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Abstract

Spatial indexes, such as the PMR quadtree, are important in spatial databases for efficient execution of
queries involving spatial constraints, especially when the queries involve spatial joins. We investigate the
issue of speeding up building PMR quadtrees for a set of objects and develop two approaches to achieve
this goal. In an empirical study, we find that the better method of the two offers significant improvements in
execution time, and present evidence of the usefulness of spatial indexing for executing spatial join queries.
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1 Introduction

Traditional database systems employ indexes on alphanumeric data, usually based on the B-tree, to facilitate
efficient query handling. Typically, the database system allows the users to designate which attributes (data
fields) need to be indexed. However, advanced query optimizers also have the ability to create indexes on
un-indexed data or temporary results (i.e., results from a part of the query) as needed. In order for this to be
worthwhile, the index creation process must not be too time-consuming, as otherwise the operation could be
executed more efficiently without an index. In other words, the index may not be particularly useful if the
execution time of the operation without an index is several times faster than the total time to execute it when
the time to build the index is included.

Of course, indexes are often used even though the speed of constructing them is slow when the resulting
indexed data is queried many times. In this case, the time to build the index is amortized over the number of
queries made on the indexed data before a new index needs to be constructed (e.g., on account of updates).
This is the case when the database is static.

In the research reported here, we focus on the situation where the database is dynamic. This is an often-
neglected issue in the design of spatial databases. The problem is that most often the index is chosen on the
basis of the speed with which queries can be performed and on the amount of storage that is required. The
queries usually involve retrieval rather than the creation of new data. This emphasis on retrieval efficiency
may lead to a wrong choice of an index when the operations are not limited to retrieval. This is especially
evident for a query such as the spatial join. As an example of this query, suppose that given a road relation
and a river relation, we want to find all locations where a road and river meet (i.e., locations of bridges and
tunnels). This can be achieved by computing a spatial join of the two relations which is realized by joining
the two relations. The join condition is one that results in extracting all tuples whose spatial attribute values
have at least one point in common.

The spatial join is an interesting operation because its output has both a relational and a spatial compo-
nent. In practical terms, for example in the case of line segments, we don’t always want to just report the
object pairs (i.e., lines or the names of the rivers and roads in our example) that intersect. In particular, we
want to report their locations as well so that they can serve as input to subsequent spatial operations (i.e., a
cascaded spatial join as would be common in a spatial spreadsheet). Therefore, we also need to construct a
map for the output, which means that we need to construct a spatial index. In other words, the time to build
the spatial index plays an important role in the overall performance of the index in addition to the time re-
quired to perform the spatial join itself whose output is not always required to be spatial. Interestingly, most
traditional studies of the effect of spatial indexing on the efficiency of the spatial join (e.g., [1, 5]) only fo-
cused on the relational component of the output, while very few (e.g., [6]) included a spatial component in
the output.

In this paper we examine the efficiency of building the spatial index. In particular, we focus on the PMR
quadtree spatial index [9]. The PMR quadtree is of particular interest as we showed in an earlier study [6]
that the PMR quadtree performs quite well for a spatial join in contrast to other spatial data structures such
as the R-tree (including variants such as the R�-tree) and the R+-tree.

Improving the performance of building a quadtree spatial index is of interest to us for a number of addi-
tional reasons. First of all, the PMR quadtree is used as the spatial index for the spatial attributes in a spatial
database system built by us called SAND (Spatial and Non-Spatial Data) [3]. SAND employs a data model
inspired by the relational algebra. The basic storage unit is an attribute, which may be non-spatial (e.g., in-
teger or character string) or spatial (e.g., points, lines, polygons, etc.). Attributes are collected into relations,
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and relation data is stored as tuples in tables, each of which is identified by a tuple ID. SAND uses indexing
to facilitate speedy access to tuples based on both spatial and non-spatial attribute values. Second, quadtree
indexes have started to appear in commercial database systems such as the Spatial Data Option (SDO) from
the Oracle Corporation [10]. Thus speeding their construction has an appeal beyond our SAND prototype.

