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ABSTRACT
Given the increasing prevalence of streaming spatially-referenced
datasets resulting from sensor networks usually consisting of text
objects of varying length (termed labels) as well as streaming spa-
tially oriented queries leads to closer scrutiny of mapping inter-
faces to present the data to users. These interfaces must cope with
the fact that the labels associated with each location are constantly
changing and that there are too many objects to display clearly
within the interface. An algorithm meeting these challenges is pre-
sented. It differs from classical methods by avoiding expensive
pre-computation steps, thereby allowing different labels to be asso-
ciated with locations without needing to completely recompute the
layout. In other words, we are addressing a write-many read-many
setting instead of the conventional write-once read-many setting.
Our experiments show consistent sub-second query times for query
windows that contain as many as 11 million data objects, with only
slight differences in the set of displayed labels when compared to
an exhaustive baseline algorithm. This enables the algorithm to be
used in a mapping application that involves both streaming data and
streaming queries such as windowing realized by real-time, contin-
uous zooming and panning operations.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS; H.2.4 [Database Management]: Systems—
Query processing

General Terms
Algorithms, Design
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Figure 1: Example of 1,000 labels

1. INTRODUCTION
We have built many applications that use a map query interface

(e.g., QUILT [25, 34] and the SAND Browser [7, 26]) to access
and process data for which spatial and spatiotemporal indexes have
been built in both conventional (e.g., [11, 12, 22, 24, 35]) and dis-
tributed (e.g., [36] environments). Unlike traditional paper maps
(e.g., [3, 5, 6, 8, 38]), which only exist at a single scale for a point-
in-time snapshot of a dataset, the interfaces for these applications
must be dynamic in order to handle changes to the viewing pa-
rameters (i.e., usually with streaming pan and zoom actions), and,
increasingly for many applications, changes to the underlying data,
which are usually text objects of variable length (henceforth called
labels). An example is a disease report browser which plots the
names of diseases at locations where the diseases have been re-
ported. In particular, the binding of the label to a location is dy-
namic as the data changes over time. A challenge arises when there
are too many objects to display clearly within the map interface.
Figure 1 gives an example scenario which consists of the task of
displaying just 1, 000 text objects in a map. In these circumstances,
a subset of objects must be selected from the original dataset to dis-
play so that users have a manageable amount of information (a task
also known as “spatial sampling” [4] or “thinning”[33]). We use
the term layout problem to describe the combined selection and
display problem.

Our primary contribution is developing a method with a good
time complexity bound for sampling and placing labels to repre-
sent large spatially-referenced datasets on a map. Our approach
has two phases: filtering and intersection testing. In the filtering
phase, we adapt the multiresolution select distinct (MRSD) method
of Nutanong et al. [19, 20] for the centroids of the labels. It has
been used in a system that made use of a map query interface for
news photos [31] of a fixed size [9, 29]. The intersection testing
phase handles dynamic objects of varying size by ensuring that the
variable-width objects do not overlap. The effect of the stream-
ing nature of the data is accommodated by constantly changing the
data samples that were displayed and repeating the labeling action.
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(a) Location name layer (b) Disease name layer
Figure 2: The greedy algorithm version in NewsStand

(a) Zoom level 3 (b) Zoom level 5
Figure 3: The MIF algorithm version in NewsStand

Using our approach, each labeling action took no more than 0.3
seconds regardless of the zoom level. The panning was simulated
by moving the query windows between consecutive queries.

The rest of this paper is organized as follows. Section 2 for-
malizes our problem and constraints, which are handled by the
method that we present in Section 3. Section 4 provides an evalua-
tion of our method’s applicability to both synthetic and real-world
datasets. Section 5 contains concluding remarks about our method
and presents avenues for future work.

2. PROBLEM DEFINITION
A sampled labeling of a geographic dataset D is a subset of el-

ements S ⊆ D that can be displayed within a query window Q
without any overlap between elements of S. Each element of D
has attributes <lat, long, σ, text_str>, where σ is a relative impor-
tance score and higher values indicate that an object is more likely
to appear. Each text labels center is located at its actual point lo-
cation, as shown in Figure 4, where the black circle is the location
<lat, long> in the map.

Input: dataset D, query window Q.

Output: Subset S ⊆ D of data objects, such that all
objects in S lie within Q in a way that satisfies the
following criteria.

Maximize Importance Score. Each object has an importance
score attribute σ. A higher score means that an object is more im-
portant and more desirable to display, so the first goal is:

max
S

∑
i∈S

σi. (1)

From previous work [5, 38], we know that an exact solution to the
labeling problem that maximizes this type of global objective func-
tion is an NP-hard problem. So we aim to find an approximate
optimal solution in a reasonable amount of time.

