
Computer Graphics Volume 18, Number 3 July 1984

Efficient Octree Conversion by Connectivity Labeling

Markku Tamminen
Laboratory of Information Processing Science

Helsinki University of Technology, 02150 Espoo 15, Finland

Hanan Samet
Computer Science Department

University of Maryland, College Park, MD 20742

ABSTRACT

We present an algor i thm for converting from the
boundary representation of a solid to the correspond-
ing octree model. The algor i thm uti l izes an ef f ic ient
new connected components labeling technique. A no-
velty of the method is the demonstration that al l
processing can be performed direct ly on l inear quad-
and oetree encodings. We i l lustrate the use of the
algor i thm by an application to geometr ic mine model-
ing and verify its performance by analysis and pract i -
cal experiments.

CI~ Categories and Subject Descriptors: 1.3.5 [Com-
puter Graphics]: Computational Geometry and Object
Model ing - - Solid and O b j e c t R e p r e s e n t a t i o n s ,
Geometric Algorithms, Languages, and Systems

General Terms: Algori thms, Data Structures, Perfor-
mance

Addit ional Key Words and Phrases: Image Processing,
Octree, Conversion

i. I n t r o d u c t i o n

A solid modeler is a system for manipulating spatially
complete data on the geometric form of three-
dimensional solid objects. Each modeler uses one or
more solid representation schemes and conversion al-
gorithms between representations have become in-
creasingly important (Requicha and Voelcker 1983).

The ma in r e p r e s e n t a t i o n o f c o n s t r u c t i v e solid
g e o m e t r y (CSG) m o d e l e r s is a t r e e o f s e t o p e r a t i o n s
and r ig id m o t i o n s app l ied to p r i m i t i v e bui ld ing b locks
whi le b o u n d a r y r e p r e s e n t a t i o n m o d e l e r s d e f i n e a solid
by a col lect ion of faces, edges and vertices. A radi-
cally di f ferent approach, receiving increasing atten-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific pei'mission.

© 1 9 8 4 A C M 0 - 8 9 7 9 1 - 1 3 8 - 5 / 8 4 / 0 0 7 / 0 0 4 3 $ 0 0 . 7 5

t ion, is exempli f ied by the octree scheme (Meagher
1982a) of hierarchic spatial enumeration. I t divides a
region of space recureively into eight cubic parts un-
t i l each one is simple (empty or solid) or a fixed
maximal resolution is reached.

Relaxing some of the assumptions of the octa-ee
model we shall more generally consider block models
or three-dimensional image trees. Figure 1-1 shows
a polyhedron with 588 faces4(a) ~nd ~art of its block
model formed at resolution 2 x 2 x 2 (b).

(a) Polyhedron (b) Block Model

Figure 1-1
Polyhedron and Part of Corresponding Block Model

The methods used for analyzing the integral proper-
ties of solids and for converting between representa-
tions depend int imately on the underlying solid
representation as discussed by Lee and Requicha
(1982), whose algor i thm converts ef f ic ient ly from the
CSG scheme into a block model. We shall present a
technique for converting from a boundary representa-
t ion into a block model. This topic has not been
much treated in the l i terature: neither Meagher
(1982b) nor Lee and Requicha (1982) nor Requicha
and Voelcker (1983) report ef f ic ient solutions. Our-
selves, we have heretofore used an algor i thm reported
in (Tamminen et al. 1984).

Block models, and octrees in special, ore direct
derivatives of the two-dimensional quadtree represen-
tat ion of images, originally introduced by Klinger
(1971). See (Samet 1983) for a comprehensive survey.
There exist many di f ferent encodings of quadtrees,
octrees and simi lar hierarchical data structures. The
expl ic i t pointer based tree representation of a block
model is not well suited for external storage and or-
dinari ly requires 20 to 40 times as much space as the
most compact l inear tree representations (Kawaguchi

43

@SIGGRAPH'84

and Endo 1980, Meagher 1982a, Qargantini 1982b,
Yamaguchi et at. 1983, Tamminen 1984).

]-he space comp lex i t y of an octree corresponding to a
general polyhedron is proport ional to the surface area
of the polyhedron measured at the chosen resolut ion
(Meagher 1982b). Even at moderate resolut ion the
block model may contain hundreds of thousands of
nodes. Thus, i t is not always suf f ic ient to formulate
a general conversion a lgor i thm; i t may be as impor-
tant that i t supports a l inear t ree representat ion.

In (Samet and Tamminen 1983) we have presented a
new technique of determining geometr ic properties,
such as the per imeter , of l inear quadtree encodings
and in (Samet and Tamminen 1984) the method has
been applied to 3-dimensional connected components
labeling. Now we show how the same approach can
be used in the conversion problem. The demonstra-
t ion that al l phases of our a lgor i thm can operate
d i rect ly on l inear t ree representat ions w i thout u t i l i z -
ing expl ic i t neighbor f inding techniques (Samet 1981)
is one of i ts main interests.

The pract ical f ramework of our research is the
Geometr ic Workbench (Mantyla and Sulonen 1982), an
exper imenta l solid modeler constructed at the Hel-
sinki Universi ty of Technology. The conversion prob-
lem originates f rom applying QWB to geometr ic mine
modeling (Karonen et al. I983). Through the conver-
sion program, GWB has been connected to the octree
modeler OCTGRAS (Yamaguchi et al. 1984), made
avai lable to us through co-opera t ion with the Kuni i
Laboratory of the Universi ty of Tokyo.

We f irst describe br ie f ly the appl icat ion and previous
conversion efforts. Section 3 defines l inear image
tree representat ions. In Section /4 we formulate the
new conversion algor i thm. Its performance is
analyzed in Section 5 and f inal ly the claims ver i f ied
by exper imenta l results.