One problem with using the PMR quadtree as an index is that despite the results of our previous com-
parative study [6], we still find that building a PMR quadtree is a time-consuming process. Our goal is to
speed up the process of building a PMR quadtree from a set of objects in order to make the PMR quadtree
more useful for spatial indexing in SAND. In particular, this would make it possible for the query optimizer
to build indexes on the fly as the need arises. This is especially important for queries that involve spatial joins
as we saw in the example above.

We use the term bulk-loading to characterize the process of building a disk-based spatial index for an
entire set of objects without any intervening queries. The approach taken in this paper is based on the idea
of trying to fill up memory with as much of the quadtree as possible before writing some of its nodes on
disk. Although our presentation and experiments are in terms of the PMR quadtree, our results hold for any
variant of the quadtree. The rest of this paper is organized as follows. Section 2 describes the PMR quadtree
and its implementation in SAND which serves as the prototype whose construction time is being speeded
up. Section 3 presents our approach. Section 4 discusses the results of our experiments, while concluding
remarks are drawn in Section 5.

2 PMR Quadtrees and their Implementation

By the term quadtree [11] we mean a spatial data structure based on a disjoint regular decomposition of space.
Each quadtree block (sometimes referred to as a cell) covers a portion of space that forms a hypercube in d-
dimensions, usually with a side length that is a power of 2. Quadtree blocks may be further divided into 2d

sub-blocks of equal size. One way of conceptualizing a quadtree is to think of it as an extended 2d-ary tree1.
Another way is to focus on the space decomposition, in which case it can be thought of as being an adaptive
grid. Usually, there is a prescribed maximum height of the tree, or equivalently, a minimum size for each
quadtree block.

The PMR quadtree is a dynamic spatial data structure based on the idea of a quadtree, where objects are
stored only in leaf blocks that intersect them. If, upon inserting an object o into a quadtree block b, the number
of objects in b exceeds a splitting threshold T and b is not at the maximum level, then b is split into 2d sub-
blocks, and the objects in b (including o) are reinserted into the newly created blocks that they intersect. Note
that the sub-blocks are not split further during the insertion of o, even if they contain more than T objects.
This aspect of the PMR quadtree gives rise to probabilistic behavior in the sense that the order in which the
objects are inserted affects the shape of the resulting tree.

Since the PMR quadtree gives rise to a disjoint decomposition of space, and objects are stored only in
leaf blocks, this implies that non-point objects may be stored in more than one leaf block. The part of an
object that intersects a leaf block that contains it is often referred to as a q-object.

Quadtrees can be implemented in many different ways. One method, inspired by viewing them as trees,
is to implement each block as a record, where non-leaf blocks store 2d pointers to block records, and leaf
blocks store a list of objects. However, this pointer-based approach is ill-suited for implementing disk-based
structures. A general methodology for doing this is to represent only the leaf blocks in the quadtree. The

1An extended k-ary tree is a tree where each node is either a leaf node or contains k children.
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location and size of each leaf block is encoded in some manner, and the result is used as a key into an auxiliary
disk-based data structure. This approach is termed a linear quadtree [4].

The implementation of the PMR quadtree used in the SAND spatial database is based on a general linear
quadtree implementation called the Morton Block Index (abbreviated as MBI). The size of the space covered
by an MBI has side length of 2w with 0 as the origin for each dimension, and the minimum side length of
a quadtree block that can be represented is 1. The MBI encodes quadtree blocks using a pair of numbers
(termed a Morton block value): the Morton code of the quadtree block along with the side length of the block
(stored in log2 form). The Morton code of a quadtree block is constructed by bit-interleaving the coordinate
values of the lower-left corner of the block. Not all possible Morton block values correspond to legal quadtree
blocks. For example, for a 2-dimensional quadtree, the only quadtree block that can have a lower-left corner
of (1; 1) has a side length of 1. However, each Morton code can correspond to many quadtree blocks, e.g.,
the point with coordinate values (0; 0) can be the lower-left corner of blocks of any size from 1 through 2w.
Notice that the fact that the range of the Morton codes is from 0 to 2w for each dimension is not really a
limitation, as it is a simple matter to transform coordinates in any other range into the range of a Morton
code, and vice versa.

