
Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

Analytical Queries on Road Networks: An Experimental
Evaluation of Two System Architectures ∗

Shangfu Peng Hanan Samet

Center for Automation Research
Institute for Advanced Computer Studies

Department of Computer Science
University of Maryland

College Park, MD 20742 USA
{shangfu, hjs}@cs.umd.edu

ABSTRACT
Spatial analytical queries on road networks typically perform hun-
dreds of thousands to several millions of shortest distance computa-
tions in the process of producing results. These queries require ar-
chitectures that can compute a large number of network distances.
Two architectures are evaluated on a variety of spatial analytical
queries on road networks. The first architecture is a widely used
hybrid architecture that uses a database to store spatial datasets, a
road network distance computing module, and an analysis tool to
tie them together into a single query processing pipeline. The sec-
ond architecture uses of a distance oracle representation of a road
network. This architecture stores the spatial datasets and the dis-
tance oracle inside the database, and the query processing is com-
pletely handled by the database. A detailed evaluation of the two
architectures for a variety of analytical query processing tasks such
as region, KNN, distance matrix and trajectory queries is presented
and the lessons learned are discussed.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS; H.2.4 [Database Management]: Systems—
Query processing

Keywords
spatial analytical query, distance oracle, road network, system ar-
chitecture

1. INTRODUCTION
The past two decades has seen a steady increase in processing

spatial queries. Such functionality has been implemented in early
systems such as QUILT [34, 43] and SAND [22, 35] which had
a browsing capability to full-fledged mapping applications such as

∗This work was supported in part by the NSF under Grants IIS-10-
18475, IIS-12-19023, and IIS-13-20791.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’15, November 03-06, 2015, Bellevue, WA, USA
c©2015 ACM ISBN 978-1-4503-3967-4/15/11...$15.00

DOI: http://dx.doi.org/10.1145/2820783.2820806.

MapQuest, Yahoo Maps, Google Maps, and Bing Maps. They all
require the computation of the distance between two locations x
and y which in our work is more accurately represented as the net-
work distance DIST (x,y) instead of the Euclidean distance ||x−y||,
or variants of it such as a minimum distance to a block bound-
ary (e.g., [33, 40]) or the Hausdorff distance (e.g., [29]). Beyond
simple navigation queries, location-based web services like Google
Maps repeatedly pose queries on a road network and utilize the
results to serve a user base. For example, Google Distance Ma-
trix offers an API that computes the distance matrix between a set
of origins and a set of destinations. Other examples include an-
alysts who use OLAP stores to perform complex simulations on
road networks to help answer queries such as determining where
to locate an additional Walmart among a number of potential loca-
tions, or the roads where bottlenecks exist for evacuation planning
purposes. Moreover, mobile services frequently interact with write-
optimized stores to store the current positions of mobile hosts as
they move about in a road network. These services also frequently
compute the distances from their mobile hosts to other mobile hosts
or landmarks in order to provide services such as locating the k
nearest restaurants or gas stations. We use the term spatial analyti-
cal queries to collectively describe such queries. The challenge lies
in taking note of the realization that each such instance of a spatial
analytical query invariably involves being able to make hundreds
to as many as millions of computations of distance along a spatial
network rather than as the crow flies.

In the face of a massive amount of spatial analytical queries from
internet scale users, for example, Google Maps [6] drastically re-
stricts the number of shortest distance results per query (e.g., a limit
of 100 shortest distances per query using the Google Distance Ma-
trix API). Most other existing services such as Yelp just use Eu-
clidean distance instead of network distance. Figure 1 illustrates
the drawback of using Euclidean distance. It shows Yelp’s response
to the query: find the restaurants around River Road, Edgewater, NJ
(blue icon) with the distance filter that they are within a 2 mile bik-
ing distance. Obviously the 5th and 9th results that lie on the other
side of the river are impossible to reach by biking less than 2 miles.
However, they are in the result set (e.g., Flat Top, the 5th result, is
1.3 miles away using Euclidean distance).

Reviewing previous research work, we find none that are con-
cerned with general spatial analytical queries. Instead, they fo-
cus on speeding up one specific type of query, e.g., KNN search
queries [16, 18, 29, 31], CNN queries [15], and distance matrix [25].
However, these algorithms are not easy to extend to include general
spatial analytical queries. On the other hand, most state-of-the-

Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

Figure 1: Yelp results for the query: find the restaurants
around River Road, Edgewater, NJ that are within a 2 mile
biking distance.

art methods such as HL [10], TNR [13], CH [23], etc, focus on
decreasing the latency time for a single source-target (s-t) query,
which is the basic unit of a spatial analytical query. Although de-
creasing the latency time for one s-t query results in reducing the to-
tal response time for a spatial analytical query, it is far from enough
since these methods don’t take into account considerations such as
multi-users, multi-threads, reused results, and query optimization
that can be used to speed up a spatial analytical query.

An alternative approach to speeding up spatial analytical queries
is to take advantage of the query optimizer associated with the
database system which makes use of selectivity factors about the
underlying data (i.e., stored in the relations being operated on). For
example, suppose that we want to find the cities with population
greater than 500, 000 within 200 miles of the Mississippi River.
We have two options here. Armed with knowledge about the com-
plexity of executing a within (or buffer) algorithm as well as the
data distribution, the query optimizer can either call for performing
the spatial selection first or the relational selection first where the
choice will depend on the number of cities with such a population
and and the size of the spatial area in question. As another example,
suppose that we want to find all stores within 25 driving miles of a
warehouse. Here, armed with knowledge of the complexity of find-
ing entities within a given driving distance as well as the data dis-
tribution, the query optimizer can either call for a solution based on
finding the nearby stores vis-a-vis the individual warehouses or on
finding the nearby warehouses vis-a-vis the individual stores where
the choice depends on the number of warehouses and the number
of stores. The important thing to note about these examples is that
the query optimizer requires knowledge about the complexity of an
external module or algorithm that is executed outside the database.
Unfortunately, such knowledge is usually not present and thus users
cannot rely on it.

In this paper, we study a general efficient solution for spatial
analytical queries. Our contribution is two-fold. The first is the
proposal of two architectures, the hybrid architecture (HY) and the
integrated architecture (DO), for solving spatial analytical queries.
The second is the formulation of efficient solutions for spatial an-
alytical queries using our previously developed technology, the ε-
distance oracle (ε-DO) [38, 39].

We propose the architectures and their modules by reviewing
and summarizing the existing solutions and use cases. Most ex-
isting spatial analysis tools use the HY architecture illustrated in
Figure 2, which separates the modules into two parts. The first
part deals with point-of-interest (POI) locations, relations, and at-
tributes in a database system, and the second part retrieves shortest
distance results on a road network, which is usually processed in

memory. Our previous work called ε-DO [38] is the first attempt
to answer spatial queries within a database system, which makes
the DO architecture in Figure 3 possible. Embedding map-based
services within a database system is attractive as it allows devel-
opers to leverage the power of a database language to create new
types of online services resulting in easy programming, customiza-
tion, and maintenance. In addition, there are ample opportunities to
use optimization to speed up a spatial analytical query like finding
the nearest restaurant for each coffee shop which ends up making
millions of shortest path queries.

