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ABSTRACT

Information sources on the Internet (e.g. web versions of
newspapers) usually have an implicit spatial reader scope,
termed the audience location which is the geographical lo-
cation for which the content has been primarily produced.
Knowledge of the spatial reader scope facilitates the con-
struction of a news search engine that provides readers a
set of news sources relevant to the location in which they
are interested. In particular, it plays an important role in
disambiguating toponyms (e.g. textual specifications of geo-
graphical locations) in news articles, as the process of select-
ing an interpretation for the toponym often reduces to one
of selecting an interpretation that seems natural to those
familiar with the audience location. The key to determin-
ing the spatial reader scope of news sources is the notion
of local lexicon, which for a location s is a set of concepts
such as, but not limited to, names of people, landmarks,
and historical events, that are spatially related to s. Tech-
niques to automatically generate the local lexicon of a loca-
tion by using the link structure of Wikipedia are described
and evaluated. A key contribution is the improvement of ex-
isting methods used in the semantic relatedness domain to
extract concepts spatially related to a given location from
the Wikipedia. Results of experiments are presented that
indicate that the knowledge of the audience location signif-
icantly improves the disambiguation of textually specified
locations in news articles and that using local lexicons is an
effective method to determine the spatial reader scopes of
news sources.
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1. INTRODUCTION
Combining techniques from artificial intelligence and nat-

ural language processing to understand news has been of
interest for a number of years (e.g., Scisor [6]). This work
has become increasingly relevant given the wide access to
the Internet which has resulted in more and more people get-
ting their news online than from traditional methods such as
printed newspapers. Indeed the online news medium has a
number of advantages over its printed medium counterpart.
First, it can be accessed from various portable devices from
almost anywhere and anytime due to the wide availability
of wireless networks. Second, its content can be indexed
dynamically on the basis of its various attributes, including
topic, location, and time, using information extraction tech-
niques. Conventional search engines are generally good at
helping people find specific information on the web as people
usually know exactly what they are looking for. However,
this is not the case for news on the web. The problem is
that when looking for news, readers usually turn to news
sources with which they are familiar. For example, a per-
son living in Washington, DC often turns to the web site
of the Washington Post, as it is the most prominent news
source in the area. However, a reader may be interested in
other news sources, that might have better coverage of local
news as well as specific topics (politics, sports, technology).
Most of the websites offering online news have RSS feeds for
which users can register in order to obtain updated break-
ing news with one mouse click. Therefore, the question in
which we are interested is how a reader can search for (and
find) RSS feeds which might contain news relevant to his/her
personal interests. In other words, our goal is to support a
news search engine that provides readers a list of relevant
news sources in response to queries such as “Give me all
news sources with news from Washington, DC”. This capa-
bility requires the news search engine to index the feeds in
an analogous manner to that which the conventional search
engine indexes web documents on their content.

In order to index an RSS feed, we need to understand its
spatial reader scope. This is the location that is addressed
by the feed which means an audience that is familiar with



and interested in news topics about the location (and sur-
rounding areas). From a pragmatic standpoint, this means
that references to these topics in articles are assumed to
be (and interpreted as) local unless some additional spatial
qualification to the contrary is provided. Note that finding
the spatial reader scope is related to, though different from
finding the spatial focus of a document, which is the main
geographic area of interest of a particular document (e.g.,
as is done in the STEWARD system [11]). An RSS feed can
contain many articles whose spatial focus differs from the
feed’s spatial reader scope. Moreover, the spatial focus of
an article may be impossible to determine due to the lack
of sufficient number of geographic references. Therefore the
spatial reader scope of a feed cannot be considered as the
spatial focus of the majority of the articles in the feed. Note
also that a “United States” spatial reader scope of a feed is
not inconsistent with the presence in the feed of many arti-
cles about “Iraq” as readers in the United States are not just
interested in what happens in the United States, but also in
what can affect their lives.

The key to determining the spatial reader scope of a feed
is the notion of a local lexicon [10]. The local lexicon of a
location s (assumed in this work to be a point location) is a
set of concepts which are spatially related to s. The notion of
a concept encompasses a number of different entities, such
as people, landmarks, organizations, historical events, food
specialties, movies, songs, and music styles. A concept c is
spatially related to a location s if c can be associated without
ambiguity with s. For example, the local lexicon of Washing-
ton, DC contains concepts such as the Lincoln Memorial, the
White House, Adrian Fenty (the mayor), and the 1968 Riots
(a historical event which is unambiguous to people familiar
with Washington, DC). Determining whether a concept is
spatially related to a location is not always trivial. In partic-
ular, for some concepts (such as landmarks), there is a clear
consensus about the spatial relatedness or non-relatedness of
the concepts. For example, it is clear that White House and
Capitol Hill are both spatially related to Washington, DC
as their lat/long values are within the boundaries of Wash-
ington, DC. In addition, places near a location may also be
spatially related to it; however, this is not always the case.
For example, some people view College Park, Maryland, as
being spatially related to Washington, DC, as College Park
is one of Washington’s suburbs, while others take the view
that since College Park is not inside Washington, DC, it is
not spatially related to it. These differing views were re-
flected in our experiments on local lexicons in Section 5.1.
The situation gets even more complicated when it comes
to the spatial relatedness of people and a location, as peo-
ple move and thus need not necessarily be unambiguously
associated with just one location.