2. Background

2.1. Why Conversions

We f irst br ief ly discuss an example appl icat ion,
geometr ic mine modeling, to demonstrate why conver-
sions are needed.

The methods of this ar t ic le were f irst mot ivated by
an exper imenta l geometr ic mine modeling system im-
plemented together with a Finnish mining company,
Outekumpu Ely. The system operates on boundary
models representing ent i t ies, such as ore bodies, tun-
nets, or planned excavations. Three dimensional
solids describing ore bodies are constructed by con-
necting two-d imens iona l sections by a th ree-
dimensional boundary (Figure 1-1a).

The principa! analysis task of mine design consists of
intersect ing a planned excavat ion wi th an ore body
and determining the amount of minerals and side ma-
te r ia l thus formed (Figure 2-1). This requires a
volume integrat ion of the type =

([) ~ f(x,y,z)dV,

S

where f(x,y,z) is the (unknown) function describing
mineral content at each point of space and S is the
solid modeling the ext racted part of the ore body.

Figure 2-1
Modeling Excavat ion by a Boolean Set Operation

The funct ion f is empir ical , in that i t must be es-
t imated at each re levant point separately by geosta-
t is t ica l methods, or kriging (3oumel and Huijbregts
1978). Therefore , discrete approximat ions (Lee and
Requicha 1982) must be employed to evaluate ([).
The determinat ion of one value of f(x,y,z) necessi-
tates a spat ial search among the hundreds or
thousands of dr i l l samples and is an expensive opera-
t ion.

Geostat ist ics is applied to the boundary representat ion
of an ore body by f i rst convert ing into a block
model. Each block is est imated separately and the
results summed for a to ta l value.

2.2. Existing Algori thms

There do not exist many publications on convert ing a
boundary representat ion into an octree. However,
such a component is used i n some pract ica l systems
(Meagher 198% Requicha and Voelcker 1983). The al-
gorithms ut i l ized can be divided into two groups:
those based on connect iv i ty (Meagher 1983) and those
based on expl ic i t block Classif ication (Tamminen et
al. 1984). A third approach would be to make M
sections of the polyhedron, conver.t 2 each one of them
into a quadtree at resolut ion M a r~ combine the
results into an octree at resolut ion M by the algo-
r i t hm of Yau and Srihari (1983).

Conversion algori thms based on connect iv i ty re f lec t
the structure of the quadtree a lgor i thm of Samet
(1980). They f irst determine the volume elements ly-
ing on the boundary of the solid. The par t ia l t ree
thus formed is then traversed and each unclassified
leaf is determined to be empty or fu l l by inspecting
its neighbors. This approach can also be implemented
by using a connected components labeling a lgor i thm.
For ef f ic iency, the method has required an expl ic i t
t ree representat ion.

In the geometr ic mine modeling system we have ut i l -
ized an a lgor i thm where each leaf of the block model
is exp l ic i t l y classified by a po in t - in -po lyhedron test.
The main computat ional operations of this a lgor i thm
are to determine whether a block intersects the
boundary of the solid and, if so, whether it is con-
tained in i t . These operations typ ica l ly have to be
performed tens of thousands of t imes with the boun-
dary model containing hundreds of faces. The tech-
nique has been made e f f i c ien t by using a spatial in-

44

Computer Graphics Volume 18, Number 3 July 1984

dex based on the EXCELL method (Manty ia and Tam-
minen 1983) . In pract ice computat ion t |me is almost
independent of the number of polygons defining the
polyhedron.

This method has not been a main bot t leneck of the
mine modeling system. However, with the results of
Samet and Tamminen (1983), implementing the con-
nect iv i ty approach has become just i f ied.

3. Binary Image Trees

Solid modeling by spatial enumerat ion is closely re la t -
ed to three-d imensional image processing, which w i l l
be ref lected in our terminology. This section per-
tains to both t w o - and three-dimensional images but,
for conciseness, we present mainly the th ree-
dimensional case.

3.1. Defini t ions

We shall consider t w o - (2D) and three dimensional
(30) binary images (i.e., 2 - or 3-dimensional matr ices
of pixels, respect ively voxels) and speak of the pixels
and voxeIs as image elements. We use the same
term also for the homogeneous blocks (leaves), which
are the basic e lements of quadtrees and octrees. Le t
M = 2 n describe the resolut ion of the ~mag~ so that
the t o ta l number of pixels (voxels) is M R (M~).

An octree is defined as a recursive 8 -a ry par t i t ion of
a three-d imensional image into octants unt i l homo-
geneous blocks (BLACK or WHITE) are reached
(Srihari 1981, Meagher]982a, 3ackins and Tanimoto
]980,1983). A three-dimensional binary image tree is
formed exact ly analogously but by dividing only in
two parts at each level of recursion. We assume the
f i rst par t i t ion to be in the x -d i rec t i on wi th the y - ,
z - and x-d i rec t ions al ternat ing thereaf ter . Figure
3-1 i l lustrates this concept. In the x -pa r t i t i on we
postulate the le f t subtree to correspond to the
western (W-) half of the image; in the y -pa r t i t i on i t
corresponds to the S-half . Le t us s imi lar ly speak of
the lower (L) and upper (U) halves of the z -par t i t i on .

A node in a 3D binary image tree has six sides (W,
E, S, N, L, U) and a neighbor node (of equal size), in
each of these directions. In the ordering of nodes
induced by a preorder t raversol of the binary tree al l
the nodes in a W- or S- or L-ne ighbor of a given
node come before that node. We ut i l ize binary im-
age trees mainly because tree traversal algorithms
become somewhat s impler than for octrees.

