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ABSTRACT 

We present an algor i thm for converting from the 
boundary representation of a solid to the correspond- 
ing octree model. The algor i thm uti l izes an ef f ic ient  
new connected components labeling technique. A no- 
velty of the method is the demonstration that al l  
processing can be performed direct ly on l inear quad- 
and oetree encodings. We i l lustrate the use of the 
algor i thm by an application to geometr ic mine model- 
ing and verify its performance by analysis and pract i -  
cal experiments. 

CI~ Categories and Subject Descriptors: 1.3.5 [Com- 
puter Graphics]: Computational Geometry and Object 
Model ing  - -  Solid and O b j e c t  R e p r e s e n t a t i o n s ,  
Geometric Algorithms, Languages, and Systems 

General Terms: Algori thms, Data Structures, Perfor- 
mance 

Addit ional Key Words and Phrases: Image Processing, 
Octree, Conversion 

i. I n t r o d u c t i o n  

A solid modeler is a system for manipulating spatially 
complete data on the geometric form of three-  
dimensional solid objects. Each modeler uses one or 
more solid representation schemes and conversion al- 
gorithms between representations have become in- 
creasingly important (Requicha and Voelcker 1983). 

The  ma in  r e p r e s e n t a t i o n  o f  c o n s t r u c t i v e  solid 
g e o m e t r y  (CSG) m o d e l e r s  is a t r e e  o f  s e t  o p e r a t i o n s  
and r ig id  m o t i o n s  app l ied  to p r i m i t i v e  bui ld ing  b locks  
whi le  b o u n d a r y  r e p r e s e n t a t i o n  m o d e l e r s  d e f i n e  a solid 
by a col lect ion of faces, edges and vertices. A radi- 
cally di f ferent approach, receiving increasing atten- 
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t ion, is exempli f ied by the octree scheme (Meagher 
1982a) of hierarchic spatial enumeration. I t  divides a 
region of space recureively into eight cubic parts un- 
t i l  each one is simple (empty or solid) or a fixed 
maximal resolution is reached. 

Relaxing some of the assumptions of the octa-ee 
model we shall more generally consider block models 
or three-dimensional image trees. Figure 1-1 shows 
a polyhedron with 588 faces4(a) ~nd ~art of its block 
model formed at resolution 2 x 2 x 2 (b). 

(a) Polyhedron (b) Block Model 

Figure 1-1 
Polyhedron and Part of Corresponding Block Model 

The methods used for analyzing the integral proper- 
ties of solids and for converting between representa- 
tions depend int imately on the underlying solid 
representation as discussed by Lee and Requicha 
(1982), whose algor i thm converts ef f ic ient ly from the 
CSG scheme into a block model. We shall present a 
technique for converting from a boundary representa- 
t ion into a block model. This topic has not been 
much treated in the l i terature:  neither Meagher 
(1982b) nor Lee and Requicha (1982) nor Requicha 
and Voelcker (1983) report ef f ic ient  solutions. Our- 
selves, we have heretofore used an algor i thm reported 
in (Tamminen et al. 1984). 

Block models, and octrees in special, ore direct 
derivatives of the two-dimensional  quadtree represen- 
tat ion of images, originally introduced by Klinger 
(1971). See (Samet 1983) for a comprehensive survey. 
There exist many di f ferent  encodings of quadtrees, 
octrees and simi lar  hierarchical data structures. The 
expl ic i t  pointer based tree representation of a block 
model is not well  suited for external storage and or- 
dinari ly requires 20 to 40 times as much space as the 
most compact l inear tree representations (Kawaguchi 
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and Endo 1980, Meagher 1982a, Qargantini 1982b, 
Yamaguchi et  at. 1983, Tamminen 1984). 

]-he space comp lex i t y  of an octree corresponding to a 
general polyhedron is proport ional  to the surface area 
of the polyhedron measured at the chosen resolut ion 
(Meagher 1982b). Even at  moderate resolut ion the 
block model may contain hundreds of thousands of 
nodes. Thus, i t  is not always suf f ic ient  to formulate 
a general conversion a lgor i thm; i t  may be as impor-  
tant  that  i t  supports a l inear t ree representat ion. 

In (Samet and Tamminen 1983) we have presented a 
new technique of determining geometr ic  properties, 
such as the per imeter ,  of l inear quadtree encodings 
and in (Samet and Tamminen 1984) the method has 
been applied to 3-dimensional  connected components 
labeling. Now we show how the same approach can 
be used in the conversion problem. The demonstra- 
t ion that  al l  phases of our a lgor i thm can operate 
d i rect ly  on l inear t ree representat ions w i thout  u t i l i z -  
ing expl ic i t  neighbor f inding techniques (Samet 1981) 
is one of i ts main interests. 

The pract ical  f ramework of our research is the 
Geometr ic  Workbench (Mantyla and Sulonen 1982), an 
exper imenta l  solid modeler constructed at the Hel-  
sinki Universi ty of Technology. The conversion prob- 
lem originates f rom applying QWB to geometr ic  mine 
modeling (Karonen et al. I983). Through the conver- 
sion program, GWB has been connected to the octree 
modeler OCTGRAS (Yamaguchi et  al. 1984), made 
avai lable to us through co-opera t ion  with the Kuni i  
Laboratory of the Universi ty of Tokyo. 

We f irst describe br ie f ly  the appl icat ion and previous 
conversion efforts.  Section 3 defines l inear image 
tree representat ions. In Section /4 we formulate the 
new conversion algor i thm. Its performance is 
analyzed in Section 5 and f inal ly  the claims ver i f ied 
by exper imenta l  results. 

2. Background 

2.1. Why Conversions 

We f irst br ief ly  discuss an example appl icat ion, 
geometr ic  mine modeling, to demonstrate why conver-  
sions are needed. 

The methods of this ar t ic le were f irst mot ivated by 
an exper imenta l  geometr ic  mine modeling system im- 
plemented together with a Finnish mining company, 
Outekumpu Ely. The system operates on boundary 
models representing ent i t ies, such as ore bodies, tun- 
nets, or planned excavations. Three dimensional 
solids describing ore bodies are constructed by con- 
necting two-d imens iona l  sections by a th ree-  
dimensional boundary (Figure 1-1a). 