In order to make our ε-DO more powerful, in this paper, we
develop more efficient solutions. In particular, here we present
SQL solutions for KNN and trajectory queries. These two types
of queries serve as building blocks to enable people to easily write
SQL solutions for more complex queries. In our examples, each
spatial analytical query is expressed by just a few lines of SQL that
utilize pre-defined functions. In contrast, the situation is far more
complicated if for each of the queries users would have to devise
efficient programs in Java (or other high level programming lan-
guages) to obtain the necessary query results.

Finally, we experimentally evaluate our DO solution in a database
in conjunction with a high-performance implementation of Dijk-
stra’s algorithm with multi-threads on the entire USA road network.
Dijkstra’s algorithm is the most widely used method for spatial an-
alytical queries (e.g., in Esri [4]) as it is adaptable for most spatial
analytical queries and is efficient for the single source query. Our
experimental results demonstrate that our DO solution is able to
yield at least 34, 000 shortest distance query results per second on
a commodity machine. This means that our solution is at least an
order of magnitude faster than the highest-performance implemen-
tation of Dijkstra’s algorithm for most analytical tasks.

The rest of this paper is organized as follows. Section 2 intro-
duces the analytical queries and provides an overview of our two
architectures. Section 3 presents the traditional hybrid architecture
for most existing spatial analysis tools, while Section 4 proposes
the integrated architecture using the ε-distance oracle. Section 5 de-
scribes a detailed experimental evaluation of our solutions, and we
provide our SQL functions and codes online in [8]. Section 6 dis-
cusses the lessons we learned, Section 7 summarizes related work,
and conclusions are drawn in Section 8.

2. SPATIAL ANALYTICAL QUERIES
A spatial analytical query on a road network performs hundreds

of thousands or even millions of shortest distance computations in
the process of answering the query. These types of queries are com-
monplace in many applications such as logistics, tour planning, and
determining service areas. Below, we provide a few sample use
cases gleaned from real user postings on ESRI [4] web boards and
those that we found elsewhere on the Internet.

USE CASE 2.1. I am a taxi operator running a fleet of taxis. I
have a dataset of taxi trips each with a unique ID such that each
trip has a latitude and longitude values for both a pickup and a
drop off point, as well as for way points at irregular intervals. Such
a dataset constitutes the trajectory information for each taxi trip. I
want to obtain the total number of miles travelled by each taxi this
month. This information is useful in computing the actual profit
per km of all the vehicles in my fleet and determining which of my
drivers are better performers.

USE CASE 2.2. I am an operator of a large hospital and have
the geocoded address of my patients and the locations of my clinics.
Our hospital has more than 500 clinics across the country. Each
patient is assigned to the nearest clinic. I want to get the average

Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

drive time for patients per clinic. This is an important metric in
healthcare since the further one has to drive, the poorer are the
health outcomes. This distance also informs us of the need to open
new clinics or relocate existing ones to better serve our patients.

USE CASE 2.3. I have a trucking company with 10 trucks that
deliver thousands of packages for a popular retailer. A common
operation that I run several times during each day is determining
which packages should be loaded on to which truck and the order
in which they should be delivered. This decision process constitutes
a complex tour planning query that tries to minimize the total net-
work distance travelled by all trucks, as well as to accommodate
the priority assigned to each package. For this purpose, the input
is a network distance matrix between the delivery locations of all
current packages. An optimization program would decide how to
assign packages to trucks and the order in which to deliver them.
Note that even with 1000 packages, the query will compute up to 1
million pair-wise network distances.

For spatial analytical queries on road networks, there are two
common reasons why such queries end up making a very large
number of distance computations. First, spatial analytical queries
are typically used for generating insights into the data in the form of
reports or visual representations. So it is common for these queries
to end up accessing large portions of the data. Second, the queries
may join two or more datasets on the basis of the network distance
to other objects on the road network, such as finding the nearest
neighbors from one dataset for each location in another dataset, or
group one or more datasets based on the closest distance to objects
in another dataset. Executing all of these operations can easily end
up making millions of distance computations on the road network.
For instance, just the simple query that obtains the network dis-
tance between all pairs of objects drawn from a set of 1000 objects
to one another ends up making 1 million distance computations on
the road network.

Since the spatial analytical queries are an important use-case
whose efficiency depends on being able to compute millions of net-
work distance computations efficiently on road networks, there is
a need to examine which of existing available architectures are ca-
pable of efficiently processing these queries. Most existing tools
for spatial analytical queries have several limitations, or use the
basic Dijkstra’s algorithm. For example, the Google Distance Ma-
trix API [6] limits non-paying users to submit 100 shortest dis-
tances (10 origins and 10 destinations) per query, and obtain 2, 500
shortest distances per 24 hour period. For paying customers, the
limits are 625 shortest distances per query, and 100, 000 shortest
distances per 24 hour period. Esri [4] also claims that the ArcGIS
Network Analyst extension, namely the Route, Closest Facility, and
OD Cost Matrix solvers, are based on the well-known Dijkstra’s
algorithm for finding shortest paths. All these tools are not good
enough to solve spatial analytical queries.

Spatial analytical queries make two distinct kinds of access pat-
terns on road networks, and make millions of these accesses in the
process of answering a query. The most basic pattern is called one-
to-one pattern which computes the distance between a source and
a destination on the road network. Another access pattern is one-
to-many that makes several s-t pair computations from the same
source vertex. For instance, computing the K nearest neighbors
for each point from a large dataset makes one-to-many access pat-
terns. There are opportunities for speeding up one-to-many patterns
even though they are nothing more than multiple one-to-one access
patterns. We use the term scan to describe the actual implementa-
tion of the execution of an access pattern. Note that there can be
many options for executing a scan including Dijkstra’s algorithm,

SQL

SCANS
One-to-Many

One-to-One

ROAD NETWORK SCANNER

ANALYSIS TOOL

APPLICATIONS

DATABASE

Datasets

SCANS

Optimizer

Figure 2: The HY architecture, which represents most existing
spatial analysis tools

contraction hierarchies (CH) [23], etc.
Any architecture for answering spatial analytical queries must be

optimized for performing a large number of distance queries on the
road network. In particular, we present two such architectures and
then compare and contrast their features.

The first architecture is a hybrid architecture that uses a database
to store and query spatial datasets, but then uses an external mod-
ule that loads the road network in the main memory and performs
fast in-memory scans on the road network. This approach takes ad-
vantage of the large amount of available memory in modern com-
puters as well as the high number of processing cores to be able
to compute a large number of scans quickly. An analysis tool co-
ordinates the data transfer and the issuance of scans to the road
networks. A common example of such an approach is the process
used by the ArcGIS Network Analyst to solve problems such as
Use Case 2.2. The information pertaining to both clinics and pa-
tients is maintained in a database system. In order to compute the
average driver distance for each clinic, the ArcGIS Network Ana-
lyst first retrieves the related data from the database, and then scans
the network starting at the clinic using Dijkstra’s algorithm which
here is implementing a one-to-many access pattern. The scan pro-
cess stops when it has obtained all the network distances of the
clinic’s patients.