3.2. Representations

We use a linear tree representation that is based on
the preorder traversal of the binary image tree. The
traversal yields a string over the alphabet '~", "B",
"W" corresponding respectively to internal nodes
(GRAY), BLACK leaves, and WHITF leaves. We call
this string a OF-expression as Kawaguchi and Endo
(1980) do in the case of quadtrees. A d i f fe ren t but
related representat ion is the l inear octree of Gargan-
t in i (1982). For the image of Figure 3-1 the OF-
expression becomes (B(B(BW. Its most s t ra igh t -
forward b i t -encoding requires two bits per node both
for oct~ees and binary image trees. Expl ic i t pointer

(a) Image (b) Binary tree

Figure 3-1
Three-dimensional Binary Image Tree

based representat ions ordinar i ly require at least one
computer word per node (Meagher 1982b).

In (Tamminen 1984) we have reported methods of
compacting the DF-expression. First of all, encode
"(" by "I" and "B" and '~N" by "Ol" and "00", respec-
tively. Further, at the lowest level of a condensed
tree there may exist only two types of node pairs,
"BW" and '~NB". Thus these pairs may be encoded by
"13" and "1", respect ively. In pract ice the above
method has required about one bit per node of a
three-d imensional binary image tree.

A binary image tree always contains at most as many
leaves (but often more nodes) than the co~responding
octree. For instance, at resolut ion M = 2- the con-
densed binary tree of the surface of a unit sphere
contains 25600 leaves whi le the corresponding octree
has 43800 leaves.

4. Conversion A lgor i thm

4.1. General Outline

In Figure 4 -1 we give the out l ine of an a lgor i thm for
convert ing from a boundary representat ion to a 3D
image tree. The method supports mult iple solids
w i thout in ter ior voids, but the 3D outside of the
solids must be connected.

First , in procedure COMBINE3(), each face is
separately converted into a l inear image tree
representat ion. The trees are recursively
OVERLAY'ed in pairs to give the tree of the whole
boundary. In the second phase - FILL30 - the im-
age tree is traversed and its WHITE components,
which are not connected to the outside of the image
are ext racted and changed to BLACK as described in
the next section. As there is not enough space for
detai led algori thms of al l the (simple) subroutines of
Figure 4 -1 we only present their outlines.

OVERLAY() forms the boolean union of two (linear)
binary image trees by traversing them synchronously
according to the fol lowing rules:

(I) I f e i ther of the nodes is BLACK the result ing
node is BLACK. The other subtree is skipped
(by sequential traversal).

45

@SI66RAPH'84

p r o c e d u r e BR TO BLOCKS30;
/ * Conve r t boundary representa t ion def ined by f a c e -
art.anY FACES into b inary image t ree a t reso lu t ion M
= 2 . * /
begin

global va lue i n t e g e r M,NFACES;
global pointer face array F A C E S [0 : N F A C E S - 1] ;
g lobal po in te r nodel is t DF; / * DF-exp ress ion * /
DF < - COMBINE3(0 ,NFACES-1) ;
F I L L 3 0 ; / * see Sect ion 4.2 * /

end;

p o i n t e r nodal is t procedtn-e COMBINE3(N1,N2);
/ * C o n v e r t separa te ly faces w i t h indices be tween N1
and N2 to image t rees and combine resul ts into a
t ree of the corresponding pa r t of the boundary. * /
begin

global value integer NFACES;
g lobal po in te r face a r ray F A C E S [0 : N F A C E S - 1] ;
value integer N1,N2;
i f N2 - N 1 > 1 then

~Lum(OVER LA Y(COM BI NE 3(N 1,(N I+N 2)/2),
CON BIN E 3((N $+N 2)/2+ 1,N Z)));

else i f N 2 - N 1 = 1 then
re turn(OVER LA Y(CONVE R T 3(F ACES [N 1]),

CONVERT 3(FACES [N 2])));
/ * CONVERT30 conver ts one face * /
else retumn~CONVER T 3(FAC ES [N 1]));

end

Figure 4-i
Convers ion A lgo r i t hm Out l ine

(2) I f e i t he r o f the nodes is WHITE the o ther subtree
is copied to the resu l t (by sequent ia l t raversaI) .

(3) I f both nodes are GRAY the resu l t is also GRAY.

(4) Replace recurs ive iy (BB by B and (WW by W.

CONVERT30 conver ts one face w i t h plane equat ion

P(x,y,z) = ax + by + cz + d = 0

into a b inary image t ree as fo l lows:

(1) Choose a p ro jec t ion plane, say xy, so tha t the
remain ing coe f f i c ien t (c) has m a x i m a l absolute
value.

(2) Fo rm the 2D binary image t ree TWODT of the
p ro jec t ion of the face on the x y - p l a n e by pro-
cedure BR TO BLOCKS20.

(3) The rest of the convers ion is per fo rmed s imi la r l y
to fo rming the image t ree of the whole plane
P(x,y,z) = 0, except tha t nodes, whose x y -
p ro jec t ion is WHITE in TWODT, become WHITE
in the resul t . The universe is halved recurs ive ly
by planes a l t e rna t i ng l y perpend icu la r to the x - ,
y - , and z - a x e s whi le keeping t rack of the
m i n i m u m and max imum values of P(x,y,z) in
each block thus formed. To each block
corresponds a node N2 of TWODT so t ha t the
b lock can be classi f ied as WHITE, B L A C K , or
G R A Y as fo l lows:

- i f N2 is WHITE, the block is WHITE
- i f zero does not l le be tween the m in imum

and m a x i m u m of P(x,y,z) in the block, the

block is WHITE and N2 is skipped
- i f the block is a t voxe l l eve l and N2 is

B L A C K then the b lock is B L A C K (div is ion
cont inues to voxe t l eve l on a face)

- o therwise the block is G R A Y and is f u r t h -
er subdiv ided.

(4) Replace recurs ive ly (BB by B and (WW by W.