The principa! analysis task of mine design consists of 
intersect ing a planned excavat ion wi th an ore body 
and determining the amount of minerals and side ma- 
te r ia l  thus formed (Figure 2-1). This requires a 
volume integrat ion of the type = 

([) ~ f(x,y,z)dV, 

S 

where f(x,y,z) is the (unknown) function describing 
mineral  content  at each point of space and S is the 
solid modeling the ext racted part  of the ore body. 

Figure 2-1 
Modeling Excavat ion by a Boolean Set Operation 

The funct ion f is empir ical ,  in that  i t  must be es- 
t imated at each re levant  point separately by geosta- 
t is t ica l  methods, or kriging (3oumel and Huijbregts 
1978). Therefore , discrete approximat ions (Lee and 
Requicha 1982) must be employed to evaluate ([). 
The determinat ion of one value of f(x,y,z) necessi- 
tates a spat ial  search among the hundreds or 
thousands of dr i l l  samples and is an expensive opera- 
t ion. 

Geostat ist ics is applied to the boundary representat ion 
of an ore body by f i rst  convert ing into a block 
model. Each block is est imated separately and the 
results summed for a to ta l  value. 

2.2. Existing Algori thms 

There do not exist many publications on convert ing a 
boundary representat ion into an octree. However,  
such a component is used i n  some pract ica l  systems 
(Meagher 198% Requicha and Voelcker 1983). The al- 
gorithms ut i l ized can be divided into two groups: 
those based on connect iv i ty  (Meagher 1983) and those 
based on expl ic i t  block Classif ication (Tamminen et 
al. 1984). A third approach would be to make M 
sections of the polyhedron, conver.t 2 each one of them 
into a quadtree at resolut ion M a r~ combine the 
results into an octree at resolut ion M by the algo- 
r i t hm of Yau and Srihari (1983). 

Conversion algori thms based on connect iv i ty  re f lec t  
the structure of the quadtree a lgor i thm of Samet 
(1980). They f irst determine the volume elements ly-  
ing on the boundary of the solid. The par t ia l  t ree 
thus formed is then traversed and each unclassified 
leaf  is determined to be empty or fu l l  by inspecting 
its neighbors. This approach can also be implemented 
by using a connected components labeling a lgor i thm. 
For ef f ic iency,  the method has required an expl ic i t  
t ree representat ion. 

In the geometr ic mine modeling system we have ut i l -  
ized an a lgor i thm where each leaf of  the block model 
is exp l ic i t l y  classified by a po in t - in -po lyhedron  test. 
The main computat ional  operations of this a lgor i thm 
are to determine whether a block intersects the 
boundary of the solid and, if so, whether it is con- 
tained in i t .  These operations typ ica l ly  have to be 
performed tens of thousands of t imes with the boun- 
dary model containing hundreds of faces. The tech-  
nique has been made e f f i c ien t  by using a spatial in- 
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dex based on the EXCELL method (Manty ia and Tam- 
minen 1983) .  In pract ice computat ion t |me is almost 
independent of the number of  polygons defining the 
polyhedron. 

This method has not been a main bot t leneck of the 
mine modeling system. However,  with the results of 
Samet and Tamminen (1983), implementing the con- 
nect iv i ty  approach has become just i f ied. 

3. Binary Image Trees 

Solid modeling by spatial enumerat ion is closely re la t -  
ed to three-d imensional  image processing, which w i l l  
be ref lected in our terminology.  This section per- 
tains to both t w o -  and three-dimensional  images but, 
for  conciseness, we present mainly the th ree-  
dimensional case. 

3.1. Defini t ions 

We shall consider t w o -  (2D) and three dimensional 
(30) binary images (i.e., 2 -  or 3-dimensional matr ices 
of pixels, respect ively voxels) and speak of the pixels 
and voxeIs as image elements. We use the same 
term also for the homogeneous blocks (leaves), which 
are the basic e lements of quadtrees and octrees. Le t  
M = 2 n describe the resolut ion of the ~mag~ so that  
the t o ta l  number of pixels (voxels) is M R (M~). 

An octree is defined as a recursive 8 -a ry  par t i t ion of  
a three-d imensional  image into octants unt i l  homo- 
geneous blocks (BLACK or WHITE) are reached 
(Srihari 1981, Meagher ]982a, 3ackins and Tanimoto 
]980,1983). A three-dimensional  binary image tree is 
formed exact ly  analogously but by dividing only in 
two parts at  each level of  recursion. We assume the 
f i rst  par t i t ion  to be in the x -d i rec t i on  wi th the y - ,  
z -  and x-d i rec t ions  al ternat ing thereaf ter .  Figure 
3-1  i l lustrates this concept. In the x -pa r t i t i on  we 
postulate the le f t  subtree to correspond to the 
western (W-) half of  the image; in the y -pa r t i t i on  i t  
corresponds to the S-half .  Le t  us s imi lar ly  speak of 
the lower  (L) and upper (U) halves of the z -par t i t i on .  

A node in a 3D binary image tree has six sides (W, 
E, S, N, L, U) and a neighbor node (of equal size), in 
each of these directions. In the ordering of nodes 
induced by a preorder t raversol  of  the binary tree al l  
the nodes in a W- or S- or L-ne ighbor  of a given 
node come before that  node. We ut i l ize binary im- 
age trees mainly because tree traversal  algorithms 
become somewhat s impler than for octrees. 

3.2. Representations 

We use a linear tree representation that is based on 
the preorder traversal of the binary image tree. The 
traversal yields a string over the alphabet '~", "B", 
"W" corresponding respectively to internal nodes 
(GRAY), BLACK leaves, and WHITF leaves. We call 
this string a OF-expression as Kawaguchi and Endo 
(1980) do in the case of quadtrees. A d i f fe ren t  but 
related representat ion is the l inear octree of  Gargan- 
t in i  (1982). For the image of Figure 3-1  the OF- 
expression becomes (B(B(BW. Its most s t ra igh t -  
forward b i t -encoding requires two bits per node both 
for  oct~ees and binary image trees. Expl ic i t  pointer  

(a) Image (b) Binary tree 

Figure 3-1  
Three-dimensional  Binary Image Tree 

based representat ions ordinar i ly  require at  least one 
computer word per node (Meagher 1982b). 