The second architecture incorporates the road network inside the
database as a single relation. The road network is stored as a dis-
tance oracle [38] relational table indexed by a B-tree. Scans on the
road network become lookups on the B-tree index which is very
efficient to perform. This method relies on being able to perform
the queries entirely inside a database and on using the declarative
nature of an RDBMS to automatically optimize queries.

3. HYBRID ARCHITECTURE
The most common architecture for responding to spatial queries

on a road network is a hybrid (denoted by HY) one consisting of
a database to store the spatial datasets and a module external to
the database to execute the actual operations on the road network.
Figure 2 shows such a representative architecture that combines a
database, an analysis tool, and an external module for network pro-
cessing. An example of a system that deploys such an architecture
is ArcGIS from Esri [4], a popular platform for performing deep
analysis to make informed decisions. The analysis tool is at the
heart of this architecture in the sense that it extracts the necessary
data from the database, pre-processes it, and contacts the road net-
work scanner to perform the necessary scans on the road network.

Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

In this architecture, the analysis tool partitions the query process-
ing into two parts. The first part queries the database to access
the spatial datasets, such as restaurants, gas stations, real estate in-
formation, warehouses, etc. When the volume of datasets is large
(which is the usual case), this database is usually a conventional off-
the-shelf database; if their volume is small, then they may even be
loaded into main-memory from files (e.g., shapefiles) in which case
we have a main-memory database. The second part uses the anal-
ysis tool’s road network module to compute network distances be-
tween the objects. Actually, the network distance computations are
incorporated into the processing and the result is either displayed to
the user or stored back into the database. In this model, the network
processing happens entirely outside the database while the analysis
tool serves as the “glue” that coordinates computations between the
database and the road network module.

The road network scanner is an in-memory processing module
that implements the execution of the access patterns on large road
networks. It contains at least one spatial index such as a k-d tree or
R-tree to locate the given locations, and one or more priority queues
to speed up the scan process. In order to fully utilize the computing
power of multi-cores, this module also needs to employ several pro-
cessing threads. Each thread responds to one scan process at a time.
Its not worth to parallelize the workload inside one scan process us-
ing several threads as previous work [17, 28] has shown that paral-
lelization of Dijkstra’s algorithm and similar scan-based algorithms
with traditional locks and barriers has disappointing performance.
In particular, our implementation of HY built a k-d tree in the main
thread which was pre-loaded with the vertices of the graph. The
main thread uses the k-d tree to locate the source point of a given
scan task, while the destination points of the scan task are obtained
from the POI table. Next, our implementation sets up several scan-
ning threads to process Dijkstra’s algorithm (we could have also
used another method like CH) to obtain distance results. All scan-
ning threads share the graph representation, and each thread keeps
a private scanned queue to store the visited vertices and a heap (as
we are using Dijkstra’s algorithm) to determine the next vertex to
scan. Each time that the main thread is presented with a scan task,
the main thread first locates the source point using the k-d tree, and
then assigns the scan task with its associated source and destination
points to a waiting scan thread. All threads use busy-waiting.

In addition, between the analysis tool and the road network scan-
ner, an optimizer module would be useful to automatically optimize
the scan plan. However, often, users dispense with this step as most
existing analysis tools rely on the user’s specification of the scan
plan. At the end of Section 4, we give an example to see the impor-
tance of having an optimizer.

The road network scanner in Figure 2 shows two access patterns
for retrieving shortest distances. The one-to-one access pattern is
the commonest, although the one-to-many access pattern is also
commonly used as it is optimized for multi-destinations. Note that
ideally there should also be a third access pattern of the form many-
to-many. However, very few access pattern implementation algo-
rithms are designed for a many-to-many access pattern because its
effect can be obtained by resorting to multiple instantiations of the
one-to-one and one-to-many access patterns as in [25].

Each specific algorithm that retrieves the shortest distances and
paths implements one of the two access patterns. For example,
Dijkstra’s algorithm is good for the one-to-many access pattern,
while CH [23] is good for the one-to-one access pattern. The road
representation of a specific algorithm is the lowest component in
Figure 2, e.g., Dijkstra’s algorithm uses the original graph repre-
sentation and TNR [13] uses the hierarchical tree representation.

Below we provide an abstraction of the operation of the scan

procedures instead of the details of the algorithms that implement
them. In particular, our HY architecture given in Figure 2 imple-
ments the following operators on road networks:

DEFINITION 3.1. The SCAN() operator scans the road network
in memory using one of the scan-based algorithms,A. GivenG(A),
the graph representation of A, and vertex s, SCAN(s) uses A to
scan G(A) starting at s.

We now define two operators that are frequently used in the spa-
tial analytical queries, SCAN_UNTIL_K() and SCAN_UNTIL_DIST().
They inherit the SCAN() operator.

DEFINITION 3.2. SCAN_UNTIL_K(k, s, P) scans the graph
starting at vertex s, and returns the k nearest objects o to s, where
o ∈ P and P is the POI set.

DEFINITION 3.3. SCAN_UNTIL_DIST(d, s, P) scans the graph
region within network distance d from vertex s, and returns all the
objects o, where o ∈ P and P is the POI set, and o is within net-
work distance d from s.

SCAN_UNTIL_K() stops the scanning when it has visited k ob-
jects inP , and SCAN_UNTIL_DIST() limits the scanning to objects
lying within a specified network distance. The set of P indicates
the set of POIs, which is an overlay over the network graph. It can
be a set of restaurants, gas stations, houses, as well as even all the
vertices of the road network. As far as we know, every spatial an-
alytical query contains at least one set of POIs. After defining the
SCAN() operators, we can easily describe the processes of spatial
analytical queries using a scan-based algorithm. For example, a
KNN query can be solved by the SCAN_UNTIL_K(k, s, P) oper-
ator, and a distance matrix query, which has n sources and m des-
tinations, can be solved by making n calls to SCAN_UNTIL_K(m,
si, P) where si is the ith source.

4. INTEGRATED ARCHITECTURE
The database community desires an integrated architecture, which

means that all components and procedures reside in a database.
This makes the architecture more compact and efficient, as the an-
alytical query executes entirely within the database. The database
knows how to optimize such queries, since the road representation
appears as one or several relations in the database, and thus the
query appears like any other relational query to the database. The
core challenge lies in how to embed the road representation in the
database. For example, pgRouting [7] extends the PostGIS / Post-
greSQL geospatial database to provide geospatial routing function-
ality. Oracle Corporation proposed the Network Data Model Graph
(NDM) [30], which persistently manages the network connectivity
in the database, while a Java API provides fast in-memory graph an-
alytics. However, since the road representation in both pgRouting
and NDM is the original graph representation, they are similar to
the HY architecture except for storing the nodes and edges in their
database. HLDB [11] proposed by Microsoft Research is the first
practical system that can answer spatial queries on continental road
networks stored entirely within a database. It stores the vertices of
the road network, as well as sets of “forward” and “backward” hub
labels (HL) of the vertices [10] in the database. Each s− t query is
solved by performing a JOIN on the corresponding “forward” and
“backward” relational tables of s and t, respectively.

