogous R-tree (employing the same node capacities and minimal occupancy levels)
took between 37.2 seconds and 28.5 seconds. Note that if we would have used an R*-tree with a
minimal occupancy level of 40% (as in the R-tree), these numbers would have been at least one
order of magnitude higher. Unfortunately, due to hardware and time limitations we were not able

to perform these tests.

63

2000 T T | T |

1500 | i
© 1000 | _
©
(&S]

(]
2 500 | i
0
o 250 JaRosclzNaRafcSal
§ . ’B‘B‘EE,,DB-G-D
2 B-ga
D l'/
g 100 - o Rt-tree -—
Rtree -+-—
bucket PMR quadtree -o--
50 L 1 1 1 1
0 10 20 30 40 50

Node Capacity

Figure 70: Polygonization execution times for the three structures.

5.2 Polygonization Performance

Figure 70 shows the execution times for map polygonization for each of the three spatial data
structures using the Prince Georges maps built in Section 5.1. Due to the performance inefficiencies
of the Rt-tree, a minimal occupancy level of 49.5% was employed, while the R-tree used the
standard 40% level. From the figure it is clear that for polygonization, the bucket PMR quadtree
offers significant performance advantages over both the R-tree and the R*-tree. The difference
is roughly one order of magnitude. It is attributable primarily to the considerable amount of
time that the R-tree and the R*-tree must spend in determining which nodes are intersecting (or
adjoining in the case of the R*-tree) when merging sibling nodes. For the bucket PMR quadtree,
this computation is immediate as a result of regular decomposition. In addition, at each stage of
the polygonization process, the R-tree and R*-tree merge many more nodes/lines together (i.e., a
node occupancy of M implies a fanout of M), while for the bucket PMR quadtree four nodes are
merged together at each stage of the computation. Essentially, the bucket PMR quadtree performs
a larger number (equal to the height of the tree) of smaller node merges (with respect to the number

of nodes being merged) in parallel than the R-tree and the RT-tree.

64

5.3 Spatial Join Performance

The key issue in the spatial join performance of the bucket PMR quadtree vis-a-vis the R-tree
and the R*-tree is the use of regular decomposition. Thus since the data-parallel algorithms for
the R-tree and the Rt-tree are so similar, we only conducted limited tests on the Rt-tree. The
performance of the Rt-tree will be worse than that of the R-tree because of the use of disjoint
decomposition in addition to being irregular. Thus lines are broken into smaller portions resulting
in correspondingly more leaf nodes. This leads to an increase in the size of the intersection lists

between source and target nodes and implies greater execution times.

In the interest of obtaining a better understanding of the R-tree spatial join operation, we
tested both a top-down and bottom-up algorithm, while only a bottom-up algorithm was tested
for the bucket PMR quadtree as this is the most logical approach to implementing the operation.
Similarly, we only tested the top-down algorithm for the Rt-tree. For additional comparison
purposes, a brute-force solution that does not employ any spatial decomposition (i.e., each source
line is broadcast to each target line) was implemented as well. Note that the execution time of this
brute-force approach is independent of the spatial join condition (i.e., the distance within which

the desired lines are found).

For each of the spatial joins, the set of lines corresponding to railroads in the Prince Georges
map (334 line segments) was chosen as the source map, while the set of lines corresponding to the
road network in the Prince Georges map (28,514 line segments in contrast to a total of 35,000 line
segments in the original map which includes all of the linear features rather than just the roads) was
chosen as the target map. In this case, the spatial join query is one that seeks to determine which
roads are within a specified distance of a railroad line. The distance (i.e., radius of expansion)
varied between 0 and 50 where the map was normalized on a scale of 16,384 x 16,384. In addition,
the bucket capacity for the bucket PMR quadtree varied between 8 and 32, while the node capacity
ranged between 10 and 50 for the R-tree and 20 to 50 for the R*-tree.

Figure 71 presents the cpu times for the bucket PMR quadtree spatial join operation as a
function of the radius of expansion and the bucket capacity. We observe that for this map the exe-
cution time is at its minimum for a bucket capacity of roughly 14 to 16. As the radius of expansion
increases toward 50, these bucket capacities continue to exhibit good performance although the

advantage is not as great.

Two basic forces work against each other as the radius of expansion and bucket capacity increase.

65

CPU
seconds

Figure 71: Execution times in seconds for the bucket PMR quadtree spatial join
algorithm.

