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ABSTRACT
Some analytic queries on road networks, usually concentrating in a
local area spanning several cities, need a high-throughput solution
such as performing millions of shortest distance computations per
second. However, most existing solutions achieve less than 5, 000
shortest distance computations per second per machine even with
multi-threads. We demonstrate a solution, termed City Distance
Oracles (CDO), using our previously developed ε-distance oracle
to achieve as many as 7 million shortest distance computations per
second per commodity machine on a city road network, i.e., 10K×
10K origin-distance (OD) matrix can be finished in 14 seconds.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS; H.2.4 [Database Management]: Systems—
Query processing

Keywords
high-throughput, spatial analytic query, distance oracle, city road
network

1. INTRODUCTION
Browsing of spatial data is becoming increasingly important [8,

13, 21, 22]. During the spatial analyst’s exploration, some types of
spatial queries, termed spatial analytic queries, can potentially in-
volve thousands to millions of road network distance computations.
Examples of such analyses include complex scenarios such as how
to assign and deliver 10, 000 packages for UPS in a city, how much
traffic congestion could be reduced if build a new bridge, where to
locate the next supermarket among a number of potential locations
taking into account a variety of factors like demography, distance

∗This work was supported in part by the AWS research grant
and the NSF under Grants IIS-12-19023, IIS-13-20791, and IIP-
1634753.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’16 October 31 - November 03, 2016, Burlingame, CA, USA
c©2016 ACM ISBN 978-1-4503-4589-7/16/10...$15.00

DOI: http://dx.doi.org/10.1145/2996913.2996921.

Datasets

Precomputing

-DO -DO

MEMORY

Extraction

Clean

Figure 1: The work flow of demo CDO: First extract any city
road network such as New York City from OpenStreetMap [2]
and TAREEG [3]; Then precompute the ε-DO [24]; Finally
load the results in memory and implement multi-thread ver-
sion to process query workload.

to a warehouse, etc., identifying bottlenecks in a road network for
evacuation planning, or distance join queries on road networks [27].

Our focus here is on throughput which is how to compute a spa-
tial analytic query as quickly as possible. Note that although de-
creasing the latency time for a single shortest distance query results
in reducing the total response time for a spatial analytic query, it is
far from enough since these latency methods don’t take into ac-
count considerations such as multi-users, multi-threads, reused re-
sults, and query optimization [17]. Our recent work [18] discussed
how to obtain high throughput performance using ε-distance ora-
cle (ε-DO) [24, 25] in a distributed key-value store such as Apache
Spark for spatial analysis on the continental road networks such as
the entire USA. However, the reaction of a number of companies
that make use of such queries was that typical queries are concen-
trated in a small local region rather than the whole continental re-
gion, termed the spatial concentration property. As an example of
such a use-case is a delivery company that needs to plan the deliv-
ery route for each truck every day, where the route of each truck
must be restricted into a local region, i.e., the region near to the
package warehouse. In particular, each such warehouse handles
1, 000 to 10, 000 packages per day, and each truck can deliver a
maximum of 150 packages per route. In order to efficiently assign
the packages to trucks and plan routes, the delivery company com-
putes a distance matrix that captures the distance between every
pair of destination locations of the packages, This is a common spa-
tial analytic query which makes between 1 million and 100 million
distance computations. Here, the spatial concentration property
means that in the general case, all destination locations of pack-
ages must be in proximity to the warehouse, say within 100KM.

Now we demonstrate an extremely efficient solution to solve spa-
tial analytic queries where the spatial concentration property holds.
In particular, we will show how one can compute large origin-
distance (OD) matrix of size 10K × 10K in a few seconds. The
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main work flow is shown in Figure 1. We extend our prior work
on ε-DO [24, 25], which precomputes and stores approximations
of the shortest distances between all pairs of vertices in a road net-
work. The resulting representation takes O( n

ε2
) space, where n is

the number of vertices in the road network and ε is an approxima-
tion error bound on the result. Our contributions in this demo are:

1. An efficient implementation of using ε-DO in memory in-
stead of in a database [24, 26] with multi-threads and query
optimization illustrated in [17]. As a result, we achieve 7 mil-
lion distance computations per second on the Bay Area New
road network in latitude/longitude region [37.173, 38.019]×
[−122.678,−121.571] with 755K vertices.

2. The design of a new key representation of the ε-DO which
enables doing a binary search to retrieve the road network
distance on the ε-DO without requiring any special indices.
It greatly speeds up the query time.

