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ABSTRACT
This paper describes a spatio-temporal hot spot identifi-
cation program submitted to the ACM SIGSPATIAL Cup
2016. The advent of large-scale spatio-temporal data (e.g.,
vehicle tracking data), together with the availability of in-
memory distributed computing framework (i.e., Spark), pro-
vides an opportunity to quickly identify unusual patterns in
a statistically manner, also called hot spots. We propose an
efficient approach on Spark to select top-k hot spots using
the Getis-Ord statistic. Our method consists of three phases:
simplification, detection, and refinement. The simplification
phase picks a reasonable number, e.g., K, of most impor-
tant cells; then the detection phase computes the Getis-Ord
statistic for the K cells; finally, the refinement phase puts
the top M candidates and their neighbors back in the orig-
inal set of cells to refine the results.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; H.2.4 [Database Management]:
Systems—Query processing

Keywords
spatio-temporal, hot spot, distributed processing, Spark

1. INTRODUCTION
The problem of spatio-temporal hot spot identification is

to locate the top k, e.g., 50 in this contest, cells that have
the greatest Getis-Ord scores [2] in a tessellated three di-
mensional space formed by longitude, latitude and time. The
Getis-Ord score of each cell is computed by its value and its

∗This work was supported in part by the AWS research grant
and the NSF under Grants IIS-12-19023 and IIS-13-20791.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16 October 31 - November 03, 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.3004064

neighbors’ values. A brute-force method on a single proces-
sor is to iterate every cell to compute its Getis-Ord score
definition. Obviously, the computing process for each cell
is independent once the values of its neighbors are at hand.
Therefore, identification of hot spots should be sped up by
a distributed framework very well.

Spark [6] is a popular open-source distributed framework.
In contrast to Hadoop’s two-stage disk-based MapReduce
framework, Spark’s in-memory primitives provide perfor-
mance up to 100 times faster for certain applications. As
the 2015 New York City Taxi and Limousine Commission
yellow cab source data [1] is only 24GB in plain text, we can
cache all cells with records in memory after scanning them
once from HDFS. All subsequent computing takes place in
the distributed memory to avoid extra I/O cost.

Our previous experience on Spark [3], although in the con-
text of use in road network problems (e.g., [4, 5]), indicates
that the network communication cost during shuffle would
greatly exceed the computation or I/O cost, becoming a sig-
nificant bottleneck if the distributed algorithm is not well
designed. To avoid unnecessary shuffle, the key problem is
how to load and partition the data to slave nodes more in-
dependently. In distributed computing, it is common for a
slave machine A to need the data on another slave machine
B to finish its own computing. A multiple shuffle strategy or
a partition strategy with data redundancy might solve this
problem, but both of them result in an increase in network
communication cost.

In this paper, we implemented and evaluated three solu-
tions for the contest in Section 4, and our submission is the
proposed simplification-refinement approach, termed SR-K-
M , where K = 2, 000, 000 and M = 500. The simplification
phase is proposed to reduce the runtime, and the refinement
phase is proposed to improve the accuracy. As a result, SR-
K-M can solve any granularity setting within 50 seconds
even when the cells with valid records are very sparse. Al-
though there is a theoretical chance that our solution would
return a wrong ranking, thanks to the refinement phase, we
haven’t found a granularity setting that makes our solution
failed. In addition, both K and M should be adjusted based
on k and the dataset. As k is a fixed number, 50, in this
contest, setting K = 2, 000, 000 and M = 500 is fair enough.