First, with a larger radius of expansion, fewer source lines are removed from consideration as we
iterate at levels successively closer to that of the root node, thus resulting in more source line
to target line endpoint transmissions. Second, as the bucket capacity increases for a fixed radius
of expansion, we have fewer nodes but of larger capacity. The lessened node count results in a
quadtree of shallower depth (which results in fewer iterations of the algorithm), but each iteration
takes longer as more source line segments need to transmit their endpoint coordinates to the target

lines.

Figure 72 shows the cpu times for the top-down R-tree spatial join as a function of the radius
of expansion and the node capacity. Note that R-trees with smaller node capacities (i.e., 10 or
15) exhibit execution times that are considerably less than those for larger node capacities (i.e.,
45 or 50). The reason for this substantial difference in performance is that smaller node capacities
result in a finer decomposition of space. In particular, each of the smaller source nodes intersects
a smaller number of target nodes. With this finer granularity, there is increased opportunity for

parallel communication when broadcasting the source lines to the appropriate target nodes.

Not surprisingly, the execution times for R-trees with a fixed node capacity tend to increase as
the radius of expansion increases. Similar to what was observed with the bucket PMR quadtree,
the increased radius of expansion results in a greater number of source/target node intersections,

as the region around each source node that has a potential of being within the given distance of a

66

400

CPU
seconds

Figure 72: Execution times in seconds for the top-down R-tree spatial join algo-
rithm.

target node is larger.

Figure 73 shows the percentage of additional execution time required by the node intersection
phase of the bottom-up R-tree spatial join algorithm relative to the node intersection phase of the
top-down R-tree spatial join algorithm. For the given node capacities and radii of expansion, the
bottom-up procedure requires between 40-135% more cpu time to determine all node intersections.
It should be clear that the top-down algorithm (which makes full use of the R-tree decomposition)
offers significant performance advantages as compared with the simpler bottom-up algorithm. The
advantage of the top-down algorithm was pronounced when the node capacities were smallest
(i.e., 10-25) and the corresponding tree height was greatest. Moreover, the top-down algorithm
performed relatively better with a small radius of expansion. Unfortunately, the node intersection
determination phase of the spatial join operation only consumes 2-25% of the entire algorithm

(with the greatest fraction occurring when the node capacity and radius of expansion are small).

Figure 74 presents the cpu times for the RT-tree spatial join operation. We observe that for this
map, as the node capacity increases, the execution time falls (due to fewer leaf nodes); but then rises
considerably for node capacities 45 and 50. This is because the number of leaf nodes in the source
map decreases (thereby becoming larger, thus intersecting more target nodes and creating more
communication conflicts). Note that execution times are larger than those for the corresponding

R-tree (see Figure 72) as the disjoint decomposition results in about twice as many leaf nodes, thus

67

per cent age
addi ti onal
cpu tine

Figure 73: Percentage of additional execution time required by the leaf node inter-
section determination phase of the bottom-up R-tree spatial join algorithm relative
to the top-down algorithm.

Figure 74: Execution time in seconds for the R*-tree spatial join algorithm.

increasing the amount of source to target node communication (as well as increasing the size of the
intersection lists). Finally, as is observed with the bucket PMR quadtree and the R-tree, as the

radius of expansion increases toward 50, the execution time increases.

When comparing the execution times of the bucket PMR quadtree and top-down R-tree and

RT-tree spatial join algorithms, it is apparent that the bucket PMR quadtree offers significant

68

Table 2: Spatial join execution times for the three data structures for node capacity

25.
expansion CPU seconds
radius PMR R-tree R+-tree
0 34.0 204.0 1256.0
5 34.6 205.1 1289.4
10 34.9 205.9 1324.4
20 37.0 219.6 1362.8
30 37.6 227.1 1498.4
40 39.3 235.1 1444 .2
50 43.0 238.4 1575.9

performance advantages. For example, consider Table 2 which tabulates the cpu times for the
Prince Georges map’s for the three data structures (each with a node capacity of 25) for a variety
of source map expansions. For each of the listed expansions, the R-tree takes approximately 5-6
times longer than the corresponding bucket PMR quadtree, and the R¥-tree takes approximately
6 times longer than the corresponding R-tree. This performance advantage is primarily because
the bucket PMR quadtree makes use of a regular disjoint decomposition of space which, in a data
parallel environment, facilitates increased amounts of parallel communication between source and
target maps in comparison to the R-tree and RT-tree. This drawback of the R-tree and RT-tree

cannot be overcome by using classical R-tree improvements such as the R*-tree [Beck90].