In (Tamminen 1984) we have reported methods of 
compacting the DF-expression. First of all, encode 
"(" by "I" and "B" and '~N" by "Ol" and "00", respec- 
tively. Further,  at the lowest level of a condensed 
tree there may exist only two types of node pairs, 
"BW" and '~NB". Thus these pairs may be encoded by 
"13" and "1", respect ively. In pract ice the above 
method has required about one bit  per node of  a 
three-d imensional  binary image tree. 

A binary image tree always contains at most as many 
leaves (but often more nodes) than the co~responding 
octree. For instance, at resolut ion M = 2- the con- 
densed binary tree of the surface of a unit sphere 
contains 25600 leaves whi le the corresponding octree 
has 43800 leaves. 

4. Conversion A lgor i thm 

4.1. General Outline 

In Figure 4 -1  we give the out l ine of an a lgor i thm for 
convert ing from a boundary representat ion to a 3D 
image tree. The method supports mult iple solids 
w i thout  in ter ior  voids, but the 3D outside of the 
solids must be connected. 

First ,  in procedure COMBINE3(), each face is 
separately converted into a l inear image tree 
representat ion. The trees are recursively 
OVERLAY'ed  in pairs to give the tree of the whole 
boundary. In the second phase - FILL30 - the im- 
age tree is traversed and its WHITE components, 
which are not connected to the outside of  the image 
are ext racted and changed to BLACK as described in 
the next  section. As there is not enough space for 
detai led algori thms of al l  the (simple) subroutines of 
Figure 4 -1  we only present their  outlines. 

OVERLAY() forms the boolean union of two (linear) 
binary image trees by traversing them synchronously 
according to the fol lowing rules: 

( I )  I f  e i ther  of  the nodes is BLACK the result ing 
node is BLACK. The other subtree is skipped 
(by sequential traversal).  
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p r o c e d u r e  BR TO BLOCKS30;  
/ *  Conve r t  boundary representa t ion  def ined by f a c e -  
art.anY FACES into b inary image t ree  a t  reso lu t ion M 
= 2 . * /  
begin 

global  va lue  i n t e g e r  M,NFACES; 
global pointer face  array F A C E S [ 0 : N F A C E S - 1 ] ;  
g lobal  po in te r  nodel is t  DF; / *  DF-exp ress ion  * /  
DF < -  COMBINE3(0 ,NFACES-1) ;  
F I L L 3 0 ;  / *  see Sect ion 4.2 * /  

end; 

p o i n t e r  nodal is t  procedtn-e COMBINE3(N1,N2);  
/ *  C o n v e r t  separa te ly  faces w i t h  indices be tween N1 
and N2 to image t rees and combine resul ts into a 
t ree  of  the corresponding pa r t  of  the boundary.  * /  
begin 

global value integer NFACES; 
g lobal  po in te r  face a r ray  F A C E S [ 0 : N F A C E S - 1 ] ;  
value integer N1,N2; 
i f  N2 - N 1  > 1 then  

~Lum(OVER LA Y(COM BI NE 3(N 1,(N I+N 2)/2), 
CON BIN E 3((N $+N 2)/2+ 1,N Z))); 

else i f  N 2  - N 1  = 1 then 
re turn(OVER LA Y(CONVE R T 3(F ACES [N 1] ), 

CONVERT 3(FACES [N 2])));  
/ *  CONVERT30 conver ts  one face * /  
else retumn~CONVER T 3(FAC ES [N 1]));  

end 

Figure 4-i 
Convers ion A lgo r i t hm  Out l ine 

(2) I f  e i t he r  o f  the nodes is WHITE the o ther  subtree 
is copied to the resu l t  (by sequent ia l  t raversaI ) .  

(3) I f  both nodes are GRAY the resu l t  is also GRAY.  

(4) Replace recurs ive iy  (BB by B and (WW by W. 

CONVERT30 conver ts  one face w i t h  plane equat ion 

P(x,y,z) = ax + by + cz + d = 0 

into a b inary  image t ree  as fo l lows:  

(1) Choose a p ro jec t ion  plane, say xy,  so tha t  the 
remain ing  coe f f i c ien t  (c) has m a x i m a l  absolute 
value.  

(2) Fo rm the 2D binary image t ree TWODT of the 
p ro jec t ion  of the face on the  x y - p l a n e  by pro-  
cedure BR TO BLOCKS20.  

(3) The rest  of  the convers ion is per fo rmed s imi la r l y  
to fo rming  the image t ree  of  the whole  plane 
P(x,y,z)  = 0, except  tha t  nodes, whose x y -  
p ro jec t ion  is WHITE in TWODT, become WHITE 
in the  resul t .  The universe is halved recurs ive ly  
by planes a l t e rna t i ng l y  perpend icu la r  to the x - ,  
y - ,  and z - a x e s  whi le  keeping t rack  of the 
m i n i m u m  and max imum values of  P(x,y,z) in 
each block thus formed.  To each block 
corresponds a node N2 of TWODT so t ha t  the 
b lock can be classi f ied as WHITE, B L A C K ,  or 
G R A Y  as fo l lows:  

- i f  N2 is WHITE, the block is WHITE 
- i f  zero does not  l le be tween the m in imum 

and m a x i m u m  of P(x,y,z) in the block,  the 

block is WHITE and N2 is skipped 
- i f  the block is a t  voxe l  l eve l  and N2 is 

B L A C K  then the b lock is B L A C K  (div is ion 
cont inues to voxe t  l eve l  on a face) 

- o therwise the  block is G R A Y  and is f u r t h -  
er  subdiv ided. 

(4) Replace recurs ive ly  (BB by B and (WW by W. 

The recurs ive halv ing d i rec t l y  produces the desired 
DF-express ion .  

BR TO BLOCKS20 forms the 2D image t ree  o f  a po- 
lygon.  For  s imp l i c i t y  we have imp lemented  i t  com-  
p le te l y  analogously to BR TO BLOCKS30:  

(1) Each edge of  the face is conver ted  into a 2D 
image t ree by CONVERT20 s im i la r l y  to the 
method appl ied in CONVERT30.  