In order to infer the spatial relatedness of concepts to a
location we use Wikipedia1, which is a human artifact built
on the basis of consensus by a large pool of people on the
Internet. Wikipedia can be modeled as a directed graph (to
which we refer as the Wikipedia graph W ), with a node va

for each article a and an edge from node va to node vb if ar-
ticle a has a link to article b. Each node in W is a concept,
as defined above, and is labeled with a set of phrases, one of
them being its canonical name and the others being aliases
to the concept. The canonical name of a concept is the ti-

1http://www.wikipedia.org/

tle of the corresponding article in Wikipedia and is unique
over the set of concepts, whereas an alias may be shared by
two or more concepts. For example, The White House is the
canonical name of the house of the President of the United
States of America, but its alias White House also refers to
a government building in Moscow, as well as to the pres-
idential palace of the Kyrgyz Republic (i.e., Kyrgyzstan).
Virtually every location s has a corresponding concept r in
W , as Wikipedia features articles about important locations
as well as small towns and villages around the world. In or-
der to create the local lexicon of s, we need to select from W
concepts which are spatially related to r. This is similar to
the problem of computing semantic relatedness between con-
cepts using Wikipedia (e.g., [5, 12, 13, 19, 22]). However,
none of the existing methods incorporate spatial evidence
from Wikipedia, which is necessary to determine the spatial
relatedness of a concept to a location. Thus one of our con-
tributions is adapting and improving existing methods from
the semantic relatedness literature to extract concepts from
Wikipedia that are spatially related to a given location.

It is important to observe that knowledge of the spatial
reader scope of a news source is not only useful to the de-
velopment of a news search engine, but also to geotagging,
which is an important application in the spatial domain.
Geotagging [1, 8, 10, 14, 15] is the process of identifying and
disambiguating references to geographic locations in text
documents, where the spatial data is not specified geomet-
rically but as a collection of words. The goal of geotagging
systems is the extraction of textual specifications of locations
(called toponyms) and assigning them the correct lat/long
values. However, textual specifications of locations are am-
biguous, as it is not clear if a term refers to a geographic
location (e.g., is “Jordan” a country or is it a surname as
in “Michael Jordan”?). Moreover, even if the term is used
to denote a geographic location, distinguishing between the
possibly many instances of geographic locations with the
same name is an additional challenge (e.g., does an instance
of“London”refer to an instance in the UK, Ontario, Canada,
or one of countless others?)

The disambiguation of toponyms is a major challenge in
NewsStand [18], a system we have built for visualizing news
articles using the locations mentioned in them, and this
serves as the motivation for the work described here. Unlike
existing approaches, we resolve the ambiguous toponyms us-
ing knowledge of the local lexicon of the spatial reader scope
of the news source in question. For example, the Washington
Post is primarily written for people interested in the Wash-
ington, DC, area, which means that it is well understood
that a reference to “White House” is to be associated to the
official residence of the President of the United States of
America. However, the same reference in the Moscow News
may be associated with the “White House” in DC, or with
the so-called “Russian White House”, a government building
in Moscow. The ambiguity in the second case stems from
the fact that the “Russian White House” is in the local lexi-
con of Moscow while the “White House” in DC is a concept
well-known to everybody (i.e., it belongs to a global lexi-
con of well-known concepts) and thus it is also likely to be
mentioned in newspapers whose spatial reader scope is not
limited to Washington, DC. In Section 7 we discuss experi-
mental results that clearly indicate that knowledge of local
lexicons and the spatial reader scope leads to significant im-
provements in geotagging accuracy.

http://www.wikipedia.org/


The rest of this paper is organized as follows. Section 2
describes the local lexicon in greater details as well as points
out that its construction depends on building a Wikipedia
graph (Section 3) from which a set of candidate concepts
for inclusion in the local lexicon is extracted (Section 4).
Section 5 presents a number of different scoring measures for
determining which concepts are spatially related to a given
location. Section 6 describes how the local lexicon is used
to infer the spatial reader scope and presents the results of
some experiments to validate our work. Section 7 shows how
the knowledge of the spatial reader scope of a feed can help
geotagging of news articles from that feed. Finally, Section 8
contains concluding remarks.

2. LOCAL LEXICON
Let s be a location and r be the corresponding concept

in Wikipedia. The actual process of constructing the local
lexicon for s using Wikipedia is described in Sections 3, 4,
and 5 and has the following structure.

1. Construct the Wikipedia graph W which involves ex-
tracting the relevant metadata for the concepts and
the edges.

2. Construct the concept graph of s with root r by ex-
tracting the subgraph of W consisting of every concept
that either is reachable in just a few (at most three)
hops starting at r or has an edge to r. The concept
graph contains the candidate concepts for inclusion in
the local lexicon of s and is needed because it would
not be efficient to run step 3) on the Wikipedia graph.
In fact, while the Wikipedia graph has up to 3 million
concepts, a concept graph has typically few thousand
concepts.

3. Assign a score for every concept in the concept graph,
where ideally a high score means that the concept has
a high spatial relatedness to r. Section 5 describes the
variety of measures that we used to assign scores to
the concepts in the concept graph.

4. Create the local lexicon of s, by selecting the concepts
with a score above a given threshold τ . Values of the
threshold are discussed in Section 5.1.

It is important to note that a local lexicon is not a gazetteer.
In particular, gazetteers provide a correlation between names
of locations and their geometric position on the Earth, as
well as synonyms, and possibly information about their posi-
tions in a containment hierarchy (e.g., the county, state, and
country in which an entry such as a particular city is con-
tained), with the goal of providing the most complete cover-
age of the world. However, unlike local lexicons, gazetteers
do not capture the sense of which locations (and people,
events, etc.) are known without ambiguity to people famil-
iar with (and who expect to be reading about) s, which is
necessary for determining the spatial reader scope of a news
source as well as disambiguating the toponyms in news arti-
cles. Indeed, news from a source whose spatial reader scope
is s is likely to contain many references to concepts which
are important and familiar (without ambiguity) to people
interested in the area around s. Finally, we observe that the
notion of a local lexicon does not encompass globally-known
concepts such as Barack Obama, since these concepts offer

little resolution power at local scales. As an example, the
top 20 concepts in the local lexicon of Washington, D.C.
are shown in Table 1. In previous work [10] we describe
a method that creates the local lexicon of a location s by
taking all locations found in a gazetteer that are within a
given short distance of r. For example, using this strategy
with s being Columbus, OH and with a distance of 50 miles
yields a local lexicon containing over 5000 geographic loca-
tions which is an unreasonable number of local places for a
typical human to know. Clearly, the notion of a local lexicon
is more nuanced than simply compiling all nearby locations
from a large, extensive gazetteer, something which is not
captured by the approach of [10]. As this example demon-
strates, determining a local lexicon for a location is not a
straightforward process, and is really a question of under-
standing what makes some concepts unambiguous to people
familiar with a place and some not.

