
In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, C.
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ABSTRACT
Mobile location-based applications rely heavily on network
connections. When the mobile devices are offline, such ap-
plications become less accessible to users. A cache-based
method is proposed to improve the offline accessibility for
mobile location-based applications. The central idea is that
when users are browsing information, the client program
not only submits the current query window to the server,
but also attempts to predict the most likely (from a prob-
abilistic standpoint) query windows that would be submit-
ted to the server in the future. The major challenge is the
very large number of possible future query windows. This
challenge is tackled by proposing a discretization technique
that makes predictions over a finite subset of all possible
query windows. A probabilistic model is proposed for pre-
diction, which is trained using the query log recorded by
the client, so that the prediction can be executed entirely
on the client side. The advantage of this technique is that
it requires no modification on the existing server side, so it
can be adapted by most existing applications easily. The
usability of the technique is demonstrated by prototyping it
on top the NewsStand system so that the query window is
constantly changing as users pan and zoom around the world
using a gesturing interface, among others. Evaluation shows
the prototype to be effective while decreasing the response
time.
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1. INTRODUCTION
Mobile location-based applications, are gaining increas-

ing use in our daily lives. They are rooted in the desire
to incorporate the functionality previously available only in
geographic information systems (e.g., [16, 17]) for the rep-
resentation of spatial, spatio-temporal, and distributed data
(e.g., [7, 9, 14, 18, 24]). This had led to modern applications
such as Google Maps1, and Yelp2. People use them to search
for local attractions. The accessibility of these applications
becomes an important issue. If the mobile device hosting
the applications goes offline, then the applications become
inaccessible to users, and thus users’ experiences are sacri-
ficed. Existing work [4, 5, 6, 10, 12, 13, 23] has proposed a
cache-based method to solve this problem. Such a method
works well for those applications whose data is static, but
has trouble dealing with applications with rapidly changing
data, such as NewsStand [25], a system developed at the
University of Maryland for online browsing of news using a
map query interface.

In this paper, a semantic-aware cache-based approach,
named SAC, is proposed to deal with applications with dy-
namic data. Instead of passively waiting for users to submit
queries, SAC actively predicts which queries will be sub-
mitted in the future, and prefetches the answers for those
queries. SAC is a layer on top of a location-based applica-
tion, and thus brings two additional benefits: (1) no mod-
ification is needed on the server side to employ SAC; and
(2) the prediction is based on users’ query history, and thus
provides a more accurate result for the user.

The key challenge of SAC is how to predict which queries
will be submitted in the future. The target of SAC’s predic-
tor is to maximize the expected cache hits. Notice that the
set of all possible queries is infinite, so that a naive model
will assign each query with a probability 0, which is useless
for the prediction problem.

To tackle these challenges we propose a map discretization
method so that SAC can focus on a finite subset of queries.
We then propose a probabilistic model to compute the prob-
ability of each query unit in the discretized query set to be
submitted in the future. We then describe a tractable al-
gorithm to find a set of queries to maximize the expected
cache hit rate.

Much work [4, 5, 6, 10, 12, 13, 23] has studied client-
side caching for mobile devices. The related work, however,
will not cache previously unseen query results. Sun and
Zhou [23] decompose the map into cells to enable a predic-

1http://maps.google.com
2http://www.yelp.com
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Figure 1: Screenshot of NewsStand for Android App
on a Samsung Galaxy S3.

tive cache for zooming, but not for panning. Ren and Dun-
ham [13] study predicting future queries based on the user’s
current location, direction and velocity derived from past
locations. Amini et al. [4] developed Cache which groups a
set of location queries to improve offline accessibility while
providing a strong privacy. Different from these works, SAC
targets at window queries and supports operations including
zooming and panning.

SAC is applied to the NewsStand system [25]. NewsStand
is a map-based application framework that aggregates and
displays news from RSS feeds at their respective locations
based on the content of location references in news arti-
cles [25]. Only the news stories associated with locations
bounded by the current map viewing window are displayed.
In the case of a mobile device, the current map viewing win-
dow would be the entire screen when the application is being
used. Each time a user updates the map viewing window
with an action (i.e. a swipe, click, pinch, or tap) a request is
sent to the server for the news stories in the updated viewing
window. The map-based approach of NewsStand affords an
inherent granularity to search based on zoom level providing
an approximate search.

NewsStand currently has a web interface and mobile in-
terfaces for the Android (Figure 1) and iOS platforms. We
apply SAC to the mobile applications in particular to the
Android NewsStand application.

We summarize our contributions as follows:

1. We propose SAC, which is a cache layer on top of typ-
ical location-based applications, to improve the offline
accessibility for applications; with static or dynamic
data;

2. We propose a discretization method, which makes rea-
soning about the probability of queries possible;

3. We propose a probabilistic model to reason about the
probability of a query being submitted in the future;

4. We implement a SAC prototype on top of the News-
Stand mobile application. We evaluate this prototype
with respect to both effectiveness, and efficiency. The
result shows that SAC can achieve a good prediction
accuracy, and the query response time decreases with
respect to the no-cache solution.

The rest of this paper is organized as follows. Section 2 de-
scribes the SAC architecture, along with its key design of its
predictor. Section 3 presents the prototype implementation

Figure 2: Illustration of how SAC works

Figure 3: SAC architecture

on top of NewsStand. The evaluation results are discussed
in Section 4. Section 5 reviews related work, while Section 6
contains directions for future research.