(2) The t rees of  the edges are recurs ive ly  
O V E R L A Y ' e d  in pairs by COMBINE20.  

(3) The WI-~TE components of  the 2D image not  con-  
nected w i th  the outs ide are changed to B L A C K  
by F ILL20 .  ( i f  necessary, holes w i t h i n  a face 
are t rea ted  by d iv id ing the face into s imply 
connected parts.)  

The main v i r t ue  o f  CONVERT30 is tha t ,  to c lassi fy a 
block, we do not have to pe r f o rm  any p o i n t - i n -  
po lygon test .  Also, the P(x ,y ,z ) - range  w i th in  each 
block can be e f f i c i e n t l y  computed during the recu r -  
s ive subdivis ion and no sor t ing is requi red to a r r i ve  
at  the co r rec t  D F - o r d e r  o f  the blocks. 

As a resu l t  o f  prov id ing a l l  x y - i n f o r m a t i o n  in the 2D 
image t ree,  some spurious B L A C K  leaves may resul t  
when compared to the exac t  f a c e / v o x e l  - i n t e r s e c t i o n  
tests. This is not  ser ious consider ing the ove ra l l  na- 
ture o f  the b lock model  approx imat ion .  The choice 
of  the p ro jec t ion  plane min imizes  the occurrenc ies of  
this even t  wh i le  guarantee ing tha t  the inside of  a 
solid is never  connected w i t h  the outs ide.  

The boundary convers ion method descr ibed above has 
been sa t i s fac to ry ,  even though we chose i t  ma in l y  for 
i ts s imp l i c i t y .  We do not  wan t  to emphasize i t  be- 
cause other ,  po ten t i a l l y  more e f f i c i en t ,  techniques 
can be imagined and combined w i t h  the core o f  our 
approach, described in the nex t  sect ion.  

4.2. Connec t i v i t y  Label ing 

As discussed in Section 2.2 a va r i an t  o f  connected 
components tabel ing can be u t i l i zed in block model  
convers ion.  We show how i t  can be appl ied to l inear  
t ree representa t ions .  

Two e lements  of  a 3D image are ca l led ( f ace - )  con- 
nected to each o ther  i f  they share a boundary (cal led 
adjacency)  w i th  non -ze ro  area.  Labe l ing the con- 
nected components  o f  a b inary  image is o rd inar i l y  de-  
f ined as t rans fo rming  i t  in to  a symbol ic  image in 
which every max ima l l y  connected subset o f  B L A C K  
e lements  is labeled by a d is t inc t  pos i t i ve  in teger .  
However ,  in our case" the image e lements  in te rsec t ing  
the boundary o f  the solid are B L A C K  and we wan t  to 
e x t r a c t  and change to  B L A C K  the WHITE components  
not connected to the outs ide o f  the image. 
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Connected components labeling can be performed by 
the union-f ind a lgor i thm (Tarjan 1975). A t  the start  
each image element  is assumed to form a separate 
component. The f inal  components are determined by 
processing once each adjacency between image ele- 
ments. For each re levant  adjacency we must deter-  
mine the PUtative components of the two elements 
(find). I f  they di f fer ,  they are combined (union). 

The above algor i thm, applied to a DF-expression, 
must be able to determine adjacencies as the t ree is 
traversed in the f ixed order. When processing a node 
we know that  i ts W-, S-, and L-neighbors have 
been processed. Therefore there must exist data 
structures to record the in format ion of respect ively 
the E-,  N - ,  and U-sides of the processed part. Le t  
us cal l  these date structures the act ive yz - ,  xz - ,  and 
xy-borders.  They consist of act ive face elements. 
(In the rest of this section "face" means an act ive 
face of the above borders, not a face of the solid.) 

The main change compared to the two-d imens iona l  
connected components a lgor i thm reported in (Samet 
and Tamminen 1983) is that  there are now three ac- 
t ive borders, instead of two and that  the size of a 
border e lement is defined as i ts area, not width. 
Further,  the act ive borders can be represented as 
linked lists (instead of arrays), which is most impor- 
tant  in the three-d imensional  case. See (Samet and 
Tamminen 1984) for more details on connect iv i ty  la- 
beling. 

We give the f i l l ing a lgor i thm in three parts. In the 
main program (Fig. 4-2)  the three face e lement  lists 
are first in i t ia l ized so t~at  each contains one WHITE 
face element of size M% The solid can be imagined 
as situated in the posi t ive octant  of coordinate space 
with al l  the other octants having been processed and 
WHITE. This mirrors the state of  the act ive borders 
at the s tar t  of processing any node: its W-, S-, and 
L-neighbors have been processed and their  color and 
component in format ion is contained in the act ive 
border. Then procedure TRAVERSE() (Fig. 4-4)  is 
called to traverse the OF-expression of the binary 
image tree. Final ly PHASEII0 traverses the tree 
once more. For each WHITE leaf  i t  checks whether 
the leaf is in the component of  the outside. I f  not, 
i ts color is changed to BLACK. 

The main function of TRAVERSE() is to provide, at 
each ca]I to its sub-procedures, a pointer to the 
parts of the act ive face e lement  l ists bordering that 
subtree. I t  calls i tsel f  tw ice recursively at  each 
internal  node. A t  each leaf node i t  calls procedure 
INCREMENT() three t imes to per form the actual up- 
dating of the act ive borders and the connected com- 
ponents. If a WHITE leaf is not ident i f ied wi th  any 
existing component then a puta t ive  new component is 
formed. Labels of WHITE leaves are stored for pro- 
cessing by PHASEI[0. A f t e r  processing a leaf each 
l ist of ac t ive face elements is advanced to the ele-  
ment fol lowing it. 