3. THE WIKIPEDIA GRAPH
The first step is the creation of the Wikipedia graph W ,

where the metadata needed to compute the local lexicons
is associated with the concepts and edges. The input is a
complete dump of the English Wikipedia website, which is
publicly available for download2. This dump file, which is
a snapshot of Wikipedia as of September 29, 2009, is pro-
cessed to extract the concepts, (recall again that a concept
corresponds to a Wikipedia article), the (directed) edges be-
tween the concepts (an edge corresponds to the hyperlink
between Wikipedia articles), and the metadata. For each
edge e = (c1, c2), where c1 and c2 are two concepts, we
store the position in the content page of c1 of the hyper-
link corresponding to e. The position is computed in terms
of the number of words that precede e in the article corre-
sponding to c1. As for the concepts, useful metadata are
the canonical name, the aliases and the spatial coordinates
(for spatial concepts). Since in a document a concept may
not be referred to with its canonical name, finding a good
set of aliases is an important step which we discuss below in
greater detail. Unlike the other metadata which are easy to
get from the Wikipedia dump file, extracting aliases is chal-
lenging, since aliases are not stored explicitly in the dump
file. Observe that the same goes for the structured versions
of Wikipedia, such as DBpedia3 and Freebase4.

Let C be the set of all concepts in W and c ∈ C a concept.
To create a set Ac of aliases of c we consider four sources
of aliases, as in [3]: redirect pages, disambiguation pages,
piped links and titles.

1. A redirect page has no content itself and provides a
link to another Wikipedia article to which the reader
is automatically taken. If a page with title t redirects
to the Wikipedia article corresponding to c, t is added
to Ac.

2. A disambiguation page with title t (e.g. Springfield)
contains a list of links to Wikipedia articles which are
possible interpretations of t (e.g. all towns or people
called Springfield). If a disambiguation page with title
t contains a link to the Wikipedia article corresponding
to c, t is added to Ac.

2http://download.wikimedia.org/
3http://wiki.dbpedia.org/
4http://www.freebase.com/
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Table 1: Top 20 concepts in the local lexicon of Washington, D.C.

1 Judiciary Square, Washington, D.C. 11 Lincoln Memorial
2 Arlington County, Virginia 12 Ronald Reagan Washington National Airport
3 Washington Metro 13 Dupont Circle, Washington, D.C.
4 National Mall 14 Washington Monument
5 Woodley Park, Washington, D.C. 15 Washington Metropolitan Area Transit Authority
6 White House 16 Union Station (Washington, D.C.)
7 Smithsonian Institution 17 Verizon Center
8 United States Capitol 18 Vietnam Veterans Memorial
9 Robert F. Kennedy Memorial Stadium 19 Jefferson Memorial
10 National Air and Space Museum 20 Adams Morgan, Washington, D.C.

3. In a Wikipedia article a piped link is a way to link a
phrase p (e.g. France) to another Wikipedia article
with title t (e.g. French National Football Team) when
p and t are different and is expressed as [[t|p]]. If a
piped links [[c|p]] is found in a Wikipedia article, p is
added to Ac.

4. Since no two articles can share the same title, some
titles come with a parenthetical disambiguation tag,
as for instance in Springfield (The Simpsons). If the
title of the Wikipedia article corresponding to c is of
the form t(tag), then t is added to Ac.

After the above procedure, Ac may contain both relevant
and noisy aliases. We say that a ∈ Ac is a relevant alias
(noisy alias) if a is likely (unlikely) to be found in a text
document as a reference to c. Table 2 lists the relevant
and noisy aliases of “Washington, D.C.”: phrases such as
“interstate 95”, “this town”, or“washington bureau chief”are
unlikely to refer to “Washington, D.C.”. We found that up
to 75% of the noisy aliases come from the piped links, 15% of
the noisy aliases are due to the redirect pages and 10% due to
the disambiguation pages. Not surprisingly none of the noisy
aliases come from the titles. Noisy aliases are not necessarily
due to errors in Wikipedia. For example, the disambiguation
page titled “Interstate 95” does not contain only the links
to all possible interpretations of “Interstate 95”, but also
links to other concepts that may be incidentally mentioned
(such as “Washington, D.C.”). The approach in [3] does
not address the problem of noisy aliases; however, as we will
show in Section 6, noisy aliases have a negative impact when
it comes to understand the spatial reader scope of a feed. In
order to remove as many noisy aliases as possible, we define
two scores for every pair (c, a), c ∈ C and a ∈ Ac: the alias
relevance score and the concept relevance score. Formally,
we compute the alias relevance score RA(c, a) as:

RA(c, a) =
o(c, a)

P

i∈A o(c, i)

where A =
S

j∈C
Aj and o(c, a) is the number of times pair

(c, a) is extracted over all aliases sources. Intuitively, the
alias relevance score of (c, a) measures how good a is as an
alias of c over all other aliases of c. In other words, the best
alias abest of c is the one such that RA(abest) > RA(i), for
every i ∈ Ac, i 6= abest. Note that if abest is the only alias of
c, then RA(c, abest) = 1. However, the fact that abest is the
only alias of c does not imply that abest is not noisy. This is
why we introduce the concept relevance score RC(c, a) as