2. SAC
In this section, we introduce SAC, a cache layer on top

of typical location-based mobile applications, which can im-
prove offline accessibility. We first illustrate how SAC can
make location-based applications on offline devices accessi-
ble to the users using a cache. Next, we formally define
how to select content in the cache to maximize the expected
cache hit rate. Finally, a probabilistic model is presented,
and based on this model, prediction algorithms are devel-
oped to solve the cache selection problem.

2.1 Workflow
Figure 2 illustrates how SAC can improve location-based

applications’ availability when the devices are offline. In
typical location-based applications, a client communicates
directly with the server. As a result, once the mobile de-
vices go offline, the client will not receive responses from
the server, and thus the accessibility will be broken. SAC is
a layer that sits on top of applications, that can store a set
of queries along with their responses. Using SAC, a client
instead submits the queries to SAC, and SAC will respond
to the clients with the answers that it stores. If the devices
are online, then SAC will actively submit non-cached queries
to the server and store the responses in the cache. In do-
ing so, once the mobile devices go offline, SAC is still able
to respond to the clients’ queries, when their responses are
stored by retrieving cached elements.

Figure 3. shows the architecture of SAC which consists
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of a cache (orange) and a predictor (yellow). The cache
can store up to n queries and responses. Once a client sub-
mits a query, SAC transmits this query along with the cache
size n to the predictor. The predictor computes the n pre-
dicted queries, submits the queries to the server that are
not already in the cache and stores the n responses in the
cache. The predictor guarantees that the original query can
be responded to using these n predicted queries’ responses.
Those queries, along with their responses, which are stored
in the cache, but are not in the set of n predicted queries
returned by the predictor, are called stale. SAC drops all
stale queries; queries remaining in the cache are called fresh.

Some queries and answers may remain in the cache for a
long time, and for an application with rapidly changing data,
they may become out of date. To overcome this problem,
SAC allows setting a parameter τ , and all queries staying in
the cache longer than τ are also made stale. SAC will drop
them from the cache.

For those queries in the set of n predicted queries in SAC
that are not fresh, SAC will submit them to the server. The
queries’ responses are labeled as fresh, and both the queries
and the corresponding responses are stored in the cache.
Once there are enough fresh answers to respond to the client,
SAC will immediately transmit them to the client. To reduce
the response time, SAC will asynchronously submit queries
to the server in the order of their priority, i.e. those predicted
queries whose answers can be used to respond to the client’s
original query have a higher priority.

If the query submitted by the client can be answered by
fresh content in the cache, then no communication between
the mobile devices and the server is needed, and thus a re-
sponse to the query can be generated immediately. In this
case, when responding to the previous query, the predictor
in SAC already successfully predicted the next query. So the
performance of SAC greatly depends on whether the predic-
tor can predict the queries that will be submitted in the
future based on the query submitted currently. The rest of
this section is devoted to the predictor algorithms. To make
the predictor as accurate as possible, it is necessary to know
the queries that the clients has already submitted. In SAC,
a query log (purple) is stored for this purpose.

2.2 Problem Definition
In this subsection, we formally define the prediction prob-

lem. A query Q is a quadruple

Q = 〈lonlow, latlow, lonhigh, lathigh〉,

representing a rectangle on the map, where lonlow and lonhigh
are the lower and higher longitudes respectively, and latlow
and lathigh are the lower and higher latitude respectively.
Such a query is naturally a window area restricted by the
device screen, so we use the terms, query and query window
interchangeably.

The first prediction problem is defined as follows

Problem Definition 1 (next query). Given query Q,
and an integer n > 0, find a set QS of n queries, such that

1. Q can be answered by QS

2. QS maximizes E(δ(Q′can be answerd by QS)|Q), where
Q′ is the next query, and δ(·) is the indicator function:
δ(true) = 1, and δ(false) = 0.

We defer the definition of “a query can be answered by a
set of queries” to the next subsection, where this will become
obvious. This definition imposes two requirements on the
returned value QS of the predictor algorithm. First, Q must
be able to be answered by QS. This requirement guarantees
that SAC can respond to the current query. Second, QS
maximizes the expected cache hit rate for the next query.
We can rewrite the expected cache hit rate as follows:

E(δ(Q′ can be answered by QS)|Q)

= Pr(Q′ can be answered by QS|Q) (1)

Equation 1 implies a naive solution to Problem 1: choose
QS to be the top-n queries Q1, ..., Qn which maximize the
probability Pr(Q′ = Qi) (i = 1, ..., n). However, since there
are infinite possible queries, for any particular Q′′, Pr(Q′ =
Q′′) = 0. Therefore, this naive solution cannot be adapted
directly. In Section 2.3, we discuss how to use discretization
to tackle this problem.

We want to maximize not only the next query’s cache hit
rate, but also the cache hit rate of the next few queries.
Therefore, we define the second problem as follows.

Problem Definition 2 (next k query). Given a
query Q0, an integer k > 0, and an integer n > 0, find a set
QS of n queries, such that

1. Q0 can be answered by QS

2. QS maximizes

E(

k∑
i=1

δ(Qi can be answerd by QS)|Q0))

where Qi is the i-th query submitted after Q0 (i =
1, ..., k).