In this section, we propose the integrated architecture that makes
use of our previously developed technology, the ε-DO [38]. The
distance oracle [38] takes a road network as input, and reduces it
to a single database relation that captures the network distances be-
tween every pair of vertices in the road network. The technique is

Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

based on the notion of spatial coherence, which can be described
intuitively using the following example. The network distance be-
tween any vertex (more generally any location denoted by its lati-
tude and longitude) in the Washington, DC region to any vertex in
the Boston, MA region can be reasonably approximated by a sin-
gle distance value. This is because the shortest path regardless of
where one starts in the DC region or wants to go in the Boston re-
gion ends up using I-95N. This large overlap in the shortest paths
means that the network distance between sources in Washington,
DC and destinations in Boston, MA can be approximated by a sin-
gle value with a bounded approximation or error tolerance. Fur-
thermore, as the sources and destinations get farther apart, one can
approximate even larger regions of sources and destinations with a
single value. For instance, Maryland and California can be approx-
imated by a single value with a bound on the approximation error
since the sources and destinations are quite far from one another.

Using a cluster of 50 EC2 machines, it took us about 6 hours
to compute the distance oracle of the USA road network which
contained 24 million vertices. The precomputation process decom-
posed the road network with n vertices intoO(n

ε2
) triples (A,B, d)

stored in a relational table, such thatA andB are denoted by blocks
in a PR quadtree and d is the network distance that approximates
the network distance between every pair of vertices contained in A
and B within an ε error tolerance. In particular, d is also said to
be ε-approximate, which means that the resulting error in using d
instead of the exact network distance between the any vertex in A
and any vertex inB is bounded by the ε error tolerance. The result-
ing representation for the entire USA was about 55GB in size with
an error tolerance ε = 0.25. This is a reasonable setting for real
road networks. In particular, in our previous work [38], we showed
that although the error tolerance ε is 0.25, the approximate distance
value of at least 20% of the vertex pairs has an error of less than
1%. Moreover, the average error for random queries is just 2.74%.
The relational table corresponding to the distance oracle is indexed
by a B-tree representation that allows disk efficient loopkups for
approximate distances.

Using the distance oracle, we created an integrated architecture
illustrated in Figure 3. The key difference from the hybrid archi-
tecture is the use of the distance oracle road representation, which
has been embedded in a database as a simple relational table. To
query the distance oracle, we implemented an SQL function called
DIST(), which queries the distance oracle relational table to com-
pute the road distance between any source and destination. In par-
ticular, given two latitude/longitude pairs, DIST() first computes a
unique code which it looks up in the distance oracle relational table,
and then uses a simple SELECT query that is facilitated by the B-
tree index. For example, computing the network distance between
the White House and the US Capitol Building in Washington, DC
becomes as simple as the following query that

-- Road distance between White House and US Capitol
SELECT DIST(38.8977, -77.0366, 38.8898, -77.0091);
-- This produces 2144.7 (meters)

More user-defined functions (UDFs) and complex queries can
also be easily expressed using the distance oracle. Let us consider
the following example. Suppose that we have a relation houses
(id, lat, lon) corresponding to the location of all houses
available for sale and another relation parks(id, lat, lon)
corresponding to the location of all parks, where lat and lon cor-
respond to the latitude and longitude values of the corresponding
locations. We want to find up to 100 houses with the maximum
number of parks that lie within 0.5 km of road distance from the
houses sorted by the number of such parks. The following code
written completely in SQL yields an efficient response to this query.

Logical Layer

Query Optimization

Physical Layer

Query Language Parsing

DISTANCE ORACLE

SQL

DIST()

DATASETS

Relational Operators

GIST INDICES

APPLICATIONS

Lookups One-to-Many One-to-One

UDFs

Figure 3: Integrated architecture DO for analytical queries us-
ing the distance oracle.

SELECT id, count(*) as count
FROM (SELECT houses.id as id,

DIST(houses.lat, houses.lon,
parks.lat, parks.lon) as distance

FROM houses, parks
) as foo

WHERE distance < 500 -- 0.5 km in meters
GROUP BY id
ORDER BY count DESC
LIMIT 100;

Here we see how to express a complex query with just a few
lines of SQL. Now contrast this with performing the same query in
the traditional setup which uses a module where the road network
would be stored externally as in Figure 2. The road network would
typically be accessible through an API such as SCAN_UNTIL_K()
and SCAN_UNTIL_DIST() for computing shortest paths and dis-
tances. In this setup, the hybrid architecture would first obtain a
table of houses and parks from the database. Next, we have two op-
tions to obtain the distance results using the SCAN_UNTIL_DIST().
The first is for each house, to compute the number of parks within
0.5 km. The second is for each park, to compute the houses within
0.5 km, and then to group the distance results by the house ids. Fi-
nally, for each house, count the number of parks and order them in
descending order of the count.

Although the first option is straightforward for this query, It turns
out that the second option is more efficient as the number of parks
is considerably smaller than the number of houses, which means
the number of scans is lower. This example demonstrates that we
need an optimizer for the hybrid architecture to decide the order of
execution and make the query execution plan. This depends on be-
ing able to do selectivity factor estimation. On the other hand, the
integrated architecture has the bonus of having a query optimizer as
part of it although we did not need it in this example. In summary,
the effort to implement a spatial analytical query as the above ex-
ample in the hybrid architecture is considerably more complex than
writing a few lines of SQL as in the integrated architecture.

5. EXPERIMENTS
In this section, we present a detailed evaluation of the two archi-

tectures in order to compare and contrast their query performance.
Section 5.1 describes the experimental setup and datasets. Sec-
tions 5.2 and 5.3 evaluate the performance of both HY and DO for

Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

the region and throughput queries, respectively. We synthetize the
queries in these two subsections from the POI tables that we used.
Next, Sections 5.4 and 5.5 show our solutions for the KNN and
trajectory queries, respectively, in realistic settings.

5.1 Experimental Setup and Datasets
The integrated architecture (DO) is completely self contained in

a PostgreSQL database system, where analytical queries can be ex-
pressed in SQL. It exposes a single function DIST(lat1, lon1, lat2,
lon2) that will return the ε-approximate network distance between
a source and a destination location. The distance oracle for the
whole USA was used for this experiment with ε = 0.25 and is
55GB in size. Although this number seems large, the fact that the
road network has close to 24 million vertices shows that this num-
ber is consistent with our predicted linear storage bound of O(n

ε2
)

space where n is the number of vertices in the road network.
The hybrid architecture (HY) uses an entirely in-memory imple-

mentation that compactly stores the spatial datasets, the USA road
network, and the road network scanner. The road network scanner
implements an efficient multi-thread implementation of Dijkstra’s
algorithm and it defines the SCAN() functions, SCAN_UNTIL_K()
and SCAN_UNTIL_DIST().

We rented one Amazon RDS db.m3.2xlarge DB instance with
PostgreSQL 9.3.5 for the DO architecture. For the HY architecture,
we rented one Amazon EC2 m3.2xlarge. Both of these machines
have identical hardware specs (8 vCPU and 30 GB memory) and
were used in their default settings. The USA road network was
from the 9th DIMACS Implementation Challenge [2], which con-
tained 23, 947, 347 vertices and 58, 333, 344 edges.