The recurs ive halv ing d i rec t l y produces the desired
DF-express ion .

BR TO BLOCKS20 forms the 2D image t ree o f a po-
lygon. For s imp l i c i t y we have imp lemented i t com-
p le te l y analogously to BR TO BLOCKS30:

(1) Each edge of the face is conver ted into a 2D
image t ree by CONVERT20 s im i la r l y to the
method appl ied in CONVERT30.

(2) The t rees of the edges are recurs ive ly
O V E R L A Y ' e d in pairs by COMBINE20.

(3) The WI-~TE components of the 2D image not con-
nected w i th the outs ide are changed to B L A C K
by F ILL20 . (i f necessary, holes w i t h i n a face
are t rea ted by d iv id ing the face into s imply
connected parts.)

The main v i r t ue o f CONVERT30 is tha t , to c lassi fy a
block, we do not have to pe r f o rm any p o i n t - i n -
po lygon test . Also, the P(x ,y ,z) - range w i th in each
block can be e f f i c i e n t l y computed during the recu r -
s ive subdivis ion and no sor t ing is requi red to a r r i ve
at the co r rec t D F - o r d e r o f the blocks.

As a resu l t o f prov id ing a l l x y - i n f o r m a t i o n in the 2D
image t ree, some spurious B L A C K leaves may resul t
when compared to the exac t f a c e / v o x e l - i n t e r s e c t i o n
tests. This is not ser ious consider ing the ove ra l l na-
ture o f the b lock model approx imat ion . The choice
of the p ro jec t ion plane min imizes the occurrenc ies of
this even t wh i le guarantee ing tha t the inside of a
solid is never connected w i t h the outs ide.

The boundary convers ion method descr ibed above has
been sa t i s fac to ry , even though we chose i t ma in l y for
i ts s imp l i c i t y . We do not wan t to emphasize i t be-
cause other , po ten t i a l l y more e f f i c i en t , techniques
can be imagined and combined w i t h the core o f our
approach, described in the nex t sect ion.

4.2. Connec t i v i t y Label ing

As discussed in Section 2.2 a va r i an t o f connected
components tabel ing can be u t i l i zed in block model
convers ion. We show how i t can be appl ied to l inear
t ree representa t ions .

Two e lements of a 3D image are ca l led (f ace -) con-
nected to each o ther i f they share a boundary (cal led
adjacency) w i th non -ze ro area. Labe l ing the con-
nected components o f a b inary image is o rd inar i l y de-
f ined as t rans fo rming i t in to a symbol ic image in
which every max ima l l y connected subset o f B L A C K
e lements is labeled by a d is t inc t pos i t i ve in teger .
However , in our case" the image e lements in te rsec t ing
the boundary o f the solid are B L A C K and we wan t to
e x t r a c t and change to B L A C K the WHITE components
not connected to the outs ide o f the image.

46

Computer Graphics Volume 18, Number 3 July 1984

Connected components labeling can be performed by
the union-f ind a lgor i thm (Tarjan 1975). A t the start
each image element is assumed to form a separate
component. The f inal components are determined by
processing once each adjacency between image ele-
ments. For each re levant adjacency we must deter-
mine the PUtative components of the two elements
(find). I f they di f fer , they are combined (union).

The above algor i thm, applied to a DF-expression,
must be able to determine adjacencies as the t ree is
traversed in the f ixed order. When processing a node
we know that i ts W-, S-, and L-neighbors have
been processed. Therefore there must exist data
structures to record the in format ion of respect ively
the E-, N - , and U-sides of the processed part. Le t
us cal l these date structures the act ive yz - , xz - , and
xy-borders. They consist of act ive face elements.
(In the rest of this section "face" means an act ive
face of the above borders, not a face of the solid.)

The main change compared to the two-d imens iona l
connected components a lgor i thm reported in (Samet
and Tamminen 1983) is that there are now three ac-
t ive borders, instead of two and that the size of a
border e lement is defined as i ts area, not width.
Further, the act ive borders can be represented as
linked lists (instead of arrays), which is most impor-
tant in the three-d imensional case. See (Samet and
Tamminen 1984) for more details on connect iv i ty la-
beling.

We give the f i l l ing a lgor i thm in three parts. In the
main program (Fig. 4-2) the three face e lement lists
are first in i t ia l ized so t~at each contains one WHITE
face element of size M% The solid can be imagined
as situated in the posi t ive octant of coordinate space
with al l the other octants having been processed and
WHITE. This mirrors the state of the act ive borders
at the s tar t of processing any node: its W-, S-, and
L-neighbors have been processed and their color and
component in format ion is contained in the act ive
border. Then procedure TRAVERSE() (Fig. 4-4) is
called to traverse the OF-expression of the binary
image tree. Final ly PHASEII0 traverses the tree
once more. For each WHITE leaf i t checks whether
the leaf is in the component of the outside. I f not,
i ts color is changed to BLACK.

The main function of TRAVERSE() is to provide, at
each ca]I to its sub-procedures, a pointer to the
parts of the act ive face e lement l ists bordering that
subtree. I t calls i tsel f tw ice recursively at each
internal node. A t each leaf node i t calls procedure
INCREMENT() three t imes to per form the actual up-
dating of the act ive borders and the connected com-
ponents. If a WHITE leaf is not ident i f ied wi th any
existing component then a puta t ive new component is
formed. Labels of WHITE leaves are stored for pro-
cessing by PHASEI[0. A f t e r processing a leaf each
l ist of ac t ive face elements is advanced to the ele-
ment fol lowing it.