Our final comparison was designed to answer the question of whether using a spatial decompo-
sition method is worthwhile. This was achieved by making use of a true brute-force approach where
a spatial decomposition is not employed (i.e., each source line broadcasts to each target line). It
proved superior to both R-tree algorithms in terms of the execution time required. The brute-force
approach for the Prince Georges map required 54.9 cpu seconds, regardless of the radius of expan-
sion. In contrast, the top-down R-tree spatial join algorithm required a minimum of 118.8 seconds
for all combinations of node capacity and radius of expansion, while the bottom-up R-tree required
a minimum of 151.3 seconds. On the other hand, our bucket PMR quadtree spatial join algorithms
proved superior to the brute-force approach in all but one combination of splitting threshold and
radius of expansion (the data parallel bucket PMR quadtree for the Prince Georges map required
between 26.4 and 55.2 seconds).

Of course, we must bear in mind that these execution times are for two-map spatial joins. If

we were to implement single-map versions of the queries (i.e., given a single map containing line

69

segments representing both roads and railways being distinguished by appropriate attribute flags),
the performance of the R-tree and RT-tree would increase considerably, perhaps even to a level
comparable to that displayed by the bucket PMR quadtree. Single map spatial join algorithms are

a topic for future research.

6 Concluding Remarks

Data-parallel algorithms for data structure construction, polygonization, and computing a spatial
join for the bucket PMR quadtree, R-tree, and RT-tree spatial data structures have been presented.
Tests were conducted for each algorithm which revealed better performance for the bucket PMR
quadtree. The main reason for this behavior is the fact that the bucket PMR quadtree yields
a regular disjoint decomposition of space while this is not the case for the R-tree or the R*-
tree. Interestingly, for the spatial join, a brute-force approach that does not employ a spatial
decomposition proved superior to both of our R-tree and R*-tree implementations. This further
emphasizes the penalty incurred by using either non-disjoint or irregular decompositions in the

data-parallel domain.

References

[Ande83] D. P. Anderson. Techniques for reducing pen plotting time. ACM Transactions on
Graphics, 2(3):197-212, July 1983.

[Aref92] W. G. Aref and H. Samet. Uniquely reporting spatial objects: Yet another operation for
comparing spatial data structures. In Proceedings of the Fifth International Symposium

on Spatial Data Handling, pages 178-189, Columbia, SC, August 1992.

[Baum72] B. Baumgart. Winged-edge polyhedron representation. Computer Science Department

STAN-CS-320, Stanford University, Stanford, CA, 1972.

[Beck90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. In H. Garcia-Molina and H. V.
Jagadish, editors, Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, pages 322-331, Atlantic City, NJ, May 1990.

[Bent75] J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-

munications of the ACM, 18(9):509-517, September 1975.
70

[Best92]

[Bhas88]

[Blel8S]

[Blel89a]

[Blel89b)]

[Bora90]

[Brin93]

[ComeT9]

[Cope88|

[Dehn91]

T. Bestul. Parallel Paradigms and Practices for Spatial Data. PhD thesis, University
of Maryland, College Park, MD, April 1992 (also University of Maryland Computer
Science Technical Report CS-TR-2897).

S. K. Bhaskar, A. Rosenfeld, and A. Y. Wu. Parallel processing of regions represented
by linear quadtrees. Computer Vision, Graphics and Image Processing, 42(3):371-380,
June 1988.

G. E. Blelloch and J. J. Little. Parallel solutions to geometric problems on the scan
model of computation. In D. H. Bailey, editor, Proceedings of the 1988 International
Conference on Parallel Processing, volume 3, pages 218-222, St. Charles, 1L, August
1988.

G. E. Blelloch. Scans as primitive parallel operations. [FEFE Transactions on Com-
puters, 38(11):1526-1538, November 1989 (also Proceedings of the 1987 International
Conference on Parallel Processing, St. Charles, IL, pages 355-362, August 1987).

G. E. Blelloch. Scan Primitives and Parallel Vector Models. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, October 1989 (also Laboratory for Computer
Science Technical Report MIT/LCS/TR-463).

H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart,
M. Smith, and P. Valduriez. Prototyping Bubba, a highly parallel database system.
IEEE Transactions on Knowledge and Data Engineering, 2(1):4-24, March 1990.