We used two POI tables for the evaluation. The restaurant table
consists of 49, 573 fast food restaurants obtained from [9], and the
university table consists of 5, 964 locations of universities from [5].
The schemas of both tables are identical and are (id, latitude, lon-
gitude, gid, geom), where gid and geom are needed for the GiST
index on the latitude/longitude values.

We also used a taxi trajectory dataset. This taxi dataset was from
San Francisco Yellow Cab [1] collected by CRAWDAD [3]. It con-
tained 11, 220, 058 GPS entries for 537 taxis covering a one month
period in 2008 comprising 928, 307 trips. The schema for the taxi
trajectory relation is given in Table 1.
Table 1: Schema for table taxi storing the taxi GPS information.

Attribute Explanation
id crumb id (unique key, we added)
taxiid each taxi has a unique id
tripid globally unique trip id (we added)
lat latitude in degrees
lon longitude in degrees
occupancy does cab have a fare? (1 = occupied, 0 = free)
ts UNIX epoch time when GPS was recorded

An example tuple is as follows: [id, taxiid, tripid, lat, lon, oc-
cupancy, time], e.g.: [112133, 1, 422, 37.75134, -122.39488, 0,
1213084687]. Each taxi periodically records a GPS record on the
server. We assume that each taxi takes the shortest path between
successive GPS crumbs. Therefore, reconstructing the trip involves
ordering the points by their timestamp (ts) (or equivalently by their
id since we assigned the ids in order of increasing timestamp),
thereby obtaining the road network distance between successive
points and adding up the distance values.

5.2 Region Query
A distance query returns the destinations lying within a given

network distance of X kilometers around a given location denoted

100

101

102

103

104

5 10 20 50 100 200 500

T
im

e
(s

ec
on

ds
)

Distance (km)

HY-1
HY-7

DO

100

101

102

103

104

105

5 10 20 50 100 200 500

T
im

e
(s

ec
on

ds
)

Distance (km)

HY-1
HY-7

DO

(a) (b)

Figure 4: Time comparison between HY and DO varying with
the furthest distance values for (a) restaurant is destination,
and (b) university is destination

by its latitude and longitude values. The example query we use for
evaluation here is one that for each university, finds all restaurants
lying within X kilometers.

To solve this query, HY invokes the SCAN_UNTIL_DIST() oper-
ator that for each of the universities, scans the graph until obtaining
all vertices withinX kilometers from the university. This operation
is very efficient and limits the scans to one per university.

In the DO architecture we don’t want to compute the distance be-
tween all pairs of universities and restaurants. Therefore, we need
a simple way of reducing the number of invocations to the distance
oracle. One way to do this is to take advantage of the fact that
the Euclidean distance is a lower bound on the road network dis-
tance and thus we restrict the pairs of objects that we examine to be
within their Euclidean distance. This is achieved by using a query
search window of width 2X around each university and only exam-
ining the restaurants lying in it. This translates to a query window
of width 2X/111 degrees assuming that 1 degree of latitude/longi-
tude roughly equates to a geodesic distance of 111 kms. The SQL
statement for this query is as follows.

SELECT * FROM
(SELECT x.id as id1, y.id,

dist(x.lat, x.lon, y.lat, y.lon) as d
FROM University x, Restaurant y
WHERE y.lat between x.lat-deg AND x.lat+deg
AND y.lon between x.lon-deg AND x.lon+deg

ORDER BY dist
) as foo

WHERE d<X
GROUP BY id1

Figure 4 shows the execution time of DO and HY when varying
the width of the query region. For HY, we show the performance
of running 1 and 7 scanning threads using HY-1 and HY-7 respec-
tively. The reasons for using 7 scanning threads are explained in
Appendix A. Figure 4(a) shows the results of region queries that
find the restaurants within X kilometers of each university, while
Figure 4(b) interchanges the sets that form the sources and destina-
tions so that now we find the universities within X kilometers of
each restaurant.

This experiment is to HY’s advantage in the sense that it can
amortize the costs of the scans from a single source to multiple des-
tinations. Nevertheless, Figure 4(a) shows that for smaller values
of the distance X , HY is slightly better than DO but this advantage
vanishes as X increases with DO performing better than HY for
X > 100. The setting of Figure 4(a) where we find the restaurants
near the universities represents the worst case for DO as we expect
many restaurants to be clustered around each university compelling
DO to query the distance oracle once for each pair. On the other
hand, when we change the setting so that we find the universities
near the restaurants as in Figure 4(b), we find that the execution
time of HY is at least one order of magnitude greater than DO

Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

101

102

103

10-410-310-210-1

T
im

e
(s

ec
)

Density

HY-1
HY-7

DO

Figure 5: Execution time versus a synthetically varying density
of destinations for 5, 964 distance queries (corresponding to the
size of the university sources relation at distance 50 km.

since there may not be too many universities around each of the
restaurants thereby greatly reducing the number of queries to the
distance oracle. While this experiment shows that DO is sensitive
to the density of the destinations, in the worst case it still performs
as well as HY, while easily outperforming it in other cases.

To further explore the effect of density on DO’s performance,
we performed the following experiment. Define density to be the
ratio of the number of destinations found to the number of ver-
tices of the road network visited by HY during its scan around each
source point for a given region. In some sense, density controls
the work efficiency of HY vis-a-vis DO in that the larger the den-
sity, the greater is the benefit obtained by HY from amortizing the
scans. Figure 5 shows the execution times of HY and DO when
performing the region query that finds all synthetically generated
destinations within 50 km of all universities. We created destina-
tions around each university by generating points with a probability
denoted by the density value. Figure 5 shows that the density does
indeed affect DO as we had expected but does not affect HY for
the region query. In particular, as the density decreases (i.e., the
points become sparse), DO improves dramatically as the number
of invocations of the distance oracle is greatly reduced. Note that
although DO is slower when the density is larger than 0.01, it is
fairly obvious that for real world datasets, a density of more than 1
restaurant per 100 vertices is extremely large to be realistic.

5.3 Throughput Query
Table 2: Comparison between s-t pair and one-to-many

Query Metric DO HY-7

Distance Matrix Time 8853.9 sec 20139 sec
Throughput 33392 dist/sec 14680 dist/sec

10k random pairs Time 0.327 sec 2026 sec
Throughput 30581 dist/sec 4.9 dist/sec

From the previous results we see that DO provides a single DIST()
function that computes the road distance between any pair of source
and destination locations on the road network. HY on the other
hand is optimized for one-to-many distance computations since the
scan amortizes the work done for scanning from a single source
to multiple destinations. To better understand the performance of
each architecture we compare them using a distance matrix query.

In this query, we use the university dataset as the source locations
and the restaurant dataset as the destination locations. The query
computes the distance matrix from all universities to all restaurants.
The query can be executed by either performing 5, 964 one-to-
many queries, or alternatively 5, 964× 49, 573 one-to-one queries.

While HY is optimized for the former access pattern, DO can only
perform the latter access pattern. Regardless of how the distances
are computed, it takes 295.6 million distance computations on the
road network to compute this distance matrix. The following SQL
statement computes the distance matrix for DO.