To i l lustrate the working of the a lgor i thm we show,
in Figure /4--3, the state of the act ive xy -border and
the start of the subiist X Y L when entering and leav-
ing TRAVERSE() at each of i ts calls corresponding to
leaf nodes of Figure 3-1.

procedume FILL 50;
/ * First compute connected WHITE components of a
binary tree of an M by M by M (M = 2 n) th ree-
dimensional image represented by preorder traversa]
DF. Then change components not connected wi th out -
side of image to BLACK in PHASEII0. Each act ive
border surface xy, xz and yz is represented as a
l inked list of records of type facelist, which contain
pointers to the act ive faces comprising the border.
Each act ive face is represented as a record of type
face with four fields SIZ, LAB, COL, and CRD,
which give respect ively, the size (area), the com-
ponent label, the color, and the value of the th i rd
coordinate (z for an xy border) of a face. A record
of type faeel ist has two fields, DATA and NEXT,
containing respect ively, a pointer to a face and a
pointer to the next e lement in the list. * /
begin

global value integer iv1;
global value pointer nodelist OF;
pointer faeelist XYL , XZL, YZL; / * borders * /
pointer face XY, XZ,YZ;
X Y L < - ereate(facel ist) ; XZL <- c rea te (f~e l i s t) ;
YZL <- cre~Le(facelist);
DATA(XYL) <- XY < - create(face);
DATA(XZL) <- XZ <- create(face);
DATA(YZL) < - YZ <- create(face);
SIZ(XY) <- SIZ(XZ) <- S]Z(YZ) <- M 'M ;
LAB(XY) <- LAB(XZ) <- LAB(YZ) <- outside;
COL(XY) <- COL(XZ) <- COL(YZ) <- WHITE;
CRD(XY) <- CRD(XZ) < - C R D (Y Z) <- 0;
i f not empty(DF) then begin

TRAVE R SE (M, M, M, X Y L, XZL ,YZL);
PHASEII0 / * change inside to BLACK * /

end
end;

Figure 4 -2
Main Procedure for Fi l l ing Inside

Leaf Entering Leav ing

i(-
3 "

• ,'~ ~ - ~ - ~

Figure 4-3
State of X Y L at Each Call to TRAVERSE()

The purpose of procedure INCREMENT() (Figure /4-5)
is to process al l the act ive face elements bordering a
face of a new leaf. Whenever an adjacency between
WHITE faces is encountered, the connected com-
ponents in format ion is updated. Processing divides
into three cases. In each of them INCREMENT() per-

47

4P @SIGGRAPH 84

procedure TRAVER 5E (SX,SY,SZ,XYL,XZL,YZL);
/ * Process SX by SY by SZ segment of image where
OF presents the preorder traversal of its binary t~ee.
XYL, XZL, and YZL are pointers to the lists of ac-
t ive faces on the xy, xz- , and yz-borders of this
part of the image. Once the three faces of a leaf
that are adjacent to the act ive borders have been
processed, XYL, XZL, and YZL are advanced to p o i n t
to the port ion of the act ive border that is adjacent
to the image element to be processed next. The list
LL stores the putat ive labels of WI-UTE nodes for
PHASEII(). * /
begin

value integer SX,fY,SZ;
reference pointer f ~ e l i s t XYL,XZL,YZL;
global pointer nodelist DF;
global pointer labeilist LL;
pointer faeelist T; / * auxi l iary * /
pointer node L;
L <- create(node);
COL(L) <- next n~le(DF);
i f COL(L) = GRAY then begin

i f SX = SZ then begin / * part i t ion on x * /
T <- YZL; / * save start of yz border * /
TRAVER 5E (SX/2,SY,SZ,XYL,XZI_,YZL);
TRAVER 5E (SX/2,SY,S Z,XY L,XZL ,T)

end
else i f SZ = SY then begin / * on y * /

T <- XZL; / * save start of xz border * /
TRAVER SE (SX,SY/2,SZ,XYL, XZL,YZL);
TRAVER £F (SX,5Y/2,SZ,XYL,T,YZL)

end
else begin / * part i t ion on z * /

T <- XYL; / * save start of xy border * /
TRAVERSE (SX,SY,SZ/2,XYL,XZL,YZL);
TRAVERSE(SX,SY,SZ/2,T,XZL,YZI_)

end
end
else begin / * A leaf node. * /

LAB(L) <- unknown;
[NCREMENT(L,XYL,SX*SY,SZ); / * xy- border * /
INCREMENT(L,XZL,SX*SZ,SY); / * xz - border * /
[NCREMENT(L,YZL,SY*SZ,SX); / * yz - border * /
i f COL(L) = WHITE then begin

i f LAB(L) = unknown then / * new label */
LAB(L) <- create(label);
/ * update active borders with label: * /

LAB(DATA(XYL)) <- LAB(L);
LAB(DATA(XZL)) <- LAB(L);
LAB(DATA(YZL)) <- LAB(L);
add to I ist(LL,LAB(L)) / * for PHASEII0 * /

end
XYL <- NEXT(XYL); / * advance lists * /
XZL <- NEXT(XZL); YZL <- NEXT(Y7__L)

end
end;

Figure 4 -4
Tree Traversal

forms the necessary union operations and updates the
active border as fol lows with the face of the new
leaf:

(1) The entering face is larger than the corresponding
f i rst element of the act ive border. Neighboring
face elements are determined f rom the size
(area) of the new face. The new face replaces
the last neighboring element and al l others are
disposed of.

(2) The entering face is equal in size wi th the f i rst
border element, which i t replaces.

()) The entering face is smaller than the f irst border
element, which it replaces. A new act ive face

i s created to account for the rest of the old
border element.