RC(c, a) =
o(c, a)

P

j∈C
o(j, a)

which measures how well c is represented by a over all con-
cepts having a as an alias. In other words, if RC(cbest, a) >
RC(j, a), for every concept j (different than cbest) having
a as an alias, then a is commonly used to denote concept
cbest. Therefore, if abest is the only alias of c but is not a
good alias for c, then RC(c, abest) will be low. We can then
combine both scores to obtain a score S(c, a), for each pair
(c, a) as follows:

S(c, a) = RA(c, a) ·RC(c, a)

The higher S(c, a), the better a is as an alias of c. Now
we have all the ingredients to describe our algorithm to re-
move the noisy aliases. If a is an alias obtained from two or
more sources, then a is considered to be relevant, no mat-
ter what is the value of S(c, a). To support our decision
we selected a set of 10,000 pairs (concept, alias) and we
observed that 95% of the pairs obtained from two or more
sources are relevant aliases. If (c, a) has been drawn from
just one source, we use S(c, a) to classify a as a relevant or
noisy alias. Since 75% of the noisy aliases come from piped
links and 25% from redirect and disambiguation pages, we
use two different thresholds τpiped and τreddir to discrimi-
nate between relevant and noisy aliases obtained from piped
links and redirect/disambiguation pages respectively. In or-
der to determine the values of τpiped and τreddir, we selected
a training set of 10,000 pairs (concept, alias) and we com-
puted which value of the two thresholds better discriminate
between noisy and relevant aliases. With values τpiped = 0.4
and τreddir = 0.1 we manage to remove 72% of the noisy
aliases while removing only 20% of relevant aliases.

4. THE CONCEPT GRAPH
We use two approaches to create the concept graph G(r)

of the root concept r corresponding to a given location s.
Since, as defined above, the nodes in G(r) are the candidate
concepts for inclusion in the local lexicon of s, both ap-
proaches try to extract from Wikipedia W concepts which
are likely to be spatially related to s. The first approach
(called 2-level) consider all concepts that are reachable in
W in at most 2 hops from r as good candidates, and pro-
ceeds as follows:

1. The root concept r is the root of the G(r).

2. Add to G(r) all concepts that are directly linked from
r, referred to as first-level concepts.

3. For each first-level concept c, add all concepts directly
linked from c that are not already present in the con-
cept graph, referred to as second-level concepts.



Table 2: Aliases of Washington, D.C.

Relevant Aliases

city of washington; dc; district of columbia; district of columbia, united states; the
district of columbia; wash., d.c.; washington; washington city; washington dc; wash-
ington (dc); washington d.c; washington d. c.; washington d.c.; washington, dc;
washington, d.c; washington, d. c.; washington, district of columbia;

Noisy aliases

alpha sigma; american federal district; architecture of washington, d.c.; board of
commissioners for the district of columbia; brightwood; capital; capital city; capitol;
carthage; l’enfant plan; interstate 95; mu lambda; this town; washington bureau chief;
washington, d c (disambiguation)

4. For each second-level concept c, select those concepts
that link back to r, or to at least to one first-level
or second-level concept, and add them to the concept
graph.

The second approach (called link-back) still assumes that
the first-level concepts are good candidates, but second (and
higher) level concepts are considered good candidates only
if they link back to the root concept r. Therefore the con-
cept graph G(r) created by this second approach contains r,
the first-level concepts, and the second (or higher) level con-
cepts that link back to r. We evaluate the two approaches
in Section 5.1 in terms of which one leads to better local
lexicons.

5. SPATIAL RELATEDNESS MEASURES
In order to determine the spatial relatedness of the con-

cepts of G(r) to r, we explore two graph-based measures bor-
rowed from the semantic relatedness domain (PageRank [2],
and Green measure [12]) and four measures that are based
on the Jaccard index [17] and we improve each measure by
including spatial information. The reason why we selected
these measures is because they are easy to implement, fast
to compute and, as we will show in Section 5.1, perform well,
especially when enhanced with spatial information.

Henceforth, c denotes a concept in G(r), n the number of
concepts in G(r), in(c) provides the set of concepts that link
to c in G(r), out(c) is the set of concepts to which c links,
N(c) is in(c) ∪ out(c), d(c) is the degree of c in G(r) and
finally S(c) is the score assigned to c using one of the four
scoring functions.

Spatial Information. As mentioned in Section 3, for most
concepts that are geographic entities (e.g. geographic loca-
tions, landmarks) spatial positions on the map (i.e., coordi-
nates) can be extracted from Wikipedia. It is not surprising
that using the spatial position of a concept c when comput-
ing the spatial relatedness of c with r can result in significant
improvements to the quality of the measure. However, this
may also create a bias to include spatial concepts over non-
spatial concepts (e.g. people, historical events) for which
there may not be any assigned spatial coordinates. But
even though most non-spatial concepts may not have ex-
plicit spatial coordinates, we can sometimes associate them
with a spatial region on the map. For example, even though
Adrian Fenty is a non-spatial concept, we can associate him
with Washington, DC as he is the Mayor of that city. So,
we propose a simple technique to infer the spatial coordi-
nates of non-spatial concepts by observing that the spatial
region of interest of a non-spatial concept c can be deduced
by looking at the incoming and outgoing links of c.

