
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4, APRIL 1979

error scheme and the computational effort comparisons of
the paper, suggest that these algorithms have some inherent
advantage over the extended Kalman filters derived by
augnenting the state variable of innovations models with
the unknown parameter vector, as in Ljung [3]. Further case
studies could confirm or dispel such a conclusion.

In a later paper, the RPE schemes ofthis paper (including
RML2 algorithm) are modified so as to avoid the stability
test at each iteration as a necessary step to ensure conver-
gence. The simulation studies of this later paper further
support the approach developed here.

REFERENCES
[1] D. G. Orlhac, M. Athans, J. Speyer, and P. K. Houpt, "Dynamic

stochastic control of freeway corridor systems: Vol. IV-Estimation
of traffic variables via extended Kalman filter methods," Rep.
ESL-R-611, MIT, Cambridge, MA, Sept. 1975.

[2] L. W. Nelson and E. Stear, "The simultaneous on-line estimation of
parameters and states in linear systems," IEEE Trans. Automatic
Control, vol. AC-21, pp. 94-98, Feb. 1976.

[3] L. Ljung, "The extended Kalman filter as a parameter estimator for
linear systems," Rep. LITH-ISY-I-0154, Dept. of Elec. Eng., Linkop-
ing University, Sweden, May 1977.

[4] L. Ljung, "Convergence of an adaptive filter algorithm," Int. J.
Control, vol. 27, no. 5, pp. 673-693, May 1978.

[5] G. Ledwich and J. B. Moore, "Multivariable self-tuning filters," pre-
sented at 4th ConfJ Differential Games and Control Theory, July 1976.
Also "Multivariable adaptive parameter and state estimators with

convergence analysis," J. Austr. Math. Soc., to be published.
[6] T. Soderstr6m, "An on-line algorithm for approximate maximum

likelihood identification of linear dynamic systems," Rep. 7308, Divi-
sion of Automatic Control, Lund Institute of Technology, Sweden,
Mar. 1973.

[7] T. S6derstrom, L. Ljung, and I. Gustavsson, "A comparative study of
recursive identification methods," Rep. 7427, Dept. of Automatic
Control, Lund Institute of Technology, Sweden, Dec. 1974.

[8] L. Ljung, "Prediction error identification methods," Rep. LITH-ISY-
1-0139, Dept. of Elec. Eng., Linkoping University, Sweden, 1977.

[9] B. D. 0. Anderson, J. B. Moore, and R. M. Hawkes, "Model approxi-
mations via prediction error identification," Automatica, vol. 4, no. 6,
1978.

[10] L. Ljung, "Analysis of recursive stochastic algorithms," IEEE Trans.
Automatic Control, vol. AC-22, pp. 551-575, Aug. 1977.

[11] L. Ljung, "Theorems for the asymptotic analysis of recursive stoch-
astic algorithms," Rep. 7522, Dept. of Automatic Control, Lund In-
stitute of Technology, Sweden, Dec. 1975.

[12] N. K. Gupta and R. K. Mehra, "Computational aspects of
maximum-likelihood estimation and reduction in sensitivity function
calculations," IEEE Trans. Automatic Control, vol. AC-19, pp. 774-
783, Dec. 1974.

[13] G. C. Goodwin and R. L. Payne, Dynamic System Identification:
Experiment Design and Data Analysis. New York: Academic, 1977.

[14] B. D. 0. Anderson and J. B. Moore, Optimal Filtering. Englewood
Cliff, NJ: Prentice-Hall, 1979.

[15] M. Morf and T. Kailath, "Square-root algorithms for least-squares
estimation," IEEE Trans. Automatic Control, vol. AC-20, pp.
487-497, Aug. 1975.

[16] R. Kumar and J. B. Moore, "Inverse state and decorrelated state
stochastic approximation," submitted for publication.

[17] R. L. Kashyap and A. R. Rao, Dynamic Stochastic Models from Em-
pirical Data. New York: Academic, 1976.

Artificial Intelligence Programming Languages
for Computer Aided Manufacturing

CHUCK RIEGER, JONATHAN ROSENBERG,
AND HANAN SAMET, MEMBER, IEEE

Abstract-Eight Artificial Intelligence programming languages
(SAIL, LISP, MICROPLANNER, CONNIVER, MLISP,
POP-2, AL, and QLISP) are presented and surveyed, with examples
of their use in an automated shop environment. Control structures are
compared, and distinctive features of each language are highlighted.
A simple programming task is used to illustrate programs in SAIL,
LISP, MICROPLANNER, and CONNIVER. The report assumes
reader knowledge of programming concepts, but not necessarily of
the languages surveyed.

Manuscript received October 20, 1977; revised November 3, 1978. This
work was supported in part by the National Bureau of Standards, in part
by the Office of Naval Research, and in part by the National Aeronautics
and Space Administration.

C. Rieger and H. Samet are with the Department of Computer Science,
University of Maryland, College Park, MD 20742.

J. Rosenberg is with the Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA 15213.

I. INTRODUCTION
EARLY INTEREST in computers and computing

tended to revolve around the high speeds at which
numerical calculations could be performed for such tasks as
discrete analysis, simulation, payroll handling, and the like.
These first applications were supported by such languages as
FORTRAN, ALGOL, and COBOL. Today, numerical
tasks are still prevalent, and there is a host ofnew languages.
However, there has been a growing interest in the applica-
tion of computers to computations which are less numeric
and more symbolic in nature, in particular in applications in
which the key problems are not the speed of multiply and
divide hardware, but rather in the forms of data storage and
control that are needed to carry out complex decision
making and planning tasks.

0018-9472/79/0400-0205$00.75 © 1979 IEEE

205

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4, APRIL 1979

In this paper we attempt to develop a perspective of both
the nature of symbolic computing and of several of the
current major symbolic computing languages: SAIL [28],
LISP [19], MICROPLANNER [36], CONNIVER [20],
MLISP [34], AL [15], POP-2 [6], and QLISP [31], all of
which have emerged historically as derivatives ofthe branch
of computer science known as Artificial Intelligence, the
branch most closely concerned with symbolic computing.
Although it is our purpose to provide insight into general
symbolic computing issues, we focus primarily on symbolic
computing and decision making in the context ofcomputer-
aided manufacturing environments.
The traditional approach to computing is one of a batch

environment, in which a sequence of large jobs is submitted
to a mainframe computer. In this environment, the com-
puter schedules and runs thejobs, then collects the results on
mass storage for later routing to the scientist or administra-
tor. In symbolic computing, however, where planning and
decision making play primary roles, there is typically a
greater demand for real-time interactive systems. This is
especially true in a computer-aided manufacturing environ-
ment, for example, where "results" are not so much tables of
numbers as they are commands to tools, job steps, and
interactions with human operators that must occur in real
time, in the face of a constantly changing environment.
Although the development of interactive computing was

first motivated by a desire for more efficient utilization of
system capabilities, the shift from batch to interactive
real-time computing has also stimulated research in areas in
which computers serve not only as numerical engines, but
also in administrative and planning capacities. In these
higher-level applications, the computer is no longer
dedicated to the local control of a single tool, but rather to
the global management of the activities of an entire shop of
tools. In this context, "tool" no longer necessarily has its
traditional meaning, since each controlled "tool" might in
fact be another cooperating computer, with its own internal
reasoning capacities.
When "intelligent" computers interact at this level, there

is a need for some type ofsymbolic communication protocol
by which exchanges involving error conditions, scheduling,
routing, and so forth can occur. Because of this need, one of
the main areas of research in symbolic computing languages
concerns the form in which symbolic data are represented in
shared data bases and the form of the access languages for
such data bases. As will become apparent, a major issue of
any symbolic computing language is the style in which
symbols can be combined and organized to represent plan-
ning and decision making knowledge.

Equally important to the style of data representation in
symbolic computing is the style of run-time control offered
by the programming language. In complex decision making
environments, for example, there is the ever-present need to
explore alternative solutions and to recover from prior bad
decisions and unforeseeablemishaps duringthe execution of
a plan. Equally important is the generation and internal
simulation and certification of plans prior to their applica-
tion. This frequently requires control mechanisms that allow
the program to back up or revert to a prior state of

reasoning, or that allow the program to switch conveniently
among several alternatives as it learns more about the
feasibility or adequacy of each. Such activities, in turn, call
for schemes in which the data base of planning knowledge
can be organized contextually, with parts beingmasked and
retrieved as a function of the current phase of the planning
activity. Such operations are clearly beyond the scope of
most traditional, numerically oriented computing
languages.
An attendant problem of symbolic reasoning is that of

generating new knowledge from existing knowledge via
either formal or plausible inference systems. Thus symbolic
languages frequently support inference mechanisms that
make it convenient to express rules of the form ""Whenever
A, B, and C occur, infer that D has also occurred." Although
this type of facility is fundamentally a software emulation of
associative hardware, much research is currently devoted to
the development of systems that can react to complex sets of
conditions and that can generate elaborate inferences,
sometimes affecting the control of the system. Such associa-
tive processes impose additional demands on the structure
of the symbolic data base.
Our survey follows languages which have distinct lin-

eages. SAIL is primarily an outgrowth of ALGOL, which
itself was motivated from some deficiencies of control in
FORTRAN. While SAIL has a powerful numerical facility,
it extends the traditional control available in FORTRAN
and ALGOL, provides more extensive and powerful I/O
capabilities, and facilitates user interface with the operating
system. As with the other symbolic languages, it also
supports an associative data base and inference system.

LISP, MICROPLANNER, and CONNIVER comprise
the second family of symbolic languages. LISP, often
regarded as the "assembly language of Al," is rooted in
recursive function theory and has the somewhat unique
feature that program and data are structurally indistinguish-
able. This permits control environments in which one
program can construct, then execute and even debug
another program. MICROPLANNER builds more control
and data base power into LISP, providing several powerful
facilities for plan generation and reasoning about alterna-
tives in the presence of a context-sensitive data base of
"assertions" and "theorems." CONNIVER refines several of
the ideas introduced by MICROPLANNER and solves a
number of the deficiencies ofMICROPLANNER's backup
and search mechanisms.
To round out the survey, we also briefly describe four

other symbolic languages: MLISP, POP-2 (ALGOL-like
variants of LISP), QLISP (an analog of MICRO-
PLANNER with a somewhat richer data structure facility),
and AL (a SAIL-based manipulator task specification
language).
Our survey contains a short description of each of the

major languages, illustrating each with a common example
typical of tasks in a computer-aided manufacturing environ-
ment. We also briefly discuss the standardization status of
the languages. The conclusion reviews the desirable features
and suggests what the desirable characteristics of an 'ideal"
computer-aided manufacturing language might be.

206

RIEGER et al.: ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

II. SAIL
A. Introduction
SAIL has its origins in a merger of LEAP [13], an

associative language, and a version of ALGOL 60 [23].
Therefore, unlike most of the other artificial intelligence
languages, it is not LISP based. Instead, it is a general
purpose compiled language with an extensive run-time
library of functions. As befits its ALGOL origins, SAIL has
block structure and explicitly typed, statically scoped var-
iables. The data types available include INTEGER, REAL,
STRINGS of arbitrary length, structure, pointer, LIST, SET,
ITEM, and aggregates of the previous (i.e., ARRAYS).
Some of the more important features of SAIL are dis-

cussed separately below. These include the associative
data-base facility, the capability for usage of SAIL as a host
language in a CODASYL [9] data-base management
system, the control structures, and the system-building
facilities. Finally, a summary is presented ofcurrent standar-
dization efforts.

B. Associative Data Base
SAIL contains an associative data base facility known as

LEAP which is used for symbolic computations. This
enables the storage and retrieval of information based on
partial specification of the data. Associative data is stored in
the form of associations which are ordered three-tuples of
ITEMS, denoted as TRIPLES. Examples of TRIPLES are:

FASTEN 0 NAIL _ HAMMER;
FASTEN 0 SCREW SCREWDRIVER;
FASTEN 0 BOLT _ PLIER;.

Associations may be conceptualized as representing a rela-
tion of the form

attribute 0 object _ value

or

attribute (object)= value.

Most programming languages (e.g., LISP) provide the
following associative-like mechanism:

given: attribute, object
find: value.

However, SAIL enables the programmer to specify any of
the components of the association and then have the LEAP
interpreter search the associative store for all triples which
have the same items in the specified positions. In fact, there
are eight possibilities of such queries, although only a few of
them are actually used. Of course, since SAIL runs on a
nonassociative processor, some of the queries are more
efficient than others. For example, the following may be used
to retrieve all items which can be fastened by a hammer (e.g.,
nails, thumbtacks):

FASTEN 0 X HAMMER.

An ITEM is a constant and is similar to a LISP atom.
Items have names and may also be typed so that data can be
associated with them. An item may be declared or created
during execution from a storage pool of items by use of the
function NEW. For example,

REAL ITEM VISE;

declares VISE to be an item which may have a datum of type
real associated with it. The datum associated with an item is
obtained by use of the function DATUM. Thus DATUM (VISE)
might be interpreted as the capacity of the vise.

In order to deal with items, the user has the capability of
storing them in variables (ITEMVARS), SETS, LISTS, and asso-
ciations. The distinction between SETS and LISTS is that an
explicit order is associated with the latter, whereas there is
no explicit order associated with the former. In addition, an
item may occur more than once in a list.

Associations are ordered three tuples of items, and may
themselves be considered as items and, therefore, participate
in other associations. Triples are added to the associative
store by use of a MAKE statement and erased from the
associative store by use of an ERASE statement. For example,
the following code could be used to detach assembly 1 from
assembly2 and attach it to assembly3:

ERASE ATTACHED 0 ASSEMBLY1 I ASSEMBLY2;
MAKE ATTACHED 0 ASSEMBLY 1I ASSEMBLY3;.

The motivation for using an associative store is a flexible
search and retrieval mechanism. Binding Booleans and
FOREACH statements are two methods of accomplishing
these goals.
The Binding Boolean expression searches the associative

store for a specified triple and returns TRUE if the triple is
found and FALSE otherwise. The aim of the search is to find
an association which meets the constraints imposed by the
specified triple. If some of the components of the triple are
unknown (such components are preceded by the special
item BIND), then a successful search will result in the binding
of the designated component. For example,
IF FASTEN 0 BIND OBJECT

= PLIER THEN PUT OBJECT IN PLIER! SET;.

In this case the store is searched for an object that can be
fastened by a PLIER, and ifsuch an object is found, it is placed
in the set PLIER! SET. Note the use ofthe item variable OBJECT
in the association. A successful search will result in this
variable being bound.
The FOREACH statement is the heart of LEAP. It is similar

to the FOR statement of ALGOL in that the body of the
statement is executed once for each binding of the control
variable. For example,

FOREACH X PART (0 B747 X AND DATUM (X) < 3
DO PUT X IN B747 ! ORDER! SET;.

In this case, assuming that the datum associated with each
part denotes quantity at hand, the associative store is
searched for all parts of a B747 of which there are less than
three on hand. These parts are placed in the set
B747! ORDER! SET.