Avoid Overlaps. Figure 2 shows a sample screen from the exist-
ing version of newsstand.umiacs.umd.edu, a system for displaying

news articles geographically [16, 27, 28, 30, 37] (see also the re-
lated TwitterStand system [10, 13, 32]). Its heart consists of a sys-
tem for understanding textual specifications of location (e.g., [1, 2,
14, 15, 17, 18, 21]). The full NewsStand database contains more
than eleven million entries over the past 12 months. The layout of
this version uses a greedy algorithm that selects the most important
100 entries ordered by importance score. It does not perform exact
intersection checking. So in the red rectangle of Figure 2(a), the la-
bel “Kentucky” overlaps the label “Washington D.C.”, which is not
desirable. The challenge of avoiding overlaps is the large amount
of data entries in our database — specifically, there are 22 possi-
ble zoom level settings in the Google Maps API, ranging from 0 to
21. Furthermore, the data entries in the database may be dynamic,
which means that labels may be added, deleted, or changed at will.

Maximize Spatial Fullness. The subset S should cover most of
the area in the viewing window. Comparing Figures 2 and 3, Fig-
ure 3 is more uniform and informative since the labels are present
in many areas of the map, while in Figure 2 text labels are con-
centrated in the United States, and there are no labels displayed in
the blue rectangles of Figure 2(b). Figure 3 shows a proposed re-
design of NewsStand, which implements our method. In summary,
maximizing spatial fullness requires the algorithm to consider the
spatial relative importance score, not only the global importance
score. This means that some important entries may be hidden by
other more important entries, and some minor entries may be visi-
ble since there are no other entries around it.

Zooming and Panning Consistency. This criteria is a core re-
quirement mentioned in the work of Das Sarma et al. [33] from
Google. If a geographic window W contains a visible text label R,
and another window W ′, obtained by zooming in, also contains R,
then R should also be sampled in W ′, which means that R should
be visible in W ′. Figure 3(b) is obtained from Figure 3(a) by two
zoom-in actions. Figure 3(b) shows the United States map. To
achieve zooming consistency, all the visible entries in Figure 3(a)
and within the United States, which are the red markers “Los An-
geles”, “North Dakota”, “Jackson”, and “Bristol Country”, should
also be visible in Figure 3(b).

Perform Efficiently over Dynamic Data. As mentioned earlier,
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Figure 4: Filter Phase Example

there are two aspects of “dynamic” data that must be addressed.
The first aspect involves the data entries, which can be added or
deleted from the dataset, e.g., news update in NewsStand system.
A second “dynamic” aspect involves the text labels. In many cases,
there are multiple different text labels that can represent the same
data entry. NewsStand is a good example — users can choose be-
tween a Keyword layer, Location layer, People layer, and Disease
layer. For each layer, a different label can represent the same news
story. Figure 2(b) displays the Disease layer while other figures
show the Location layer. The difficulty is that the length is varying
between the different text labels associated with the same location.
In this dynamic case, traditional algorithms do not suffice since
they focus on a static environment.

3. METHOD
Our method named Morton Index Filter (MIF) algorithm involves

a filtering phase using multi-resolution select distinct (MRSD) query
to retrieve objects with high distinctiveness scores within the query
window, followed by a intersection testing phase to ensure that dis-
played objects do not overlap. From Figure 1, we know that among
millions of entries, most labels overlap each other and should not
be displayed. The intuition of our algorithm is to first find all the la-
bels that are the most important in a certain small area around their
associated locations. Figure 4 gives a good example. The small
blue dashed squares are the same size for all text labels. After the
filtering phase, each existing text label is the most important one
within its blue dashed square.

3.1 Filtering Phase for Text Labels
Our method employs the MRSD query of Nutanong et al. [19]

to perform a first-pass sampling of the collection of data objects
within a query window. The MRSD method decomposes the data
space into regions, and each region votes for the label within it that
has the highest importance value. Using only a single decomposi-
tion will mean that a pair of nearby objects separated by a region
boundary might both be voted for, even though they are likely to
overlap. So we instead use 9 overlaid decompositions, obtained by
offsetting the square regions of a grid by 1

3
and 2

3
of the grid width

in horizontal and vertical directions.
The regular decomposition used for the MRSD method is applied

to points projected using the standard Mercator projection with a
square truncation to match the extent of online mapping applica-
tions, using the unit square ([0, 1]×[0, 1]) as the coordinate system.
The decomposition is a regular Morton decomposition [23] where
each square block can be referenced by its Morton code. So the
MRSD method can be implemented within an RDBMS using stan-
dard B-Tree indexes. Adding a data object to the collection involves
computing the Morton code for its containing block at the deepest
level, for each of the 9 offsets. When the system requires a sample
of objects within a query window, it first determines the depth of

decomposition to use when determining distinctiveness, and then
identifies the objects with the highest distinctiveness scores. For
a given query window, the MRSD method expects objects with a
size of (ϵ × ϵ) to be displayed (i.e., each object will have a square
representation on the map). Indeed, the result of the query is a row
representing the most important data object for every block in the
window. By counting the number of times each object appears in
this result, we get the distinctiveness score of each object, a number
between 1 and 9. By construction, objects with a size of (ϵ×ϵ) and
with a distinctiveness score of 9 will not overlap any other objects.
Consequently, we can treat MRSD as a filter.