Similarly, we have the following equation:

E(

k∑
i=1

δ(Qi can be answered by QS)|Q0)

=

k∑
i=1

Pr(Qi can be answered by QS|Q0) (2)

and based on this equation, we know the solution to Prob-
lem 2 is the top-n queries maximizing

k∑
i=1

Pr(Qi = Q|Q0)

Again, this value is 0 for any Q. We shall show that our
discretization method is also the key to solving this problem.

2.3 Discretizing the map
As mentioned above, the first challenge is how to deal

with the infinite size of the full query set. We show in this
subsection that discretization can reduce the full query set
to a finite query set, i.e., the discretized query set.

To simplify our discussion, we assume that the full map
is a rectangle 〈0, 0, X, Y 〉, and that a query window is a
rectangle 〈x1, x2, y1, y2〉, where 0 ≤ x1 < x2 ≤ X, and 0 ≤
y1 < y2 ≤ Y . We discuss this transformation with respect
to an application using a Mercator projection in Section 3.1.



In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, C.
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Since the device screen has a fixed size, the query window
should have the same shape, i.e. there should be a constant
C, such that the following equation holds:

y2 − y1

x2 − x1
= C (3)

As a result, there exists a one-to-one mapping f between
a query window 〈x1, x2, y1, y2〉 and a triple 〈x1, y1, l〉 where
(x1, y1) is the lower-left corner of the query window, and l
is the width:

f(〈x1, x2, y1, y2〉) = 〈x1, y1, x2 − x1〉

f−1(〈x1, y1, l〉) = 〈x1, x1 + l, y1, y1 + lC〉

Now, according to Equation 3, the height can be computed
as l × C. We call (x1, y1) the corner point, and l the scale.

Discretization means choosing a finite subset of the full
query set. To achieve this, we restrict the dimensions, x, y,
and l, to take values from a finite value set.

In practice, l is naturally discretized. l usually takes values
from a fixed set of values, {l1, ..., ld}, defined by the underly-
ing system. The ratio of two adjacent scales, i.e. γ = li+1/li,
should be a constant. The size of the scale set, denoted by
d, is also defined by the system. In Android Google Maps
v2, d is 18 correlating to the allowed zoom levels.

The scale defines not only the size of the query window,
but also the detail level of the answers. A query window
with a larger scale may have fewer responses than a query
window with a smaller scale in the same region. For two
query windows with the same scale; the responses in their
overlapping area should be the same. As a result, the query
Q can be answered by a set S of queries, if those queries in
S can “cover”Q. Formally, we have the following definition.

Definition 1. A query Q = 〈x, y, l〉 can be answered by
a query set QS if and only if ∀(px, py) ∈ 〈x, y, l〉.∃(x′, y′, l) ∈
QS.(px, py) ∈ (x′, y′, l). Here a point (px, py) belongs to a
query window 〈x, y, l〉 if and only if x ≤ px ≤ x + l and
y ≤ py ≤ y + lC.

The next problem is how to discretize x and y. For a
specific scale l, we define the discretized query set at scale
l, denoted by DQSl

3 , as follows:

DQSl = {(il, jlC, l)|i ∈ {0, ..., bX/lc}, j ∈ {0, ..., bY/lCc}

Each query (x, y, l) can be answered by a set of four dis-
cretized queries in DQSl: (xil, yilC, l), (xil + l, yilC, l),
(xil, yilC+lC, l), and (xil+l, yilC+lC, l), where xi = bx/lc,
and yi = by/lc. To prove this point, it is enough to show that
xil ≤ x < x+ l ≤ xil+ 2l and yi ≤ y < y+ lC ≤ yilC+ 2lC.
Since xi = bx/lc, we have xi ≤ x/l < xi + 1. Therefore, we
have xil ≤ x and x + 1 < (xi + 2)l = xil + 2l. Similarly,
we can prove yi ≤ y < y + lC ≤ yilC + 2lC. Fig. 4 illus-
trates the relationship between a query (x, y, l), and its four
discretized queries.

We define the discretized query set as

DQS =
⋃

1≤i≤d

DQSi

DQS has the following properties:

3Notice that for i = bX/lc, or j = bY/lCc, the discretized
query may violate the boundary requirement, i.e., il+ l > X
or jlC + lC > Y . Since most servers can handle this case,
we allow it to happen.

Figure 4: Query (orange) covered by four discretized
queries (blue) with the same scale

Proposition 1. The discretized query set is finite.

Proposition 2. Each query Q can be answered by a sub-
set of the discretized query set containing up to 4 queries.

As a result, the predictor algorithms can focus on queries
from DQS instead of the full query set.

2.4 Semantic Adaptive Caching
To solve the accessibility problem, a naive approach is to

use a cache to store all results returned from the server.
A variety of algorithms [4, 5, 6, 10, 12, 13, 23] have been
proposed to optimize the cache hit rate with respect to the
limited cache size. Such an approach, however, suffers a
major problem, that if a user has not submitted a query
before, the result of the query will not be cached. To tackle
this problem, we propose a probabilistic model to predict
which queries are most-likely to be submitted in the follow-
ing few query submissions. We present our model here, and
the algorithms to compute the probability in Section 2.5.