SELECT x.id, y.id,
dist(x.lat, x.lon, y.lat, y.lon) as dist

FROM University x, Restaurant y

Table 2 shows the performance of the DO and HY architectures.
DO computes the distance matrix in 8853.9 seconds, while HY
does it in 20139 seconds. The throughput for DO is 33.3k dis-
tances/second while it is 14.6k distances/second for HY. Note that
this is in spite of choosing a query workload that is favorable to HY.
This shows that for a practical real query, DO is still 2.4× better
than HY in terms of throughput.

The next question is how would HY perform if restricted to only
use the one-to-one access pattern. To provide this comparison, we
randomly pick 10, 000 source university and destination restaurant
pairs from the tables. While DO takes 0.327 seconds to compute
the distances, HY takes 2026.4 seconds which amounts to just less
than 5 distances/second, while DO can computer over 30, 000 dis-
tances/second. This shows that HY is only appropriate if the query
results can be obtained using a one-to-many access pattern as its
performance for a one-to-one access pattern is prohibitively slow.

5.4 KNN Query
Next, we compare the performance of DO and HY for KNN

queries where the inputs are two datasets S and R, and the goal
is to find the K nearest neighbors of each point in S from points
drawn from R. The workload for this subsection includes perform-
ing 5, 964 KNN queries for each of the universities returning K
nearest restaurants.

The HY architecture invokes SCAN_UNTIL_K(), which uses an
in-memory graph representation and stores the 49, 573 restaurants
relation in a k-d tree data structure. During processing, HY uses 7
threads to scan the road network. Each thread starts scanning from
one of the university locations and for each vertex it performs a
lookup on the k-d tree to determine if there are any restaurants in
its vicinity within a certain distance range. If yes, then they are en-
queued with the appropriate network distance if they have not been
visited before. This check is not necessary if while building the
k-d tree, each restaurant is associated with its nearest vertex. This
process is entirely in-memory and extremely efficient to perform.

The DO architecture computes DIST() between each university
and each restaurant in a candidate set of restaurants that have the
potential to be the K nearest neighbors. This candidate set is ob-
tained by first using the GiST spatial index in Postgres to compute
theK Euclidean nearest restaurants from the restaurant relation for
each university and then using DIST() to compute their correspond-
ing network distances. Let d be the maximum of these network
distances for the university being processed. Next, again use GiST
to compute all nearest restaurants for each university whose Eu-
clidean distance is less than or equal to d and then use DIST() to
compute their corresponding network distances and retain the K
closest ones.

This method is correct because the Euclidean distance is a lower-
bound on the network distance. The lower bound property guaran-
tees that we find the K network neighbors within the candidate set.
The following SQL query captures the steps indicated above. In the
subquery kdn, we compute the Euclidean distance to the K neigh-
bors using the GiST index and then compute the maximum network
distance among K neighbors for each university.

Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

101

102

103

104

105

50 500 5000 50000

T
im

e
(s

ec
on

ds
)

K

HY-1
HY-7

DO

Figure 6: The execution time of 5, 964 KNN queries whereK =
50, 500, 5000, and 49573.

SELECT kdn.id as id1, R.id as id2,
dist(kdn.lat, kdn.lon, R.lat, R.lon)

FROM (
SELECT y.id as id, y.lat as lat, y.lon as lon,

(SELECT max(dist)
FROM (

SELECT dist(x.lat, x.lon, y.lat, y.lon)
FROM restaurant x
WHERE x.gid != y.gid
ORDER BY x.geom<->st_setsrid(y.geom, 4326)
LIMIT K

) as foo
) / 111000 as deg

FROM university y
) AS kdn, restautant R
WHERE R.lat between kdn.lat - kdn.deg

and kdn.lat + kdn.deg AND
R.lon between kdn.lon - kdn.deg

and kdn.lon + kdn.deg;

Figure 6 shows the execution time of the KNN queries for differ-
ent values of K. We see that HY has nearly identical performance
compared to DO for smaller values of K less than 500. It becomes
2− 3 times worse for larger values of K such as for K = 49, 573.
At K = 49, 573, the query degenerates to compute the distance
matrix between the source and destination tables.

Figure 7 illustrates the effect of the density on the execution time
of DO and HY for the KNN queries. In particular, each point in the
figure corresponds to the performance of one KNN query for ei-
ther HY or DO. Here we use a real world dataset and thus for the
values of K that we used, the density of most scans is less than
0.01. Compared to the region query discussed in Section 5.2, the
effect of varying the density has a different effect on the execution
time of DO and HY. In particular, for the KNN query, the execution
time of HY increases significantly as the density decreases, while
the execution time of DO does not change much. This is because
the number of DIST() invocations for DO is proportional to K in
real world datasets. On the other hand, SCAN_UNTIL_K() for HY
needs to scan further to visit at least K destinations when the den-
sity of the nearby destinations is sparser.

5.5 Trajectory Query
We now examine a simple trajectory query implemented on both

the HY and DO architectures. The goal of the query is to com-
pare performance on a real trajectory dataset consisting of GPS
readings. GPS devices are becoming commonplace and are now
deployed on many different commercial and non-commercial ve-
hicles. A company operating a fleet of taxis usually has a GPS
installed in all of its vehicles, which enables an operator to know
the locations of its vehicles. For instance, when a customer requests

101

102

103

10-410-310-210-1

T
im

e
(m

s)

Density

HY
DO

102

103

104

10-310-2

T
im

e
(m

s)

Density

HY
DO

(a) (b)

Figure 7: The execution time of the KNN query as a function
of the density for (a) K = 500 and (b) K = 5000.

a ride, the taxi operator uses the current locations of all of its vehi-
cles to send the nearest vehicle to the customer. Of course, there are
more complex analyses that an operator may want to perform from
historical (i.e., a day/week/month/year) worth of GPS information
collected from vehicles which can shed light on several aspects of
their businesses.

For example, consider a query that seeks the execution time of
computing the total trip distance of each taxi. More SQL queries
can be found online in [8]. Executing it using DO involves a few
simple steps as detailed below.

1. Extract all points of a given trajectory denoted by tripid

2. Create an ordering of the points

3. Compute road network distance between consecutive points

4. sum the distances to produce the trajectory distance

5. sum the trajectory distances to produce the taxi trip distance

On the other hand using HY to respond to this query involves
sorting all GPS records according to the ts attribute in the initial-
ization. Next, defining a segment as two consecutive GPS loca-
tions on the same trip, we compute the distance of each segment
by assigning it to one scanning thread. Thus, one segment contains
one source and one destination location. Intuitively, each segment
query is better described as a one-to-one access pattern, so that DO
should be better than HY in this case. However, since the GPS
sensors report their locations frequently, the distance between two
consecutive GPS reports is very short, which benefits HY. Prior ex-
periments for one-to-many access pattern queries showed that HY
is as good as DO for short scanning distances.