Algorithm 1 Inferring spatial coordinates for non-spatial
concepts

Require: W : Wikipedia graph, δ = 150
for all non-spatial concept c in W do

S ← spatial concepts adjacent to c in W
Sclose = ∅
for all concept cs ∈ S do

for all set Si ∈ Sclose do

if cs is within δ miles to all concepts in Si then

add cs to Si

end if

end for

if cs cannot be added to any set in Sclose then

Snew = {cs}
add Snew to Sclose

end if

end for

set coordinate of c as centroid of Sclose
end for

Let c be a non-spatial concept such that S is the set of con-
cepts in Wikipedia such that a concept in S either has a link
to c or has a link from c. Algorithm 1 describes a procedure
to deduce the spatial coordinates of a non-spatial concept c
using the spatial coordinates of the concepts in S We observe
that using the centroid of S as the spatial coordinates of c
may lead to meaningless results, especially if the concepts
in S are spatially distant from one another. For example, if
S contains New Delhi, India, Rome, Italy and Washington,
D.C., USA, the centroid of S will be a location in Alge-
ria, Africa, which is quite meaningless. Hence, the centroid
should be computed on a subset of concepts of S whose
members are reasonably close to one another. Therefore, our
approach looks for a maximal subset Sclose = {S1, ..., Sm}
of S, such that the spatial distance between any ci, cj ∈ Si

is at most δ, where δ is a suitably chosen distance (see be-
low). If Sclose = ∅ no spatial coordinates are assigned to c.
Else, the centroid of the largest subsets Sclose is the spatial
coordinate of c.

We identified the optimal value of δ by choosing at ran-
dom a set T of 10,000 spatial concepts in W . We used the
above algorithm to see if we can infer the spatial coordi-
nates just using our method. This way we can evaluate our
method by comparing the inferred coordinates against the
actual coordinates of the spatial concepts in T : if for a given
concept c in T the inferred coordinates are within δ miles
of the actual coordinates, the inferred coordinates are con-
sidered correct. In Figure 1, we plot the precision of our
algorithm as function of δ, using which we determined that
the optimal value for δ is 150.
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Figure 1: Values of δ to infer spatial coordinates.

PageRank. PageRank is a link analysis algorithm, which
is used to measure the relative importance of a node in a
graph [2]. PageRank score is an iterative procedure, which
is computed as follows:

1. The initial score of a concept c in G(r) is 1/n.

2. The score of c is given by:

S(c) =
1− d

n
+ d ·

X

v∈in(c)

S(v)

|out(v)|
, (1)

where d is a damping factor, which, as indicated in [2]
is usually set at 0.85. The algorithm terminates when
the score of the concepts converges, which happens
quite quickly.

Spatial PageRank. Spatial coordinates can improve the
PageRank measure using the following formulation:

S geo(c) = S(c) + Bgeo(c), (2)

where Bgeo(c) is a factor used to boost S(c). Bgeo(c) is
assigned to those concepts whose spatial coordinates are
within a distance dgeo to s (the location corresponding to
concept r). If so, the values of Bgeo(c) is 1 if the spatial
coordinates of c were inferred using algorithm 1 and 2 if
the spatial coordinates of c were obtained from Wikipedia.
dgeo is chosen depending on the size of location s; bigger the
geographic area of s, larger the value of dgeo. The PageR-
ank measure with the spatial boost is referred to as PageR-
ank Geo.

Green Measure. Another way of assigning scores to a con-
cept c in G(r) is to view G(r) as a Markov chain, so that
any concept in G(r) can be ranked with respect to r using
the Green measure [12]. The rationale for using the Green
measure is beyond the scope of this paper and interested
readers are referred to [12]. Below, we limit ourselves to
the description of the scoring algorithm, which is referred to
as Green when describing the results of our experiments in
Section 5.1.

1. Create the adjacency matrix M of G(r) so that if there
is a link from concept i to j, then M [i][j] = 1/d(i), else
M [i][j] = 0. M is a stochastic matrix that describes
transitions of a Markov chain.

2. Next, compute the equilibrium measure ν, which is
given by ν ·M = ν.

3. Finally, compute the vector µ as follows. µ1 = δr − ν,
where δr is the Dirac measure centered at r such that
δrj = 1 if j = r, 0 otherwise. µk+1 = µk ·M + (δr − ν)
is computed iteratively until it converges. At the end,
S(c) = µ[c] is the Green measure of node c with respect
to node r.

By using Equation 2, we enhance the Green measure with
spatial information and we obtain Green Geo.

The Jaccard Index. The Jaccard index J(A, B) is used to
measure the similarity of two sets A and B, where A and B
are said to have a high similarity if they have many items in
common. Formally, J(A, B) is defined as follows:

J(A, B) =
|A

T

B|

|A
S

B|
(3)

To determine the spatial relatedness of c to r, three Jaccard-
based measures can be applied:

1. JaccDeg, where A = N(c) and B = N(r);

2. JaccIn, where A = in(c) and B = in(r);

3. JaccOut where A = out(c) and B = out(r).

Using Equation 2 we obtain JaccDeg Geo, JaccIn Geo
and JaccOut Geo respectively.

JaccOpt. The JaccOpt measure is a refinement of the Jac-
card measures and is based on two simple properties of the
links in Wikipedia. First, if c and r are mutually linked
(i.e. both (c, r) and (r, c) are edges in G(r)), then there is a
strong evidence that c is spatially related to r. Second, we
observe that if c has an edge to r, then the position of the
corresponding link in the Wikipedia article of c is impor-
tant to determine if c is spatially related to r. In fact, the
very first paragraph of every Wikipedia article usually gives
an overview of the most important points of the described
concept, including its spatial context. Therefore, links to
locations that are relevant to c are likely to occur in the
introduction of the Wikipedia article of c. Based on these
observations, we define Core(r) as the set of all concepts c of
G(r) such that c and r are mutually linked and edge (c, r)
occurs in the introduction of the Wikipedia article corre-
sponding to c. Therefore, the score of a concept c in G(r),
using the JaccOpt method, is computed as follows:

S(c) = J(Core(r),out(c)) (4)

As with the previous measures, using Equation 2 we can
obtain the spatial version of JaccOpt, named JaccOpt Geo.