207

IEEE TRANSACTIONS ON SYSTEMS, MAN, AN) CYBERNETICS, VOL. SMC-9, NO. 4, APRIL 1979

C. Data Management Facility

Unlike other artificial intelligence languages, SAIL has
the capability of being used with an existing data-base
management system DBMS-10 [10] to handle large data
bases stored on external storage. An interface exists [32]
which allows SAIL to be used as the data manipulation
language in a CODASYL-based data base management
system. SAIL is relatively unique in this respect in that
COBOL [8] has almost been exclusively used as the data
manipulation language (DML) of such systems. This situa-
tion is not surprising since examination of the data descrip-
tion facility of the CODASYL report reveals a very strong
similarity to the data division of COBOL. Nevertheless,
there have been some attempts to use FORTRAN ([26] and
[35]).

Ideally, a data manipulation language should include the
following features. First, a full procedure capability which
allows parameter passing, dynamic storage allocation, and
recursion. Second, processing of Boolean requests should
not be difficult. In a COBOL-based system, this task is
rather cumbersome as pointed out by [25]. In order to avoid

creation and modification of such records. The dynamic
storage allocation capability of SAIL enables the creation of
several instances of each record type each of which is
identified by an entity known as a record pointer.
As an example of the use of SAIL as a host language in a

data base management system, consider the following pro-
gram fragment. The task is to traverse a set named SUPPLIER
owned by a WAREHOUSE record and extract an integer data
item known as PARTNUM from each PART record which is a
member of the set. The exact instance ofthe set occurrence is
identified by the owner record, WAREHOUSE, having the
value ELECTRICAL for the data item INDUSTRY. Since SAIL
has a data structuring facility (known as a RECORD!CLASS
and similar to a PL/1 [Beech 70] structure), we define a data
structure known as LISTX and a function to add items to the
front of a LISTX structure. The data structure LISTX has two
fields-ELEMENT which is of type INTEGER and NEXT which is
of type RECORD! POINTER (and points to another instance of
the LISTX data structure). The function ADDTOLIST has two
arguments.a pointer to the head of an instance of LISTX
and the integer to be added to this instance.

RECORD! CLASS LISTX(INTEGER ELEMENT;
RECORD! POINTER (LISTX) NEXT);

PROCEDURE ADDTOLIST(REFERENCE RECORD! POINTER(LISTX) HEAD;
INTEGER VAL);

BEGIN

RECORD! POINTER (LISTX) TEMP;

TEMP: NEW! ELEMENT(LISTX);
LISTX: ELEMENT[TEMP] :-' VAL;

LISTX: NEXT[TEMP]: HEAD;

HEAD: TEMP;

END;.

currency problems raised by partial satisfaction of Boolean
requests (the backtracking problem [37]), the user must
build collections of pointers to related records. Third, there
should be a capability for building an in-core data base so

that operations such as set UNION and set INTERSECTION can
be performed without the overhead of accessing extended
storage more than once for any record.
SAIL has a mechanism, LEAP, for building associative

data bases. Currently, this only works for internal memory
due to implementation decisions. SAIL also has a record
structure capability which enables the user to build an

in-core data base. In a COBOL-based data base manage-
ment system, whenever the user obtains an instance of a

record type from the data base (i.e., he locates it via a FIND

and fetches it via a GET), he has no convenient way ofkeeping
it in temporary memory while obtaining another instance of
this record type. Of course, he can allocate temporary
storage for the various fields; however, this becomes rather
unwieldy, especially when he wishes to keep track of more
than two instances of a record type. Alternatively, instances
of certain record types can be refetched from the data base.
In fact, this is the strategy that is generally followed.
However, the cost is high.

Briefly, the SAIL interface provides a SAIL record struc-

ture declaration for each record type that has been defined in

the data base management system. Primitives exist for the

The COBOL/DML and SAIL encodings are given below.
The critical difference is the step "Add PARTNUM in PART to
result list." It is not immediately obvious how the concept of
a list would be implemented in COBOL.
COBOL Program:

NEXT:

MOVE ELECTRICAL' TO INDUSTRY IN WAREHOUSE.

FIND WAREHOUSE RECORD.
IF SUPPLIER SET EMPTY GO TO NONE! SUPPLIED.

FIND NEXT PART RECORD OF SUPPLIER SET.

IF ERROR-STATUS = 0307 GO TO ALL! FOUND.
GET PART.

Add PARTNUM in PART to result list.
GO TO NEXT.

ALL! FOUND:

SAIL Program:

INDUSTRY:= "ELECTRICAL";
FIND! CALC(WAREHOUSE);
IF EMPTY! SET(SUPPLIER) GO TO NONE! SJPPLIED;
WHILE TRUE DO BEGIN

FIND! NEXT(PART, SUPPLIER);
IF ERROR! STATUS = 0307 THEN DONE

GET(PART);
ADDTOLIST(HEAD, PARTNUM);
END;

208

RIEGER et al.: ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

D. Control Structures
In addition to the usual control structures associated with

ALGOL-like languages (e.g., FOR lOOpS, WHILE loops, case
statements, recursive procedures, etc.), SAIL has capabilities
to enable parallel processing, backtracking, and coroutines.
In SAIL, a process is a procedure that may be run indepen-
dently of the main procedure. Thus several processes may be
run concurrently. Note that the main procedure is also a
process.
A process is created with a SPROUT statement as follows:

sPROUT(<item>, <procedure call>, <options>)
where <item> names the process for future reference,

procedure. When one of the parameters is an unbound
FOREACH itemvar, then upon success the parameter will be
bound. The matching procedure is actually SPROUTed as a
coroutine process, and SUCCEED and FAIL are variants of
RESUME which return values of TRUE or FALSE, respectively.
In addition, FAIL causes the process to terminate whereas
when the matching procedure is called by the surrounding
FOREACH via backup, then the procedure is resumed where it
left off on the last SUCCEED.
For example, consider a box containing a number of

different fasteners (nails, regular screws, bolts, nuts, tacks,
etc.). The goal is to obtain Phillips screws. This can be
achieved by the following MATCHING PROCEDURE which
returns a different Phillips screw each time it is invoked.

MATCHING PROCEDURE GET! FASTENER (?ITEMVAR FASTENER, F! TYPE);
BEGIN

FOREACH FASTENER I FASTENER IN BOX AND
TYPE (0 FASTENER _ F! TYPE

DO SUCCEED;
FAIL;
END;

<procedure call> indicates what the process is to do, and
<options> is used to specify attributes of the sPRouTed and
current process. Unless otherwise stipulated (in <options>),
a SPROUTed process begins to run as soon as it is SPROUTed
and in parallel with the SPROUTing process.

Similarly, there exist primitives which result in the suspen-
sion of a process, the resumption of a process, and in the
blocking of a process until a number ofother processes have
terminated. These tasks are accomplished by the SUSPEND,
RESUME, and JOIN primitives, respectively.
SUSPEND and RESUME have as their arguments single items,

while JOIN has a set of items as its argument. These items are
the names that have been set up for the process by an
appropriate SPROUT command.
For example, a procedure to tighten a bolt may be defined

as follows:

ITEM P1, P2;

SPROUT(P1, GRASP(HAND1, SCREWDRIVER));
SPROUT(P2, GRASP(HAND2, BOLT));

JOIN({P1, P2});
TURN(HAND1, CLOCKWISE);

Since SAIL runs on a single processor computer system,
true multiprocessing is not possible. Instead, the SAIL
runtime system contains a scheduler which decides which
process is to run and for how long. The programmer makes
use of the <options> field of the SPROUT statement to specify
information which the scheduler uses to determine the next
process to be run. Such information includes time quantum
sizes, priority, whether or not to immediately run the
SPROUTed process, etc.
A process may result in the binding of ITEMVARS by use of a

MATCHING PROCEDURE which is basically a Boolean

Note that FASTENER is a FOREACH ITEMVAR which upon
success will be bound.

Backtracking is supported by variables of type CONTEXT.
However, the programmer must specify the points to which
backup is to occur (for example, recall SUCCEED). State
saving and restoring is achieved by use ofCONTEXT variables
which act as pointers to storage areas of undefined capacity
in which are stored the entities to be saved and restored.
Actual state saving and restoring is accomplished by use of
the primitives REMEMBER and RESTORE.

Processes may communicate with each other by use ofthe
SAIL event mechanism. This is a message processing system
which enables the programmer to classify the messages and
to wait for certain events to occur. Events occur via the
CAUSE construct which has as its arguments the event type,
the actual notice, and instructions with respect to the
disposition of the event. Similarly, there is a construct
known as INTERROGATE which specifies a set of event types
and instructions with respect to the disposition of the event
notice associated with the designated event types. A variant
of this facility has been used extensively in the implementa-
tion of the Stanford Hand Eye Project [14].
E. System Building Capabilities
SAIL includes many features which are designed to aid in

system building. Assembly language statements may be
interspersed with regular SAIL statements by use of the
START! CODE and QUICK! CODE constructs. A number of
different files which are to be used with the program can be
specified via use of REQUIRE statements.
The statements:

REQUIRE "TOOLS" LOAD! MODULE;
REQUIRE "CAMLIB[1, 3]" LIBRARY;

will cause SAIL to inform the loader that the file TOOLS. REL

209

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4. APRIIl 1979

must be loaded. In addition, the file CAMLIB on disk area [1,
3] serves as a library and is searched for needed routines.
The statement:

REQUIRE "HEADER SAI" SOURCE! FILE;

will cause the compiler to save the state of the current input
file and scan HEADER SAI for program text. When HEADER-

. SAI is exhausted, scanning of the original file resumes at a

point immediately following the REQUIRE statement. This
feature is particularly useful when dealing with libraries,
since in this case the REQUIREd file can contain EXTERNAL

declarations, thereby freeing the application programmer

from such work and possible errors.

A rather extensive conditional compilation capability is
associated with SAIL. This enables the development of large
programs which can be parameterized to suit a particular
application without compiling unnecessary code and ther-
eby wasting memory for program segments which are never

used. This capability is used to enhance a macro facility to

include compile-time-type determination; for loops, while
statements, and case statements at compile-time; generation
of unique symbols, and recursive macros. For example,

DEFINE GRASP(SIZE) = [IFCR SIZE > 1 THENC VISE

ELSEC PLIERS

ENDC];

results in the definition of a macro named GRASP having one
formal parameter, SIZE. The result is the name ofa tool that is
appropriate for the size ofthe item that is to be grasped, i.e., a
vise in case size is greater than 1 (assuming size is measured
in centimeters, etc.) and pliers otherwise. For example,

TOOL 1 := GRASP(I10.0);
TOOL2 = GRASP(0.5);

will result in the following statements:

TOOL 1 = VISE;
TOOL2 = PLIERS;

Note that the choice is made at compile-time, and thus the

programmer need not be concerned with the available
grasping mechanisms. Thus the program compilation step
can be used to aid in the writing of the program. The
example illustrates the importance of such a feature when
certain tasks can be achieved by similar, yet not identical,
means.

SAIL also provides an excellent interface with the operat-
ing system. This enables its use for real-time applications
such as control of external devices. In fact, interrupts can be

handled, and the user has at his disposal all of the I/O

capabilities that an assembly language programmer has.
This enables the development of programs ranging from

scanners to mechanical arm controllers. In addition to

compatibility with assembly language debuggers, SAIL has
a high-level breakpoint package known as BAIL [27].

F. Standardization

Currently, SAIL has only been implemented on the
PDP-10. It runs under both the TENEX [3] and TOPS-10

[39] operating systems. There is an effort underway at
SUMEX to develop a language similar to SAIL known as
MAINSAIL [41]. The goal of that project is to capture the
features that make SAIL an attractive language (in particu-
lar, the ease of interaction with the operating system) and to
develop a language that is capable of being run on a large
number of machines. The orientation of the project is
towards minicomputers. The language is considerably dif-
ferent than SAIL, and existing SAIL programs will have to
be modified in order to be capable of compiling. An
extensive run time library is being provided as is a record
structuring facility. It is still uncertain whether the associa-
tive data base capability of SAIL (i.e., LEAP) will be
incorporated in MAINSAIL.

III. THE LISP FAMILY OF LANGUAGES

A. LISP

LISP ([18], [19], [33], and [40]), a list processing language
developed by John McCarthy at MIT in the late 1950's? is an
implementation of parts of Alonzo Church's work [7] in the
lambda calculus. McCarthy's intention was to recast the
elegance of recursive function theory as a theory of compu-
tation. Thus, the first implementations of LISP relied exclu-
sively upon recursion as the computational paradigm (i.e.,
no iteration), which, although elegant, resulted in a first
version of LISP which was not competitive with FOR-
TRAN as a practical programming tool. However, LISP's
character has changed considerably, so that today LISP is
an extremely powerful and general-purpose programming
language which nevertheless retains its original elegance.
The most interesting features of LISP are as follows.
1) The language is practically devoid of syntax; all con-

structions in LISP fall into two categories: atoms and
compositions of atoms.

2) Program and data are interchangeable, since they are
represented in the same format. Therefore, in LISP it is
possible for one function to construct another function as
data, then execute it by indicating to the LISP system to
regard it as code; alternatively, an existing function's code
may be examined, modified or augmented by another
function at run time. In fact, a function is capable of
self-modification if appropriate care is exercized.

3) Memory allocation and management are automatic
and transparent to the user, except where the user explicitly
desires to influence them. With the exception of arrays, there
are no space declarations to be made, freeing the program-
mer from the details of space allocation and generally
allowing for the unlimited growth of any given data struc-
ture. (For the most part, LISP data structures have no size or
complexity constraints.) Used memory which is no longer
involved in the computation is recycled automatically by a

garbage collector either on demand from the user at
specified points or automatically.

4) LISP is an interpreted language. The system proper is
a function of one argument (EVAL X) such that calling EVAL
with any LISP data structure as its argument causes that
argument to be regarded as code and executed. However.

210

RIEGER et al.: ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

+ 4++---4. +---+
+

4 4.,

---+ +

I _+ ___ +I __ + + 4-- I--+ +---
4 +-I__-_4 _

NAME | TOOL-TYPE STYLE PHILLIPS COLOR-CODIN6
SChEWDRIVEk-1 SCREWDRIVER YELLOW

4---* _I,4-- I - ---I/--I* 4.4I_I*I*I>

SHAFT-LENGTH 10
HEAD-SI 2E

Fig. 1. LISP data structure.

most LISP systems include a compiler which will produce
stand-alone machine code for interpreted functions.
Typically, compilation provides an order of magnitude
speedup which makes LISP competitive with other
compiled languages, or even with well-coded assembly
language. Since interpreted and compiled code may be
intermixed, it is possible to retain the flexibility and power of
the interpreter, while obtaining the speed required for
production applications.

5) LISP remains recursive, while also accommodating
iterative algorithms via a so-called PROG feature. Both
recursion and iterative programming are illustrated in sub-
sequent sections.