Morton codes provide a mapping from a d-dimensional point to a one-dimensional scalar, the result of
which is known as a space-filling curve. When the d-dimensional points are ordered on the basis of their cor-
responding Morton codes, the order is called a Morton order. It is also known as a Z-order since it traces a
‘Z’ pattern in two dimensions. Many other space-ordering methods exist, such as the Peano-Hilbert, Cantor-
diagonal, and spiral orders. However, of those, only the Morton and Peano-Hilbert orders are useful for or-
dering quadtree blocks. The advantage of the Morton order is that it is much simpler, thereby making it com-
putationally much less expensive, to convert between a Morton code and its corresponding coordinate values
(and vice versa) than between a code based on Peano-Hilbert order and its corresponding coordinate values.
In addition, various operations on Morton block values can be implemented through simple bit-manipulation
operations on Morton codes. Examples include computing the Morton block values for sub-blocks, for a con-
taining block as well as for the neighboring blocks of a quadtree block.

The MBI uses a B-tree to organize the Morton block values, employing a lexicographic sorting order
on the Morton code and side length. Note that this corresponds to a Z-order on the quadtree blocks. For a
quadtree leaf node with k objects, the corresponding Morton block value is represented k times in the B-tree,
once for each object. The B-tree uses a small amount of buffering of B-tree nodes, storing only the B-tree
nodes from the root to the current node being searched, as well as possibly the sibling of the current node
(e.g., when splitting and merging).

3 Our Approach

Our implementation of the PMR quadtree as described in Section 2 is very flexible in several respects. The
MBI supports any number of dimensions, an underlying space with a side width of up to 232, and the size
of the object (in terms of the number of bytes) stored in the MBI is unlimited. The splitting threshold of the
PMR quadtree is also unlimited. Nevertheless, we found its performance to be respectable for dynamic in-
sertions and a wide range of queries. However, for loading a large number of objects simultaneously (i.e.,
bulk-loading), this flexibility proved to degrade performance. One reason for this inefficiency is that, in ad-
dition to the cost of B-tree operations when traversing the tree structure implied by the quadtree, node splits
are very costly. This is due to the fact that when a quadtree node is split, references to objects must be deleted
from the B-tree, and then reinserted with Morton block value identifiers of the newly created quadtree nodes.
The deletions from the B-tree may cause merging of B-tree nodes, and the subsequent reinsertions of the ob-
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jects with their new Morton block values will then cause splitting of these same nodes. This causes a lot of
disk activity.

We developed two approaches in an attempt to speed up bulk-loading. One attacks the problem on the
B-tree level, while the other attacks it on the PMR quadtree level. The first approach is to dramatically in-
crease the amount of buffering done by the B-tree (the B-tree buffering approach). The second approach is
to reduce the number of accesses to the B-tree as much as possible by storing parts of the PMR quadtree in
main memory (the quadtree buffering approach).

3.1 B-tree Buffering

In the B-tree buffering approach, we use a buffer to store recently used B-tree nodes, and employ an LRU
(least recently used) replacement policy to make space for a new node. A node locking mechanism ensures
that the nodes on the path from the root to the current node are not replaced. Such extensive buffering was
not included in our original implementation because it was found to offer little performance improvement for
dynamic insertion as well as many query types. This is due to the fact that for such use, B-tree nodes tend to
have been replaced by the time they are needed again, as quadtree blocks are requested in a largely random
manner. Also, it is mostly useless for processes that access the whole quadtree in Z-order (such as done by
some spatial join algorithm), as they give rise to a sequential scan of the MBI B-tree.

In order to make the most of the B-tree buffering approach, it is best that quadtree nodes be visited in Z-
order, since that order corresponds to how they are sorted in the B-tree. By sorting the set of objects to insert
in Z-order on their centroid, we will approach that goal (as they will tend to localize insertions within the
top-most B-tree nodes, i.e., the ones storing the largest Morton block values). Sorting a set of objects prior
to insertion is a small price to pay, as it is usually a much less expensive process than the cost of building
the spatial index. It is a common approach for statically built spatial data structures (e.g., Hilbert-packed
R-trees [7]).