To i l lustrate the working of the a lgor i thm we show, 
in Figure /4--3, the state of the act ive xy -border  and 
the start  of the subiist X Y L  when entering and leav- 
ing TRAVERSE() at each of  i ts calls corresponding to 
leaf  nodes of Figure 3-1.  

procedume FILL 50; 
/ *  First compute connected WHITE components of a 
binary tree of an M by M by M (M = 2 n) th ree-  
dimensional image represented by preorder traversa] 
DF. Then change components not connected wi th  out -  
side of image to BLACK in PHASEII0. Each act ive 
border surface xy, xz and yz is represented as a 
l inked list of records of type facelist,  which contain 
pointers to the act ive faces comprising the border. 
Each act ive face is represented as a record of  type 
face with four fields SIZ, LAB, COL, and CRD, 
which give respect ively,  the size (area), the com- 
ponent label, the color, and the value of the th i rd 
coordinate (z for an xy border) of a face. A record 
of type faeel ist  has two fields, DATA and NEXT, 
containing respect ively,  a pointer  to a face and a 
pointer to the next  e lement in the list. * /  
begin 

global value integer iv1; 
global value pointer nodelist OF; 
pointer faeelist XYL ,  XZL, YZL; / *  borders * /  
pointer face XY, XZ,YZ; 
X Y L  < -  ereate(facel ist) ;  XZL <-  c rea te ( f~e l i s t ) ;  
YZL <-  cre~Le(facelist); 
DATA(XYL)  <-  XY < -  create(face); 
DATA(XZL)  <-  XZ <-  create(face); 
DATA(YZL)  < -  YZ <-  create(face); 
SIZ(XY) <- SIZ(XZ) <- S]Z(YZ) <-  M 'M ;  
LAB(XY) <-  LAB(XZ) <-  LAB(YZ) <- outside; 
COL(XY) <- COL(XZ) <-  COL(YZ) <-  WHITE; 
CRD(XY) <- CRD(XZ) < - C R D ( Y Z )  <- 0; 
i f  not empty(DF) then begin 

TRAVE R SE (M, M, M, X Y L, XZL ,YZL ); 
PHASEII0 / *  change inside to BLACK * /  

end 
end; 

Figure 4 -2  
Main Procedure for Fi l l ing Inside 

Leaf  Entering Leav ing 

i(- 
3 "  

• ,'~ ~ - ~ - ~  

Figure 4-3 
State of  X Y L  at  Each Call to TRAVERSE() 

The purpose of  procedure INCREMENT() (Figure /4-5) 
is to process al l  the act ive face elements bordering a 
face of  a new leaf.  Whenever an adjacency between 
WHITE faces is encountered, the connected com- 
ponents in format ion is updated. Processing divides 
into three cases. In each of  them INCREMENT() per- 
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procedure TRAVER 5E (SX,SY,SZ,XYL,XZL,YZL); 
/ *  Process SX by SY by SZ segment of image where 
OF presents the preorder traversal of its binary t~ee. 
XYL,  XZL, and YZL are pointers to the lists of ac- 
t ive faces on the xy, xz- ,  and yz-borders of this 
part  of the image. Once the three faces of a leaf 
that  are adjacent to the act ive borders have been 
processed, XYL,  XZL, and YZL are advanced to p o i n t  
to the port ion of the act ive border that  is adjacent 
to the image element to be processed next. The list 
LL stores the putat ive labels of WI-UTE nodes for 
PHASEII(). * /  
begin 

value integer SX,fY,SZ; 
reference pointer f ~ e l i s t  XYL,XZL,YZL;  
global pointer nodelist DF; 
global pointer labeilist LL; 
pointer faeelist T; / *  auxi l iary * /  
pointer node L; 
L <-  create(node); 
COL(L) <- next n~le(DF); 
i f  COL(L) = GRAY then begin 

i f  SX = SZ then begin / *  part i t ion on x * /  
T <-  YZL; / *  save start  of yz border * /  
TRAVER 5E (SX/2,SY,SZ,XYL,XZI_,YZL); 
TRAVER 5E (SX/2,SY,S Z,XY L,XZL ,T) 

end 
else i f  SZ = SY then begin / *  on y * /  

T <-  XZL; / *  save start  of xz border * /  
TRAVER SE (SX,SY/2,SZ,XYL, XZL,YZL); 
TRAVER £F (SX,5Y/2,SZ,XYL,T,YZL) 

end 
else begin / *  part i t ion on z * /  

T <-  XYL;  / *  save start  of xy border * /  
TRAVERSE (SX,SY,SZ/2,XYL,XZL,YZL); 
TRAVERSE(SX,SY,SZ/2,T,XZL,YZI_) 

end 
end 
else begin / *  A leaf node. * /  

LAB(L) <- unknown; 
[NCREMENT(L,XYL,SX*SY,SZ); / *  xy-  border * /  
INCREMENT(L,XZL,SX*SZ,SY); / *  xz -  border * /  
[NCREMENT(L,YZL,SY*SZ,SX); / *  yz -  border * /  
i f  COL(L) = WHITE then begin 

i f  LAB(L) = unknown then / *  new label */ 
LAB(L) <- create(label); 
/ *  update active borders with label: * /  

LAB(DATA(XYL)) <-  LAB(L); 
LAB(DATA(XZL)) <- LAB(L); 
LAB(DATA(YZL)) <- LAB(L); 
add to I ist(LL,LAB(L)) / *  for PHASEII0 * /  

end 
XYL <-  NEXT(XYL); / *  advance lists * /  
XZL <- NEXT(XZL); YZL <-  NEXT(Y7__L) 

end 
end; 

Figure 4 -4  
Tree Traversal 

forms the necessary union operations and updates the 
active border as fol lows with the face of the new 
leaf:  

(1) The entering face is larger than the corresponding 
f i rst  element of the act ive border. Neighboring 
face elements are determined f rom the size 
(area) of the new face. The new face replaces 
the last neighboring element and al l  others are 
disposed of. 

(2) The entering face is equal in size wi th the f i rst  
border element, which i t  replaces. 

())  The entering face is smaller than the f irst border 
element, which it replaces. A new act ive face 

i s  created to account for the rest of the old 
border element. 