6) Because ofthe technique LISP uses in storing local and
global variables, some very powerful context switching can
be carried out, providing a fast way to enter and exit
hypothetical planning environments and to cause the beha-
vior of a program to vary as a function of its environmental
context.

1) LISP Data Structure: LISP's data structure, called the
S-expression, is simple yet extraordinarily flexible, provid-
ing a substrate upon which a programmer may design his
own complex data structures. An S-expression is either an
"atom" or a "CONS node." An atom can be regarded as either
a variable, a constant (a passive symbol), or both. There are
no type declarations in LISP; new atoms are simply ad-
mitted to the system as they are scanned at the input level,
and atoms with the same name are guaranteed by the system
to be unique (i.e., they have the same internal pointer, or
address).
The other type of S-expression, the CONS node, provides a

means of structuring atoms and other CONS nodes into
hierarchical data structures. A CONS node is ordinarily
implemented as a single computer word (say, 36 bits long)
which contains a left pointer, called its CAR, and a right
pointer, called its CDR. CONS nodes are created dynamically
via the function (CONS X Y), where X and Y are any other
S-expressions, or passively (as data constants) via the con-
struction (X. Y). CONS nodes can be composed to form
arbitrarily complex hierarchies, the bottommost elements of
which are usually atoms (i.e., pointers to atomic
S-expressions).
To illustrate, suppose we wish to represent a particular

tool, say a screwdriver, in a LISP data structure. We first
decide upon a name for it, say, SCREWDRIVER-1, and what
characteristics of it we wish to encode. Let us suppose the
characteristics are: type is Phillips, color is yellow, shaft
length is 10 cm, and head size is 0.3 cm. There are many ways
to encode this in LISP; the external representation of the
one we adopt here is

((NAME SCREWDRIVER- 1)
(TOOL-TYPE SCREWDRIVER)
(STYLE PHILLIPS)
(SHAFT-LENGTH 10 CM)
(COLOR-CODING YELLOW)
(HEAD-SIZE 0.3 CM)).

Here, all symbols such as NAME, YELLOW, etc. are LISP
atoms. (So too are the numbers; however numbers are not
entirely equivalent with symbolic atoms.) The particular
hierarchy we have adopted is a list of lists, where each sublist
consists of an initial atom describing that sublist's role in the
structure, and a list of the information associated with that
role in the description.

This structure would be graphically represented, as shown
in Fig. 1, and could be constructed passively (as a fully
constant structure) via a quoted S-expression (""'denotes
QUOTE):

((NAME SCREWDRIVER-1) (TOOL-TYPE SCREWDRIVER) ...)

or dynamically via CONS:

(CONS (CONS 'NAME (CONS 'SCREWDRIVER-1 NIL))
(CONS 'TOOL-TYPE (CONS 'SCREWDRIVER NIL))

(CONS 'HEAD-SIZE (CONS 0.3 (CONS 'CM NIL)))

Since it would be a rather harrowing experience to construct
very large S-expressions dynamically in this fashion, LISP
provides a spectrum of higher level functions for construct-
ing, modifying, and accessing S-expressions. Some high-
lights of these will be covered briefly in a subsequent section.
For our example, a more concise expression of code which
would build this structure dynamically would be

(LIST (LIST 'NAME 'SCREWDRIVER-1)
(LIST 'TOOL-TYPE 'SCREWDRIVER)

(LIST 'HEAD-SIZE 0.3 'CM)

Presumably, having defined this tool, we would want to
record it as one available tool in a large supply of tools.
Again, there would be numerous methods ofdoing this. One
way would simply be to maintain a global list of all known
tools in the system and to add this entire description as a new
tool on this list:

(SETQ NEW-TOOL '((NAME SCREWDRIVER-1) (TOOL-TYPE SCREWDRIVER) ...))
(SETQ MASTER-TOOL-LIST (CONS NEW-TOOL MASTER-TOOL-LIST)).

211

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, No. 4, APRIL 1979

(SETQ is one of LISP's assignment statements.) Alternatively,
we might wish to put only the name ofthe screwdriver on the
master tool list and associate all the remaining information
with property DESCRIPTION on SCREWDRIVER- l'S property

list:

C) (SUBST X Y Z): X, Y, and Z are arbitrary S-
expressions. SUBST creates a new copy of Z, where all
occurrences of Y in Z are replaced with X's.

Example: (SUBST 0.2 0.3 '((NAME SCREWDRIVER- 1) ...

(PUT 'SCREWDRIVER- DESCRIPTION

'((TOOL-TYPE SCREWDRIVER) (HEAD-SIZE 0.3 CM)))

(SETQ MASTER-TOOL-LIST (CONS 'SCREWDRIVER-I MASTER-TOOL-LIST))

2) Property Lists: Any LISP atom may have a property
list (built up from CONS nodes). Conceptually, the property
list allows the attachment of an arbitrary number of
attribute-value pairs to the atom, thereby serving to describe
the characteristics ofthe real-world entity represented by the
atom. This is a powerful feature for any programming
language, since it allows "microdescriptions" of atoms
which ordinarily will not be seen by the processes that
manipulate the hierarchical structures in which the atom
participates. These microdescriptions can be maintained
and accessed by the functions PUT, GET, and REMPROP in case
more detail about an atom is desired.

Properties are attached to an atom via the function (PUT
<atom> <attribute> <value>), looked up via (GET <atom>
<attribute>), and removed via (REMPROP <atom> <attrib-
ute>). We have seen one way to associate the screwdriver
information with the atom SCREWDRIVER-I using property
lists. Another, more convenient way would be to split apart
all the various attributes of this atom, making each a-

different entry on the property list:

(PUT 'SCREWDRIVER- I 'TOOL-TYPE 'SCREWDRIVER)

(PUT 'SCREWDRIVER-1 'STYLE 'PHILLIPS)

(PUT 'SCREWDRIVER-1 'HEAD-SIZE '(0.3 CM)).

To determine SCREWDRIVER- 's head size, we would then
write: (GET 'SCREWDRIVER-1 'HEAD-SIZE). Ifsuch an attribute
of SCREWDRIVER-1 exists, it will be located and returned.

3) Representative LISP Data Structure Manipulating
Functions: We include here a definition and briefexample of
several of the more standard, high-level LISP functions that
pertain to data structure creation, modification and
searching.

a) (MEMBER X Y): If S-expression X is a member of
S-expression Y (assumed to be a list), return "TRUE," other-
wise, return "FALSE."

Example: (MEMBER 'SCREWDRIVER- I MASTER-TOOL-LIST)

returns a pointer to the atom I ("true") if SCREWDRIVER-1 iS
on the MASTER-TOOL-LIST, and a pointer to the atom NIL

("false") otherwise.
b) (ASSOC X Y): Y is a list of lists. Y is scanned,

comparing the first item of each sublist to X until a match is

found, or until Y is exhausted. In case a match is found,
ASSOC returns the entire sublist whose first item matched X.

Example: (ASSOC 'HEAD-SIZE '((NAME SCREWDRIVER-1) ...

(HEAD-SIZE 0.3 CM))) would return the sublist (HEAD-SIZE 0.3
CM).

(HEAD-SIZE 0.3 CM))) would produce a new structure for our
screwdriver, identical in all respects to the original, except
that its head width would be 0.2 instead of 0.3.

d) (APPEND X Y): X and Y are lists. A new list is created
which is the result of appending Y onto the end of X.

Example: (APPEND '((NAME SCREWDRIVER- 1) (STYLE PHIL-

LIPS)) '((COLOR-CODE YELLOW) (HEAD-SIZE 0.3 CM))) would
produce ((NAME SCREWDRIVER-1) (STYLE PHILLIPS) (COLOR-
CODE YELLOW) (HEAD-SIZE 0.3 CM)).

4) LISP Data Types: In addition to atoms and CONS
nodes, most LISP systems include the following other data
types:

1) integer numbers,
2) real numbers,
3) strings,
4) arrays,
5) octal numbers (for bit-level manipulations).

Some versions of LISP (notably MACLISP [22]) have
highly developed numerical and trigonometric facilities and
accompanying optimizing compilers geared to the efficient
generation of "number crunching" software.

5) LISP Functions: A LISP "'program" is a collection of
functions. No function is syntactically declared as the "main
program." Functions are generally typeless (i.e., no distinc-
tion such as "integer," "real," "string," etc. is made).
However, each function may be declared so that its calling
arguments are passed to it either evaluated (as in most
programming languages) or unevaluated. Except for this
distinction, there is no need for function-related
declarations.
A function is regarded as simply another type of data. As

such, one typically defines a function by assigning to some
atom the function as the atom's value. Strictly speaking, the
function itself is nameless, and is identified by the form:

(LAMBDA <argument-list> <body>).
When a "lambda expression" is stored as the value of an

atom, we say that a function has been defined. Although the
implementation details governing how a lambda expression
comes to be associated with an atom vary considerably, one
common format for defining a function in LISP is

(DEFUN <name> <arguments> <body>).
DEFUN is a macro which creates the appropriate lambda
expression and assigns it to the atom <name> as the
function's body. A function may be annihilated or altered
simply by reassigning the value of the atom which represents

212

RIEGER et al.: ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

it. Another virtue of this separability of a function from its
name is that nameless functions can be created and passed as
arguments to other functions without having to bother to
name them if they are needed only once.
To illustrate LISP functions, let us define a function oftwo

arguments, (LOCATE-ALL <tool-type> <tool-list>), which,
given the name of a tool type (e.g., SCREWDRIVER), and a
master tool list, will search the tool list for tools of the
specified type and report back a list of all tools ofthat type it
finds. Framing this as a recursive function, we write

Since a PROG introduces some temporary variables which
must be reclaimed as the PROG is exited, there must be some
way of informing LISP that a PROG is about to be exited. The
function RETURN iS used for this purpose, informing the
system that aPROG is being exited, and specifying what value
the PROG iS to return to the calling environment.
PROGS may be nested and may appear at any point in a

LISP program. The PROG construction will typically result
in a more efficient implementation of an algorithm than the

(DEFUN LOCATE-ALL (TYPE MASTER-LIST)
(COND ((NULL MASTER-LIST) NIL)

((EQUAL (GET (CAR MASTER-LIST) 'TOOL-TYPE) TYPE)
(CONS (CAR MASTER-LIST)

(LOCATE-ALL TYPE (CDR MASTER-LIST))))
(T (LOCATE-ALL TYPE (CDR MASTER-LIST)))))

that is, if (COND) the master list is (or has been reduced to)
NIL, then report back "nothing;" otherwise, if the next item
on the master list (its CAR) iS of the correct type (as
determined by the GET), then add this tool to the list to be
reported (i.e., CONS it onto the front of this list) and proceed
with the search on the remainder of the list (its CDR);
otherwise (T ...), simply proceed, without recording the
current tool.

Alternatively, we could express this algorithm in iterative
form via the PROG feature

corresponding recursive implementation. Although some
feel that PROG makes LISP "impure," it is in reality the
feature which is probably most responsible for LISP's
present widespread acceptance in both the Al community
and elsewhere.

7) LISP Macros: Most LISP implementations support
two types of macros: compile-time macros and scanner
macros. A compile-time macro is nothing more than a

(DEFUN LOCATE-ALL (TYPE MASTER-LIST)
(PROG (RESULT)
LOOP (COND ((NULL MASTER-LIST) (RETURN RESULT))

((EQUAL (GET (CAR MASTER-LIST) 'TOOL-TYPE) TYPE)
(SETQ RESULT (CONS (CAR MASTER-LIST) RESULT))))

(SETQ MASTER-LIST (CDR MASTER-LIST))
(GO LOOP)))

i.e., enter a PROG (akin to an ALGOL begin-end block),
defining one temporary local variable, RESULT; then, while
the master-list remains nonnil, repeatedly examine its next
item, collecting those with the correct type on the RESULT
list (via SETQ, LISP's "6assignment statement"), scanning to
the next tool on the master list (SETQ MASTER-LIST (CDR
MASTER-LIST)).

6) The PROG Feature: As just illustrated, LISP accommo-
dates iteratively phrased algorithms via a construction
called a "PROG." A PROG has the form

(PROG <local-variables> <statement-I> ...

<statement-n>).
As a PROG is entered, the local variables (if any) are allocated
for the scope of the PROG, and each is initialized to NIL. Next,
the statements which comprise the PROG's body are sequen-
tially executed (evaluated) until execution either "falls offthe
bottom" of the PROG (an implicit exit from the PROG), or

until a GO or RETURN is encountered. Statements which are

atoms are interpreted as labels within a PROG and are
ignored during sequential execution. When a GO is en-

countered, a branch to the specified label occurs, and
sequential execution proceeds from that point.

function which, when evaluated, computes not a final result
but another S-expression which, when evaluated, will com-
pute a final result. Thus when a macro is encountered by the
LISP interpreter, a double evaluation is performed (the first
to compute the intermediate form, the second to run the
intermediate form). When LISP functions are compiled into
actual machine code, the compiler recognizes macros and
evaluates them once to obtain the intermediate form which
it then compiles. This technique is a very general and
powerful implementation of the macro concept.
Most LISP scanners are quite modular, in the sense that

they can be conditioned to initiate an arbitrary computation
upon encountering a given character in the input stream.
For example, in Wisconsin and Maryland LISP ([1], [24]),
there exists a facility called (READMAC <char> <function>),
which conditions the scanner to call <function> (no argu-
ments) whenever <char> is detected in the input stream.
<function> is free to perform any computation, and
whatever <function> returns is spliced into the scanner's
input stream. This style of table-driven scanner makes it
possible to superimpose additional syntax on LISP input,
even to the point where LISP can model another language's

213

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4, APRIL 1979

syntax (by redefining delimiters, etc.). MLISP [34] is an
example of this.

8) Variable Scoping: LISP variable values are derived as
a function of the run-time environment rather than as a
function of lexical environment. As a program executes,
there are two times at which new variables are introduced or
"bound": 1) at function entry time (these are the names of
the function's arguments that are mentioned in the LAMBDA
expression), and 2) at PROG entry time (i.e., the PROGS
temporary variables). Variables are "unbound" at the corre-
sponding exit times: when a function returns or when a PROG
is exited.
At the "top-level" of LISP (when no function is currently

executing), any variables which receive values are thought of
as "global" to the system. Therefore, at any given moment
during execution, there will be a pool ofglobal atoms plus all
the atoms introduced via LAMBDA or PROG on the current
sequence of function calls. All these variables and their
associated values ("bindings") are recorded on a structure
called the "association list" (A-LIST), a user-accessible list
of CONS nodes. All variable lookups consult this list, from
most recent to least recent. Since this list is dynamically
maintained at run-time, the question of what variables are
and are not bound (i.e., are on the A-LIST) is exclusively
determined by the dynamic calling environment, rather than
the lexical scope of variables at the time functions were
defined. This means that "free" variables (ones which have
no binding at the current level) will assume a value at
run-time which is dependent upon their definitions in
functions farther up the calling hierarchy. In this manner,
one function "peeks into," or borrows, the variables of
another.
By changing the system's A-LIST pointer while inside a

function, that function's entire environment can be altered.
For this reason, LISP is a very powerful tool wherever
hypothetical reasoning (involving switches to altered con-
texts) is necessary. Most other languages either lack such an
ability, or make it difficult to carry out. In LISP, context
switching and "taking snapshots" of contexts to which
execution is to be returned are very natural operations.