Finally the data of the border element corresponding
to the new face are updated. For s impl ic i ty we have
omit ted the disposal of act ive face elements touching
the outside of the image.

proceduce [NC REM E3N T(L,F L,S,W);
/ * Process a leaf L of area S in the present direc-
t ion (xy, xz, or yz) and width W in the perpendicular
direction. The leaf is adjacent to the f i rst element
of the border represented by FL, pointer to a list of
act ive faces. See (5edgewick 1983) for the imple-
mentat ion of union(), a combined find and union
operation. * /
begin

value pointer node L;
value pointer facelist FL;
value integer S,W;
global value integer M;
integer 1; / * auxi l iary * /
pointer facel ist P,O; / * auxil iary * /
i f S > SIZ(OATA(FL)) then begin / * case 1 * /

I <- 0; P <- FL;
while I < S do begin / * al l bordering elements */

i f COL(L) = WHITE
and COL(DATA(P)) = WHITE then

LAB(L) <- ~ion(LAB(L),LAB(DATA(P)));
I < - I + SIZ(DATA(P));
P <- NEXT(P)

end;
Q <- NEXT(FL); NEXT(FL) <- P~ / * delete and */
f a e l i ~ dispe6e(Q,P) / * reclaim storage for
elements f rom Q up to but not including P * /

end
else begin / * cases 2 and 3 * /

i f COL(L) = WHITE
and COL(DATA(FL)) = WHITE then

LAB(L) <- union(LAB(L),LAB(DATA(FL)));
i f S < SIZ(DATA(FL)) then begin / * case 3 * /

P <- create(facel ist); / * new element = * /
DATA(P) <- cRate(face); / * rest of old one * /
SIZ(DATA(P)) <- SIZ(DATA(FL)) - 5;
COL(DATA(P)) <- COL(DATA(FL));
LAB(DATA(P)) <- LAB(DATA(FL));
CPJZ)(DATA(P)) <- CRD(DATA(FL));
NEXT(P) <- NEXT(FL);
NEXT(FL) <- P; / * insert into list * /

end
end;
5IZ(DATA(FL)) <- 5; / * update f irst element * /
COL(DATA(EL)) <- COL(L);
CRD(DATA(FL)) <- CRD(DATA(FL)) + W;
i f CRD(DATA(FL)) = M / * touches outside */

and COL(L) = WHITE then
LAB(L) <- union(LAB(L),outside)

end;

Figure /4-5
Processing one Side of a Leaf

48

Computer Graphics Volume 18, Number 3 July 1984

5. Analysis

Le t us analyze separately the procedures OVER.LAY(),
CONVERT20, COMBINE20, FILL20, CONVERT30,
COIvlBINE30, and FILL30 focusing on the e f fec t of
using l inear t ree representat ions.

With l inear t ree representat ions OVERLAY() c lear ly
inspects once each node of both trees and its com-
p lex i ty is thus proport ional to the to ta l number of in-
put nodes, which is also a bound on the number of
output nodes. With exp l ic i t t ree representat ions the
complex i ty of OVERLAY() is at most proport ional to
the size of the smaller input tree.

CONVER.T20 performs a fixed amount of computat ion
for each node of the 2D image t ree of an edge seg-
ment and d i rect ly outputs the DF-expression. The
analysis of COMBINE20 and FILL20 for each face
corresponds closely to that of COMBINE30 and
FILL30 given below.

CONVERT30 also performs a fixed amount of compu-
ta t ion for each node of the output tree, except for
the case where an output leaf is WHITE and the
corresponding port ion of the 2D tree must be skipped.
(In this case the brother of the leaf w i l l not be
WHITE.) Because of the choice of the project ion
plane, the amount of skipping can be at most propor-
t ional to the number of output nodes. With expl ic i t
t ree representat ions the skipping could be performed
more e f f ic ient ly . However, its contr ibut ion to pro-
cessing t ime is minor.

When there are N faces, COMBINE30 calls OVER-
LAY() N - 1 times. Each node result ing f rom CON-
VERT30 passes thrqugh OVERLAY() at most [log(N)']
t imes (logarithms are to base 2). This fol lows f rom
the remark above on the size of the output of
OVERLAY(). Thus for a to ta l of I input nodes in the
image trees of the faces the complexi ty of al l the
OVERLAY's is at most Ir log(N)']. Of course, the
e lementary operations are very simple. COMBINE30
requires at most tw ice the amount of space needed
for storing the image trees of the faces. Using
techniques simi lar to external sorting, disk storage
may be used for this purpose.

F ILL30 performs a fixed amount of work for each
node, except for the contr ibut ion of the union-f ind
-a lgo r i thm. Tarjan (1975) has shown that this contr i -
bution is almost l inear in the number of operations
performed. Thus the complex i ty of F ILL30 is very
nearly l inear in the number of nodes. The worst
case complex i ty of F ILL30 is be t te r than tha t of the
connected components a lgor i thm of (Samet 1981).
However, the boundary determinat ion method of Jac-
kins and Tanimoto (1983) could be applied to achieve
equal performance wi th exp l ic i t t ree structures.

The worst case space complex i ty of the connect iv i ty
labeling a lgor i thm is about 3M face elements: I t is
easy to construct 30 checkerboard- l ike images, which
would require the act ive borders to contain only face
elements at voxel level. The union-f ind -a lgo r i t hm
requires a label array with size determined by the
highest label used. In pract ice, central memory re-
quirements are somewhat d i f f icu l t to determine
pr ior i . In the fol lowing section we report some ex-
perienc es.

6. Experiences

We have programmed the conversion a lgor i thm in C
language and run i t on a VAX 11/750 (wi thout a
f loat ing point accelerator), under Unix to determine
i ts pract ica l ef f ic iency. Even though processing costs
depend heavi ly on implementat ion detai ls we report
below various cost components to give an indication
of the i r re la t ive magnitudes.

Detai led performance test ing is based on the fo l low-
ing solids:

(1) B(100) - ball approximated by 100 faces

(2) B(400) - ball approximated by 400 faces

(3) Ore - the ore body of Figure 1-1a (588 faces)

(4) Exc. - an excavat ion (Figure 6-1, 40 faces).