Since any query can be covered by four discretized queries,
we treat four discretized queries as a query unit, denoted by
the lower-left query. The prediction problem is thus con-
verted into one of computing the probability of the next
unit based on the current unit. For a cache of size n, at
most bn/4c query units can be stored in the system. To
avoid cluttering, we slightly abuse the notion n to refer to
the number of query units in the cache.

SAC’s cache-update algorithm is given by Algorithm 1. A
pair of training and prediction algorithms must be provided.
SAC will first compute a model by running the training al-
gorithm over the query log. Then, for each submitted query,
SAC will run the prediction algorithm to compute a set QS
of queries that are most likely to be submitted. SAC will
then drop all queries not in QS, and add those queries in
QS that are not in the cache. The key problem is how to
design T and P, discussed in the rest of this section.

In the following, we first show that the number of differ-
ent operations in location-based applications is small, and
how the operations on a query are mapped to operations on
a query unit. Next, we propose our probabilistic model to
predict the next query unit. Finally, we provide the algo-
rithm to solve the next-k query problem.

Operations.
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Data: 〈T ,P〉 is a pair of training and prediction
algorithms

Data: C is the cache
Data: n is the cache size, which is equal to |C|
Data: log is the query log, which is a list of query units
Data: para is the parameters required by P, other

than n and the current query
π ← T (log)
while Q← a new query input do

QS ← P(Q,n, para)
for Q ∈ C ∧Q 6∈ QS do

Remove Q from C
end
for Q 6∈ C ∧Q ∈ QS do

Add Q into C
end

end

Algorithm 1: SAC Cache Update Algorithm

We formally define an operation α as a mapping from
one query into another. In a location-based application,
there are two ways to change the query window: panning or
zooming. Panning only changes the position of the window
on the map, but will not change the scale, while zooming
will change both the position and the scale. Zooming opera-
tions can be further classified into three types: zooming-in,
zooming-out, and pinching. The first two are the most com-
mon operations, since they only require one thumb to per-
form the operation, while the last one requires two fingers.
In this work, we consider only three kinds of operations:
panning, zooming-in, and zooming-out as pinching is a two-
fingered variant of zooming.

A panning operation may move the current query unit to
an adjacent query unit. For example, if the current query
unit is 〈i, j, l〉, then by performing a panning operation, the
next query unit may be α(〈i, j, l〉) = 〈i+∆i, j+∆j, l〉, where
∆i,∆j ∈ {−1, 0, 1}. Notice that it is possible that ∆i =
∆j = 0. In this case, the panning operation does not change
the query unit. We use the term stay for this operation as
it leaves the query unit the same.

A zooming-in operation may change the current query
unit at scale l into one of nine smaller query units at scale γl
(for γ > 1/2). A query unit 〈i, j, l〉, performing a zooming-in
operation may result in one query unit from the set
{〈i′, j′, γl〉 : bi/γc ≤ i′ ≤ b(i + 2)/γc, bj/γc ≤ j′ ≤ b(j +
2)/γc}.

A zooming-out operation is different from the other two
types of operations in that a zooming-out operation will al-
ways change the current query unit at scale l into one query
unit at scale 2l. In particular, if the current query unit is
〈i, j, l〉, then the result query unit from performing zooming-
out will be 〈bi/2c, bj/2c, 2l〉.

A Probability Model for Query Prediction.
Assume the operation set is Γ, whose each element α is

a mapping from the query unit set to the query unit set.
Intuitively, α(q) is the result query unit from performing
operation α over the query unit q.

A model, π, is a mapping from Γ to [0, 1], such that∑
α∈Γ

π(α) = 1

Data: log is a list of query units
for α ∈ Γ do

π(α)← 0
end
sum← 0
for i = 1→ log.size()− 1 do

for α ∈ Γ do
if α(log[i]) = log[i+ 1] then

sum← sum+ 1
π(α)← π(α) + 1

end

end

end
for α ∈ Γ do

π(α)← π(α)/sum
end
return π

Algorithm 2: Training π

Therefore, π is a distribution over Γ.
Given a model π and the current query unit Q0, in order

to compute the probability of a query unit Q to be the next
one submitted Q′, it is sufficient to compute

Pr(Q′ = Q|Q0) =
∑
α∈Γ

δ(α(Q0) = Q)× π(Q0) (4)

Further, to predict the most probable query units in the
next k submissions, the key question is how to compute
Pr(Qi = Q|Q0) for a given Q, and i ∈ {1, ..., k}. To this
end, we make two assumptions: (1) that the query submis-
sions satisfy the Markov property. That is, the probability
of a query that will be submitted next only depends on the
current query. (2) the operation distribution is stationary.
That is, π remains the same over time.

Based on these two assumptions, we have

Pr(Qi = Q|Q0)

=
∑

Q′∈DQS

Pr(Qi = Q|Qi−1 = Q′)Pr(Qi−1 = Q′|Q0)

=
∑

Q′∈DQS

∑
α∈Γ

δ(Q = α(Q′))π(α)Pr(Qi−1 = Q′|Q0)

(5)

2.5 Predicting Algorithm
We first discuss Problem 1. Based on Equation 4, the

probability Pr(Q′ = Q|Q0) can be directly computed, if π
is known. Therefore, the key challenge is to learn π. Since
there are a limited number of operations, we compute the
frequency of each operation α to be taken from the query
log, and treat it as π(α). The training algorithm is pre-
sented in Algorithm 2. In this algorithm, initially for every
operation α, π(α) is set to 0. Then the algorithm scans
through the query log, to identify which operation is per-
formed to move from the previous query unit to its following
query unit. During this loop, the frequency of each opera-
tion taken is recorded, along with sum, the total number of
operations taken. Finally, π(α) is normalized using sum to
ensure

∑
α∈Γ π(α) = 1.