9) LISP I/O: Traditionally, input/output has been
LISP's weakest link. Most systems define at least the
following I/O-related functions:

(READ) read an S-expression,
(READCH) read an individual character,
(PRINT X) print S-expression X, skipping to a new line,
(PRINI X) print S-expression X on the current output

line,
(TERPI) skip to beginning of new line on output.

While these functions provide adequate formatting control,
most LISPs are deficient in file-handling operations.
(INTERLISP [38] is the exception, with more highly
developed interfaces to the TENEX virtual operating
system.) We regard this deficiency as more of a historical
accident than as an inherent problem ofLISP (since adding
these features is simply a matter of writing the code). In fact,
there are efforts underway for improved multiple-file inter-
action and random access facilities both at MIT
(MACLISP) and at Maryland (Wisconsin/Maryland LISP).

10) Garbage Collection: Since LISP data structures can
grow in unrestricted ways, a crucial part ofany LISP system
is a conceptually asynchronous process called the "garbage
collector." The role of this process is periodically to take
control, mark parts of storage that are still referenced by the
ongoing computation, then reclaim all storage that is not so
referenced (garbage). Garbage collection is an unavoidable
overhead of any system with no declarations and in which
data structures can grow in unrestricted ways.
One potential disadvantage of garbage collection is that,

once the system runs out offree storage, a garbage collection
must occur. Since a garbage collect causes current comput-
ing activity to be suspended, if LISP is controlling a
real-time process, disastrous consequences can accrue. Such
problems can normally be avoided by forcing the system
into a premature garbage collect prior to entering real-time
critical sections ofcomputation. Alternatively, there is grow-
ing interest in truly asynchronous (parallel) garbage collec-
tion techniques which could obviate the problem altogether
(see [11] for instance).

11) LISP as a Self-Contained System: LlSP interpreters
are typically implemented in assembly language. After this
basic facility has been brought up, most other supporting
software can be written in LISP itself. Typical software
includes:

1) a compiler which will generate (potentially quite good)
machine code for LAMBDA expressions (i.e., functions)
and PROGS. Typically, the LISP compiler will be
written in interpreted LISP, then used to compile itself.
The compiled version is subsequently used as the LISP
system compiler.

2) a debug package which will permit the tracing and
interactive development of functions. Typically, func-
tions (together with their calling arguments) can be
traced at entry time, and (together with their returned
values) at return time. Most LISP's will also accom-
modate the tracing of variables (i.e., inform the user
whenever a traced variable's value is about to be
changed). The debugging potentials of LISP are essen-
tially unlimited (the INTERLISP system is the most
advanced to date), and are responsible (in part) for
LISP's reputation as one of the best languages for the
efficient and rapid development of complex software.
In particular, there is no time-consuming interaction
with system compilers, loaders and linkers to be
contended with; a program can be developed and put
into production within the confines ofthe LISP system
itself.

3) an S-expression editor (or system editor interface)
which makes possible the convenient editing of S-
expressions and maintenance of files.

B. MICROPLANNER
While LISP is generally accepted as the standard for

computing in Al, it does not supply the user with any a priori
conceptions about intelligence. LISP is simply the blank
tablet onto which the user must write his theory of intel-
ligence or control. Not surprisingly, this resulted in

numerous reinventions of the wheel in areas like data base

214

RIEGER et al.: ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

organization, problem solving, hypothetical reasoning, and
language understanding. Most reinventions were at a fairly
low level but occurred often enough to warrant some
investigations into some of the undercurrents of Al pro-
gramming techniques.
MICROPLANNER [36] is the outcropping of some of

these undercurrents, particularly where automatic problem
solving is concerned. MICROPLANNER was written in
1970-71 as a small-scale implementation of ideas originally
proposed by Hewitt in 1969 [16]. The intent of the language
was and is to provide some automatic mechanisms of data
base organization, context, and heuristic search.
MICROPLANNER is implemented entirely in LISP.

Because of this, its syntax is essentially LISP's syntax, and
while in the MICROPLANNER environment, the user has
full access to all of LISP. To distinguish MICRO-
PLANNER (hereafter abbreviated MP) functions from
pure LISP functions, the convention is to prefix all MP
functions (there are about 50 of them) with TH (standing, we
presume, for "theorem," a key notion in MP).
The most salient features of MP are these.
1) Computation in MP is induced by pattern, rather than

by calling functions by their names. In this style ofcomputa-
tion (often called "pattern-directed invocation"), whenever a
goal requires solution, a pattern describing the goal is posted
to the entire system. "Entire system" normally means a large
population of problem-solving experts with patterns which
advertise each one's expertise. Whenever a need is posted,
the system searches through the database ofexperts looking
for those whose advertised patterns match the need. Each
expert so located is then tried in turn until one succeeds, or
until all have failed. This is a radically different computing
paradigm from the standard paradigm of "name calling,"
since it makes for a very modular system where the requestor
needn't know any experts by name; problems are solved by
anonymous experts in the population at large.

2) MP automatically maintains a context-sensitive data
base of both factual assertions and the experts just men-
tioned. The factual data base is a collection ofhighly indexed
n-tuples, expressed as LISP S-expressions. Any one n-tuple
("assertion"), or collection of n-tuples can be "associatively"
accessed by presenting the lookup routines with a pattern
containing zero or more variables. Only those facts that are
deemed active in the current "context," regardless of
whether they physically exist in the memory, will be located.

3) MP does all the bookkeeping required for depth-first
nondeterministic programming. That is, anytime there is a
decision of any sort in MP, the system makes a choice (either
arbitrarily, or under the control ofuser-specified heuristics),
records the alternatives for possible future reference, and
then proceeds. If a failure ever causes a "backup" to that
decision point, the system automatically discards the cur-

rent (failing) choice, selects the next alternative, and then
attempts to proceed again. In the backup process, all
computations performed between the initial (bad) choice
and the failure point are undone (a record of all changes to
the database is maintained), and the system picks up from
the decision point as though nothing had ever gone wrong.
Thus MP can be said to maintain, at least implicitly, an

entire goal tree (search tree) for each problem it attempts to

solve. As we will suggest later, there are both advantages and
disadvantages to such automatic control.
These are the three main contributions of MP. In the

following sections we highlight and illustrate some of the
specific features of this problem solving language.

1) The MICROPLANNER Data Base: Conceptually,
the MP data base is divided into two segments: facts and
theorems. Theorems are further classified into three
categories: "antecedent" theorems, "erasing" theorems, and
"4consequent" theorems. Theorems are discussed in Section
III-B2.
Both facts and theorems are entered into the data base via

the function THASSERT; an item is deleted from the data base
via the function THERASE. Facts are fully constant LISP
n-tuples. Thus to represent our screwdriver in MP, we might
augment the data base as follows:

(THASSERT (TOOL-TYPE SCREWDRIVER-1 SCREWDRIVER))
(THASSERT (STYLE SCREWDRIVER-I PHILLIPS))

(THASSERT (HEAD-SIZE SCREWDRIVER-1 0.3 CM)).
Data base lookups and fetches are accomplished via the

function THGOAL. Therefore, if at some point in an MP
program we required a knowledge ofSCREWDRIVER- l's head
width, we could write a fetch pattern of the form

(THGOAL (HEAD-SIZE SCREWDRIVER-1 (THV X) (THV Y))).
For our example, this would respond with "success" (i.e., a
fact which matched this template was located in the data
base, and it would produce the side effects ofbinding the MP
variables X and Y to 0.3 and CM, respectively. The THV form
is used in MP to signal references to variables (all else is
implicitly constant).

Every fact and theorem in the MP data base has a context
marking. Whenever a fact or theorem is THASSERTed, if such
a fact is not already physically present in the data base, it is
created and then marked as also being logically present. If
the THASSERTed fact is present physically, but marked as
logically not present, its logical status is changed to
"present." If the fact is already logically and physically
present, THASSERT does nothing but reports a "failure" to
store a new copy of the fact. THERASE exerts opposite effects
on facts in the data base; it causes a fact to be logically
masked, either by changing the fact's logical context mark-
ing or by actually physically deleting the fact (i.e., if the fact is
being THERASEd at the level at which it was originally
THASSERTed).
Context markings allow MP to keep track of the history

of the logical status of each fact and theorem. This enables
the system to back up to prior context levels, thereby
restoring the data base to the corresponding prior state.
Thus, although there are mechanisms for making permanent
data base changes (e.g., after some segment of MP code is
confident that what it has done is absolutely correct),
normally (except at the top level), THASSERTS and THERASES
are not permanent; instead, they normally exist only for the
duration of some stretch of planning or hypothetical
reasoning.

2) MICROPLANNER Theorems: All reasoning (in fact,
all computation) in MP is carried out by THANTE, THERAS-

215

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4, APRII 1979

ING, and THCONSE "theorems" which are called by pattern
rather than by name. The three types of theorem are
indistinguishable in internal form, except with regard to the
type of event to which each responds. A THANTE theorem is
triggered by the THASSERTion into the factual data base of
any pattern which matches its invocation pattern. A THERAS-
ING theorem is triggered by the THERASEure from the data
base of any factual pattern which matches its invocation
pattern. In the sense that these two classes of theorems
respond spontaneously (not in response to any particular
request), they represent a general interrupt capability. A
THCONSE theorem reponds to THGOAL requests whose goal
patterns match its invocation pattern.

As a brief illustration of the uses of each of these, suppose
we wish to implement the following three capabilities in
MP: 1) whenever a new screwdriver is defined to the system,
automatically cause its name to be added to the master tool
list; 2) whenever a screwdriver is deleted from the system,
automatically remove its name from the master tool list, and
also remove all its accompanying information; 3) whenever,
during some assembly task, a THGOAL of the form: (SCREW-
IN <some screw> <some threaded hole>) is announced,
automatically search for, and return the name of an appro-
priate screwdriver for the task (based on the screw's style
and head size). Task 1) will be modeled as a MP THANTE
theorem, part 2) by a THERASING theorem, and part 3) by a
THCONSE theorem as follows:

(THANTE (X) (TOOL-TYPE (THV X) SCREWDRIVER)
(SETQ MASTER-TOOL-LIST (CONS (THV X) MASTER-TOOL-LIST)))

(THERASING (X) (TOOL-TYPE (THV X) SCREWDRIVER)
(THPROG (ST CC ... HS HSU)

(SETQ MASTER-TOOL-LIST (DELETE (THV X) MASTER-TOOL-LIST))

(THAND (THGOAL (STYLE (THV X) (THV ST)))
(THERASE (STYLE (THV X) (THV ST))))

(THAND (THGOAL (COLOR-CODE (THV X) (THV CC)))
(THERASE (COLOR-CODE (THV X) (THV CC))))

(THAND (THGOAL (HEAD-SIZE (THV X) (THV HS) (THV HSU)))
(THERASE (HEAD-SIZE (THV X) (THV HS) (THV HSU))))))

(THCONSE (SCREW HOLE) (SCREW-IN (THV SCREW) (THV HOLE))
(THPROG (ST HS HSU DRIVER DST DHS DHSU)

(THGOAL (STYLE (THV SCREW) (THV ST)))
(THGOAL (HEAD-SIZE (THV HOLE) (THV HS) (THV HSU)))
(THGOAL (TOOL-TYPE (THV DRIVER) SCREWDRIVER))
(THAND (THGOAL (STYLE (THV DRIVER) (THV DST)))

(EQUAL (THV DST) (THV ST)))
(THAND (THGOAL (HEAD-SIZE (THV DRIVER) (THV DHS)

(EQUAL (THV DHS) (THV HS)))
(THRETURN (THV DRIVER))))

(THV DHSU)))

Because of this last interaction between THGOAL'S and 3) Heuristic Guidance of Theorem Application: It is

THCONSE, a THGOAL can amount to considerably more than possible, by including special indicators in THGOAL, THAS-

a simple data base fetch. In MP, when a THGOAL is issued, SERT, and THERASE calls, to influence the order in which

the system first attempts to locate the desired goal directly as theorems are applied, or in fact to indicate whether or not

a fact in the data base. If this fails, and the THGOAL request they should be applied at all. Specifically, a THGOAL (similar
has indicated that it is permissible to do so, MP will begin remarks apply to THASSERT and THERASE) with no indicators

searching for THCONSE theorems whose invocation patterns will fail unless the requested goal can be satisfied exclusively

match the desired goal. If any are found, each is executed in by data base fetches (no theorems will be applied). (This is

turn until one reports success (in which case the THGOAL iS the form we have been using for illustration purposes.) If

satisfied), or until all THCONSE theorems have failed (in there is an indicator present, it has either the form of a

which case the THGOAL fails). It is in this manner that more "filter" or a specific "recommendation list" of theorems

complex knowledge (i.e., theorems, problem solving (referenced by name). When a filter is included in a THGOAL[
techniques, etc.) can be automatically brought to bear on request, only those theorems whose properties pass the

some goal if that goal is not already explicitly present in the filtering test (theorems can possess property lists) will be
factual data base. candidates for application. If the indicator has the form of a

The forms of these three MP theorem types are specific recommendation list, all theorems on that list will be

(THANTE <optional-name> <variables> <invocation-pattern> <body>)
(THERASING <optional-name> <variables> <invocation-pattern> <body>)
(THCONSE <optional-name> <variables> <invocation-pattern> <body>).

216

RIEGER et al.: ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

applied first (in order) before any other theorems from the
general theorem base are attempted. Both forms allow the
programmer to insert limited heuristic influences. Also,
since one MP theorem can create or modify another MP
theorem, the filter facility provides a setting in which a
collection of theorems themselves can evolve into a more
structured configuration on the basis of past experience (e.g.,
who in the past has proven to be the most reliable expert).
Although filtering and recommendations are a step in the
right direction, as we will discuss later, CONNIVER pro-
vides a more flexible environment in which to encode
heuristic knowledge.

4) Searching and Backup in MP: Search and backup in
MP can occur for two reasons: 1) some THCONSE theorem
which was run to accomplish a THGOAL fails, and another
theorem must be invoked (restoring the environment to the
state at which the first theorem took over), or 2) some object
to which the system has committed itself is discovered to be
inappropriate, giving rise to the need of locating another
candidate object and retrying. The THGOAL-THCONSE
mechanism underlie the selection and backup where
theorems are concerned, but object selection is handled
differently, via the THPROG MP construction.