Figure 6-1
Test Solid, an Excavat ion

The e f fec t of the theoret ica l non- l inear i t y of the
union-f ind -a lgo r i t hm is so smal l that we can com-
bine the exper imenta l results into the fol lowing
overal l average costs per node.

(1) OVERLAY() requires about 17 microseconds per
input node. Thus to COMBINE N trees contain-
ing a to ta l of I nodes, the summed
OVERLAY' ing t ime is at most 17[['log(N)'] mi-
crosec ond s.

(2) CONVERT20 requires about 170 microseconds per
output node.

(3) CONVERT30 requires about 130 microseconds per
output node. (The subroutine has been opt im-
ized further than CONVERT20.)

(4) F ILL30 requires about 380 microseconds per input
node and the resource requirements for F ILL20
are a b i t smaller.

The implementat ions, save that of OVERLAY(), use
recursion so that subroutine calls account for much
of the above costs.

To help appreciate the unit costs we note that the
condensed bigary image t ree of a unit sphere at reso-
lut ion M = 2" contains 208000 nodes. (A correspond-
ing condensed complete ly BLACK bal l only contains
117000 nodes!)

49

@SIGGRAPH'84

Tables I and 2 compare the run t imes (in VAX
11/750 CPU seconds) of the new method and the old
one reported in (Tamminen et aL 1984). Alas, we
have not found other publ icat ions to compare to.

B(100) S(400) £N'e(588) Exc.(40)

New method 165 237 245 22
Old method 1350 1400 1600 324

Table I. Processing Time at Resolution 128

S(100) B(400) Ore(588) Exc.(40)

New method 53 I00 i00 8
Old method 380 400 410 79

Table 2. Processing Time at Resolution 64

Tables 3 and 4 help in a detai led evaluat ion of the
choices made in constructing the a lgor i thm. Table 3
shows the contr ibut ion of each phase (in CPU
seconds) to to ta l processing t ime. Table 4 gives
summed sizes (number of nodes) of the various kinds
of image trees: Output is the f inal result, Boundary
(30) is the boundary of the f inal result , Faces
denotes the trees of al l faces taken separately, Proj.
faces the 20 project ions of faces, Boundary (2D) the
trees of polygon boundaries, Segments the trees of
polygon edges taken separately, and Overlay the
number of nodes passing through the various invoca-
l ions of OVERLAY().

B(100) B(400) Ore(588) Exc.(40)

FILL 30 79.6 84.0 62.2 7.7
CONVERT30 32.3 46.3 47.4 4.9
OVERLAY() 29.7 45.1 40.7 2.8
FILL 20 16.9 32.1 41.6 3.2
CONVERT20 9.2 23.0 29.2 2.6

Table 3. Processing Costs at Resolution 128

B(100) B(400) Ore(588) Exc.(40)

Output 116711 122485 98947 12331
Boundary (3D) 201668 207794 169108 20880
Faces 259758 346778 360062 34403
Proj. faces 29022 68692 92664 7825
Boundary (2D) 41570 90350 117034 10299
Segments 54088 142552 179604 15090
Overlay 1650000 2580000 2390000 180000

Table 4. Summed Sizes of Trees at Resolution 128

From Table 3 we see that the main part of the t ime
is taken by determining the image t ree of the boun-
dary of the polyhedron. Our approach to this task
was chosen for its un i formi ty (20 and 30 phases are
almost ident ical) and robustness. However, there is
much room for improvement by using d i f fe ren t tech-
niques.

The only par t of our algor i thm, whose ef f ic iency is
seriously af fected by the use of l inear t ree represen-
tat ion% is OVERLAY(). Its contr ibut ion to the total
run t ime is general ly less than 20%. Also, a more
e f f i c ien t (in the expected case) F ILL30 is conceivably
possible wi th an exp l ic i t t ree structure. This is be-
cause we need not form exact connected components
but only ex t rac t the part connected to the outside.

This can be performed using depth f irst search for
leaves lying on the image border and recursive neigh-
bor f inding, start ing f rom each unlabeled one of
them.

The centra l memory requirements of F ILL30 for
6(400) at resolut ion 128 consist of about 3500 records
for act ive faces. This compares favorably to the
worst case of about 50000 records. Further, about
1500 ten ta t ive labels are formed. As resolut ion is
increased by a factor of two the size of the output
t ree grows by a factor of four. The same holds for
processing t ime of the connect iv i ty labeling phase and
for the number of putat ive labels. However, the
number of ac t ive faces seems to grow only l inearly
with resolution.

The number of nodes in the two-d imens iona l image
trees depends on the summed length of edges meas-
ured at the chosen resolution and to a lesser extent
on the number of edges of the polyhedron. The
length of edges grows l inear ly wi th resolut ion. Simi-
lar ly, the summed size of the three-d imensional im-
age trees depends on the surface area of the po-
lyhedron and its number of faces. The surface area
grows wi th the square of resolut ion. The processing
t ime of the new a lgor i thm is af fected by both the
above factors and thus grows somewhat more slowly
than tha t of the old one, whose cost depends almost
exclusively on the number of [eaves output.

Our connected components labeling technique seems
to outper form that of Lumia (19833, based on the
voxel mat r ix representat ion, by orders of magnitude,
in cases typ ica l of the conversion problem (Samet and
Tamminen 19843. This is mainly explained by the
lesser amount of image elements in our representa-
t ion.

The const i tuent parts of our a lgor i thm can be con-
nected in various ways. We recommend keeping the
conversion of the boundary and the f inal connect iv i ty
labeling as separate programs communicat ing through
a Unix pipe. With this structure the f irst phase ean
be easily replaced by another one, say, for processing
curved surfaces.