Finally the data of  the border element corresponding 
to the new face are updated. For s impl ic i ty  we have 
omit ted the disposal of act ive face elements touching 
the outside of the image. 

proceduce [NC REM E3N T(L,F L,S,W); 
/ *  Process a leaf L of area S in the present direc- 
t ion (xy, xz, or yz) and width W in the perpendicular 
direction. The leaf is adjacent to the f i rst  element 
of the border represented by FL, pointer to a list of 
act ive faces. See (5edgewick 1983) for the imple- 
mentat ion of union(), a combined find and union 
operation. * /  
begin 

value pointer node L; 
value pointer facelist FL; 
value integer S,W; 
global value integer M; 
integer 1; / *  auxi l iary * /  
pointer facel ist  P,O; / *  auxil iary * /  
i f  S > SIZ(OATA(FL)) then begin / *  case 1 * /  

I <-  0; P <-  FL; 
while I < S do begin / *  al l  bordering elements */  

i f  COL(L) = WHITE 
and COL(DATA(P)) = WHITE then 

LAB(L) <- ~ion(LAB(L),LAB(DATA(P)));  
I < -  I + SIZ(DATA(P)); 
P <- NEXT(P) 

end; 
Q <- NEXT(FL); NEXT(FL) <- P~ / *  delete and */  
f a e l i ~  dispe6e(Q,P) / *  reclaim storage for 
elements f rom Q up to but not including P * /  

end 
else begin / *  cases 2 and 3 * /  

i f  COL(L) = WHITE 
and COL(DATA(FL)) = WHITE then 

LAB(L) <- union(LAB(L),LAB(DATA(FL))); 
i f  S < SIZ(DATA(FL)) then begin / *  case 3 * /  

P <- create(facel ist);  / *  new element = * /  
DATA(P) <- cRate(face);  / *  rest of old one * /  
SIZ(DATA(P)) <- SIZ(DATA(FL)) - 5; 
COL(DATA(P)) <- COL(DATA(FL)); 
LAB(DATA(P)) <- LAB(DATA(FL)); 
CPJZ)(DATA(P)) <- CRD(DATA(FL)); 
NEXT(P) <- NEXT(FL); 
NEXT(FL) <- P; / *  insert into list * /  

end 
end; 
5IZ(DATA(FL)) <- 5; / *  update f irst element * /  
COL(DATA(EL)) <- COL(L); 
CRD(DATA(FL)) <- CRD(DATA(FL)) + W; 
i f  CRD(DATA(FL)) = M / *  touches outside */  

and COL(L) = WHITE then 
LAB(L) <- union(LAB(L),outside) 

end; 

Figure /4-5 
Processing one Side of a Leaf 
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5. Analysis 

Le t  us analyze separately the procedures OVER.LAY(), 
CONVERT20, COMBINE20, FILL20,  CONVERT30, 
COIvlBINE30, and FILL30 focusing on the e f fec t  of 
using l inear t ree representat ions. 

With l inear t ree representat ions OVERLAY() c lear ly 
inspects once each node of both trees and its com- 
p lex i ty  is thus proport ional  to the to ta l  number of in- 
put nodes, which is also a bound on the number of  
output nodes. With exp l ic i t  t ree representat ions the 
complex i ty  of OVERLAY() is at  most proport ional  to 
the size of the smaller input tree. 

CONVER.T20 performs a fixed amount of computat ion 
for each node of the 2D image t ree of  an edge seg- 
ment and d i rect ly  outputs the DF-expression. The 
analysis of COMBINE20 and FILL20 for each face 
corresponds closely to that  of COMBINE30 and 
FILL30 given below. 

CONVERT30 also performs a fixed amount of compu- 
ta t ion for each node of the output  tree, except for 
the case where an output leaf is WHITE and the 
corresponding port ion of the 2D tree must be skipped. 
(In this case the brother of the leaf w i l l  not be 
WHITE.) Because of the choice of the project ion 
plane, the amount of skipping can be at  most propor- 
t ional  to the number of  output  nodes. With expl ic i t  
t ree representat ions the skipping could be performed 
more e f f ic ient ly .  However,  its contr ibut ion to pro- 
cessing t ime is minor. 

When there are N faces, COMBINE30 calls OVER- 
LAY()  N - 1 times. Each node result ing f rom CON- 
VERT30 passes thrqugh OVERLAY() at most [log(N)'] 
t imes ( logarithms are to base 2). This fol lows f rom 
the remark above on the size of the output of 
OVERLAY(). Thus for a to ta l  of  I input nodes in the 
image trees of the faces the complexi ty  of al l  the 
OVERLAY's  is at most Ir log(N)']. Of course, the 
e lementary operations are very simple. COMBINE30 
requires at most tw ice the amount of space needed 
for  storing the image trees of the faces. Using 
techniques simi lar to external  sorting, disk storage 
may be used for this purpose. 

F ILL30 performs a fixed amount of work for each 
node, except for the contr ibut ion of the union-f ind 
-a lgo r i thm.  Tarjan (1975) has shown that  this contr i -  
bution is almost l inear in the number of operations 
performed. Thus the complex i ty  of F ILL30 is very 
nearly l inear in the number of nodes. The worst 
case complex i ty  of F ILL30 is be t te r  than tha t  of the 
connected components a lgor i thm of (Samet 1981). 
However, the boundary determinat ion method of  Jac- 
kins and Tanimoto (1983) could be applied to achieve 
equal performance wi th exp l ic i t  t ree structures. 

The worst case space complex i ty  of the connect iv i ty  
labeling a lgor i thm is about 3M face elements: I t  is 
easy to construct 30 checkerboard- l ike images, which 
would require the act ive borders to contain only face 
elements at voxel  level.  The union-f ind -a lgo r i t hm 
requires a label array with size determined by the 
highest label used. In pract ice, central  memory re- 
quirements are somewhat d i f f icu l t  to determine 
pr ior i .  In the fol lowing section we report  some ex- 
perienc es. 

6. Experiences 

We have programmed the conversion a lgor i thm in C 
language and run i t  on a VAX 11/750 (wi thout  a 
f loat ing point accelerator),  under Unix to determine 
i ts pract ica l  ef f ic iency.  Even though processing costs 
depend heavi ly on implementat ion detai ls we report  
below various cost components to give an indication 
of the i r  re la t ive  magnitudes. 

Detai led performance test ing is based on the fo l low-  
ing solids: 

(1) B(100) - ball approximated by 100 faces 

(2) B(400) - ball approximated by 400 faces 

(3) Ore - the ore body of Figure 1-1a (588 faces) 

(4) Exc. - an excavat ion (Figure 6-1,  40 faces). 