Figure 8 demonstrates that DO is much better for the trajectory
query. Each point in Figure 8 corresponds to one taxi. The x-axis
is the number of segments for each taxi. For each method, we first
sorted the 537 points by the number of segments, and then con-
nected the 537 points with a line. DO computed the travel distance
of one taxi within 0.2 to 0.5 seconds when the number of segments
is around 10, 000. It is at least one order of magnitude faster than
HY with 7 scanning threads, and two or more orders of magnitude
faster than HY with just 1 scanning thread.

6. LESSONS LEARNED
The HY architecture represents a procedural way of perform-

ing spatial analytical queries since the analysis tool is the “glue”
that coordinates computations between the database and the road
network module. The DO architecture represents another end of
the spectrum where the spatial analytical query is expressed in a
declarative manner. The declarative nature of queries means that
the user expressed what the query should do and the database au-
tomatically figures out how the query should be executed. On the
other hand, HY by being procedural represents a custom develop-
ment effort where most of the responsibility for optimization lies

Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

101

102

103

104

105

 10 100 1000 10000 100000

T
im

e
(m

s)

Number of Segments

HY-1
HY-7

DO

Figure 8: The execution time of computing the total travel dis-
tance of each one of 537 taxis.

with the analysis tool. This can be viewed as a drawback of the ar-
chitecture since an optimization opportunity may be be lost in the
part of the processing of the spatial analytical queries that is outside
the database system.

There are some operations that can be executed entirely outside a
database. For instance, most logistics applications take a road dis-
tance matrix as input and apply a complex optimization function.
These queries are inherently procedural and cannot be executed en-
tirely inside a database. Thus even the DO architecture for these
cases degenerates to HY. Nevertheless, even for these cases, our ex-
perimental results show that often DO provides a higher throughput
in computing the distance matrix.

From the perspective of ease of use, DO is better than HY since
users can easily express complex queries using SQL. There is no
need for much of a learning curve since we only extended SQL
by one function (i.e., DIST()). DO can be implemented on any
database system as it requires no modification to the database sys-
tem which means that now road networks can be incorporated with
any legacy database that is already hosting spatial datasets. The
DO architecture is also easier to extend to distributed database or
distributed system such as Apache Spark, when the scale of the
network and datasets becomes larger.

DO is far superior to HY when it comes to a one-to-one access
pattern, which is commonplace in trajectory queries, where GPS
crumbs are recorded periodically and the road distance between
them needs to be computed by applying a one-to-one access pat-
tern. On the other hand, HY is better than DO for some one-to-
many access patterns such as the region query in the case of a high
density of destinations vis-a-vis the visited vertices of the graph, as
well as when the maximum scanned distance is not large.

Our synthetic experiment for the region query showed that once
the density became less than 1 object in 100 vertices, DO is a better
choice. To put this in perspective, if there are more than 240k ob-
jects (e.g., restaurants) in a dataset on the USA road network (recall
it consisted of 24 million vertices), then HY could be slightly faster
than DO. However, if the query applied a predicate on the objects
(e.g., only Indian Restaurants) then the density may be far lower
again thereby rendering DO to be more suitable for this query.

7. RELATED WORK
It is well-known that Dijkstra’s algorithm [21] is very efficient

for single source queries such as finding the nearest K restaurants
to a given location. However, for an s-t query, Dijkstra’s algorithm
has to scan many irrelevant vertices to reach the given target ver-
tex. A number of techniques have been proposed to overcome the
drawbacks of Dijkstra’s algorithm for s-t queries on road networks.
They fall into two main categories: memory-based methods and

database-centric methods.
Memory-based methods: Most of the state-of-the-art approaches

are memory-based, They can be subdivided into two groups. The
first group are graph-based, which are based on the observation that
some vertices in a spatial network are more important for short-
est path queries, while offering different trade-offs between pre-
processing time, storage usage, and query time. Goldberg et al. [24]
prunes unimportant vertices using a bidirectional version of Dijk-
stra’s algorithm. CH [23] assigns an importance score to each node
and replaces some original edges by shortcuts. [10, 14, 32, 27]
precompute the shortest distances between landmarks or hub nodes
and other vertices, and then answer the shortest distance queries
by assuming the shortest path passes through one landmark or hub
node. [12, 13, 20, 37, 46] build an explicit hierarchy graph to over-
come the drawback of Dijkstra’s algorithm. The second group are
spatial based methods, which overcomes the drawback of Dijk-
stra’s algorithm by using geometric techniques. RNE [44] applies a
Lipschitz embedding [26] to a spatial network so that vertices of the
spatial network become points in a high-dimensional vector space.
[36, 40, 45] use the fact that the set of shortest paths from vertex u
to all other vertices can be decomposed into subsets based on the
first edges on the shortest paths from u to them. SILC [36, 40, 41]
stores these subsets in a variant of a region quadtree where all ver-
tices stored in a quadtree block are in the same subset.

Database Centric methods. On the other hand, approaches rooted
in database mainly focus on database-centric methods. [38, 39, 42]
exploit the spatial coherence so that if two clusters of vertices are
sufficiently far away, then distances between pairs of points in dif-
ferent clusters are similar. PCPD [42] gives one exact shortest
path algorithm, while the ε-distance oracle [38, 39] propose an ap-
proximate shortest distance algorithm, which balances the trade-
offs between accuracy and storage. HLDB [11] is a recent practi-
cal database-centric method that is based on hub labels (HL) [10],
which is a popular memory-based method. HLDB [11] claims that
most of the memory-based approaches surveyed in [19] are difficult
to embed into a database system and to use with SQL queries since
they rely on complicated data structures such as graphs and priority
queues. One of the main contributions of HLDB is embedding the
memory-based HL method into a database.

On the other hand, there are also a few approaches that focus
on speeding up specific spatial analytical queries. Some are based
on the techniques that speed up the s-t queries. Knopp et al. [25]
explain how to use highway hierarchies [37] for computing many-
to-many shortest distances. Shahabi et al. [44] and Samet et al. [36]
show how to speed up the K nearest neighbor search by using dif-
ferent source-target techniques. Delling et al. [18] utilize partition-
based algorithms developed for s-t queries to handle POI queries.
Cho et al. [15] propose UNICONS for continuous nearest neighbor
queries, and then propose ALPS [16] for top-k spatial preference
search.

8. CONCLUDING REMARKS
In this paper we compared two architectures HY and DO with a

focus on computing large numbers of road network distances. Here
HY represents a traditional approach to dealing with road networks,
which is an external module outside of a database system. HY is
inspired by the view that road networks are too cumbersome to be
stored in a database system, RDBMS specifically, since performing
operations on road networks inside an RDBMS typically required
extensive changes to the database system (e.g., [7, 30]).

DO represents an approach where the road network distances are
precomputed and represented as a relational table. This approach
reduces a road network into a single distance relational table such

Proceedings of the 23nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, M. Ali, M. Gertz,
Y. Huang, M. Renz, and J. Sankaranarayanan, eds., Seattle, WA, November 2015.

that computing the road network distance requires a simple look
up into a table, which aligns well with the strengths of a database
system. Of course, DO can be trivially modified to not only store
network distances but also the travel time factoring in the current
traffic, walking distance, using public transit, etc.