In the previous THCONSE example, the goal was to locate
some screwdriver which satisfied some set of features (in that
case, the correct STYLE and HEAD-SIZE). This was accom-
plished by a THPROG which "conjectures" that such an
object, say X, exists, then proceeds to determine whether or
not this conjecture is true. In the example above, the THPROG
searched for a screwdriver of type and size which matched
the type and size of the particular screw which was to be
inserted. For the sake of illustration, suppose the screw was
of type Phillips of head size 0.3. Then, the THPROG in the
example above would have performed essentially the same
search as the following, more specific, THPROG:

(THPROG (X)
(THGOAL (TOOL-TYPE (THV X) SCREWDRIVER))
(THGOAL (STYLE (THV X) PHILLIPS))
(THGOAL (HEAD-SIZE (THV X) 0.3))
(THRETURN (THV X)))

i.e., introduce an initially uncommitted variable X to repre-
sent the object being searched for. First, obtain a candidate
for X by finding an object which is of TOOL-TYPE SCREW-
DRIVER (the first THGOAL does this). At that point, X will be
tentatively bound to the first such object found. Continue
with this candidate until either all THGOALS have been
satisfied (in which case, the candidate is a success), or until
some THGOAL fails (in which case, the system must back up
and choose another candidate). Since some objects may pass
the first THGOAL, or even two, but not all three, the system
must automatically keep track of what object it is currently
considering, and what other objects remain to be tested. This
is the source of backups which are propagated because of
bad object selections.
To keep track of theorem and object selection backups,

MP maintains a decision tree, THTREE, which is essentially a
record of every decision made, and what to do in case the

decision leads to a failure. The strength of THTREE is, of
course, that it frees the programmer from having to worry
about failures: if there is a solution, it will eventually be
found by an exhaustive search. The fatal weakness ofTHTREE
is that it imposes an often undesirable depth-first ordering
on the search (i.e., one subgoal must be solved in its entirety
before any other subgoals can be attacked). This makes it
difficult, if not impossible, to fabricate complexly in-
tertwined solutions, since subgoals cannot communicate
laterally in the tree. The MP organization is also quite
awkward in its backup technique because of the depth-first
organization of THTREE. Often, one small failure will cause
an entire branch of THTREE to be undone, when in fact most
of it was correct. It would be more desirable to be able to
discard only the bad part of the tree, retaining the parts
which are correct, so that wholesale resynthesis of large
parts of the THTREE does not have to occur. Unfortunately,
this is, again, very difficult, if not impossible to do in MP.
CONNIVER has a better control structure in these respects.

5) Other Representative MP Capabilities: To complete
our description of MICROPLANNER, we include two
representatives of the other functions available in this
language, together with a brief example of each.

a) (THFIND <mode> <variables> <skel> <body>):
THFIND provides a way of finding all objects in the system
which satisfy a certain set of criteria. A THFIND is essen-

tially a THPROG which is made to fail artificially after each
successful location of an object which satisfies the criteria.
<mode> indicates how many objects are to be located (e.g.,
ALL", "(AT-LEAST <count>) , ...); <variables> serve the
same role as THPROG variables; <skel> specifies what form to
return as each object is found; <body> contains the
THGOALS, etc. which define the criteria. THFIND returns
either a failure (in case <mode> number ofobjects could not
be found), or a list of <skel>'s, each <skel> corresponding to
one successful object thus found.

Example: (THFIND ALL (X) (THV X)
(THGOAL (TOOL-TYPE (THV X) SCREWDRIVER))
(THGOAL (STYLE (THV X) PHILLIPS))

would return a list of all tools which were Phillips
screwdrivers.

b) (THMESSAGE <variables> <pattern> <body>): As
subgoals are descended into (i.e. "on the way down" the goal
tree), THMESSAGE statements have no effect. They are essen-
tially "hooks" which will intercept failures beneath them in
the goal tree as such failures propagate back up to the
THMESSAGE via a (THFAIL THMESSAGE <pattern>). Upon
being backed up to by a THFAIL, any THMESSAGE whose
pattern matches the THFAIL pattern will take control (its
<body> will be executed). Thus, the THMESSAGE-THFAIL
combination provides a way of anticipating possible prob-
lems without actually checking for them beforehand. If all
goes well beneath the THMESSAGE, it will never run; however,
ifsomeone gets into trouble beneath the THMESSAGE (in some
way the THMESSAGE iS prepared for), the THMESSAGE can
correct the problem and then cause the part of the tree
beneath it to be reattempted.

217

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4, APRIL 1979

Example:
... (anticipate difficulty in inserting a screw)
(THMESSAGE (X Y) ((THV X) WILL NOT TURN IN (THV Y))
(THGOAL (LUBRICATE (THV X))) (attempt a remedy)
(THGOAL (SCREW-IN (THV X) (THV Y)))) (retry)

... (attempt to insert some screw in some hole)

... (report a failure back up to the THMESSAGE)
(THFAIL THMESSAGE ((THV SCREW) WILL NOT TURN IN

would anticipate, detect, report, and correct a problem, then
retry.

C. CONNIVER
A more recent stage in the evolution of the LISP family of

languages was the esult of McDermott's and Sussman's
development of a language called CONNIVER [20].
CONNIVER's development was principally motivated by
the control structure deficiencies ofMP, as suggested in the
earlier discussion of THTREE. Although there were some

improvements in the data base and pattern-directed invoca-
tion control (e.g., the pattern matcher is more sophisticated),
the most significant feature of CONNIVER is its ability to
maintain numerous computations in states of suspended
animation, then to switch among them, working on many

subgoals or alternate strategies in unison rather than one at

a time. In such an environment, partial computations need
not be undone simply because some small aspect of the
problem solving has gone awry.

CONNIVER is less a programming language than it is a
collection of ideas about control structure. (The language
apparently has never been used for more than one or two
significant programming tasks [12].) Because of this, our

discussion will omit most references to syntax, and highlight
only the aspects of CONNIVER's control structure which
are unusual or unique to it.

1) Frames, AU-REVOIR and ADIEU: In a conventional
programming language (MP included), one function calls
another function either by name or pattern and waits until

the called function returns control. In a conventional langu-
age, once a function returns, that invocation instance of it

dies; the function may be called anew, but the new call will

cause a new instance of the function. No memory of a

function's current status can be preserved across call-return

sequences. This type of control is usually carried out under

the control of push-down stacks which record calling argu-
ments and return addresses; calling a function causes stacks

to be pushed, while returning from a function causes stacks

to be popped, annihilating all control information.
In CONNIVER, things are quite a bit different. To call a

function in CONNIVER is to create a so-called "frame" for

the called function, rather than to push information onto a

central stack. A function's frame will contain all the informa-
tion needed to characterize the function at any moment (e.g.,
from what A-LIST it derives values for its free variables, to

whom it is to return when it has finished, etc.). There are two

(THV HOLE)))
important features of a frame. First, it is a user-accessible
LISP data structure. This means that a function may alter its
own or another function's frame in arbitrary ways, causing
free variables to be looked up on some other function's
A-LIST, or causing the identity of the function to which
control is to be returned to be altered. Second, because there
is no central stack which is chronologically pushed and
popped at function entry/exit, execution control is free to
meander from one function to the next without permanently
closing any function. Thus, at any moment, there can be
numerous suspended functions which may be resumed at the
point at which they last relinquished control, or in fact, at an
arbitrary labeled point within them.
As one might expect, this ability makes the context

marking technique for items in the data base more complex
than in MP. In particular, since control may eventually be
returned to any suspended function (the system in general
has no way of knowing whether or not it actually will be),
every fact in the data base must have markings which specify
for every suspended function F whether or not that fact is
supposed to be logically present while F is running. To
accomplish this type of marking, the MP context scheme
was generalized from a stack-like arrangement to a tree of
contexts. Basically, every fact lives on some branch of the
tree, and functions have access to limbs ofthe tree. Although
there is considerable overhead, the system manages to mask
and unmask facts in the data base in synchrony with the
meandering of execution control from one function to
the next.
To distinguish the permanent return of a function from

the case where a function merely relinquishes control,
reserving the option to continue, CONNIVER defines two
methods of returning: ADIEU (final, permanent return) and
AU-REVOIR (suspension). One very important application of
the AU-REVOIR feature is in the (often costly) generation of
alternatives. Rather than calling a function (such as THFIND
in MP) to generate all possible candidates before any
detailed filtering tests are applied (a procedure which may
waste an inordinate amount of time in the initial collecting
phase), in CONNIVER it is possible to call a "generator"
function which will locate and return candidates one at a

time, suspending itself across calls. This makes for a more

intimate form of interaction between the generating and
testing functions than is possible in MP and can lead to more

efficient searches because of this intimacy. To facilitate the
use of generators, CONNIVER has some rather elaborate
machinery for maintaining "possibilities lists," including a

218

RIEGER et al.: ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

function, TRY-NEXT, which controls the extraction ofpossibi-
lities from such lists.
Computation in CONNIVER is similar in most other

regards to computation in MP. The counterparts ofTHANTE,
THERASING, and THCONSE theorems are, respectively, IF-
ADDED, IF-REMOVED, and IF-NEEDED "methods." Except for
differences in syntax, and a more general pattern-directed
invocation scheme, these three functions are the same as the
MP versions. CONNIVER counterparts of MP's data base
and goal-statement functions, THASSERT, THERASE, and
THGOAL are, respectively, ADD, REMOVE, and FETCH.

D. Efficiency of the LISP Language Family
Being an interpreted language, LISP is slower than, say,

FORTRAN, by between one and two orders of magnitude.
However, compiled LISP can be competitive with a good
FORTRAN compiler. We feel that LISP provides the best of
both worlds, in the sense that the interpreter provides for
easy program development and debugging, while the LISP
compiler can transform debugged code into production-
level efficiency.
MICROPLANNER and CONNIVER, on the other

hand, are inherently less efficient, primarily because of the
control structures they superimpose on LISP. The fatal flaw
with MP is its backup system, which can be extremely slow;
compilation will not typically remedy the problem. CON-
NIVER is slow for similar reasons; however, in addition to
data structures, processes must also be garbage collected,
and an elaborate context tree must be maintained. Although
these two languages contain many noteworthy features, we
feel that neither (as currently implemented) is appropriate
for production applications.

E. Standardization of the LISP Language Family
There are LISP systems for the following machines:

PDP-10, PDP-11, UNIVAC 1106, 1108, 1110, CDC 6500,
6600, IBM 360, 370, SDS SIGMA 5, and others. Being a

PLANE P1;

SEARCH yellov

ACROSS P1
WITH INCR

relatively easy language to implement, we would anticipate
no significant problems when installing LISP on new ma-
chines, including microcomputers. Furthermore, since
LISP's syntax is uniform, transportability between various
LISP systems is more a question of semantics of function
definitions. However, such incompatibilities can normally
be ameliorated in about "one day's worth" ofmacro writing.
Of course, there are some LISP systems such as INTER-
LISP which have such a large number of built-in functions
that conversion to a more primitive LISP system may entail
a considerable amount of work in the form of writing new
function definitions. Nevertheless, LISP can be fairly char-
acterized as standard and transportable. Finally, most LISP
systems have an accompanying compiler, usually written in
LISP itself.

IV. RELATED LANGUAGES

A. AL
AL is a high-level programming system for specification

of manipulatory tasks developed at Stanford Artificial Intel-
ligence Laboratory [15]. It is a SAIL-like language and
includes large runtime support for controlling devices.

Trajectory calculation is a crucial feature ofmanipulatory
control. AL contains a wide range of primitives to support
efficient trajectory calculations. As much computation as
possible is done at compile-time and calculations are
modified at run-time only as necessary.

Besides a dimensionless scalar data type (i.e., REAL), AL
recognizes and manipulates TIME, MASS, and ANGLE SCALARS,
dimensionless and typed VECTORS, ROT (rotation), FRAME
(coordinate system), PLANE (region separator), and TRANS
(transformation) data types. Proper composition of var-
iables of these types gives a simple means of performing
calculations of any type of movement.

Also included are PL/1-like ON-conditions, which allow
monitoring of the outside world, and concurrent processes.

Example:

{statements initializing pl}
v {SEARCH is a primitive which causes

a hand to move over a specified
area. yellow is a hand}
{hand moves across plane}

EMENT = 3 * CM {every 3 cm}
REPEATING

BEGIN
FRAME set;
set yellow;
MOVE yellow XOR-Z * CN

{do at every iteration}

{yellow is also coord system of hand}
I
{move hand 1 cm down from current
position along Z-axis}

ON FORCE(Z) > 3000 * DYNES
DO TERMINATE; {keep in touch with real world}

MOVE yellow TO set DIRECTLY; {move the hand back to where
it was in a straight line}

END;

219

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4, APRIL 1979

B. MLISP
MLISP (meta-LISP) is a high-level list-processing langu-

age developed at Stanford University [34]. MLISP pro-
grams are translated into LISP programs which are then
executed or compiled. The MLISP translator itself is written
in LISP.
MLISP is an attempt to improve the readability ofLISP

programs as well as alleviate some inconveniences in the
control structure of LISP (e.g., no explicit iterative
construct). Since run-time errors are only detected by the
LISP system (when actually executing the program), users
frequently find themselves debugging the translated LISP
code. This somewhat defeats the purpose of any high-level
language.

All LISP functions are recognized and translated in
MLISP, but the Cambridge prefix notation of LISP has
been replaced by standard infix and prefix function notation.
Instead of (PLUSX Y) one may writeX + Y, and (FOO A B C)
becomes FOO(A, B, C).
MLISP also provides a powerful set of iterative state-

ments and a large number of "vector operators." Vector
operators are used to apply standard operators in a straight-
forward manner to lists. Thus, in MLISP, < 1, 2, 3> + (<6,
5, 4> yields <7, 7,7>. +@ is the vector addition operator and
<A, B, C> is equivalent to (LIST A B C) in LISP.
Example: Given a list of the form <objl, obj2, . .. , objn>,

this function will return a list of the form <<objil,
holderl>,..., <objn, holdern>> where holderi is either
PLIERS, VISE, or NOTHING accordingly as needed to hold the
object. 04 . °/% is an MLISP comment.

EXPR HOLD-LIST(OBJ-LIST);
BEGIN

NEW S;
RETURN

FOR NEW OBJ IN OBJ-LIST
COLLECT

C. POP-2
POP-2 is a conversational language designed by R M.

Burstall and R. J. Popplestone at the University of Edin-
burgh [6].
POP-2 features an ALGOL-like syntax and draws heavily

from LISP. Integers, reals, LISP-like lists and atoms (called
"names"), function constants (lambda expressions), records,
arrays, extensible data types, and run-time macros are
supported. A unique feature of the POP-2 system is the
heavy use of a system stack, which the user may easily
control to enhance the efficiency of programs.
A full complement of list-manipulation, numeric and

storage-mangement functions are available.
Example: Suppose we wish to obtain a list of all ma-

chinery not currently functioning. A useful function would
be

COMMENT sublist returns a list of all elements of argu
ment list xl which satisfy argument predicate p;

FUNCTION sublist xl p; {arguments are xl and pt
VARS X; {declaration of local, no type}
IF nul(xl) THEN nil bjust like LISP}

ELSE hd(xl) x; {hd(a) = (car a)}
IF p(X)
THEN x:: sublist(tl(xl), p)

{tl(a) = (cdr a), x:: l = (cons x l)}
ELSE sublist(tl(xl), p)

CLOSE
CLOSE

END;.