3.2 Quadtree Buffering

In the quadtree buffering approach, we build a pointer-based quadtree in main memory, thereby bypassing
the MBI B-tree. Of course, this can only be done as long as the entire quadtree fits in main memory. Once
available memory is used up, parts of the pointer-based quadtree are flushed (i.e., written) onto disk (i.e., into
the MBI). When all the objects have been inserted into the pointer-based quadtree, the entire tree is inserted
into the MBI. In order to maintain compatibility with the MBI-based PMR structure, we use Morton block
values to determine the space coverage of quadtree blocks. Note that it is not necessary to store the Morton
block values in the nodes of the pointer-based structure (each node corresponds to a quadtree block), as these
can be computed during traversals of the tree. However, a careful analysis of execution profiles revealed that
a large percentage of the execution time was spent on bit-manipulation operations on Morton block values.
Thus, we chose to store the Morton block values in the nodes, even though this increased their storage re-
quirements.

We use a set of heuristics to choose which quadtree blocks (also referred to as nodes) to flush. The goal
is to flush quadtree blocks that will not be needed later on, i.e., no subsequently inserted object intersects the
block. In general, it is impossible to attain this goal for arbitrary insertion patterns. However, sorting the set
of objects prior to building the spatial index makes it possible to get close to the goal. As in the case of the
B-tree buffer approach, sorting the objects in Z-order does the trick. Using such an ordering would mean that
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the insertion activity would be rather localized in the tree, so once nothing has been inserted into a node a

for a long time, a will most probably not be inserted into again.

The process of choosing quadtree blocks to flush makes use of a set of statistics that is maintained for
each node a:

1. The time at which the last insertion was made into the quadtree block corresponding to a.

2. The number of q-objects in the subtree rooted at a (recall that a q-object is the part of an object that
intersects a containing leaf block).

3. The number of nodes in the subtree rooted at a, not counting the node a itself (for leaf nodes, this is
always 0).

After a node in the pointer-based quadtree is flushed to the MBI, its contents (i.e., child nodes for non-
leaf nodes or object lists for leaf nodes) are deallocated, and the node is marked as an MBI node. The node
is kept around in case there are subsequent insertions into it, in which case the MBI-based PMR quadtree
insertion routine is invoked for that quadtree block. The amount of memory used by a subtree is proportional
to the number of q-objects and nodes in the subtree. Thus, the flushing process is guaranteed to free a certain
percentage Q, termed the flushing quotient, of the q-objects or nodes. The decision process is recursive on
the pointer-based quadtree nodes and starts at the root. Initially, the number of q-objects,Nq, and nodes, Nn,
to free is set at Q times the total number of q-objects and nodes in the memory-based structure. Each time a
node is flushed, Nq and Nn are reduced as appropriate, terminating the process if either value reaches zero
(actually,Nn never reaches zero unless it is a multiple of 2d, so either it can be made a multiple of 2d initially,
or the terminating condition can be made that it is less than 2d).

A recursive invocation of the flushing method proceeds as follows, where n is the node under consid-
eration. If n is a leaf node, it is flushed. For a non-leaf node, if the number of q-objects and nodes in the
subtree rooted at n is less than or equal to Nq and Nn, respectively, then the whole subtree rooted at n is
flushed to the MBI. Otherwise, the child nodes of n are considered in the order of their last insertion time
(i.e., nodes that have not been inserted into the longest are considered first). The flushing process is applied
recursively to the child nodes that have not yet been flushed and whose number of q-objects is at least 1

2d

times the number of q-objects in the whole subtree rooted at n (recall that n has 2d child nodes implying that
this quantity is the average number of q-objects in the child nodes). The latter rule is a heuristic that tends
to flush nodes that will not be inserted into again, given that objects are inserted in Z-order, as it makes sure
that only child nodes with an above average number of q-objects are processed. Note that often, only the first
few child nodes of n are looked at, since the process terminates once enough q-objects and nodes have been
freed from memory.