Taking into account the broad computing trends of plummeting
computing and storage costs, and that road networks change only
gradually over time, it is not inconceivable that DO has the best
chance of success. The DO architecture of the future should not
only compute distances, but can also provide routing and all within
the confines of a database system. Performing complex operations
on road networks is as simple as downloading an appropriate “road
oracle” and querying is as simple as writing an SQL query.

9. REFERENCES
[1] Cabspotting. http://cabspotting.org/.
[2] DIMACS. http://www.dis.uniroma1.it/challenge9.
[3] CRAWDAD. http://crawdad.cs.dartmouth.edu/~crawdad/

epfl/mobility/.
[4] ESRI. http://www.esri.com/.
[5] GeoNames. http://www.geonames.org/.
[6] Google Maps API. https://developers.google.com/maps/.
[7] pgRouting. http://pgrouting.org/.
[8] SQL Examples of Distance Oracles. http://roadsindb.com/.
[9] Fast food maps. http://www.fastfoodmaps.com/.

[10] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A hub-based la-
beling algorithm for shortest paths in road networks. In SEA, pages 230–241,
Kolimpari Chania, Greece, May 2011.

[11] I. Abraham, D. Delling, A. Fiat, A. Goldberg, and R. Werneck. HLDB: Location-
based services in databases. In ACM GIS, pages 339–348, Redondo Beach, CA,
Nov 2012.

[12] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical hub
labelings for shortest paths. In ESA, pages 24–35, Ljubljana, Slovenia, Sep 2012.

[13] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant
time shortest-path queries in road networks. In ALENEX, pages 46–59, New
Orleans, LA, Jan 2007.

[14] L. Chang, J. X. Yu, L. Qin, H. Cheng, and M. Qiao. The exact distance to
destination in undirected world. VLDB J., 21(6):869–888, Dec 2012.

[15] H. Cho and C. Chung. An efficient and scalable approach to CNN queries in a
road network. In PVLDB, pages 865–876, Trondheim, Norway, Aug 2005.

[16] H. Cho, S. J. Kwon, and T. Chung. ALPS: an efficient algorithm for top-k spatial
preference search in road networks. KAIS, 42(3):599–631, Mar 2015.

[17] J. R. Crobak, J. W. Berry, K. Madduri, and D. A. Bader. Advanced shortest
paths algorithms on a massively-multithreaded architecture. In IPDPS, pages
1–8, Long Beach, CA, Mar 2007.

[18] D. Delling and R. F. Werneck. Customizable point-of-interest queries in road
networks. TKDE, 27(3):686–698, Mar 2015.

[19] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning
algorithms. In Algorithmics of Large and Complex Networks, pages 117–139.
Springer, Berlin, Jan 2009.

[20] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable route
planning. In SEA, pages 376–387, Kolimpari Chania, Greece, May 2011.

[21] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[22] C. Esperança and H. Samet. Experience with SAND/Tcl: a scripting tool for
spatial databases. JVLC, 13(2):229–255, Apr 2002.

[23] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In WEA, pages 319–
333, Cape Cod, MA, May 2008.

[24] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A∗: Efficient point-
to-point shortest path algorithms. In ALENEX, pages 129–143, Miami, FL, Jan
2006.

[25] S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner. Computing many-
to-many shortest paths using highway hierarchies. In ALENEX, New Orleans,
LA, Jan 2007.

[26] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15:215–245, Jun 1995.

[27] S. Ma, K. Feng, H. Wang, J. Li, and J. Huai. Distance landmarks revisited for
road graphs. CoRR, abs/1401.2690, Jan 2014.

[28] U. Meyer and P. Sanders. Delta-stepping: A parallel single source shortest path
algorithm. In ESA, pages 393–404, Venice, Italy, Aug 1998.

[29] S. Nutanong and H. Samet. Memory-efficient algorithms for spatial network
queries. In ICDE, pages 649–660, Brisbane, Australia, Apr 2013.

[30] Oracle Corporation. Oracle spatial and graph network data model white paper.
Technical report, Mar 2015.

[31] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial
network databases. In VLDB, pages 802–813, Berlin, Germany, Sep 2003.

[32] M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate shortest distance
computing: A query-dependent local landmark scheme. TKDE, 26(1):55–68,
Jan 2014.

[33] H. Samet. Distance transform for images represented by quadtrees. IEEE
TPAMI, 4(3):298–303, May 1982.

[34] H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. A geographic infor-
mation system using quadtrees. Pattern Recognition, 17(6):647–656, Nov 1984.

[35] H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R. Hjaltason, F. Morgan, and
E. Tanin. Use of the SAND spatial browser for digital government applications.
CACM, 46(1):63–66, Jan 2003.

[36] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network distance
browsing in spatial databases. In SIGMOD, pages 43–54, Vancouver, Canada,
Jun 2008.

[37] P. Sanders and D. Schultes. Engineering highway hierarchies. In ESA, pages
804–816, Zurich, Switzerland, Sep 2006.

[38] J. Sankaranarayanan and H. Samet. Distance oracles for spatial networks. In
ICDE, pages 652–663, Shanghai, China, Apr 2009.

[39] J. Sankaranarayanan and H. Samet. Query processing using distance oracles for
spatial networks. TKDE, 22(8):1158–1175, Aug 2010.

[40] J. Sankaranarayanan, H. Alborzi, and H. Samet. Efficient query processing on
spatial networks. In ACM GIS, pages 200–209, Bremen, Germany, Nov 2005.

[41] J. Sankaranarayanan, H. Alborzi, and H. Samet. Distance join queries on spatial
networks. In ACM GIS, pages 211–218, Arlington, VA, Nov 2006.

[42] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for spatial net-
works. PVLDB, 2(1):1210–1221, Aug 2009.

[43] C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a geographic information
system based on quadtrees. IJGIS, 4(2):103–131, Apr–Jun 1990.

[44] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road network embedding
technique for k-nearest neighbor search in moving object databases. GeoInfor-
matica, 7(3):255–273, Sep 2003.

[45] D. Wagner and T. Willhalm. Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In ESA, pages 776–787, Budapest, Hungary, Sep
2003.

[46] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest path and
distance queries on road networks: Towards bridging theory and practice. In
SIGMOD, pages 857–868, New York, Jun 2013.

APPENDIX
A. HY PERFORMANCE TUNING: NUMBER

OF THREADS
The reason we use 7 scanning threads in our experiments is that

the EC2 machine only has 8 cores. In our implementation, Di-
jkstra’s algorithm in HY starts T threads for scanning. Figure 9
shows the execution time for the distance matrix query as the num-
ber of threads started by the main thread is varied. From the figure
we observe that the execution time for 7 scanning threads is be-
tween 1

4
and 1

3
of the time when we have just one scanning thread.

As we expected, in order to utilize the whole computing power, the
optimum number of threads is equal to the number of cores mi-
nus one. This means that one core runs the main thread, and the
remaining cores run the remaining threads, one thread per core.

0

1

2

3

4

5

6

7

1 4 7 10

T
im

e
 (

1
0

4
•
 s

e
c
o

n
d

s)

Number of Threads

HY

Figure 9: Execution time of a multi-thread Dijkstra’s algorithm
implementation for 5, 964 SCAN_UNTIL_K() with K = 49, 573