3.2 Intersection Testing Phase
The filtering phase yields all objects of maximum size (ϵ × ϵ)

that do not overlap. As we are dealing with labels of arbitrary size,
the actual labels may be bigger than the (ϵ×ϵ) objects and we need
an intersection testing phase to check for overlaps since the size of
the labels can vary. Here we introduce three methods to implement
this phase.

In the text output layers of NewsStand, larger font point sizes
mean using much space and thus the number of results returned
by the filter step is smaller. When this number is on the order of
hundreds (i.e., small), then it is efficient to use an O(nm) method
to check for overlaps, where n is the number of entries that are
returned by the filtering step, and m is the maximum number of
entries that can be displayed in a window, which we call the window
capacity. However, if the font point size become smaller or the size
of filter square decreases (the blue dashed square in Figure 4, then
the size of the filter result would increase to thousands or more,
which causes the O(nm) algorithm to be less practical.

One straightforward approach to speed up the intersection phase,
is to limit the overlap check to a small subset of neighboring objects
(e.g., 5) so that a negative is reported if no overlap is detected.

However, since we are dealing with labels that are rectangle ob-
jects rather than points, we may miss some overlaps. We avoid this
by sorting the objects with a spatial index of which many choices
are available and we choose the PR-CIF quadtree [23]. We con-
struct it by inserting the objects in decreasing order of the impor-
tance score and only making the insertion if the new object does
not overlap any of the existing objects in the tree.

4. EVALUATION
We compare three text label layout methods:
• Our Morton Index Filter method (MIF).
• The O(nm) brute-force method (Basic), where n is the num-

ber of labels in the window being queried, and m is the max-
imum number of non-overlapping labels in the window.

• The PR-CIF quadtree based method (Quad).
We used two datasets, one of points of interest (POI) from cloud-

made.com and one of news keywords from newsstand.umiacs.umd.edu,
which contain 11, 469, 485 and 9, 964, 607 labels, respectively, from
all over the world. The methods were evaluated using a realistic
set of 5475 query windows from newsstand.umiacs.umd.edu query
logs. Figure 5 plots the query time for zoom levels from 18 to 3,
although most queries were made at zoom levels 9 − 4 and thus
the response time in this range is the most important. Deeper zoom
levels are needed when the font point size is smaller. The red bro-
ken line in Figure 5 reinforces this point in that the part of the curve
to its right is more important than the part to its left.

The query response time of MIF includes three parts: converting
a window query into a number of SQL statements, retrieving data
using Morton code indexes, and discarding overlaps. The second
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(a) Query response time in POI
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(b) Query response time in NewsStand
Figure 5: Efficiency evaluation

step is the filtering phase, which consumes the most time. The
third step, which checks intersection, can be implemented using
either the O(nm) brute-force method or a spatial index such as the
PR-CIF quadtree, and its execution time depends on the size of the
filter square (i.e., the query window and the font point size). For
the Basic and Quad methods, we first use the PostGIS extension
to select all of the labels in the current window query. Since it
retrieves a large amount of data entries, the query response time can
be large for query windows that contain many labels, and likewise
for the step to detect overlaps. Note that Figure 5 does not show
any data for the Basic and Quad methods for zoom levels 8 to 3
as it takes too long to process queries for this range. Its clear that
the efficiency of MIF is stable, while the other methods (Basic and
Quad) exhibit response times that are roughly proportional to the
number of entries in the current window.

5. CONCLUDING REMARKS
We have presented the Morton Index Filter (MIF) algorithm for

efficiently sampling variable-sized data objects, such as text labels,
for display within a map query window. The algorithm satisfies
many important criteria for interactive map labeling. The core of
our algorithm is a set of indexes on the Morton code representation
of each object’s location, which allows for extremely fast identifi-
cation of distinctive objects. One particularly novel aspect of our
algorithm is how it handles variable-width labels. Our evaluation
shows that these objectives are achieved with consistent sub-second
response time at all zoom levels, even on datasets with tens of mil-
lions of points in the query window.
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