7. Conclusions

We have presented an algor i thm, e f f ic ient in pract ice,
for convert ing a polyhedron into an oc t ree - l i ke block
model. A character is t ic of the a lgor i thm is that al l
i ts phases operate d i rect ly on l inear t ree representa-
tions.

We bel ieve tha t the method presented can be applied
as a general conversion tool in boundary representa-
t ion modelers. Up to the present conversion seams
to have been possible in pract ice only for basic bui ld-
ing block solids, which have then been combined on
the octree side by using boolean set operations. The
conversion program l inks our modeler (QWB) with that
of (Yamaguchi et al. 1984). An interest ing pract ica l
research problem is to find the opt ima[division of
labor between boundary representat ions and octrees in
s imi lar combined systems.

50

Computer Graphics Volume 18, Number 3 July 1984

Our experiences on applying the solid modeling tech-
niques described here to mine modeling have been
very encouraging but wi l l be reported in more detai l
else where.

ACKNOWLEDGEMENTS

The work has been lsupported by the Academy of Fin-
land and by the National Science Foundation under
grant MCS-83-02118. We thank Reijo Sulonen for
his comments and J i l l Karonen for help with the
mine modeling data and figures.

REFERENCES

1. Gargantini, I., Linear octtrees for fast processing
of three dimensional objects. CVGIP 71](1982)4,
pp. 363-374.

2. Jackins, C.L. and Tanimoto, S.L., Oct-trees and
their use in representing three-dimensional ob-
jects. CGIP 14(1980), pp. 249-270.

3. Jackins, C.L. and Tanimoto, S.L., (;~Jad-trees,
oct- t rees and K-trees: a generalized approach to
recursive decomposition of Euclidean space.
IEEE PAMI-5(1983)5, pp. 533--539.

4. Journel, A.G. and Huijbregts, Ch, J., Mining
Geostatistics. Academic Press, 1978.

5. Karonen, O., Tamminen, M., Kerela, P., Mitjonen,
M., and Orivuori, E., A geometric mine modeling
system. Proc. Autocarto Six Conference, Ot-
tawa~ 1983 pp. 374-383.

6. Kawaguchi, E. and Endo, T., On a method of
binary picture representation and its application
to data compression. IEEE PAMI 5(1980)1, pp.
27-35.

7. Klinger, A., Patterns and search statistics. In Op-
t imizing Methods in Statistics, Rustagi, J.S. (Ed.),
Academic Press, New York, 1971, pp. 303-337.

8. Lee, Y.T. and Requicha, A.A.G., Algorithms for
computing the volume and other integral proper-
ties of solids. II. A family of algorithms based
on representation conversion and cellular approxi-
mation. CACM 25(1982)9, pp. 642-650.

9. Lumia, R., A new three-dimensional connected
components algorithm. CVGIP 23(1983), pp.
207-217.

10. Meagher, D., Geometric modeling using octree
encoding. CGIP 19(1982a), pp. 129-147.

i I . Meagher, D., Octree generation, analysis and
manipulation Report IPL-TR-027, Rensselaer Po-
lytechnic Institute, Troy, New York, 1982b.

12. Meagher, D., Personal communication. 1983.

13. Mantyla, M. and Sulonen, R., G W B - A Solid
Modeler With Euler Operators. IEEE Computer
Graphics & Applications 2(1982)7, pp. 17-31

14. Mantyla, IvL and Tamminen, M., Localized set
operations for solid modeling. Computer Graph-
ics17(1983)3, pp. 279-288.

15. Requicha, A.A.G. and Voelcker, H.B., Solid
modeling: current status and research directions.
IEEE Computer Graphics and Applications
3(1983)7, pp. 25 - 37.

16. Requicha, A.A.G., Representations of rigid solids:
theory, methods and systems. ACM Comp. Surv.
12(1980), pp. 437-464.

17. Samet, H., Region representation: quadtrees from
boundary codes. C A C M Z3(1980)3, pp. 163-170.

18. Samet, H., Connected component labeling using
quadtrees. JACM Z8(1981)3, pp. 487-501.

19. Samet, H., The quadtree and related hierarchical
data structures. To appear in ACM Comp. Surv.
Also TR-1329, Computer Science Department,
University of Maryland, College Park, MD, 1983.

28. Samet, H. and Tamminen, M., Computing
geometric properties of images represented by
l inear quadtrees. Report TR-1359, Computer Sci-
ence Department, University of Maryland, College
Park, MD, 1983.

21. Samet, H. and Tamminen, M., Eff ic ient image
component labeling. Report TR-1420, Computer
Science Department, University of Maryland, Col-
lege Park, MD, 1984.

22. Sedgewick, R., Algorithms. Addison-Wesley,
Reading, 1983.

23. Srihari, S.N., Representation of three-
dimensional digital images. ACM Comp. Surv.
1](1981)4, pp. 399-423.

24. Tamminen, M., Encoding pixel trees. To be pub-
lished in CVGIP, 1984.

25. Tamminen, iVl., Karenen, O., and Mantyla~ IvL,
Block model conversion using an eff ic ient spatial
index. To be published in CAD Journal, 1984.

26. Tarjan, R.E., On the efficiency of a good but
not linear set union algorithm. 3ACM 2Z(1975),
pp. 215-225.

27. Yamaguchi, K., and Kunii, T.L., A layered string
data structure for an octree model. Techn. Rep.
83-15, Dept. of Information Science, Univ. of
Tokyo, 1983.

28. Yamaguchi, K., Kunii, T.L., Fujimura, K. and
Toriya, H., Octree-related data structures and
algorithms. IEEE Computer Graphics and Applica-
tions 4(1984)1, pp. 53-59.

29. Yau, M-M and 5rihari, S.N., A hierarchical data
structure for multidimensional images. CACM
26(1983)7, pp. 504-515.

51