5.1 Experimental Results
We studied the efficacy of the various graph measures for

local lexicon extraction by manually evaluating the local
lexicon on five large cities (Washington DC, Paris, Buenos
Aires, Sydney, Milan), four smaller cities (Genoa, Verona,
Bologna from Italy, and Avignon, France) as well as one
country (Italy). For each location s, each measure was ap-
plied to two concept graphs, one obtained by using the 2-
level approach and the other using the link-back approach.
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Figure 2: Precision and recall of the various mea-

sures applied on the concept graph obtained with

the 2-level approach.
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Figure 3: Precision and recall of the various mea-

sures applied on the concept graph obtained with

the link-back approach.

For each location s we created a ground truth by taking all
the concepts in the concept graph of s, but pruning away
those concepts with a low local indegree. This reduces the
number of concepts in our ground truth as the concept graph
of s may contain way too many concepts, especially if s is
an important location. For each of the 10 locations, at least
three people who are long time residents of the location were
asked to assign either a relevant or irrelevant label to each
of the concepts in the ground truth.

Concepts were marked as belonging to the local lexicon
if a majority of the people concurred. Similarly, concepts
were deemed irrelevant if the majority of the people agreed
to it. If people were not sure if it belonged to the local
lexicon or not, then we looked up the concept in Wikipedia
and made a suitable determination. Having a good cover-
age of people contributing to the ground truth of a location
is extremely important as sometimes there may not be a
consensus on what is spatially relevant and what is not spa-
tially relevant to a location. Each of the graph measures
previously described were evaluated using precision and re-
call scores against the ground truth.

Figures 2 and 3 show the results obtained using the con-
cept graph computed with the 2-level approach and the link-
back approach, respectively. For each measure, a thresh-
old was chosen which maximized the measure’s F-score (i.e.,
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Figure 4: Precision and recall of JaccOpt Geo while

changing the threshold.

harmonic mean of precision and recall) for our dataset. It
is not surprising that the spatial versions of each measure
performs better than its non-spatial variant both in terms
of precision and recall. It is interesting to note that the
JaccOpt measure has a high precision in spite of not using
any spatial information. This can be explained by observing
that the JaccOpt measure tends to give a high score to those
concepts c that link to the root concept r. Moreover, if a
link from c to r appears at the beginning of the Wikipedia
article corresponding to c, then JaccOpt measure tends to
favor c. We observed that most of the concepts which are
spatially related to r satisfy this property. As for the recall
value, it is generally low but is significantly improved if we
use the spatial information, as can be seen by noting the
recall values of JaccOpt Geo. We point out that in the case
of local lexicons, the recall value is not as important as pre-
cision, especially when it comes to using a local lexicon to
determine the spatial reader scope of a feed. In fact, a local
lexicon of a location s containing many concepts, which are
not spatially related to s (i.e., low precision) may lead to
an incorrect assignment of the spatial reader scope to a feed
but missing a few concepts (i.e., low recall) does not really
affect its performance.

Comparing link-back and 2-level, link-back is better than
2-level for two reasons. First, both the precision and recall
values are higher for each measure when using a concept
graph obtained with link-back (from Figures 2 and 3). Sec-
ondly, the concepts graph created with link-back are smaller
than the concept graphs created with 2-level and conse-
quently the time taken to create a local lexicon is signifi-
cantly smaller. Next, if G(r) is obtained using 2-level, most
of the concepts of G(r) are not spatially related to r, while
link-back selects better candidates for inclusion in a local
lexicon. Finally, for every measure the score threshold is
manually tuned to have a reasonable balance between pre-
cision and recall. Figure 4 shows the precision and recall
of JaccOpt Geo for different values of the threshold. Here a
good value of the threshold is 3.0, which guarantees precision
greater than 0.9 and a reasonably high recall.

6. SPATIAL READER SCOPE
Given a document d we want to compute the spatial reader

scope s of d. Note that this is a different problem than find-
ing the spatial focus [21] of a document, which just computes



the geographic area of interest of a single document. Deter-
mining the spatial reader scope of a document turns out to
be a much harder problem as a single document may not
contain enough evidence tying it to s to make this deter-
mination. Therefore, we modify the problem to be one of
determining the reader scope of a feed f that contains more
documents; about 100 in our setup. We describe this prob-
lem in the context of a spatial classifier that makes use of
local lexicons to determine the spatial reader scope of a feed.
In particular, a spatial classifier takes a location s, the local
lexicon L of s, and a feed f as inputs and makes the deter-
mination if the reader scope of f is s. In other words, using
the local lexicon of New York City, the spatial classifier will
make a determination if a feed belongs to New York City or
not. By precomputing the local lexicon of a large number of
geographical locations on the map, we can reasonably ensure
that for any given input feed f , we will be able to identify
its reader scope using the spatial classifier.

Assuming that the local lexicon L of s has been precom-
puted, our spatial classifier uses L to determine if the spatial
reader scope of a feed f is near s. Let NL be the set of all
concepts in the Wikipedia graph W that are not in L. Given
a document d from feed f , we associate every phrase (e.g.,
geographic location, people, organization, historical event)
found in d with the concepts in L and NL whose canoni-
cal name matches that of the phrase. Next, if no matching
canonical name is found, we match the phrase with all of
the matching aliases of concepts in both L and W . For ex-
ample, if the phrase “Springfield” does not have a matching
canonical name, then we associate it with every concept in
L and NL having “Springfield” as one of its aliases.