2. PROBLEM FORMULATION
In a uniformly tessellated space, the objective of identi-
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(a) rs = 0.001, rt = 1

0 20 40 60 80 100
Number of guests

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

N
u
m

b
e
r 

o
f 

C
e
lls

histogram
cumulative

0.0

0.2

0.4

0.6

0.8

1.0

A
cu

m
u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

(b) rs = 0.001, rt = 0.25
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(c) rs = 0.00001, rt = 0.25

Figure 1: The histogram and cumulative histogram of all xi in 2015. The data follows the long-tail distribution.
In order to keep the top two million cells, we prune cells with x ≤ 10 in (a) to cut off 70% data, prune cells
with x ≤ 30 in (b) to cut off 85% data, and prune cells with x ≤ 5 in (c) to cut off 98% data.

fying hot spots is to find the top-k cells for a given metric.
In this contest, the space, which comprises of longitude, lat-
itude and time, is uniformly divided into equal-sized cube
cells. And the metric used to sort and select the top-k cells
is the Getis-Ord statistic [2]. Formally, given a cube cell ci,
its Getis-Ord value G∗i is defined as follows:

G∗i =

∑n
j=1 wi,jxj − X̄

∑n
j=1 wi,j

S

√
n
∑n

j=1 w2
i,j−(

∑n
j=1 wi,j)2

n−1

(1)

where n refers to the total number of cube cells, and xj is the
attribute value of cell cj ; wi,j is the spatial weight between
cell ci and cell cj , which is defined as follows:

wi,j =

{
1, if ci and cj are neighbors

0, otherwise
(2)

Here we define two cells as neighbors if they share at least
a vertex, an edge or a face, or they are the same cube cell.
X̄ and S are defined as

X̄ =

∑n
j=1 xj

n
, S =

√∑n
j=1 x

2
j

n
− (X̄)2 (3)

To simplify the problem, first, according to the definition
of wi,j , it is easy to prove that: top-k selection by G∗i
is equivalent to top-k selection by Xi =

∑n
j=1 wi,jxj,

i.e., the sum of a cell’s neighbors’ attribute values
xj . Without causing confusion, we use the term “top-k” to
denote “top-k (cells) by the metric of G∗i , or Xi” later.

Second, although the cell size and time step size, termed
granularity (rs, rt)

1, are arbitrary in this contest, we claim
that only the fine granularity matters in choosing
what the distributed solution, where a fine granularity
means that the cells with records are very sparse in the cube
space. It is because that any distributed solution, including
the brute-force one, on a coarse granularity, e.g., 0.1 and
seven days, would take negligible time compared with the
runtime of the inevitable preparation phase, which needs
18 ∼ 20 seconds as illustrated in Section 4. To summarize,
the problem is how to find the top-k cells by Xi in a fine
granularity.

1The unit of rs, by default, is degree in longitude and lati-
tude, and the unit of rt is 1 day in time.

3. APPROACH
As the cells with values are sparse in a fine granularity

cube, a baseline solution, termed BASIC, copies each valued
cell 27 times, sends one copy to each neighbor cell in the
mapper process, and computes the Xi for cells in the reducer
process. BASIC only performs very well when the number
of cells with values is less than two million, as it increases
the workload of the shuffle process by a factor of 27.

To reduce the shuffle workload, our SR-K-M solution (see
Algorithm 1) inserts the simplification phase before BASIC,
and appends the refinement phase after BASIC.

3.1 Simplification
Simplification selects only a fixed number K of cells with

the largest xi. These K cells, denoted by CK , are the candi-
dates from which we identify the top-k cells as the program’s
output. Selecting CK in an un-ordered list is implemented by
finding the minimum value xl such that |ci : xi ≥ xl| ≤ K.
This step is implemented in a binary search strategy with
O(logn) scans on Spark, which finishes in instant time.

Pruning the cells to CK is inspired by our observation and
analysis on the given taxi data: i) the cells with small xi

comprise the majority but they are less likely to be in top-k,
see Figure 1; ii) from both spatial and temporal perspectives,
the input data presents a quasi-continuous pattern, i.e. a hot
spot’s spatio-temporal neighbors also tend to be “hot”, and
it is unlikely for a hot spot to locate at a place where its
neighbors are of small values, see Figure 2, 3. These ob-
servations give us the idea that removing insignificant cells
might not throw away any cells in the top-k. And in our
experiments, we found that with a reasonable value of K,
the simplification step ensures all the top-k cells fall into
CK , while at the same time, significantly speeds up our pro-
gram. For example, in Figure 1(a), a setting of xl = 10 with
corresponding K = 2, 000, 000 filters away 70% of all cells
while still succeeding in preserving the correct top-50 cells.