% EXPR starts a regular func

llocal declaration
% RETURN iS a unary operator

% OBJ is local to the FOR lOOp.
% OBJ will be bound in turn
% to each element of OBJ-LIST.
% COLLECT indicates that the
% result of each iteration is
% to be APPENDed to the previous
% result and this whole list
% returned as the result of
% the FOR.

(.
*I0

/o

O,/

'41)

O:

'0(/
./n

4)

', <

4)

4't

C)
O)

l}

IF (S:= GET(OBJ, 'SIZE)) LEQUAL 5
THEN

<<OBJ, 'PLIERS>>
ELSE

IF S LEQUAL 10
THEN

<«<OBJ, VISE>>
ELSE

<<OB1, 'NOTHING>>
END;.

220

RIEGER et al.: ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

A call might then look like,

sublist(machine-list,
LAMBDA m; not(functioning(m)) END);

which might return,

[punch-pressl drill-press2 unit1O]

which is a POP-2 list.

D. QLISP

QLISP is an extended version ofQA4 (a PLANNER-like
LISP derivative) [30] embedded in the sophisticated
INTERLISP system. QLISP supports a wide variety ofdata
types designed to aid in the flexible handling of large data
bases. Among the data types supported are "TUPLE," "BAG"
and "CLASS." A TUPLE is essentially a LISP list that can be
retrieved associatively (see below). A BAG is a multiset, an
unordered collection of (possibly duplicated) elements. Bags
have been found to be useful for describing certain commu-
tative associative relations. A CLASS is an unordered collec-
tion of nonduplicated elements (i.e., basically a set).

Arbitrary expressions may be stored in the system data
base and manipulated associatively. The QLISP pattern
matcher is used to retrieve expressions in a flexible manner.
The system function MATCHQQ may be used to invoke the
pattern matcher explicitly, as in:

(MATCHQQ (+- X +- Y) (A B))

which causes X to be bound to A and Y to B (" " indicates
this "need for a binding"). The patterns to MATCHQQ may be
arbitrarily complex, as in

(MATCHQQ (A (+- X +- Y)) (+- X (A (B C))))

in which X is bound to A and Y to (B C).
QLISP expressions are represented uniquely in the data

base, unlike LISP where only atoms are unique. To distingu-
ish between "identical" expressions, "properties" may be
associated with any expression by QPUT.

(QPUT (UNION (A B)) EQUIV (UNION (B C))).

The above puts the expression (UNION (B C)) under the
property EQUIV for the expression (UNION A B).
QLISP provides facilities for backtracking and pattern-

directed invocation of functions, as illustrated by

(QLAMBDA (FRIENDS JOE (CLASS +-F +-sS REST))
(IS (FATHER $s $F))
BACKTRACK).

This function will find an occurrence of a CLASS denoting
FRIENDS of JOE. F and s will be bound to the first two elements
of the CLASS and REST will be bound to the remainder of the
CLASS (indicated by "*--"). If s is a father of F, then the
function succeeds. ("$" causes the current binding of its
argument to be used.) BACKTRACK causes reinvocation of the
function with new bindings for s, F, and REST until the
function succeeds or there are no untried bindings.
The user may collect teams of functions to be invoked

under desired circumstances. Many QLISP data base mani-
pulation functions may have optional arguments which
denote a team of routines to be used to perform antecedent-
type functions (as in PLANNER).
QLISP provides a general context and generator mechan-

ism similar to that of CONNIVER. Also provided is a
smooth, readily accessible interface to the underlying
INTERLISP system which aids in the development and
maintenance of large systems.

Future plans for QLISP include multiprocessing primi-
tives, semantic criteria for pattern matching (as opposed to
the current syntactic information), and the ability for the
pattern matcher to return more information than a simple
match or fail.

V. EXAMPLES
A. Introduction

A common example will be used to illustrate the distingu-
ishing features of SAIL, LISP, MICROPLANNER, and
CONNIVER. With only minor variations the program
segments use the same algorithm. The program-segments
appear out of context and are not meant to indicate the most
efficient (or preferred) implementation of the problem in
each language but merely to illustrate the languages' major
attributes.

Problem Statement: Given two distinct assemblies (say Al
and A2), attempt to unscrew Al from A2, and indic4te
success or failure accordingly. The "world" ofthe examplk is
assumed to include:

1) Two hands, LEFT and RIGHT, capable of moving,
grasping, twisting, and sensing force and motion;

2) fixed number (possibly zero) of PLIERS,
3) fixed number (possibly zero) of VISES,
4) fixed number of "assemblies."

For each PLIERS and VISE, the data base contains an
assertion of the form, "PLIERS (VISE) * n is at location (X, Y,
Z) and is of capacity C cm." In addition, for each assembly
the data base contains an assertion of the form, "assembly A
is at location (X, Y, Z) and is of size S cm." As we shall see,
the languages are distinguished in part by the methods each
uses to represent such knowledge.
Each example assumes the existence of the routines

described below in ALGOL-like notation.
ATTACHED(A 1, A2) TRUE if and only if the assembly

represented by Al (hereafter referred to as Al) is attached to
the assembly represented by A2 (referred to as A2). The
routine has no side effects.
MOVE(HAND, LOCATION)-MoveS HAND (LEFT or RIGHT)

to LOCATION (but see MICROPLANNER's description of
MOVE).
TWIST(HAND, DIRECTION) Twists HAND (LEFT or RIGHT)

in the given DIRECTION (CLOCKWISE or COUNTERCLOCK-
WISE). The DIRECTION is oriented looking down the length of
the arm. Except for SAIL, all programs assume a routine
called TWIST-BOTH, which causes both hands to twist at once.
GRASP(HAND, OBJECT) Causes HAND (LEFT or RIGHT) to

221

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4, APRIL 1979

grasp OBJECT, which must be within some fixed range of
HAND (i.e., the hand must MOVE to the OBJECT first).

ATTEMPT(OBJ1, OBJ2, Al, A2) Attempts to do the actual
unscrewing of assembly Al from A2 using objects OBJ1 and
OBJ2 (which, in our examples, are either VISES or PLIERS).
ATTEMPT returns TRUE if and only ifthe attempt is successful.
Each program applies the following sequence to solve the

problem.
1) Attempt to unscrew the assemblies using the hands.

This entails obtaining the location ofthe assemblies, moving
the hands to their respective locations, grasping, and then
twisting.

2) If the objects are no longer attached, then return
,,success."

3) At this point, it is assumed that the hands weren't
strong enough. It is proposed to try two pairs ofPLIERS next.
A search ensures for a suitable set of available PLIERS (i.e.,
large enough to hold the assemblies). Ifone set ofPLIERS fails,
the search is continued for another set, with the hope that the
differences among PLIERS (grip, size, etc.) will eventually lead
to success.

4) An attempt to use PLIERS has failed. Try to solve the
problem by holding one of the assemblies in a VISE. Perform
a search for an appropriate VISE. This search proceeds in a
fashion similar to that in (3).

5) All attempts have failed. Output an appropriate mes-
sage and return "failure."

B. SAIL

1) Sample Program: a sample program is shown in Fig. 2.
2) Commentary:

2 In SAIL, FALSE = 0, TRUE < > 0. BIGENOUGH is a
BOOLEAN procedure.

9 c and s are items whose DATUM is assumed to be of
INTEGER type.

11 coP(<set>) returns the first item of <set>. We are
assuming that there exists only one triple of the form
CAPACITY 0 <object> <capacity> for each <object>.

13 c and s are necessary because DATUM(COP(<set>)) is
illegal. SAIL must know at compile-time what the type
of a DATUM iS. GEQ is a numeric test for greater than or
equal.

20 UNSCREW is a BOOLEAN procedure which returns TRUE
(nonzero) if it succeeds in unscrewing the objects.

26 This is a macro definition. Whenever RUNME is en-
countered by the SAIL compiler, it will be replaced by
the constant 1.

39 SPROUT is a SAIL function which causes activation of its
second argument (a procedure/function call) as a
process. The first argument is an item whose DATUM
will be set by SPROUT to contain information about the
SPROUTed process (see 41 for its use). The third argu-
ment to SPROUT determines the status ofthe current and
the created process. RUNME (bit 35 set) indicates that the
current and new processes are to be run in parallel by
the SAIL scheduler.

47 BOOLEAN tests in a FOREACH must be enclosed in
parentheses.

INTEGER PkOCEDURE BIGENOUGH(ITEF,VAR HOLDER HOLDEE)
4 t.RETURN TRUE IFF OBJECT HOLDER IS LARGE
5 ENOuGH T0 HOLD ;Rj'ECT HOLDEE

7 AEG I N
8
9 IN;TEGER ITEMVAR C, S;14

11 C:= COP(CAPACITY XOR HOLDER);
12 S:= COP(SIZE XOR HOLDEr)-
13 RETuRN(DATUM(C) GEQ DARTfL())
14
1' E N Dt
146
17
1 8
1 9
C D I N T E G E R P RO C E D UR E U N S C R E W (I T E M V A UA AI);

2 RTTEM PT TO DISASSEMPLE ASSEMLY A1 FROM A,2 RY UNSCRoWINC
2 3
2 4 a EG I N
L 5
26 DEFINE RUNMUE 1;
U7
2; ITE4VAR VA, PL1, PL2, Pl, PZ;
2 9
3.3 INTEGER FLAE;
3 1
32 IF RO0T ATTACHED(A1, A,-) THEN RETURN(l); DON'T ROTHER
3 3
34 MRVE(LEFT, LOCATIONN A1) MOVE(ROGHT, LCCATION 7 .A,)
35 GRASP(LEFT, AR); GRASP(RIGAT, AHLZ);'6
7 GET 8RTH HANDS TIISTING AT ONCE

'9 SPROUT(Pl, TWIST(LEFT, COUNTER!CLOCKWISE), RUNME)
4G. SPROUTIF2, TWIST(RIGHT, COUNTER!CLOCKWISE), RUNRME;
41 JDOIN({P1, PU));
4. IF NOT ATTACHED(Al, AH) THEN RETURN(l);
43
44 HANDS NOT STRONG ENLUGH, TRY PLIRS"
45
40 FOREACH PLl P.2
47 ISA PPL1 FPLIERS AR.D (IIGEN UGH(PLT, Al:)
4' AND ISA PL2 FPLIERS AND (PLl NEG PL2)
49 AND (IIGENOUGH(PL2, A2)) AND tATTEMPT(PLl, PL2, Al, A2)
5G DO RETURKIl);
01
So EITHER THtRE wEREN'T ANY PLIERS LARGE ENOUGH,
53 OR THc PLIERS WEREN'T STRONG ENOUGH. TRY H

54 VISE N ONE SIDE
55
56 FO&EACH 'V1LJ
07 IA VISE AND (BIGENOUGH(Vl, Al))5S AN D IS FL1 PLiEfRS A:.D (Bl6GNOUGH(PLl . A2EN D (ATTEMPT (V1, PL t , Al, A)

DODL RETUN(Il);
C01

ALL ATTEMPTS FAILED
63
04 OUTSTRE"CAN'T UNSCREW E CVIDS(A, FLAGS) &
65 & CVIS(A2, FLAG) E ('1I 5 '1.)-
RD RETURN(C)
67
64 E ND;

Fig. 2. SAIL program.

48 Notice (PL I NEQ PL2) to insure that two distinct pairs of
pliers are found.

50 If the body of the FOREACH is entered, then all went well
and we return success.

64 CVIS is a SAIL function which will return a character
string "name" associated with an item. FLAG is set by
CVIS to indicate the presence of an error.

C. LISP

1) Sample Program: a sample program is shown in Fig. 3.
2) Commentary:

2 UNSCREW iS the main function. It returns T ifand only if
disassembly was successful.

13 Unlike SAIL, LISP does not support concurrency. We
thus assume a primitive function to get both hands
twisting.

18 FOREACH is an iterative special form which mimics a

simple SAIL FOREACH. FOREACH will try pairs of pliers
until the given predicates succeed or it runs out of pliers
(and returns NIL). Note that the arguments to a special
form need not be quoted.

19 Check to insure that distinct pairs of pliers are found.
34 PRIN 1 is a LISP function which loads its argument into

the stream output buffer.
35 TERPRI is a LISP function which dumps the output

buffer.
47 Return T if capacity > size.
55 DEFSPEC defines a special form (sometimes called a

FEXPR). A special form is identical to a LISP function
except that its arguments are passed unevaluated.

222

RIEGER et al.: ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

7

9
1 6
1 1

1 2
1 9
1 4
15
1 6
1 7

1 E
2 9
330

2 1

23
24
2S
2s
37
23
25
39
1

4
4

34

3435
517

3D

4 t

41'
4)

45

4 1SZ

3
64
45

5 7

6 8

51

74

65

57

70
75t

7 7

763

4
A5

65

67s

731

4

75C

(SEPFU UNSCREE. (Al A2)
? ATTEMPT DISASSEMBLY OF OBJECT Al FROM A2, AY UNSCREWING

(PRO6 tPLI PLA VI IN)

(COND ((NOT (ATTACHED Al A2)) (RETURN T)3)
(MOVE 'LEFT (GET Al LOCATION))
(MOVE 'kIGHT (GET AL 'LOCATSON))
(GRASP 'LEFT Al) (GRASP 'RIGHT A2)
(TW IST-eOTH COUNTER-CLOCKWASE)
(COND C (NOT (ATTACHED Al A2)) (RETURN T)D)

? HANDS NOT STRONG ENOUGH, TRY PLIERS
(CON.D C(FOREACH PLl IN PLIERS-LIST (EAIGENOUG PLl Al)

PL2 IN PLIERS-LIST (AND (NOT (AG PLT PLZ))
(6IGENOUGH PL2 A2))

O0 (ATTEMPT PLT PL2 Al A2))
(RETURN T)3

? PLIERS NOT LARGE ENOUGH OR NOT STRONG ENOUGH.
? TRY A VISE ON I SIDE

((FOREACH VT IN VISE-LIST (BIGENOUGH Vl Al)
PL1 IN PLIERS-LIST (BIGENOUGH PLI A2)

DO (ATTEMPT VA PLl Al A2))
(RETURN T).J

ALL ATTEMPTS FAILED

CT ("RINI"CANN T UNSCREINA) (PAINT Al)

(PRINT & (9'AINI 63) (TEAPRI)
(RETURN NIL)))

I))

(DEFU4 BIGENOUGH (HOLDERf hOLDEE)

? RETURN T IFF OBJECT HOLDER IS LARGE ENOUGH TO
? HOLD OoJECT HOLDEE

(NOT (LEOSP (GET HOLDER 'CAPACITY)
(SET HOLOE 'SIZE)))

(DEFSPEC FOREACH (LAMBDA (OAJl IN1 LIST1 PRED1
OBJ2 IN2 LIST2 PRED2
ED TRY)

? MIMIC SAiL FOREACH ON SIMPLE CASt
t R (TEMPI TEMPA)

(SETO TEMPT (EVAL LlST1))

(COND C(NULL TEMPT) (RETURN NIL))) ? RAN OUT
(SET OGJ1 (CAR TEMPl))
(SETO TEMPI (CDR TEMPl))
(CON) C[(NOT (EVAL PREED1)) (Ge, LOOPl 3)D FAILED lOT TESTt S E(SATI TEMP2 (EVAL LIST2))

LOOP)

(COND t(NULL TEMP2) (GO LOOP1)3)
(SET OEJ2 (CAR TEMP2))
(SETA TEMP2 (CDR TEMP2))
(COND C(NOT (EVAL PAED2)) (GO LOOP2))

CT(VAL TRO) (RETUR' T)) ? IT WORKED
CT (CO LOOP))))

)):

(LEFMAC FOREACH (LAMBDA (6BJ1 IN1 LISTI PREDI
OAJ2 IN2 LISTs PRED2
DO TRY)

U57 ? MACRO vERSION OF FOREACH
57

E6 (.IST 'PROG (L L)
69 (LIST %ETI LT LIST1)
9v LOOP1
9T1 (COND (NULL L1) (RETURN NIL)3)92 t(LOST 'SETQ SAJ1 '(CAR L1))

' (CSE T Ll (CDR L1))
,Y4 (LIST ,COND (LIST (LIST 'NOT PRED1) (GC LOOP1)))9S (LOST 'SETI L2 LIST 2)
96 LOOP2

(COND E(NULL L2) (GO LOOP1)3)
oS (LIST 'SETQ EAJ2 '(CAR L2))
99 (SETI Lc (CDR L2))
IJU (LIST 'COND (LIST (LIST 'NOT PRED)) (GO LOOP-))
1,1 (LIST TRY -(RETURN T))

(T (GO LOOP2))))

Fig. 3. LISP program.