T. Brinkhoff, H. P. Kriegel, and B. Seeger. FEfficient processing of spatial joins us-
ing R-trees. In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, pages 237-246, Washington, DC, May 1993.

D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121-137, June 1979.

G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data placement in Bubba.
In Proceedings of the 1988 ACM SIGMOD International Conference on Management of
Data, pages 99-108, Chicago, 1L, June 1988.

F. Dehne, A. G. Ferreira, and A. Rau-Chaplin. Efficient parallel construction and

manipulation of quadtrees. In K. So, editor, Proceedings of the 1991 International

71

[DeWi86]

[DeWi90]

[DeWi92]

[Edel85]

[Elma89]

[Falo87]

[Fole90]

[GaboT76]

[GareT9]

[Ghan92]

Conference on Parallel Processing, volume 3, pages 255-262, St. Charles, 1L, August
1991.

D. J. DeWitt, R. Gerber, G. Graefe, M. Heytens, K. Kumar, and M. Muralikrishna.
GAMMA — A high performance dataflow database machine. In W. Chu, G. Gardarin,
S. Onsuga, and Y. Kambayashi, editors, Proceedings of the 12th Internatlional Confer-
ence on Very Large Dala Bases, pages 228-237, Tokyo, Japan, August 1986.

D. J. DeWitt and J. Gray. Parallel database systems: The future of database processing
or a passing fad? SIGMOD Record, 19(4):104-112, December 1990.

D. J. DeWitt and J. Gray. The future of high performance database systems. Commu-
nications of the ACM, 35(6):85-98, June 1992.

S. Edelman and E. Shapiro. Quadtrees in concurrent Prolog. In D. Degroot, editor,
Proceedings of the 1985 International Conference on Parallel Processing (ICPP’85),
pages 544-551, St. Charles, IL, August 1985.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Ben-
jamin/Cummings, Redwood City, CA, 1989.

C. Faloutsos, T. Sellis, and N. Roussopoulos. Analysis of object oriented spatial access
methods. In U. Dayal and I. Traiger, editors, Proceedings of the 1987 ACM SIGMOD
International Conference on Management of Data, pages 426-439, San Francisco, CA,

May 1987.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics Principles
and Practice. Addison—Wesley, Reading, MA, second edition, 1990.

H. N. Gabow. Using Euler partitions to edge color bipartite multigraphs. International

Journal of Computer & Information Sciences, 5:345-355, 1976.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide lo the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

S. Ghandeharizadeh, D. DeWitt, and W. Qureshi. A performance analysis of alterna-
tive multi-attribute declustering strategies. In Proceedings of the 1992 ACM SIGMOD

72

[Giint93]

[Gutt84]

[Hill86]

[Hoel92]

[Hoel93]

[Hoel94a]

[Hoel94b]

[Hung89]

[Ibar93]

[Kame92]

International Conference on Management of Data, pages 29-38, San Diego, CA, June
1992.

O. Giinther. Efficient computation of spatial joins. In Proceedings of the Ninth IFEF

International Conference in Data Fngineering, pages 50-59, Vienna, Austria, April 1993.

A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Dala, pages
47-57, Boston, MA, June 1984.

W. D. Hillis and G. L. Steele Jr. Data parallel algorithms. Communications of the
ACM, 29(12):1170-1183, December 1986.

E. G. Hoel and H. Samet. A qualitative comparison study of data structures for large line
segment databases. In Proceedings of the 1992 ACM SIGMOD International Conference
on Management of Data, pages 205-214, San Diego, CA, June 1992.

E. G. Hoel and H. Samet. Data-parallel R-tree algorithms. In Proceedings of the 1993 In-
ternational Conference on Parallel Processing, pages 111-49-53, St. Charles, IL, August
1993.

E. G. Hoel and H. Samet. Data-parallel spatial join algorithms. In Proceedings of the
1994 International Conference on Parallel Processing, pages 111-227-234, St. Charles,
IL, August 1994.

E. G. Hoel and H. Samet. Performance of data-parallel spatial operations. In Proceedings
of the Twentieth International Conference on Very Large Dala Bases, pages 156-167,
Santiago, Chile, September 1994.

Y. Hung and A. Rosenfeld. Parallel processing of linear quadtrees on a mesh-connected

computer. Journal of Parallel and Distributed Computing, 7:1-27, 1989.

O. H. Ibarra and M. H. Kim. Quadtree building algorithms on an SIMD hypercube.
Journal of Parallel and Distributed Computing, 18(1):71-76, May 1993.