3. An application of CDO is illustrated, and an evaluation of
time performance is provided for CDO, HLDB [5], and CH [14].

In addition, we set up the CDO demo for the Bay Area and New
York City 1 and provide some use cases in our blog site 2.

2. RELATED WORK
The methods for computing shortest distances fall into two main

categories: latency methods and throughput methods. However,
most shortest distance methods do no consider the spatial concen-
tration property of the spatial analytic queries.

Latency approaches are designed to answer a single or a small
number of shortest path or network distance queries on road net-
works. The original road network or a processed representation
of it is stored in memory and queries perform operations on this
in-memory representation. The most common latency approach is
Dijkstra’s algorithm [12]. Other latency methods [4, 6, 7, 10, 11,
14, 15, 16, 19, 23, 31] are based on the observation that some ver-
tices in a spatial network are more important than others in answer-
ing shortest path queries. These methods offer different trade-offs
between pre-processing time, storage, and query time.

A characteristic of throughput methods, [5, 18, 24, 25, 28], is that
the shortest paths and distances are precomputed so that the query
process only requires a lookup as opposed to any real computation
on the fly. These methods are good for obtaining a high throughput
as multiple lookups can be batched to take place at the same time
thereby increasing the number of queries that can be answered at
the same time. The simplest way is precomputing all-pairs shortest
distances, but the storage for a city road network with 500K ver-
tices is more than 500K×500K×12bytes ≈ 2800GB, no to men-
tion the continental road networks with more than 30M vertices.
Thus, the throughput methods could be considered as some com-
pression algorithms for all-pairs shortest distances. Even though
there are some efficient compression representations, the represen-
tations for the continental road networks are still large so that they
need to be stored on disk/database thereby affecting both latency
and throughput. We found that storing memory is only possible for
city road networks, which will decrease the latency time a lot for
the throughput methods.

Wu et al. [30] evaluate several state-of-the-art methods (i.e., [7,
14, 24, 28]) for computing road network distance in the same en-
vironment. Even though they do not make the distinction between
latency and throughput methods, and only compare all the meth-
ods from a latency perspective, there are some valuable lessons to
1http://sametnginx.umiacs.umd.edu/
2http://roadsindb.com/
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Figure 2: (a) Morton code and ordering in a 4 × 4 space. (b)
Example to illustrate the key representation of distance oracle.

be learned from this evaluation. First, they show that TNR [7] and
CH [14] have fast preprocessing, low space overhead, support for
real time queries, and the ability to easily handle continental road
networks with tens of millions of vertices. They also point out
that although ε-DO [24, 25] and PCPD [28] are better for answer-
ing queries, they are not practical for continental road networks
because they they are too expensive to precompute. The demon-
stration of this paper shows that ε-DO is very usable on city road
networks, which can ignore the precomputation cost.

3. PRELIMINARIES
A road network G is modeled as a weighted directed graph de-

noted by G(V,E,w, p), where V is a set of nodes or vertices,
n = |V |, E ⊂ V × V is the set of edges, m = |E|, and w is
a weight function that maps each edge e ∈ E to a positive real
number w(e), e.g., distance or time. For each node v, p(v) denotes
the spatial position of v with respect to a spatial domain S, which is
also referred to as an embedding space (e.g., a reference coordinate
system in terms of latitude and longitude). We define the graph
distance dG(u, v) to be the shortest path from u to v in the spatial
graph, while dE(u, v) to be the Euclidean distance from u to v.

We use the Morton (Z) order space-filling curve [20] that pro-
vides a mapping, Z2 → Z, of a multidimensional object (e.g., a
vertex or a quadtree block) in a 2-dimensional embedding space to
a positive number. Given an object o, let mc(o) be the mapping
function that produces the Morton representation of o by interleav-
ing the binary representations of its coordinate values.