It is fairly obvious that any feed f whose spatial reader
scope is near s will contain many concepts in L. So, our first
classifier (termed LexCount) just counts how many concepts
from L are found in f . We can improve the above classifier
by incorporating the additional constraint that any feed f
whose spatial reader scope is near s, while containing many
concepts in L, should not contain too many concepts from
NL. Our next classifier (termed LexRatio) classifies feeds
based on the assumption that the spatial reader scope of f
is near s if the ratio of the number of concepts found in L
to the number of concepts found in NL is greater than δ,
where δ > 0 is a suitably chosen constant.

Even the LexRatio classifier is not expected to perform
well as one can observe that often articles from “The Wash-
ington Post” describe events from other parts of the world.
In other words, it is not uncommon for a feed to carry local,
national, and international stories, in which case we may
find many concepts from NL in spite of the spatial reader
scope of the feed being close to s. So, taking the ratio of the
number of concepts found in L and NL does not adequately
address the classification problem.

The key point to note here is that any feed f whose spatial
reader scope is near s, will contain many concepts from L,
but it is unreasonable to expect that it should not contain
too many concepts from NL. So, finding a large number of
concepts from NL does not necessarily mean that the feed’s
spatial reader scope is not near s. Intuitively, a feed f from s
(say, “Washington, DC”) can refer occasionally to concepts
in the vicinity of a distant geographic location, say, “Los
Angeles, CA”, but one should not expect to find a significant
percentage of it to lie near “Los Angeles, CA”. So, if we
find many concepts in the vicinity of “Los Angeles, CA”,

Table 3: Precision, recall, and F-score measures for

the spatial classification task using local lexicon

Precision Recall F-score

LexCluster 0.74 0.77 0.76
LexRatio 0.32 0.76 0.45
LexCount 0.22 0.70 0.34

Table 4: Precision, recall, and F-score measures for

the spatial classification task using local lexicon with

noisy aliases

Precision Recall F-score

LexCluster 0.68 0.61 0.64
LexRatio 0.30 0.51 0.38
LexCount 0.21 0.40 0.28

“Washington, DC” may not be the spatial reader scope of f .
Our final spatial classifier, termed LexCluster, uses this idea.
In particular, we look for signs of clustering of concepts in
NL (akin to finding concepts accumulating in the vicinity
of “Los Angeles, CA”), which if found means that s is not
the spatial reader scope of f . We apply a simple clustering
algorithm using a quadtree index (similar to one we used
in [10]) on the geographic positions of concepts in NL and
L, which are present in f . If we find a larger cluster (in
terms of number of concepts) in NL than in L, then the
spatial reader scope of the feed may not be near s.

We evaluated our three classifiers on a set of 4867 feeds,
which were drawn from 815 geographic locations around the
world. For every feed, the user assigned source location
forms the ground truth. We first computed the local lexicon
for each location in the ground truth. Each of the three clas-
sifier methods, namely LexCount, LexRatio, and LexCluster,
computes a score taking as inputs the local lexicon L of a lo-
cation p, the set NL, and a feed f , and using it to determine
if the spatial reader scope of f is p. For LexCount, the score
is the number of concepts found in L, while for LexRatio it
is the ratio of the number of concepts in L to the number of
concepts found in NL. In the case of LexCluster, the score
is defined as the number of concepts in the largest cluster.
For each method, a feed was marked as correct if the spatial
reader scope for it that registers the maximum score cor-
responds to the actual spatial reader scope in the ground
truth. Table 3 shows the precision and recall scores for our
three methods. We can see that LexCluster significantly out-
performs both the other methods. These experiments show
that the concepts contained in the local lexicon of a location
are good features whose presence or absence can be used to
determine whether or not a document is related to that lo-
cation. Table 4 shows how the results would be if one didn’t
remove the noisy aliases. As we can see, the impact on pre-
cision is not remarkable for LexCount and LexRatio (but it
is for LexCluster), while the impact on recall is considerable.
This proves that the presence of noisy aliases negatively af-
fects the results of the spatial classifier.



7. GEOTAGGING
In this section we show how the knowledge of the spatial

reader scope of a news source can improve geotagging. The
geotagging process broadly consists of two steps: toponym
recognition, where all toponyms are identified (e.g., “Paris”),
and toponym resolution, where each toponym is assigned
with correct lat/long values among the many possible inter-
pretations (e.g., for “Paris”, one of over 70 places around the
world, including France and Texas). Geotagging’s difficulty
stems from ambiguity in human language. For example,
“Washington” is the name of many places in the US, but is
also a common surname. Furthermore, many places share
the same name, as with the many instances of “Paris”.

Among the many approaches to geotagging (e.g., [1, 8, 10,
14, 15]), two prominent ones are MetaCarta [15] and Web-
a-Where [1]. MetaCarta assumes that a toponym such as
“Paris” corresponds to “Paris, France”approximately 95% of
the time, and thus good geotagging can be achieved by plac-
ing it in “Paris, France”, unless there exists strong evidence
to the contrary. Web-a-Where assumes that the document
under consideration has multiple proximate geographic lo-
cations that often exhibit hierarchical containment relation-
ships (e.g., the presence of both“Paris”and“Texas”) thereby
offering mutual supporting evidence. Importantly, none of
the above approaches consider the local lexicon as a source
of evidence for geotagging.

Our geotagging process extends our previous work [10],
where we demonstrated the importance of using local lexi-
con evidence for geotagging news articles from local news-
papers. For toponym recognition, we use a hybrid process
that incorporates many different techniques. We use tools
developed for tasks in natural language processing known as
part of speech (POS) tagging [7], which requires that each
word in a document be associated with its grammatical part
of speech, and named-entity recognition (NER) [7] where en-
tities such as people, organizations, and locations must be
found in text. We tag each word with its part of speech
using TreeTagger [16] trained on the Penn TreeBank cor-
pus, and collect all proper noun phrases as toponyms, since
names of places are proper nouns. We also apply NER to
the document using the Stanford NLP Group’s NER sys-
tem [4] and gather reported location entities. Finally, we
collect probable toponyms using heuristic rules based on ge-
ographic cue words which serve as markers for toponyms,
such as “X County”, “city of Y”, and “Z-based”. For more
details see [10].