63 EVAL is necessary since the argument was passed

unevaluated.
66 Note the use of SET rather than SETQ. OBJ1 needs to be

evaluated to get the intended atom (SET evaluates its
first argument, SETQ does not).

68 Note the use of EVAL (see 63).
72 Note the use of SET (see 66).
82 This is an alternative macro version of FOREACH. It

expands into a PROG which is similar in nature to the
special form FOREACH. Note the absence of SET or EVAL.

D. PLANNER (MICROPLANNER)

1) Sample Program: a sample program is shown in Fig. 4.
2) Commentary:

2 Defines and asserts a consequent theorem with name

UNSCREW.

4

137

1 6

1 7

12
1,

24
5

252 7
26

3331
33
34
35
363 7
36
34943
41

434
45
4 6
47
48
4495 0
51
5S53
54
55
56
5 7
5459
6 1

62
63
64

o6

(THCONSE UNSCREW (Al A2)
(UNSCREW (THV Al) (TAV AZ))

? ATTEMPT DISASSEMBLY Of OBJECT Al FROM A2, BY UNSCREWING
(THOR

(THNOT (ATTACHED (THV Al) (THV A2))))(THARN (THGOAL (MOVE LEFT (THV Al)) (THT?F THTRUE))
(TKGEAL (MOVE RIGHT (TAV A2)) (THTEF THTRUE))
(GRASP 'LEFT (THV Al)) (GRASP RIGHT (TAV A2))
(TWIST-BOTH 'COUNTER-CLOCKWISE)
(THNOT (ATTACHED (TAM Al) (THV A2))))

? HANDS NOT STRONG ENOUGH, TRY PLIERS

(THPROG (PLI PL2)
(THGOAL (ISA (THA PLl) PLIERS) (TATeF THTRUE))
(ThGOAL (BIGENOUGH (THV PLl) (THV Al)) (THNODB)(THUSE BIGENOUGH) (THTIF TATRUE))(THGOAL (ISA (THV PL2) PLIERS) (THTeF THTRUE))
(THNOT (EA (THA PLl) (TV PL2))))(THGOAL (BIGENOUGH (THV PL2) (THV A2)) (THNODE)(THUSE AIGENOUGH) (THTAF THTRUE))
(ATTEMPT (TAV PLl) (tHA PL2) (TAv AT) (THA A2))

? NO PLIERS LARGE ENOUGH, OR NO PLIERS STRONG ENOUGH.? TRY A VISE ON 1 SIDE

(THPROG (VI PL)
(THGOAL (ISA (THV Vl) VISE) (THTBF THTRUE))(THGOAL (BIGENOUGH (THV Al) (THV Al)) (THNODE)(THUSE BIGENOUGH) (TAT6F THTRUE))(THGOAL (ISA (TAB PL) PLIERS) (THTEP TATRUE))(THGOAL (RIRENOUGH (THV PL) (THV A2)) (THNCOB)(THUSE EIGENOUGH) (HTESF THTRUE))
(ATTEMPT (THA Al) (THV PL) (THA Al) (THV A0))

4OTHING WORKEC, JUST FAIL

(THNOT (THDO
(PRIN1 "CAN'T UNSCREW ') (PRIN1 (THA Al))
(P;IN1 ') (PRIN1 (THV A')) (TERPRI)

I)(THfAIL THEOREM)

(THCOSE bIfENOUGh (HOLDER HOLDEE C S)
(BIGENQUGH (THV HOLDER) (THA HOLDEE))
SUCCEEsS ONLY IF OBJECT HOLDER OS LARGE ENOUGH TO HOL)? OBJECT HOLDEE

(THGOAL (CAPACITY (TAV HOLDER) (THV C)) (THTeF THTBUE))(THGOAL (SIZE (THV HOLDEE) (THV S)) (THTIF THTRUE))
(THCO0D ((NOT (LESSP (THV C) (ThV S)))(THSUCCEED)3

CT (THfAIL THEOREE)3)

Fig. 4. MICROPLANNER program.

3 This is the pattern on which to invoke this theorem if
needed (e.g., (UNSCREW ASSEMBLY1 ASSEMBLY2)).

7 THOR sequentially executes each of its arguments until
one succeeds, and then the THOR succeeds. The THOR iS
used here to prevent undesired backup.

8 (THNOT p) is defined as (COND [p (THFAIL)] [T
(THSUCCEED)]).

9 THAND succeeds if and only if all of its arguments
succeed. Unlike THOR, backup may occur among the
arguments of a THAND.

10 Attempt to move the left hand to object Al. There may
be several experts (theorems) on moving hands, PLAN-
NER will try as many as it needs. (THTBF THTRUE) is a
theorem base "filter" which is satisfied by every
theorem.

19 THPROG behaves in a similar manner to THAND except
that local variables may be declared.

20 Attempt to find a pair of pliers.
21 See if the pair of pliers is large enough. (THNODB)

indicates to PLANNER not to bother searching the data
base. (THUSE <theorem>) indicates to try <theorem>
first.

24 Make sure that we have two distinct pairs of pliers.
45 THDO executes its arguments and then succeeds.

However, at this point weknow that we have failed, and
THNOT iS used to generate a failure from THDO. This is
necessary because PRIN1 returns its first argument as its
result, which (being non-NIL) would cause the THOR to
succeed.

49 Generate explicit failure of the theorem.

223

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, No. 4. APRIL. 1979

(CDEFUN UNSCREW (Al A2)

? ATTEMPT TO DISASSEMBLE Al fROr A2, BY UNSCREWING

"AUX" (LOCI LOC2 GEN1 GEN2 Vl PLI PL2)

(COND [(NOT (ATTACHED Al A2)) (RETURN T)1)
(PRESENT '(LOCATION !,A1 !>LOC1))
(PRESENT '(LOCATION !,A2 !>LOC2))
(COVE 'LEFT LOCI) (MOVE 'RIGHT LOC2)
(GRASP 'LEFT Al) (GRASP 'RIGhT A2)
(COhD [(NOT (ATTACHED Al A2)) (RETURN T)3)

? mAIDS NOT STRONG ENOUGH, TRY FLIERS

(CSETN GENI !"((*POSSIBILITlES) *IGNORE
(*GENERATOR (NEXT-OEJ 'PLIERS '(BIGENOUGH S Al)))))

:L OOP I

(CSET% PL1 (TRY-NEXT GENI '(GO 'TRY-VISE)))
(CSETE iEN2 !"((*POSSIIILITIES) *IGNORE

(*GENERATOR (NEXT-OBJ 'PLIERS
'(AND (NOT (EQ PL1)))

(BIGENOUGH S A2))))))
:PLOOP2

(CSETi. PL2 (TRY-NEXT GENZ '(GO 'PLOOPI)))
(CONED (ATTEMPT PLI PL2 Al A2) (RETURN T)]

T tGO 'PLOOP _))

? NO PLIERS LARGE ENOUGH, OR PLIERS NOT STRONG
? ENOUGH. TRY A VISE ON ONE SIDE.

:TRY-VISE
(CSET6 6EN1 !"((*POSSIBILITIES) *IGNORE

(*GENERATOR (NEXT-OEJ 'VISE '(eIGENOUGH S Al)))))
:VLOOP

(CSETv VI (TRY-NEXT GENi '(GC N'NG-CAN-DO)))
(CSLT% 6EN2 !"((*POSSIBILITIESI) *GNORE

(*GENERATOR (NEXT-OAJ 'PLIERS '(PIGENOUGH S A£)))))
:PLOOP3

(CST6 PL1 (TRY-NEXT GEN2 '(Gt 'VLOOP)))
(CORD ((ATTEMPT VI PL1 Al A2) (RETURN T)l

CT (SG 'PLOOP3)3)
? ALL ATTEMPTS FAILED

:NO-CAN-DO
(PR1NI "CAN'T UNSCRoW ") (PRINi Al)
(PRINI " ") (PRIN1 A2) (TEEfPRI)
(RETURiN NIL)

(CDEFUN BIGENOUGH (HOLDER HOLDEE)

? RETURN T IFF OBJECT HOLDER IS LARGE
? ENOUGH TO HOLD OBJECT HOLDEE

"AUX" (C S)

(PRESENT '(CAPACITY !,HOLDER !>C))
(PRESENT '(SIZE !,HOLDEE !>S))
(NOT (LESSP C S))

(CDEFUN NH XT-ORJ (TYPE PRED)

? GENERATOR TO RETURN NEXT OBJECT OF 'TYPE'
? iHICh SATISFIES 'PRED'

"AIJX'" (OBJ TEMP)

(CStTC TEM!P (FETCH '(ISA !>OEJ !,TYPE)))
:LOOP

(TRY-NEXT TEMP '(ADIEU))
(CON CE(CVAL (SUBST OBJ '0 PRED))

(NOTE OBJ)
, (AU-REVOIR I))

(GO LOOP)

Fig. 5. CONNIVER program.

E. CONNIVER

1) Sample Program: a sample program is shown in Fig. 5.
2) Commentary:

2 CDEFUN defines a function to CONNIVER.
6 "AUX" <list> defines local variables.
10 PRESENT is a CONNIVER function which searches the

data base for an item which matches its pattern argu-
ment. If one is found, PRESENT sets the indicated
variables (marked with !< or !>) and returns the item.
!,A1 indicates the current CONNIVER value of Al.

!>LoCI indicates that LoCI is to be bound if possible.
18 GENI is being assigned a TRY-NEXT possibilities list. !"

tells CONNIVER to do a "skeleton expansion" of the
following list (which is necessary to CONNIVER's
internals). The (* POSSIBILITIES) and * IGNORE are syn-
tactic markers to TRY-NEXT whose function we can

ignore. (* GENERATOR <func-call>) indicates to TRY-

NEXT to use <func-call> to generate additional possibili-
ties if needed.

19 NEXT-OBJ will continue to generate objects of type
PLIERS which satisfy the predicate (2nd argument). It
will generate one PLIERS at a time. (BIGENOUGH $ A 1) is a

skeleton predicate which NEXT-OBJ Will use to screen

each possibility. The current candidate is substituted
for $ before the predicate is CVALuated (CONNIVER's
form of EVALuation).

21 When GEN1 contains no more possibilities, TRY-NEXT
will execute (GO 'TRY-VISE). Unlike LISP, GO evaluates
its argument here.

24 Check to insure that two distinct pairs of pliers will be
found.

64 See 10.
66 RETURN is not necessary since the value of a CON-

NIVER function is the last expression evaluated.
72 Define the generator, NEXT-OBJ. Note that NEXT-OBJ

looks like a regular function to CONNIVER until it is
called.

79 FETCH is a CONNIVER primitive which returns a
possibilities list of all items in the data base which
match its pattern argument. !>oBJ indicates that OBJ
should be bound by TRY-NEXT to each possibility in
turn.

81 TRY-NEXT binds OB1 from the possibilities list TEMP and
removes the current possibility. If there is no current
possibility, (ADIEU) iS evaluated which causes termina-
tion of the generator.

82 The desired predicate is cvALuated after substituting
the current object into the skeleton. (SUBST A B C) is a
LISP function which returns a list which is the result of
substituting A for every occurrence of B in list C.

83 (NOTE Ow) is a CONNIVER function which places the
current value of OBJ onto the current possibilities list.

84 (AU-REVOIR) returns control from NEXT-OBJ but leaves
the generator in a suspended state. When TRY-NEXT
returns control to NEXT-OBJ, execution will resume at
(GO 'LOOP).

VI. CONCLUSIONS
Either SAIL or LISP could provide an excellent basis for

real-time planning and execution control of a large au-
tomated shop. However, each language possesses features
which facilitate certain types of operations (see Table I). In
particular, SAIL is generically better at the low level con-
trol of I/O devices and has more extensive abilities for
interacting with the operating system (especially where file
manipulations are concerned). LISP, on the other hand, is
more flexible at the higher planning levels and where
system development and debugging are concerned.
We envision an "ideal" system as one which merges all the

desirable features of these two language classes. Such a
merger would incorporate LISP's program and data struc-
ture format, augmented where necessary to accommodate
SAIL-like file operations, and possibly LEAP. SAIL features
would be implanted in this environment, and, at the
implementor's discretion, an ALGOL-like syntax (such as
MLISP) could be grafted onto the front of the system to
make it more tractable.

In addition, such a merger should take care to preserve the
following desirable features of SAIL and LISP.