I. Kamel and C. Faloutsos. Parallel R-trees. In Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data (SIGMOD’92), pages 195-204, San
Diego, CA, June 1992.

73

[Kasi88]

[Kim90]

[Krus85]

[Kuck77]

[Leig92]

[Mart86]

[Meig6]

[Nand88]

[Nels86]

[Nels87]

S. Kasif. Optimal parallel algorithms for quadtree problems. Computer Vision, Graphics
and Image Processing, 59(3):281-285, May 1994 (also Proceedings of the Fifth Israeli
Symposium on Artificial Intelligence, Vision, and Pattern Recognition, Tel Aviv, pages

353-363, December 1988).

W. Kim. Research directions in object-oriented database systems. In Proceedings of the
Ninth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages
1-15, Nashville, TN, April 1990.

C. P. Kruskal, L. Randolph, and M. Snir. The power of parallel prefix. IEFE Transac-
tions on Computers, 34(10):965-968, November 1985.

D. Kuck. A survey of parallel machine organization and programming. ACM Computing

Surveys, 9(1):29-59, March 1977.

F. T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kauf-
mann, San Mateo, CA, 1992.

M. Martin, D. M. Chiarulli, and S. S. Iyengar. Parallel processing of quadtrees on a
horizontally reconfigurable architecture computing system. In Proceedings of the 1986
International Conference on Parallel Processing, pages 895-902, St. Charles, IL, August
1986.

G.-G. Mei and W. Liu. Parallel processing for quadtree problems. In Proceedings of the
1986 International Conference on Parallel Processing, pages 452-454, St. Charles, IL,
August 1986.

S. K. Nandy, R. Moona, and S. Rajagopalan. Linear quadtree algorithms on the hyper-
cube. In Proceedings of the 1988 International Conference on Parallel Processing, pages

227-229, St. Charles, IL, August 1988.

R. C. Nelson and H. Samet. A consistent hierarchical representation for vector data.
Computer Graphics, 20(4):197-206, August 1986 (also Proceedings of the SIGGRAPH’86
Conference, Dallas, August 1986).

R. C. Nelson and H. Samet. A population analysis for hierarchical data structures. In
U. Dayal and I. Traiger, editors, Proceedings of the 1987 ACM SIGMOD International
Conference on Management of Dala, pages 270-277, San Francisco, CA, May 1987.

74

[Oren82]

[Oren86]

[Pean90]

[Robi81]

[Rose83]

[Rote91]

[Same85b]

[Same90a]

[Same90b]

[Schw80]

[Webb84]

J. A. Orenstein. Multidimensional tries used for associative searching. Information

Processing Lelters, 14(4):150-157, June 1982.

J. A. Orenstein. Spatial query processing in an object-oriented database system. In
Proceedings of the 1986 ACM SIGMOD International Conference on Management of
Data, pages 326-336, Washington, DC, May 1986.

G. Peano. Sur une courbe qui remplit toute une aire plaine. Mathematische Annalen,

36:157-160, 1890.

J. T. Robinson. The k—d-B-tree: A search structure for large multidimensional dy-
namic indexes. In Proceedings of the 1981 ACM SIGMOD International Conference on
Management of Data, pages 10-18, Ann Arbor, MI, April 1981.

A. Rosenfeld, H. Samet, C. Shaffer, and R. E. Webber. Application of hierarchical data
structures to geographical information systems: Phase II. Computer Science TR-1327,

University of Maryland, College Park, MD, September 1983.

D. Rotem. Spatial join indices. In Proceedings of the Seventh International Conference

on Data Engineering, pages 500-509, Kobe, Japan, April 1991.

H. Samet and R. E. Webber. Storing a collection of polygons using quadtrees. ACM
Transactions on Graphics, 4(3):182-222, July 1985 (also Proceedings of Computer Vi-
sion and Pattern Recognition 83, Washington DC, June 1983, 127-132; and University
of Maryland Computer Science Technical Report CS-TR-1372).

H. Samet. The Design and Analysis of Spatial Data Structures. Addison—Wesley, Read-
ing, MA, 1990.

H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Process-
ing, and G15. Addison—-Wesley, Reading, MA, 1990.

J. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and

Systems, 2(4):484-521, October 1980.

R. E. Webber. Analysis of Quadiree Algorithms. PhD thesis, University of Maryland,
College Park, MD, March 1984 (also University of Maryland Computer Science Technical
Report CS-TR-1376).

75