In addition to controlling how much memory is freed, the flushing quotient provides a means for control-
ling how deep into the tree the recursive flushing process descends in its search for nodes to flush. In other
words, a small flushing quotient will cause a deeper descent into the tree than will a large flushing quotient.
Also, note that we don’t require both Nq and Nn to fall down to zero. The reason is that this tends to cause
too many nodes to be flushed (i.e., objects are highly likely to be inserted into many of the flushed nodes).
The reason for basing the heuristic process on both the number of q-objects and nodes is that it provides more
consistent results (in terms of the amount of memory that is freed) than using only one, especially for small
buffer sizes.
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4 Empirical Results

We implemented both of our approaches to speeding up the bulk-loading of quadtrees and ran experiments
with two-dimensional line data, both real-world and randomly generated. The real-world data consists of
three data sets from the TIGER/Line File [2]:

1. Washington DC: 19,185 line segments.

2. Prince George’s County, MD: 59,551 line segments.

3. Roads in Washington DC metro area: 200,482 line segments.

The randomly generated data sets have 64,000, 128,000 and 256,000 line segments and were constructed
by generating random infinite lines in a manner that is independent of translation and scaling of the coordinate
system [8]. These lines are clipped to the map area to obtain line segments, and then subdivided further at
intersection points with other line segments so that at the end, line segments meet only at endpoints.

In our experiments, we chose to store the entire geometry of the objects in the PMR quadtree. The side
length of the space containing the data was 215 = 32768 and the splitting threshold was set at 8. Larger
splitting thresholds make the quadtree buffering approach even more attractive. However, as 8 is a commonly
used splitting threshold, this is the value we used.

The programs we used were compiled with the GNU C++ compiler with full optimization (–O3), and the
experiments were conducted on a SUN SPARCstation 5 Model 70 (rated at 60 SPECint92 and 47 SPECfp92)
with 32MB of memory.

Figure 1 shows the speedup in the insertion time for five buffering methods when the line segments are
inserted in Z-order (including the time for sorting the line segments) in comparison to inserting the segments
in their original order without buffering. In the figure, “BB-large” and “BB-small“ denote B-tree buffering
with a large buffer and a small buffer (100 nodes occupying 400K), respectively. The large buffer size fills
almost all available memory, and is large enough to hold the entire quadtree except for the two largest data
sets. Similarly, “QB-large“ and “QB-small” denote quadtree buffering with a large and a small buffer (100K),
respectively. Again, the large buffer for quadtree buffering is large enough to hold entire quadtree for all but
the largest data sets. The reason for including the cases using the large buffers is to reveal the maximum
speedup that can be achieved with buffering, as in this extreme case no flushing of quadtree nodes needs to
be done until the whole tree has been built. This gives a useful yardstick for assessing the performance of
our flushing heuristics when using a small buffer. While 100K may not seem like a very small buffer, it is
nevertheless a small fraction of the size of the index, or less than 4% for the DC data set, and even less for the
others. Furthermore, in an era when 32MB of main memory is considered small, 100K is not very “large”.
Finally, “Both-small” is the result of using both buffering methods simultaneously with a small buffer size
for both. We used a flushing quotient of .25 for the quadtree buffering method.

The most startling observation we can make from Figure 1 is that quadtree buffering is up to more than
8 times faster than not using any buffering when the quadtree buffers are large, while being about 5 times
faster when the quadtree buffers are small.
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Figure 1: Improvements of the buffering methods over no buffering, taking sort-
ing time into account.

5 Concluding Remarks

We have shown that quadtree buffering enabled us to build a quadtree in time that was an order of magnitude
smaller than our original PMR quadtree implementation. Even when using modest amounts of memory for
the buffering, the improvement was considerable (a factor of 5). The B-tree buffering approach offered some
improvements over the original implementation that did not use any buffering, but not nearly as much as the
quadtree buffering approach, even for large buffer capacity when disk activity is kept at a minimum. This
demonstrates that the linear quadtree storage method is highly CPU intensive, at least for insertions. A signifi-
cant portion of the CPU time is spent in computing operations on Morton block values, a cost that was avoided
in the quadtree buffering approach by storing the Morton block values in the pointer-based quadtree struc-
ture. Other factors that explain the difference in performance are the higher overhead involved in traversing
the quadtree through the MBI as well as the repeated splitting and merging of B-tree nodes resulting from
quadtree node splits due to deletion and reinsertions of Morton block values.

Future work includes investigating whether our buffering strategies for bulk-loading may be used to
speed up dynamic insertions and queries. Also, the fact that our system can build PMR quadtrees efficiently
will enable us to build a spatial query processor for SAND that exploits this to construct spatial indexes for
temporary results (e.g., results from other, possibly non-spatial, queries), or for un-indexed spatial relations,
prior to spatial operations on them. This is particularly important for complex operations such as spatial joins.
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