Given a spatial domain S, the Morton order of blocks in S can be
obtained by subdividing the space into 2L × 2L equal sized blocks
named unit blocks, whereL is a positive integer named the maximal
decomposition level. Each unit block i is referenced by a unique
Morton code mc(i). Figure 2(a) shows how a Morton order of
quadtree blocks in a two dimensional space with L = 2. A spa-
tial graph G(V,E,w, p) on the domain S can also be divided into
2L × 2L unit blocks. Given vertex v in the unit block i, v is as-
signed a Morton code mc(v) as mc(i),. All vertices located in the
same blocks have the same Morton code. Besides the unit blocks,
every larger block b has a unique Morton code, which is the longest
common prefix of all unit blocks contained in b, e.g., the Morton
code of the top left quadrant (1000, 1001, 1010, 1011) is 10. In
this demo, given blocks A and B, we define the relation A ≺ B,
if and only if block A is contained in block B, and thus mc(B) is
a prefix of mc(A). Once the data are sorted using this ordering,
the resulting blocks can be stored using any one-dimensional data
structure such as, but not limited to, a B-tree.

Formally, ε-DO [24, 25] describes a well-separated pair decom-
position (WSPD) [9] of a road network in order to produce well-
separated pairs (e.g., (A,B) with particular network distance prop-

http://sametnginx.umiacs.umd.edu/
http://roadsindb.com/
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Figure 3: A well-separated pair example in form and in Silver
Spring, MD, showing representative vertices pa, pb and radius,
the representative shortest distance is dG(pA, pB).

erties). Two sets of vertices A and B are said to be well-separated
as in Figure 3 if the minimum distance between any two vertices in
A and B is at least s · r, where s > 0 is a separation factor and r
is the larger diameter of the two sets. The pair (A,B) is termed a
well-separated pair (WSP), which satisfies the property that for any
pair of vertices (s, t), s ∈ A and t ∈ B, we can find the approx-
imate distance dε(A,B), where ε = 2

s
, providing an approximate

network distance such that it satisfies the condition

(1− ε) · dε(A,B) ≤ dG(s, t) ≤ (1 + ε) · dε(A,B) (1)

4. METHOD
CDO is based on ε-DO on a city road network, e.g., the number

of vertices n is less than one million. Note that on a commodity
machine, immediately loading O(n2) distance results in memory
is infeasible when n is larger than 50 thousand.

As a result, ε-DO generatesO( n
ε2
) well-separated pairs, denoted

as (A,B, dε(A,B)). Both A and B are a pair of PR quadtree
blocks [20] at the same depth. In order to make a well-separated
pair easy to embed in a database as a key-value pair, ε-DO uses the
Morton (Z) order space-filling curve [20] to map a quadtree block
in a 2-dimensional embedding space to a positive number. Thus,
each well-separated pair (A,B, dε(A,B)) is considered as a key-
value pair (mc(mc(A),mc(B)), dε(A,B)), where the value is the
distance and the key is mc(mc(A),mc(B)).

4.1 Storing and Querying CDO
Here we illustrates how to obtain the network distance in CDO,

given a source location p1 = (lat1, lng1) and a destination loca-
tion p2 = (lat2, lng2). Once ε-DO has been computed, CDO loads
all well-separated pairs, which the schema is (code, d), in memory
as an array sorted by code, where code is a succinct representation
of the well-separated pair and d is the approximate network dis-
tance. Although such a schema is similar to the one proposed in
ε-DO [24], our method just uses the default integer comparator in-
stead of redefining the string comparator operators (i.e., < and =)
while doing binary search. This is important because the default in-
teger comparator saves much time in contrast to the redefined string
comparator.

To illustrate our method for packing the code, we first start with
a simpler two-dimensional example (i.e., Z2) and we then describe
how to encode a well-separated pair as a four-dimensional Mor-
ton block. Suppose that we have a number of various length Mor-
ton codes in two-dimensions, which means that the corresponding
quadtree blocks are at different depths. The simpler problem we
want to solve is that we are given a point p, and we need to ef-
ficiently find a unique quadtree block A containing p. Here we
assume that the uniqueness property from the property of WSP [9]
is also true in this simpler example. The uniqueness property here
means that there is exactly one quadtree block containing p such as
in Figure 2. This search problem is equivalent to finding the unique
mc(A) such that p ≺ A.