Figure 6-1  
Test Solid, an Excavat ion 

The e f fec t  of the theoret ica l  non- l inear i t y  of the 
union-f ind -a lgo r i t hm is so smal l  that  we can com- 
bine the exper imenta l  results into the fol lowing 
overal l  average costs per node. 

(1) OVERLAY() requires about 17 microseconds per 
input node. Thus to COMBINE N trees contain- 
ing a to ta l  of  I nodes, the summed 
OVERLAY' ing  t ime is at  most 17[['log(N)'] mi- 
crosec ond s. 

(2) CONVERT20 requires about 170 microseconds per 
output node. 

(3) CONVERT30 requires about 130 microseconds per 
output node. (The subroutine has been opt im-  
ized further than CONVERT20.) 

(4) F ILL30 requires about 380 microseconds per input 
node and the resource requirements for  F ILL20 
are a b i t  smaller. 

The implementat ions, save that  of  OVERLAY(), use 
recursion so that  subroutine calls account for much 
of the above costs. 

To help appreciate the unit costs we note that  the 
condensed bigary image t ree of  a unit sphere at  reso- 
lut ion M = 2" contains 208000 nodes. (A correspond- 
ing condensed complete ly BLACK bal l  only contains 
117000 nodes!) 
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Tables I and 2 compare the run t imes (in VAX 
11/750 CPU seconds) of the new method and the old 
one reported in (Tamminen et  aL 1984). Alas, we 
have not found other  publ icat ions to compare to. 

B(100) S(400) £N'e(588) Exc.(40) 

New method 165 237 245 22 
Old method 1350 1400 1600 324 

Table I. Processing Time at Resolution 128 

S(100) B(400) Ore(588) Exc.(40) 

New method 53 I00 i00 8 
Old method 380 400 410 79 

Table 2. Processing Time at  Resolution 64 

Tables 3 and 4 help in a detai led evaluat ion of the 
choices made in constructing the a lgor i thm. Table 3 
shows the contr ibut ion of each phase (in CPU 
seconds) to to ta l  processing t ime. Table 4 gives 
summed sizes (number of  nodes) of the various kinds 
of image trees: Output is the f inal  result,  Boundary 
(30) is the boundary of the f inal  result ,  Faces 
denotes the trees of al l  faces taken separately, Proj. 
faces the 20 project ions of faces, Boundary (2D) the 
trees of polygon boundaries, Segments the trees of 
polygon edges taken separately, and Overlay the 
number of nodes passing through the various invoca- 
l ions of OVERLAY(). 

B(100) B(400) Ore(588) Exc.(40) 

FILL 30 79.6 84.0 62.2 7.7 
CONVERT30 32.3 46.3 47.4 4.9 
OVERLAY() 29.7 45.1 40.7 2.8 
FILL 20 16.9 32.1 41.6 3.2 
CONVERT20 9.2 23.0 29.2 2.6 

Table 3. Processing Costs at  Resolution 128 

B(100) B(400) Ore(588) Exc.(40) 

Output 116711 122485 98947 12331 
Boundary (3D) 201668 207794 169108 20880 
Faces 259758 346778 360062 34403 
Proj. faces 29022 68692 92664 7825 
Boundary (2D) 41570 90350 117034 10299 
Segments 54088 142552 179604 15090 
Overlay 1650000 2580000 2390000 180000 

Table 4. Summed Sizes of Trees at Resolution 128 

From Table 3 we see that  the main part  of the t ime 
is taken by determining the image t ree of the boun- 
dary of the polyhedron. Our approach to this task 
was chosen for its un i formi ty  (20 and 30 phases are 
almost ident ical)  and robustness. However,  there is 
much room for improvement by using d i f fe ren t  tech-  
niques. 

The only par t  of our algor i thm, whose ef f ic iency is 
seriously af fected by the use of  l inear  t ree represen- 
tat ion% is OVERLAY(). Its contr ibut ion to the total 
run t ime is general ly less than 20%. Also, a more 
e f f i c ien t  (in the expected case) F ILL30  is conceivably 
possible wi th an exp l ic i t  t ree structure. This is be- 
cause we need not form exact  connected components 
but only ex t rac t  the part  connected to the outside. 

This can be performed using depth f irst search for 
leaves lying on the image border and recursive neigh- 
bor f inding, start ing f rom each unlabeled one of 
them. 

The centra l  memory requirements of F ILL30 for 
6(400) at resolut ion 128 consist of about 3500 records 
for  act ive faces. This compares favorably to the 
worst case of about 50000 records. Further,  about 
1500 ten ta t ive  labels are formed. As resolut ion is 
increased by a factor  of two the size of the output  
t ree grows by a factor  of four. The same holds for  
processing t ime of the connect iv i ty  labeling phase and 
for  the number of  putat ive labels. However,  the 
number of ac t ive faces seems to grow only l inearly 
with resolution. 

The number of nodes in the two-d imens iona l  image 
trees depends on the summed length of  edges meas- 
ured at the chosen resolution and to a lesser extent  
on the number of edges of the polyhedron. The 
length of  edges grows l inear ly wi th  resolut ion. Simi- 
lar ly,  the summed size of the three-d imensional  im-  
age trees depends on the surface area of the po- 
lyhedron and its number of  faces. The surface area 
grows wi th the square of  resolut ion. The processing 
t ime of the new a lgor i thm is af fected by both the 
above factors and thus grows somewhat more slowly 
than tha t  of the old one, whose cost depends almost 
exclusively on the number of [eaves output. 

Our connected components labeling technique seems 
to outper form that  of Lumia (19833, based on the 
voxel  mat r ix  representat ion, by orders of magnitude, 
in cases typ ica l  of  the conversion problem (Samet and 
Tamminen 19843. This is mainly explained by the 
lesser amount of image elements in our representa- 
t ion. 

The const i tuent parts of our a lgor i thm can be con- 
nected in various ways. We recommend keeping the 
conversion of the boundary and the f inal  connect iv i ty  
labeling as separate programs communicat ing through 
a Unix pipe. With this structure the f irst phase ean 
be easily replaced by another one, say, for processing 
curved surfaces. 