After collecting toponyms, we perform a look up for each
toponym into a large gazetteer, or database of geographic
locations, to associate each toponym with a set of possible
location interpretations. Toponyms without any interpre-
tations from the gazetteer are dropped as erroneous. We
use the GeoNames5 gazetteer, which contains over 7 mil-
lion entries and a variety of metadata, such as feature type
(country, city, river, etc.), population, elevation, and po-
sitions within a political geographic hierarchy. This large
gazetteer size is necessary to have a large coverage of loca-
tions around the world that may be present in local news ar-
ticles. Further, this size stands in contrast to gazetteers used
in other geotagging approaches such as Web-a-Where [1],
whose smaller gazetteers render them unsuitable for local
news geotagging.

5http://geonames.org/

Table 5: Toponym resolution performance results.

Recog + Resol Resol Only
P R F1 P R F1

LLexwiki 0.909 0.754 0.825 0.962 0.866 0.912

LLexdist 0.826 0.654 0.730 0.964 0.817 0.885
WaW 0.651 0.452 0.534 0.761 0.628 0.689
MC 0.477 0.494 0.485 0.712 0.629 0.668
VKM 0.351 0.475 0.404 0.590 0.567 0.578

After each toponym is associated with a set of possible
interpretations, we proceed by choosing a location interpre-
tation for each toponym. Our resolution process is based
on how human authors provide evidence for their readers to
understand the correct interpretations of toponyms in text.
For example, oftentimes a news article will contain a date-
line, a location at the very beginning that establishes where
the story was filed or the story’s main geographic focus (e.g.,
“PARIS —”). Other sources of contextual evidence include
Object/Container pairs, which specify a hierarchical rela-
tionship (e.g., “College Park, MD”), and lists of toponyms
termed comma groups, which indicate that the proper inter-
pretations of toponyms in the comma group exhibit a prox-
imity, sibling, or prominence relationship [9] (e.g., “College
Park, Beltsville, Hyattsville, and Laurel” contains toponyms
whose proper interpretations are geographically proximate).
Finally, and most importantly, this process incorporates lo-
cal lexicon evidence by resolving toponyms with interpreta-
tions present in the local lexicon of the document source.

To use our Wikipedia-based local lexicon, we modify the
local lexicon heuristic developed in [10]. The original heuris-
tic computes a centroid for the document source’s local lex-
icon (generated by collecting toponyms present in source
documents over time), and simply resolves toponyms with
interpretations within a given distance of the centroid. This
distance-based heuristic has a drawback in that it has no
connection to human notions of a local lexicon, and cannot
distinguish local places that are well-known among places
that are not well-known. Instead, we use a heuristic that
incorporates our Wikipedia-based local lexicon. For each
toponym t, we gather all concepts C from the news source’s
inferred local lexicon that share t’s name, either the canon-
ical name or one of the aliases. Next, we check t’s possible
interpretations L for an interpretation l ∈ L whose lat/long
values match those of a concept c ∈ C. If we find such an
l, we resolve t to l. This toponym resolution procedure uses
a more exact local lexicon extracted from Wikipedia, and
explicitly uses concepts present in the local lexicon, rather
than the coarser centroid distance-based measure used pre-
viously.

To compare our methods against existing approaches, we
tested our Wikipedia-based local lexicon heuristic on the
LGL corpus of news articles [10]. The LGL corpus contains
588 articles from a variety of 78 local newspapers, resulting
in toponyms that correspond to smaller places, and therefore
which should be present in the local lexicons of audiences
reading these articles.

We tested our Wikipedia-based heuristic (LLexwiki) against
methods whose performance was previously reported in [10],
namely our distance-based method (LLexdist), Web-a-Where
(WaW), MetaCarta (MC), and the ontology-based method

http://geonames.org/


of Volz et al. [20] (VKM). Table 5 lists the results, with per-
formance measured for the entire geotagging process (“Recog
+ Resol”) as well as for resolution only (“Resol Only”). For
the overall geotagging process, LLexwiki greatly outperformed
all previous approaches, with a gain of almost 0.10 in both
precision and recall over LLexdist, while when only testing
toponym resolution, LLexwiki demonstrates a large improve-
ment in recall. The increased precision (i.e., a larger num-
ber of correctly reported and resolved toponyms) shows that
concepts in the Wikipedia-based local lexicon are generally
accurate, while the higher recall (i.e., a larger proportion of
the ground truth toponyms were reported correctly) indi-
cates that our Wikipedia-based local lexicon is reasonably
complete. In other words, our local lexicon better models
the local lexicons of readers of local newspapers.

8. CONCLUSION
In this paper we described methods for creating the lo-

cal lexicon of geographic locations using Wikipedia and we
showed how to use the notion of a local lexicon to understand
the spatial reader scope of a news source. We developed
several spatial relatedness measures that use Wikipedia to
extract related concepts to a given source location. Of the
various measures that we presented, JaccOpt geo worked the
best across the board, and we recommend using it. To un-
derstand the spatial reader scope of a news source we inves-
tigated and evaluated three approaches of which the Lex-
Cluster algorithm gave satisfactory results. local lexicons
were also shown to improve the geotagging process. Our
spatial relatedness measures have good precision but low
recall, which means that there is further room for improve-
ment here. Future improvements to the spatial relatedness
measures could also enhance the spatial reader scope identi-
fication of news sources as well as geotagging of news articles.
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