Our approach is to make all the Morton codes have the same
length by padding them with enough zeros, so that all Morton codes

are always the same length, i.e., 2 · L bits long in two-dimensions.
For any Morton code mc(A), padding with enough zeros is equiv-
alent to choosing a unit-sized block that is a descendant of A in the
quadtree that has the smallest Morton code. This needs to be done
carefully as we illustrate with the following example. Suppose that
our two-dimensional oracles has ten quadtree blocks as in Figure 2
whose Morton codes are 0000, 0001, 0010, 0011, 01, 10, 1100,
1101, 1110, and 1111. Only two Morton codes 01 and 10 are not
4 digits long. Thus, consider the quadtree blocks 01 and 10 in Fig-
ure 2, which we convert to 0100 and 1000 respectively by padding
zeros to the right hand side. The codes of our oracle become: 0000,
0001, 0010, 0011, 0100, 1000, 1100, 1101, 1110, and 1111 in or-
der. Given a query point p = 0111 that is contained by a unique
quadtree block A. To find A, we need to find a quadtree block in
the B-tree such that it is the largest value that is less than or equal
to p, which in this case is 0100 (i.e., quadtree block 01, which is
the correct answer).

Algorithm 1: GETDIST(lat1, lng1, lat2, lng2)
Data: A: Sorted array containing all well separated pairs
Result: Result: Network distances between (lat1, lng1) and

(lat2, lng2)
1 code← Z0

4 ( Z2((lat1, lng1)), Z2((lat2, lng2)) );
2 left← 0;
3 right← A.size();
4 while left ≤ right do
5 mid← (left + right)/2;
6 if A[mid].code ≤ code then
7 left←mid + 1;
8 else
9 right←mid - 1;

10 return A[left− 1].d;

Now going back to CDO, we obtain a four dimensional Morton
code by interleaving mc(A) and mc(B) two digits at a time. This
packing is given by the function Z4(A,B). Next, we define func-
tion Z0

4 (A,B) by padding Z4(A,B) with zeros to the right side.
For example for the blocks in Figure 2, Z4 and Z0

4 should be

Z4(01, 10) = 0110 Z0
4 (01, 10) = 01100000

Z4(0000, 1111) = Z0
4 (0000, 1111) = 00110011

This packing Z0
4 produces a Morton code of 4 · L bits length.

This forms the code attribute. At this point, given a source loca-
tion p1 and a destination location p2, the approximate network dis-
tance query first calculates key = Z0

4 (mc(p1),mc(p2)) in O(1)
time using bitwise operations and then issues the following binary
search function, Algorithm 1, to obtain the network distance.

The reason this scheme works is because of the uniqueness prop-
erty of WSP. For any two points in the domain S, there is exactly
one WSP containing them.

4.2 Multi-threads
As most memory resources in Algorithm 1 are only processed

by read-only operations, parallel processing should increase the
throughput a lot. Without loss of generality, we show how to obtain
the network distances of a batch of source-target pairs with multi-
threads in Algorithm 2.

5. DEMO SCENARIO
We extracted and prepared a CDO of the Bay Area road network

with 781K vertices and one for the New York City road network
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Algorithm 2: GETBATCHDIST(Q)
Data: Q: Query array where each element is a source-target

pair; nthread: Number of threads
Result: Result: Network distances for Q

1 len← Q.size()/nthread;
2 ans← initial a float array with Q.size() elements;
3 for i← 0 to nthread do
4 thread[i]← initial thread i, process

Q[j], j ∈ [i · len, (i+ 1) · len) by Algorithm 1 in thread
i, and store distance results in corresponding ans[j] ;

5 for i← 0 to nthread do
6 thread[i].join();

7 return ans;

with 407K vertices from OpenStreetMap [2]. The demo is set up
at http://sametnginx.umiacs.umd.edu/.

We implemented three methods, our solution CDO where ε =
0.05, HLDB [5], and CH [14], in C++, where all of them are pro-
cessing in memory with multi-threads, and in the same environ-
ment, a Macbook Pro 15-inch, 2.8 GHz Quad-core Intel Core i7,
16 GB memory.

Figure 4 shows the time performance of the three methods on
the Bay Area road network. CDO is the fastest one, which achieves
0.16 seconds with 8 threads for 1 million distance computations.
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Figure 4: Time consumption for 1 million random source-
target pairs on the Bay Area road network, varying with num-
ber of threads.

In addition, here we provide an application that can be efficiently
solved by our demo. It is to measure the accessibility of jobs, i.e.,
how many job opportunities exist nearby each census block. We
use the LEHD dataset [1] to obtain the job locations around the
Bay Area. This workload shown in Figure 5 contains 120 million
distance computations, where CDO only needs 18 seconds. Obvi-
ously, based on our solution, many analytic queries could be solved
and visualized in a much quicker way, such as showing the influ-
ence of building a bridge from two arbitrary Bay Area locations.
Future work involves investigating the use of distributed data struc-
tures in the application (e.g., [29]).
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