1) Data structures should accommodate complex symbo-
lic information as well as primitive types. As in LISP, data

6
7

11
11
12
1 3
1 4
1 5
1 !
17
1 6
19
20
21
2 2
2 3
2 5
26
27
2E
29
30
3 1
32
33
3'
35
36
37
3i3;
4141
62
'3
4'

46
47

49
5J
51
52
5 3
54
55
5 7
5'
5;
63
61
6i
63
64
65
66
6766
73
71
72
73
74
75
76
77
76
7;
81
52
8 364
86

224

)

T
A
B
L
E

I
SU

MM
AR

Y
CH
AR
T

Fl
ow

of
Co
nt
ro
l

Da
ta

Ty
pe
s

De
ct
ar
-a
tl
ol
ls

Sc
op

e
I/o

)
Fa
ci
li
ti
es

De
ve

lo
pm

en
tt

SI
xz

e
Li
nk
ag
e

to
Ot
hI
er

Pr
oc

es
m

rs
Ce

ec
ra

tI
Co

mm
en

ti
ts

s-
ex
pr
es
si
on
s

(a
to
ms

of
ty
pe

re
al

,
ar
bi
tr
ar
y

pr
ec
is
io
n

in
te

ge
r,

8s
tr
in
g,

sy
ml

bo
l

ar
ra
y)

I
ll

pl
ci.

t
fo

r
gl

ob
;i

8s
,

ex
pl

ic
it

fo
r

lo
ca

ls
.

ty
pe
l.
es
s

fr
eq

tu
en

tl
y

dy
na
mI
c

me
ag

er
f
le

in
te
ra
ct
io
n,

RI
EA
DM
AC
RO

st
ru
ct
uo
re

cd
l
to

r,
ro

t-
ti

me
ia
ic
ro
s,

br
en

kp
o
li

ta

po
ss
ib
le

(d
on
e

at
in
te
rp
re
te
r

le
ve

l)

ex
tr
en
ae
lI
y

co
ai

sl
nt

en
t,

fl
et
xi
li
te
,

ge
na

er
al

pu
rp

os
et

,
us
ua
l;
lI

y
lI

.t
-e

rp
rc

te
d

(r
an
i

be
co

mp
iL

le
d

fo
r

e(
fi
ci

ic
y)
,

pr
og
ra
m

se
od

da
ta

nr
e

I1
1

1s
t

1
agi

ll
sl
ah

1e

pa
tt

e'
rn

-d
i

re
ct

ed
,

se
qu

en
ta

l
,

la
be
l
R
,

ba
ck

tr
ac

k
Ir

ig

pa
tt
er
n-
di
re
c
te

d,
s9
eq
ue
nt
ia
l

,
su

sp
en

dl
ed

,
pr

oc
es

se
s,

Ie
li

s,
fr

an
ie

s

s-
ex
pr
es
si
on
s

(s
am
e

as
l.

lS
P)

s-
ex
pr
es
s
io
ns

(s
am

e
as

1.
IS

P)

ty
ge

l
ea

ss

ty
pe
le
ss

dy
na

mi
c

pa
lt
ry

dy
nn
am
ic
,

pa
l
t r

y
fr
am
e

sI
ml

ta
r

to
I.

I5
1'

tn
cl

ud
in

g,
mo
ni
lt
or
in
ig

of
MX
AL
.S

an
d

da
ta

hb
is
e

ac
ti

1v
It

y

si
mI
la
r

ti
L.

IS
P

in
cl

ud
JI

nv
g

a
fr
am

e
de
bu
ig
ge
r

sa
me

as
L.

1S
P

sa
me

as
LI

SP

wr
It

te
n

In
LI
SP
,

so
n-
pr
oc
ed
ur
al
,

8s
pe

cI
al
I

pu
rl

p"
oe

,
In

te
rp

re
te

dl
,

d;
at

as
ba

se
co

ln
tl

fI
s

sr
lu
lt
ra
ry

i-
iu

le
le
s

wr
it
te
n

In
I.

IS
P'

,
3s

u1
-

pr
o-

ed
ut

ra
l,

co
mp
le
x

co
in

tr
ol

an
di

da
ta

st
ru

s,
tu

Lr
es

,s
pe

c.
al

pu
lr
po
se
,

JI
nt
er
pr
et
ed

in
te
ge
r,

re
al

,
st

ri
ng

,
ar

ra
y,

st
ru
ct
ur
e,

po
in
it
er
,

li
st

,
me

Ls
,

{i
tV
av
al
r,

-o
nt
ex
t,

pr
oc

ed
ur

e,
it
em

re
al

,
il

te
ge

r,
st
ri
ng
,

sy
mb
ol
,

li
st
,

re
co
rd
,

a
r
r
a
y
,

pa
ir

s-
ex
lp
re
ss

io
ts

(s
an
ai
c

as
L1

SI
')

st
at

ic
al
il
y

ty
pe

d
de

cl
ar

at
io

ns
ex
ce
pt

fo
r

rt
nl

-t
in
e

I t
en
ts

ex
pi

fl
it
,

ty
pe
l
es
s

ty
pe

le
ss

st
la

:i
c,

bl
oc

k-
st
ru
ct
ur
ed

ex
ce
ll
et
t

-

fr
om

lo
w

le
ve
l

to
hi
gh

le
ve

l

dy
tn
ai
mc

si
mi
la
r

to
LI
SP

bu
t

lh
as

f
le

IT
/O

RA
Il

),
BA

IL
,

ma
cr
or
s,

co
rn

ed
it

io
nl
.a
1

co
mp
I
la
t

I on
,

RE
l(
UI
RK

fe
at

ur
e

ea
sy
,

ca
n

us
e

l i
br
ar
Le
s,

in
-I
in
e
as

se
mb

ly
la
Ir
gt
ga
ge

et
a
te

me
nt

s

si
mi

la
r

to
l.
IS
P'

sa
me

as
L.

IS
P

sa
1m
e

a
s

.
I
Ps

lbu
It

ts
er

mt
as

t

(l
yl

an
ai

c-
sa
me

as
LI

MS
de
bu
g

in
LI
SP

an
d

no
t

II
I

ML
IS

I"

s
a
m
e

a
s

L.
IS
P'

om
pi
ll

ed
,

ge
ii
er
al

pr
po
xs
e,

ex
te
ls

Ve
ri
is
n-
t

ni
e

ti
lu
ra
ir
y.

a.
ss
oc
ia
ti
ve

dl
at

a
ba
se

co
ns
ls
tl
in
g

of
tr
Ip
le
s,

pr
oc
e(
di
ur
al
,

bn
ek
tr
ac
ki
nu
g,

ne
tw

or
k

in
tn

hb
as
e

in
te

rf
ac

e,
ec
om
pi
le
.-
ti
me

fa
ci
li
ty

ca
nt

ro
i

of
ex

te
rn

lt
1.

de
vi

ce
s,

In
te
rp
ro
gr
am

co
ius

nuu
i
I
a
tl
o
n

In
te

rp
re

te
d,

no
t

as
co

ns
1s

te
nt

a
s

lI
SI
',

ge
ne
ra

l
pu
rp
s.
e,

st
ai
ck

ba
se

d,
ca
pa
bi
lt
ty

of
re

lu
rl

%i
ng

mo
re

th
an

o
n
e

re
su

il
t

(w
it
ho
ut

us
in
g

a
li
st

as
it

L.
IS
')
,

da
ta

an
id

pr
o-

g
r
a
m
a
r
e

.l
mo

st
id
en
ti
cn
a

tr
ai
us
la
te
t

ILi
nto

LI
SP
,

AL
(X

L.
-J

Ik
e

sy
nt
ax

re
ad
ab
l'*

LI
SP

se
qu

en
it

ia
l,

la
be

ls

PL
.A

NN
IE

R

CO
NN

IV
ER

0 0Po Q Q (QQ 0

SA
IL

ro
r-
2

1L
.1

SP

lp
ro
ce
ss
es
,

c
o
r
o
u
t
hl
ie
s,

se
qu

en
t

Is
1,

FR
R

l;A
ChI

I,
I t
er
;
t1

I1c
n,

Ib
ak
t
ra
ck
in
g,

In
be

ls

se
qe
tl
el
nt

ia
I,

lI
ae
l

,
it

er
,,

ti
oi

sq(
uIt

eli
tI

a
I,

Ia
be
l
s,

It
er

a
tl

oio

t.J

=

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 4, APRIL 1979

structures should be free to grow in unrestricted ways, and
storage declarations should be optional to the user.

2) Program and data should, as in LISP, be in the same
format. Such a representation underlies 1) a strong macro
facility, 2) rapid editing, modification and debugging of
programs, and 3) selfmodifying and selfextending systems.
The last capability, for example, enables the system, given
the description of a new type of tool, automatically to
synthesize the programs for controlling the tool from a
library of subfunctions.

3) Strong I/O and file manipulation facilities, as are
found in SAIL, must be included. A good random-access file
system is imperative for even moderately large data bases.
The system should have both high and low level control over
input and output formatting which provides control down
to the bit level of the machine.

4) A highly developed interrupt subsystem would be
desirable. With the merger of SAIL's bit-wise interrupt
control, and LISP's symbolic capabilities, such a system as is
described in [29] could be efficiently implemented. This
would serve as the network protocol for a large collection of
highly autonomous processes where the synthesis and con-
trol of many parallel events is important.

5) For software development and debugging, an inter-
preter should exist for the language. Nevertheless, the
language should be have a compiler for production usage.
LISP currently satisfies these requirements.

6) The system should provide for a large, context-
sensitive associative data base. This would involve some new.
engineering to coordinate a MP-like data base with an
efficient random-access file system. [21] surveys some ideas
on this topic.

7) There should be some degree of automatic problem-
solving control which includes a CONNIVER-like context-
switching and process-suspending mechanism. Accommo-
dations should be made for SAIL-like parallel process
control, and emphasis should be placed on inter-process
communications protocols. Most of the ideas already exist
in CONNIVER and SAIL, but they need to be synthesized
into a unified system.

REFERENCES
[1] P. Agre, "Maryland LISP reference manual," Dept. of Comput. Sci.

TR-678, University of Maryland, 1978.
[2] B. G. Baumgart, "Micro-planner alternate reference manual," Stan-

ford Al Lab Operating Note No. 67, Apr. 1972.
[3] Bolt, Beranek, and Newman, "TENEX executive manual,"

Cambridge, MA, Apr. 1973.
[4] D. Beech, "A structured view of PL/1," ACM Computing Surveys, pp.

33-64, Mar. 1970.
[5] D. G. Bobrow and B. Raphael, "New programming languages for

artificial intelligence," ACM Computing Surveys, pp. 153-174, Sept.
1974.

[6] R. M. Burstall, J. S. Collins, and R. J. Popplestone, Programming in
POP-2. The Round Table and Edinburgh University Press, 1971.

[7] A. Church, The Calculi of Lambda Conversion. Princeton, NJ: Prin-
ceton University Press, 1941.

[8] COBOL, "American national standard programming language
COBOL," X3.32-1974, American National Standards Institute, Inc.,
NY, 1974.

[9] CODASYL Data Base Task Group, "April 1971 rep.," ACM., New
York, 1971.

[10] DEC, DEC System-10 Data Base Management System Programmer's
Procedures Manual, Document DEC-10-APPMA-B-D. Maynard,
MA.

[11] E. W. D. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F.
M. Steffens, "On-the-fly garbage collection: An exercise in coopera-
tion," Burroughs, Plataanstraat 5, NL-4565 NUENEN, The Nether-
lands, EWD496-0.

[12] S. Fahlman, "A planning system for robot construction tasks," MIT
Al Memo 283 1973.

[13] J. A. Feldman and P. D. Rovner, "An ALGOL-based associative
language," Comm. ACM, pp. 439-449, Aug. 1969.

[14] J. A. Feldman and R. F. Sproull, "System support for the Stanford
hand-eye system," in 2nd Int. Joint ConJ on AI London, Sept. 1-3,
1971.

[15] R. Finkel, R. Taylor, R. Bolles, R. Paul, and J. Feldman, "AL, A
programming system for automation," Stanford Al Lab Memo
AIM-243, Nov. 1974.

[16] C. Hewitt, "PLANNER: A language for proving theorems in robots,"
in Proc. IJCAI-1, 1969.

[17] W. H. P. Leslie, Ed., Numerical Control Programming Languages.
London: North-Holland Pub. Co., 1972.

[18] M. I. Levin, LISP 1.5 Programmer's Manual. Cambridge, MA: MIT
Press, 1965.

[19] J. McCarthy, "Recursive functions of symbolic expressions and their
computation by machine," Comm. ACM, pp. 184-195, Apr. 1960.

[20] D. V. McDermott and G. J. Sussman, "The conniver reference
manual," Al Memo No. 259, MIT Project MAC, May 1972.

[21] D. V. McDermott, "Very large PLANNER-type data bases," MIT Al
Memo 339, 1975.

[22] D. A. Moon, "MACLISP reference manual," Project MAC-MIT,
Cambridge, MA, 1974.

[23] P. Naur, Ed., "Revised report on the algorithmic language ALGOL
60," Comm. ACM, pp. 299-314, May 1960.

[24] E. Norman, "LISP," Univ. of Wisc. Computing Center, Madison,
WI, April 1969.

[25] F. G. Parsons, A. G. Dale, and C. V. Yurkanan, "Data manipulation
language requirements for database management systems," Comput.
J., pp. 99-103, May 1974.

[26] RAPIDATA Corp., "A FORTRAN DML implementation for
DBMS-10," Fairfield, NJ.

[27] J. F. Reiser, "BAIL-A debugger for SAIL," Stanford Al Lab Memo
AIM-270, Oct. 1975.

[28] J. F. Reiser, Ed.. "SAIL," Stanford Al Lab Memo AIM-289, Aug.
1976.

[29] C. J. Rieger, "Spontaneous computation in cognitive models," Dept.
Comput. Sci. TR-459, University of Maryland, July 1976.

[30] J. F. Rulifson, R. J. Waldinger, and J. A. Derksen, "QA4: A
procedural calculus for intuitive reasoning," Tech. Note 73. Stanford
Research Inst., 1973.

[31] E. D. Sacerdoti, R. E. Fikes, R. Reboh, D. Sagalowicz, R. J. Waldin-
ger, and B. M. Wilber, "QLISP: A language for the interactive
development of complex systems," Tech. Note 120, Stanford
Research Inst., 1976.

[32] H. Samet, "The SAIL data base management system," Comput. Sci.
Dept., University of Maryland, College Park, MD, unpublished.
1976.

[33] L. Siklossy, Let's Talk LISP. New York: Prentice-Hall. 1976.
[34] D. C. Smith, "MLISP," Stanford Al Project, Memo AIM-135, 1970.
[35] G. M. Stacey, "A FORTRAN interface to the CODASYL database

task group specification," Comput. J., pp. 124-129, May 1974.
[36] G. Sussman, T. Winograd, and E. Charniak. "MICROPLANNER

reference manual," MIT AI-TR-203a, 1971.
[37] R. W. Taylor and R. L. Frank, "CODASYL data-base management

systems," ACM Computing Surtveys, pp. 67-103, Mar. 1976.
[38] W. Teitelman, "INTERLISP reference manual," XEROX Palo Alto

Research Center, Palo Alto, CA, 1978.
[39] DEC, "DECSYSTEM-10 operating systems command manual,"

DEC-10-OSCMA-A-D, Digital Equipment Corporation. Maynard.
MA, May 1974.

[40] C. Weissman, LISP 1.5 Primer. Belmont, CA: Dickinson, 1967.
[41] C. R. Wilcox, "MAINSAIL language manual," SUMEX. Stanford

Univ., May 1976.

226