The query prediction algorithm for Problem 1 is provided
in Algorithm 3. This algorithm computes the probability
of each query unit according to Equation 4. Since the next
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Data: Q0 the current query unit
Data: n the cache size
QS ← ∅
for α ∈ Γ do

QS[α(Q0)] = π(α)
end
sort QS = {(Q, p)} by p
return top-n elements from QS

Algorithm 3: Predicting the next query

query must be one that we can achieve by performing an op-
eration over the current query unit, we can ignore all other
queries, whose probability to be submitted is zero. We use a
dictionary, i.e. QS, to store queries along with their proba-
bilities of being submitted next. We enumerate each possible
operation α, performing α over the current query unit Q0

to get the next query unit α(Q0), and assign its probabil-
ity, QS[α(Q0)], to π(α). We finally sort these query units
according to their probabilities, and return the top-n one.

Notice, that this algorithm is equivalent to choosing the
top-n common operations in Γ in the query log, which should
provide us the best guess on the next operation. Further-
more, it is worth mentioning that not all possible queries
are concerned here since there are operations that we do not
consider, such as pinching and keyword search.

Next, we discuss Problem 2. Equation 5 suggests the fol-
lowing algorithm to compute Pr(Qi = Q|Q0): The algo-
rithm iteratively goes from i = 1 to i = k, and in each
iteration, Pr(Qi = Q|Q0) are computed for all Q such that
Pr(Qi = Q|Q0) > 0. This algorithm, however, has a time
and space complexity exponential to k. Since zooming-in
operations will produce 9 new query units with a positive
probability in each iteration, there will be at least 9k query
units with positive probabilities. Therefore, the space and
time complexity is Ω(9k). Thus this algorithm is impractical
for large k values.

To tackle this problem, we developed an approximation
algorithm, given in Algorithm 4. This algorithm accepts
one more argument, the threshold T . The difference is that,
after each iteration, NEW OS drops all query units except
those top-T ones with the highest probability. The query
units on the long tail (with small probability) are probabilis-
tically less likely to be submitted by the client. Therefore,
a threshold T is set to cut those queries on the tail.

The time complexity of Algorithm 4 is O(k|Γ|T log |Γ|T ).
To show this, at the beginning of each iteration, NOW QS
contains at most T entries. For each entry, there will be at
most Γ entries generated and stored in NEW QS. So at the
end of each iteration (before the sorting in each iteration),
NEW QS contains at most T |Γ| query units. Sorting will
dominate the time complexity, so the total time complexity
is O(|Γ|T log |Γ|T ) for each iteration.

3. IMPLEMENTATION
We applied the proposed SAC algorithm to the Android

version of NewStand. This section describes the methods
by which SAC was implemented on NewsStand and how its
map projection can be divided into a grid. We then describe
how caching can be applied to the client side of NewsStand.

3.1 Grid Structure

Data: Q0: the current query unit
Data: n: the cache size
Data: k: next k moments
Data: T : threshold
QS ← ∅
NOW QS ← {Q0 : 1}
for i = 1→ k do

NEW QS ← {}
for (q, p) ∈ NOW QS do

for α ∈ Γ do
nq ← α(q)
if not NEW QS.containsKey(nq) then

NEW QS[Q] = π(α)× p
end
else

NEW QS[Q] = NEW QS[Q] + π(α)× p
end

end

end
for (q, p) ∈ NEW QS do

if not QS.containsKey(q) then
QS[Q] = p

end
else

QS[Q] = QS[Q] + p
end

end
sort NEW QS = {(q, p)} by p
keep only top-T elements from NEW QS
NOW QS ← NEW QS

end
sort QS = {(q, p)} by p
return top-n elements from QS

Algorithm 4: Predicting the next k queries

The Android version of NewsStand uses the Google Maps
Android API v2 [2] for its map. The Google Maps Android
API uses the spherical Mercator map projection based on
the WGS-84 coordinate system used in many commercial
mapping APIs including OpenStreetMap, Bing Maps and
HERE Maps which preserves the angles of the meridians,
but as a result distorts the size and shape of large areas
as the object moves away from the Equator. By limiting
the maximum latitude to 85.05112878◦ North and the min-
imum latitude to 85.05112878◦ South, the map projection
is a square [1]. This square can be mapped to a coordinate
grid structure where 179◦ West and 85.05112878◦ South cor-
responds to the point (0,0) and 180◦ E and 85.05112878 ◦ N
corresponds to the point (360, 360). Latitude and longitude
coordinates can be mapped to this grid structure [3] with
longitude, lon, directly mapping to the first dimension:

x = lon+ 180

and latitude, lat, being mapped to the grid with the follow-
ing formula:

y =
180

π
log

(
tan

(
π

4
+
lat

2
∗ π

180

))
+ 180

The respective grid coordinates can be mapped back to
the projection with longitude:

lon = x− 180
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(a) (b)