Furthermore, through simplification, we avoid the neces-
sity of computing G∗i (or equivalently Xi) for every cell in
order to perform the top-k selection. This gives us a signifi-
cant speedup, because computing G∗i or Xi requires a cell to
collect all its neighbors’ attribute values xj . This, in a dis-
tributed system, brings about costly messaging operations
between machine nodes. Therefore, reducing the number of
cells significantly reduces the communication overhead and
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(a) rs = 0.001
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(b) xi ≥ 10, rs = 0.001
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(c) rs = 0.005
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(d) xi ≥ 10, rs = 0.005

Figure 2: Spatial consistency. The heat-map of cells on Jan.1, 2015 (rt = 1) with cell size rs = 0.001 and
rs = 0.005. Removing cells with small xi does not influence the hot spot area, especially for the coarser one.

computation cost, thus speeding up the program.
In the implementation, a reasonable value of K is of great

importance to the program: “too small” might cause some
of the top-k to fall outside CK ; however, “too large” will
not yield evident speedup. For the data provided in the
2016 ACM SIGSPATIAL CUP, we found K = 2, 000, 000, a
threshold that gives us significant speedup, and at the same
ensures the accuracy of our program on the data.

3.2 Refinement
Note that when we compute Xi of a given cell ci in the

set CK , its spatial weight function wi,j updates to:

w′i,j =

{
1, if ci, cj are neighbors, and cj ∈ CK

0, otherwise
(4)

Now using this updated spatial weight function, we find that
the greatest k cells are not necessarily identical to our initial
top-k cells. For example, a cell that is supposed to rank
between 45 to 50 now might fall outside 50 because some of
its neighbors were thrown away in the step of simplification.
We therefore propose the refinement step to remedy this
problem.

Refinement is to i) choose the greatest M cells, denoted
by CM , from pre-selected cells CK under the metric of Xi by
using the updated spatial weight function w′i,j , ii) for each

cell ci ∈ CM ∪ neighbor(CM ), re-compute its Xi (equivalent
to G∗i ) using the original wi,j and select the greatest k cells as
the top-k in the results. neighbor(CM ) is the set containing
all neighbors of the cells in CM .

In the implementation, we set M = 10 × k � K, which
makes re-computing Xi for cells in CM ∪neighbor(CM ) very
efficient. And also in our experiments, we found that, even
if a cell’s rank m′ falls behind position k by exploiting the
updated w′i,j , m

′ is usually only slightly larger than k. We
therefore set M = 10 × k, which is large enough to satisfy
top-k ∈ CM ∪ neighbor(CM ).

4. EVALUATION
In this section, we evaluated our following solutions.
1. Our simplification-refinement solution, SR-K-M , where

K is the number of cells that we kept in the simpli-
fication phase, and M is the number of results that
we need to refine them. Both K and M should be
set based on how many hot spots are sought and the
dataset. We set K = 2, 000, 000 and M = 500 in our
submission and evaluation.

2. The baseline solution, BASIC, which copies each cell

Algorithm 1: Hot Spot Identification on Spark

Input: The number of hot spots to output – k; the
spatio-temporal data – z; spatio-temporal
resolution – (rs, rt)

Output: top-k hot spots
1: data pre-processing:

a. tessellate space uniformly with (rs, rt) into
equal-sized cube cells;

b. aggregate z into cube cells according to their
longitude, latitude and time;

c. for each cell, calculate its attribute value xi by
summing the spatio-temporal data in it.

2: CK ← top K cells with largest xi

3: perform a Map-Reduce procedure on CK to calculate
Xi for each cell, using updated spatial weight w′i,j :

a. Map: copy the current cell value 27 times but
with neighbors’ coordinates;

b. Reduce: reduce by using cell’s coordinates and
sum the attribute value to get Vi.