7. Conclusions 

We have presented an algor i thm, e f f ic ient  in pract ice,  
for  convert ing a polyhedron into an oc t ree - l i ke  block 
model. A character is t ic  of  the a lgor i thm is that  al l  
i ts phases operate d i rect ly  on l inear t ree representa- 
tions. 

We bel ieve tha t  the method presented can be applied 
as a general conversion tool  in boundary representa- 
t ion modelers. Up to the present conversion seams 
to have been possible in pract ice only for basic bui ld- 
ing block solids, which have then been combined on 
the octree side by using boolean set operations. The 
conversion program l inks our modeler (QWB) with that  
of (Yamaguchi et al. 1984). An interest ing pract ica l  
research problem is to find the opt ima[ division of 
labor between boundary representat ions and octrees in 
s imi lar  combined systems. 
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Our experiences on applying the solid modeling tech- 
niques described here to mine modeling have been 
very encouraging but wi l l  be reported in more detai l  
else where. 

ACKNOWLEDGEMENTS 

The work has been lsupported by the Academy of Fin- 
land and by the National Science Foundation under 
grant MCS-83-02118. We thank Reijo Sulonen for 
his comments and J i l l  Karonen for help with the 
mine modeling data and figures. 

REFERENCES 

1. Gargantini, I., Linear octtrees for fast processing 
of three dimensional objects. CVGIP 71](1982)4, 
pp. 363-374. 

2. Jackins, C.L. and Tanimoto, S.L., Oct-trees and 
their use in representing three-dimensional ob- 
jects. CGIP 14(1980), pp. 249-270. 

3. Jackins, C.L. and Tanimoto, S.L., (;~Jad-trees, 
oct- t rees and K-trees: a generalized approach to 
recursive decomposition of Euclidean space. 
IEEE PAMI-5(1983)5, pp. 533--539. 

4. Journel, A.G. and Huijbregts, Ch, J., Mining 
Geostatistics. Academic Press, 1978. 

5. Karonen, O., Tamminen, M., Kerela, P., Mitjonen, 
M., and Orivuori, E., A geometric mine modeling 
system. Proc. Autocarto Six Conference, Ot- 
tawa~ 1983 pp. 374-383. 

6. Kawaguchi, E. and Endo, T., On a method of 
binary picture representation and its application 
to data compression. IEEE PAMI 5(1980)1, pp. 
27-35. 

7. Klinger, A., Patterns and search statistics. In Op- 
t imizing Methods in Statistics, Rustagi, J.S. (Ed.), 
Academic Press, New York, 1971, pp. 303-337. 

8. Lee, Y.T. and Requicha, A.A.G., Algorithms for 
computing the volume and other integral proper- 
ties of solids. II. A family of algorithms based 
on representation conversion and cellular approxi- 
mation. CACM 25(1982)9, pp. 642-650. 

9. Lumia, R., A new three-dimensional connected 
components algorithm. CVGIP 23(1983), pp. 
207-217. 

10. Meagher, D., Geometric modeling using octree 
encoding. CGIP 19(1982a), pp. 129-147. 

i I .  Meagher, D., Octree generation, analysis and 
manipulation Report IPL-TR-027, Rensselaer Po- 
lytechnic Institute, Troy, New York, 1982b. 

12. Meagher, D., Personal communication. 1983. 

13. Mantyla, M. and Sulonen, R., G W B -  A Solid 
Modeler With Euler Operators. IEEE Computer 
Graphics & Applications 2(1982)7, pp. 17-31 

14. Mantyla, IvL and Tamminen, M., Localized set 
operations for solid modeling. Computer Graph- 
ics17(1983)3, pp. 279-288. 

15. Requicha, A.A.G. and Voelcker, H.B., Solid 
modeling: current status and research directions. 
IEEE Computer Graphics and Applications 
3(1983)7, pp. 25 - 37. 

16. Requicha, A.A.G., Representations of rigid solids: 
theory, methods and systems. ACM Comp. Surv. 
12(1980), pp. 437-464. 

17. Samet, H., Region representation: quadtrees from 
boundary codes. C A C M  Z3(1980)3, pp. 163-170. 

18. Samet, H., Connected component labeling using 
quadtrees. JACM Z8(1981)3, pp. 487-501. 

19. Samet, H., The quadtree and related hierarchical 
data structures. To appear in ACM Comp. Surv. 
Also TR-1329, Computer Science Department, 
University of Maryland, College Park, MD, 1983. 

28. Samet, H. and Tamminen, M., Computing 
geometric properties of images represented by 
l inear quadtrees. Report TR-1359, Computer Sci- 
ence Department, University of Maryland, College 
Park, MD, 1983. 

21. Samet, H. and Tamminen, M., Eff ic ient image 
component labeling. Report TR-1420, Computer 
Science Department, University of Maryland, Col- 
lege Park, MD, 1984. 

22. Sedgewick, R., Algorithms. Addison-Wesley, 
Reading, 1983. 

23. Srihari, S.N., Representation of three- 
dimensional digital images. ACM Comp. Surv. 
1](1981)4, pp. 399-423. 

24. Tamminen, M., Encoding pixel trees. To be pub- 
lished in CVGIP, 1984. 

25. Tamminen, iVl., Karenen, O., and Mantyla~ IvL, 
Block model conversion using an eff ic ient spatial 
index. To be published in CAD Journal, 1984. 

26. Tarjan, R.E., On the efficiency of a good but 
not linear set union algorithm. 3ACM 2Z(1975), 
pp. 215-225. 

27. Yamaguchi, K., and Kunii, T.L., A layered string 
data structure for an octree model. Techn. Rep. 
83-15, Dept. of Information Science, Univ. of 
Tokyo, 1983. 

28. Yamaguchi, K., Kunii, T.L., Fujimura, K. and 
Toriya, H., Octree-related data structures and 
algorithms. IEEE Computer Graphics and Applica- 
tions 4(1984)1, pp. 53-59. 

29. Yau, M-M and 5rihari, S.N., A hierarchical data 
structure for multidimensional images. CACM 
26(1983)7, pp. 504-515. 

51 