Figure 5: Examples of the grid structure (outlined in
black) applied to the NewsStand Android App with
(a) showing the grid cells at the maximum zoom out
level and (b) showing the grid cells at zoom level 9.

and latitude:

lat =
180

π

(
2 arctan

(
e((y−180)∗ π

180 )
)
− π

2

)
We then subdivide the grid into equal-sized rectangles

based on the current viewing window and the zoom level
based on a set of simple rules. The width and the height
of the rectangular grid cells must be at least as large as the
corresponding width and height of the map viewing window
where the width and height correspond to the points of the
projection’s coordinate system visible for a current window
given a zoom level. The width and height must also evenly
divide 360, the square projection’s side length. For exam-
ple a Samsung Galaxy S3 at the lowest zoom level (furthest
zoomed out), contains a map viewing window of approxi-
mately 63.28 grid units for its width and 91.23 grid units
for its height and the grid at this level is divided into cells
that have width 72 units and height 120 units as seen in
Figure 5(a). While zooming in to the city level (zoom level
9) has a map viewing window of approximately 0.98 grid
units for its width and 1.43 grid units for its height has a
grid that is divided into cells that have width 1 unit and
height 2 units as seen in Figure 5(b). Given the fact that
all grid cells must be at least as large as the current map
viewing window, we know that any map viewing window is
contained in one, two or four grid cells.

3.2 Client Caching
Due to the nature of news needing to be up-to-date and

window queries being sent even with the most minor of up-
dates to the map viewing window, some form of caching
must take place in order to reduce duplicate or near-duplicate
queries from having to be recalculated. As was seen in Sec-
tion 3.1, the proposed grid structure could be used so that all
window queries could be answered from the sum of at most
four grid cells. By keeping track of the results of previously

Data: window is the current map viewing window
Data: C is the current cache
Data: query log is the query log of the last 200 queries
grid cells = calculate grid cells associated with window
cached results = initialize to empty
for curr cell ∈ grid cells do

cell cached = false
for cached cell ∈ C do

if curr cell = cached cell then
cell cached = true
if cached cell is downloaded then

Append cell cached data to
cached results

end

end

end
if cell cached = false then

request data for curr cell from server
end

end
Wait (for all grid cells)
Display (results of grid cells)
predicted cells = predict (grid cells, query log)
for predicted cell ∈ predicted cells do

cell cached = false for cached cell ∈ C do
if predicted cell = cached cell then

cell cached = true
end

end
if cell cached = false then

request data for predicted cell from server
end

end

Algorithm 5: Map Window Change

seen grid cells and predicting future grid cells, the grid cell’s
associated data can be stored in a cache and future requests
for these cells may not need to be calculated.

We begin by initializing an empty cache, C, to store the
results of previously seen or current grid cells with their as-
sociated data and the time that they were downloaded from
the server and a τ value which is the maximum time down-
loaded data can be used before it is considered stale as de-
scribed in Section 2.1. Each time the map viewing window
is updated begin by removing all elements from C whose
download time is greater than τ which in the case of News-
Stand should be fairly short (since it deals with streaming
news) such as 120 seconds. Once the stale elements have
been removed, pass the current cache C and the current
map viewing window to Algorithm 5.

Algorithm 5 begins by calculating the grid cells that
intersect with the current window storing the intersected
grid cells in grid cells and initializes an empty results list,
cached results. Each grid cell in grid cells is then checked for
membership in C. If a grid cell in grid cells is not contained
in C, an asynchronous server request is dispatched to down-
load the associated data. If a grid cell in grid cells is con-
tained in C and the cached grid cell has finished downloading
the data, then the results are appended to the cached results.
Note that due to the requests to the server being sent asyn-
chronously, a grid cell may exist in the cache that is still
waiting for its data to be returned from the server. On com-
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Figure 6: Cache hit rate on server side query log

k 1 2 3 4 5
cache size 17 49 52 66 82

Table 1: Cache size to achieve 90% hit rate

pletion of an asynchronous call associated with the current
map viewing window, the data is appended to cached results
and a check is made to determine whether all of the current
grid cells have been downloaded. The cached results are not
displayed until all of the data for the current grid cells have
been downloaded thereby preventing data from populating
in only certain grid cells of the map while other grid cells
remain empty.

After each grid cell in grid cells has been checked for mem-
bership in C and the server has responded with all windows
not in C, the map is updated with the results from grid cells.
Future grid cells are then predicted using grid cells and the
query log of the last 200 window queries, query log, using the
algorithm proposed in Section 2.5 and the results are stored
in predicted cells. Each grid cell in predicted cells that is
not contained in C sends an asynchronous server request to
retrieve the data for the current grid cell. C is set to the
union of the grid cells with their associated data and the
predicted cells with their associated data.

4. EVALUATION
We evaluate our implementation with respect to both ef-

fectiveness and efficiency. The NewsStand server is deployed
in a cluster [11]. The mobile device is a Samsung Galaxy S3
running Android 4.1.2.