4: CM ← top M cells from CK with largest Xi

5: perform a Map-Reduce on CM ∪ neighbor(CM ) to
re-calculate Xi for each cell, but using wi,j with its
original cells.

6: top-k hot spots ← top-k cells from CM with largest Vi.

27 times, and sends one copy to each neighbor cell by
one Map-Reduce task.

3. An coordinate-shift solution, termed SHIFT, which
does 27 Map-Reduce tasks, and each Map-Reduce task
first does one coordinate shift (i, j, k) ∈ {−1, 0, 1}3 on
all cells, then congregates every 3 × 3 cube (with 27
cells) to one cell, e.g., the center cell of the cube, and
finally computes the top 50 cells in this shift.

We ran all our evaluations on a Apache Spark 1.6.0 clus-
ter on Amazon EC2. The Spark cluster we created has 15
m3.2xlarge instances, where each m3.2xlarge instance has 8
vCPUs, 30GB memory, and 2× 80GB SSD.

The taxi drop-off dataset [1] in 2015 contains 143, 744, 411
drop-off records restricted in latitude/longitude [40.5, 40.9]×
[−74.25,−73.7]. We list the number of cells that contain
at least one drop-off record using different granularity in
Table 1. As the number of cells in setting 0.00001 and six
hours is 141.75M, which is near to the total number of input
records, we did not try finer granularity in our evaluation.

In all our implementations, the preparation phase includes
reading once all CSV files, grouping drop-off records by cells,
and caching the cells in Spark memory. The runtime of this
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(a) rt = 1, Jan 1, 2015
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(b) rt = 1, Jan 2, 2015
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(c) rt = 1, Jan 3, 2015
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(d) rt = 0.25, 00:00 - 6:00
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(e) rt = 0.25, 06:00 - 12:00
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(f) rt = 0.25, 12:00 - 18:00

Figure 3: Temporal consistency. The first row shows the heat-map of three consecutive days. The second
row shows the heat-map of three consecutive 6-hours of Jan 1, 2015. All spatial resolution is rs = 0.001. Hot
areas remain to be hot across times slots.

Table 1: # of Cells in Granularity Settings

aaaaaaaaaa
Cell Size

Time Step Size
seven days one day six hours

0.1 (10 km) 1275 - -
0.001(100 meters) 1.93M 6.45M 13.59M
0.00001 (1 meter) - - 141.75M

phase is fixed, about 18 ∼ 20 seconds, where the most time-
consuming part is the string operations during reading and
grouping. Caching results in Spark memory is very quick.

Table 2 illustrates the runtime of our three solutions in
seconds. As the granularity gets finer, the runtime of BASIC
and SHIFT is more volatile. It is because many sub-tasks
during shuffle fail in this case, which would be restarted.
We guess it is caused by the limited size of the network
buffer or a glitch in Spark’s network transfer module, but
not sure. Our SR-2, 000, 000-500 takes around 30 seconds for
all settings with fine granularity, as we only choose the top
two million cells in the simplification phase. Note that the
binary search in the simplification phase and the refinement
for top M results take little time on Spark. Thus, the main
time-consuming part is still computing the Xi score for the
K cells using BASIC.

5. CONCLUDING REMARKS
SR-K-M is a solution to trade off between the speed and

accuracy to detect hot spots in a distributed framework. It
reduces the computation and network communication work-
load by simplification resulting in a huge speedup, and also
improves accuracy by refinement. We believe SR-K-M can
work on other hot spot definitions adjusted by K, M , and

Table 2: Runtime (seconds) without Preparation

aaaaaaaa
Setting

Solution
SR-2M-500 BASIC SHIFT

0.1, seven days ≤ 1 ≤ 1 5
0.001, seven days 25 - 26 23 - 28 40 - 45
0.001, one day 27 - 29 90 - 120 80 - 85
0.001, six hours 27 - 30 300 - 500 100 - 120
0.00001, six hours 30 - 33 ≥ 2000 600 - 700

how many expansion neighbors in refinement.
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