4.1 Study using NewsStand query log
We first conduct an empirical study on a real query log

from NewsStand system. We collected all queries submitted
to the system during September 2012 to November 2012. We
cleaned up the query log to contain only those queries sub-
mitted by performing a window movement operation. There
are 10,105 queries in total. 75% of all queries are used as
training data, and the remaining 25% are used as testing
data.

We use Algorithm 4 as the prediction algorithm, since
Algorithm 3 is a special case of Algorithm 4 by setting k = 1.
For each query in the test data, we run the algorithm to get a
set of queries, and we count how many times the next query
in the list appears in this set.The cache hit rate is the ratio
between this count and the total number of queries.We vary
the cache size from 1 to 100 and k from 1 to 5, and compute

Figure 7: Cache hit rate for next 5 queries on server
side query log

the ratios. Figure 6 plots the cache hit rate versus cache
size. From the plot, we can observe that Algorithm 3, i.e.
k = 1, can achieve a 90% cache hit rate once the cache size
becomes larger than 17.

We further observe that the curve for a larger k lies below
the curve for a smaller k. We attribute this to the fact that
for a larger k, the algorithm favors the queries that will be
submitted in the future, but we only count the next one
query. We also observe that for all k, the cache hit rates
achieve more than 90% when the cache size is 100. Table 1
shows the smallest cache size for each k, which the cache hit
rate achieves 90%.

Finally, we study the offline accessibility of Algorithm 4
by measuring the cache hit rate in the next 5 query submis-
sions. Figure 7 shows the plots of the cache hit rate versus
cache size for k = 1 to 5. For k = 1, which is equivalent to
Algorithm 3, the cache hit rate is lower than 90% even for
a cache size 100. For k > 1, the algorithm significantly im-
proves the cache hit rate. But we observe no big differences
among k = 2, 3, 4 or 5. This phenomenon illustrates that
the queries after at most 5 operations that users are most
likely to perform, can also be achieved by performing two
operations. We attribute the reason for this to be that users
are more likely to redo their recent old queries.

4.2 Study on mobile devices
We studied the performance of SAC on a mobile device

by recording window movements on the NewsStand Android
application. We created and analyzed three datasets and
evaluated the effectiveness of our cache along with the query
running times.

Datasets.
We simulated users inputs by recording window move-

ments on the NewsStand Android application on a Samsung
Galaxy S3 capturing three different datasets. Each dataset
contained 200 window movements. Dataset 1 consisted of
primarily (over 60%) panning operations while Dataset 2
consisted of primarily (over 60%) zooming operations. Dataset
3 contained a similar amount of pan and zoom operations.
The results for both the effectiveness and running time are
the average of each of the datasets of three subsequent runs
to control for varying overhead when communicating with
the server.
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k 0 1 2 3 4 5
Dataset 1

Cache Hit (%) 53.6 55.0 55.0 54.5 54.0 52.4
Coverage (%) 73.1 75.1 74.0 74.0 73.7 73.0

Dataset 2
Cache Hit (%) 44.0 45.2 45.0 44.8 44.2 43.8
Coverage (%) 58.7 60.9 61.0 60.3 60.6 59.9

Dataset 3
Cache Hit (%) 68.7 70.0 69.3 68.2 68.5 69.0
Coverage (%) 80.0 81.0 81.0 80.7 80.6 80.4

Table 2: Effectiveness study on mobile devices look-
ing at the cache hit and coverage percentage for
three datasets.

Effectiveness.
To evaluate the effectiveness, we computed the cache hit

rate and the coverage. The cache hit rate is computed with
the same method as in the query log which is the percentage
of queries that can be completely answered by the cache. For
some queries, even though not all responses are in the cache,
a partial result may be available. The coverage computes
the percentage of the responses for the next query that can
be answered based on the contents in the cache.

We vary k from 0 to 5, and evaluate the system using a
cache size of 100. Note that when k is zero we are using a
cache with no prediction, i.e. we are storing only previously
accessed windows in the cache so by comparing it to k > 0 we
can measure our predictions’ success. The results are shown
in Table 2. As can be seen the cache hit varies from 43.8%
in Dataset 2 to 70.0% in Dataset 3 while Dataset 1 falls in
between. The highest cache hit rate is achieved when k is set
to 1 in all three datasets (note k=2 gives same cache hit rate
for Dataset 1). The coverage percentage varies from 58.7%
in Dataset 2 to 81.0% in Dataset 3 while Dataset 1 again falls
in between. Dataset 1 has the highest coverage percentage
when k is set to 1 and in Dataset 2 the highest coverage
percentage is achieved when k is set to 2. In Dataset 3, the
highest coverage percentage is when k is set to 1 or 2. We
see that both the cache hit rate and the coverage are quite
similar for different k for a given dataset. We observe that
overall the results for k = 1 and k = 2 are slightly better
than those for k > 2. This observation is the same as we
observed in the study of the query log. We believe that this
is due to our prediction algorithm only looking at the overall
past movements and not with respect to the user’s current
location or their most recent of requests.

The cache hit rate shown in Table 2 means that over 43.8%
of all window queries can be answered without additional
communication to the server since the results were previ-
ously cached. Additionally, over 58.7% of the discretized
windows are in the cache. Important to note, is that the
simulated dataset most like a typical user, Dataset 3, can
achieve both a 70.0% cache hit rate and 81.0% coverage
percentage when k is set to 1. This allows for high usability
when SAC is in offline mode due to limited or no connectiv-
ity.

Running Time.
We evaluated the query response time using SAC com-

pared with a no-cache solution. For SAC, we varied k from
0 to 5, and the cache size was 100. The average response

Figure 8: Query response time (ms)

k 0 1 2 3 4 5 No-cache

Dataset 1 (ms) 260 216 209 204 183 201 263
Dataset 2 (ms) 272 266 261 280 294 326 350
Dataset 3 (ms) 188 162 147 170 171 161 325

Table 3: Query response on mobile device (in ms)

time for Dataset 3 for varying values of k and the no-cache
solution is plotted in Figure 8. From this figure, we observe
that the no-cache solution has a more stable response time
with periodic longer queries, while SAC’s response time is
more unstable with many queries taking under 50 millisec-
onds when SAC uses the cache. For those cache hit queries,
SAC’s response time is less than the no-cache solution. The
reason is that the no-cache solution will always submit a
query to the database server, while SAC will respond to a
user immediately. For cache miss queries, SAC may result
in a larger latency as up to four queries will be requested
from the server. Even though these are asynchronous calls,
the database server’s response time increases when respond-
ing to those queries and the client’s resources are divided in
order accommodate each of the requests.

The average response times in milliseconds for the three
datasets is shown in Table 3. Here we see that in all cir-
cumstances, including when k=0, on the average the cache
outperforms the no-cache solution. We see that by setting
k to 2 in Dataset 3 we get over a 50% reduction in average
query response time. Interestingly, an increase in k may de-
crease the average query response time even though there
is a decrease in the cache hit rate and coverage as was seen
in Table 2. This is most likely due to queries being pre-
dicted that are eventually used, but not necessarily when
they were expected to be called. In some cases, the SAC
query response time decreases compared to the decrease in
the no-cache solution may be considered negligible, but more
important is the fact that these windows are available offline.

5. RELATED WORK
Client-side caching for mobile devices has been widely re-

searched [4, 5, 6, 10, 12, 13, 23]. Barbará and Imieliński [5]
studied the issue of a large number of mobile devices query-
ing remote databases assuming there would be periods of
both awake and sleep times for the devices similar to cur-
rent mobile applications switching between other applica-
tions or the devices being on standby. In this model, they
believed that cached data would have to be explicitly invali-
dated with an invalidation report sent from the server while
our invalidation is determined on the client side requiring
no additional communication with the server. Lee et al. [10]
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looked into semantic query caching for mobile devices and
had a timer associated with each caching unit where on ex-
piration a refresh would be sent to the server to update
the expired cache data. The cache accommodation used by
Lee et al. is similar to our approach in that it utilizes se-
mantic locality, adapting to the patterns of query results.
However, their proposed caching algorithm only accounts
for previously seen query results while our algorithm uses
both predictive analysis of future queries and the results of
previously seen queries resulting in an increase in network
flow in order to potentially reduce wait times.

Semantic caching for mobile devices has been researched
with regards to spatial applications [4, 13, 23]. Similar to our
work, Ren and Dunham [13] looked into applying semantic
caching techniques to store location queries for areas that
may have wide areas of overlap in order to answer future
queries locally as opposed to always making server calls.
They looked at predicting future queries based on the user’s
current location, direction and velocity derived from past
locations, while we look at a comparable problem of caching
and predicting window queries. Sun and Zhou [23] created a
system for semantic caching of location queries by iteratively
decomposing the map into cells which they term Peano cells
which are able to answer queries at different zoom levels
based on the combination of lower level Peano cells. These
different levels of caching allow for zooming to be contained
in the cache, but not panning without predictive caching
or prefetching. Based on the level of the decomposition,
the proposed grid structure may require a large amount of
space to be allocated to the cache for each of the Peano
cells. Amini et al. [4] developed Caché which groups a set
of location queries in order to issue one large request to the
server. By issuing one large request, the user is granted
stronger location privacy in that their exact location is not
continuously sent to the server and offline accessibility is
improved by downloading and storing and a larger area on
the client. This work primarily considers point queries while
we focus on window queries.

6. DIRECTIONS FOR FUTURE WORK
Future work includes improving our prediction algorithm

so that as the number of predictions increases the cache hit
rate and the coverage percentages increase as well. Possible
improvements for our prediction algorithm include taking
into account the user’s current location and what the user’s
past actions were at this location. For example, in a general
case a user may be more likely to zoom in over a land mass
or to pan over an ocean. Greater improvements to the pre-
diction algorithm may come from more specific prediction
based on a current grid cell or collection of grid cells. For
example, user A may live in Orlando, FL so that s/he of-
ten zooms into grid cells that contain Orlando while as user
B from Miami, USA may zoom into some grid cells that
contain Orlando since it is relatively close to Miami from a
world perspective, but at a close enough zoom level may pan
to the south in order to reach Miami. In addition to histori-
cal prediction, prediction can be modified to give weighting
to recent queries, i.e. given the user has panned to the left
5 times in a row the chance that s/he will continue in this
direction is increased.

Additional future work involves caching the results of other
operations which can be the subject of subsequent zooming
and panning operations. This is especially relevant for near-

est neighbor (e.g., [15, 19, 22]), shortest path (e.g., [20, 21]),
and spatial join (e.g., [8]) queries.
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