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ABSTRACT
At the present time, there is no mechanism for Air Navigation
Service Providers (ANSPs) to probe new flight plans filed by the
Airlines Operation Centers (AOCs) against the existing approved
flight plans to see if they are likely to cause conflicts or bring sector
traffic densities beyond control. In the current Air Traffic Control
(ATC) operations, aircraft conflicts and sector traffic densities are
resolved tactically, increasing workload and leading to potential
safety risks and loss of capacity and efficiency.

We propose a novel Prescriptive Analytics System to address a
long-range aircraft conflict detection and resolution (CDR) problem.
Given a set of predicted trajectories, the system declares a conflict
when a protected zone of an aircraft on its trajectory is infringed
upon by another aircraft. The system resolves the conflict by pre-
scribing an alternative solution that is optimized by perturbing at
least one of the trajectories involved in the conflict. To achieve
this, the system learns from descriptive patterns of historical tra-
jectories and pertinent weather observations and builds a Hidden
Markov Model (HMM). Using a variant of the Viterbi algorithm,
the system avoids the airspace volume in which the conflict is de-
tected and generates a new optimal trajectory that is conflict-free.
The key concept upon which the system is built is the assumption
that airspace is nothing more than horizontally and vertically con-
catenated set of spatio-temporal data cubes where each cube is
considered as an atomic unit. We evaluate our system using real
trajectory datasets with pertinent weather observations from two
continents and demonstrate its effectiveness for strategic CDR.
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1 INTRODUCTION
In the present Air Traffic Management (ATM) system, Airline Op-
erations Center (AOC) personnel file a flight plan for a particular
flight. The filed flight plan usually contains 2D coordinates of the
fixed way points and the planned initial cruise speed and cruise
altitude in addition to their speed and level changes along the route.
It does not include the time information for the way points and the
existing information is not routinely updated by the ATM systems.
Moreover, the filed flight plan is not checked against other flight
plans to probe potential interference with other aircraft or iden-
tify sector traffic complexity before the aircraft departs. Airspace
sector complexity and aircraft separation assurance are dealt with
tactically just a few minutes before the aircraft enters the sector or
is likely to have a conflict with other aircraft.

It is estimated that by 2040 the USA alone can expect an in-
crease of more than 68% in the commercial air traffic [10]. Hence, a
new concept of operations is needed to accommodate this increase
in volume. To meet this challenge ahead of us, new technologies
and procedures for next generation ATM are being developed in
the context of the Next Generation Air Transportation System
(NextGen) [8] in the USA and the Single European Sky ATM Re-
search (SESAR) [32] in Europe. The SESAR and NextGen concept
of operations require a paradigm shift from a highly structured
and fragmented system that is heavily reliant on tactical decision
making and with few strategic planning functions based on un-
certain information, to an integrated one based on collaborative
strategic management of trajectories and information sharing [35].
In the future ATM systems to be built under NextGen and SESAR,
the trajectory becomes the fundamental element of new sets of
operating procedures collectively referred to as Trajectory-Based
Operations (TBO). The underlying idea behind TBO is the concept
of business trajectory which is the trajectory that will best meet
airline business interests. The TBO concept of operations and the
notion of business trajectory will result in more efficient 4D tra-
jectories. Thus, the future ATM system should offer flexibility to
accommodate business trajectories, while bearing the primary goal
of safety in mind. Overall, the next generation ATM paradigm shift
requires more safe and efficient CDR due to fact that maintaining
the separation minima among the vast volume of aircraft that fly
their versions of most optimal business 4D trajectories becomes
more challenging.

Hence, we introduce a Prescriptive Analytics System to address
the long-range aircraft CDR problem. The system performs CDR in
two steps: In the first step, given a set of predicted trajectories in
the form of a 4D joint spatio-temporal data cubes on a 3D grid net-
work, the system declares a conflict if one of the aircraft’s predicted
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trajectory segment overlaps with the other’s protected zone at the
same time interval in the future. Obviously, the more accurate the
predicted trajectories, the more accurate the detection of the con-
flict as the separation minima will be on the containment volume
of each predicted trajectory. In the second step, the system builds a
stochastic model, HMM that learns from the historical trajectories
and their correlation with the pertinent weather parameters. Using
a variant of the Viterbi algorithm, the CDR System prescribes an
optimal solution by perturbing at least one of the 4D trajectories
involved in the conflict.

In summary, the contributions of this paper are as follows:
• We propose a cube-shaped protected zone surrounding each
aircraft that can be expanded by joining the neighboring
cubes horizontally and vertically, yielding a protected zone
with a desired size. This idea resonates with the assumption
that an airspace is nothing more than a set of concatenated
spatio-temporal data cubes around a 3D grid network, where
each cube is considered as an atomic unit.
• Wepropose a scalable Prescriptive Analytics System to strate-
gically address the aircraft CDR problem. Given a set of pre-
dicted trajectories, the system declares a conflict when a
protected zone of an aircraft on its trajectory is infringed
upon by another aircraft at the same time interval in the
future. Upon a conflict, the system executes our conflict res-
olution algorithm and prescribes a solution that resolves
the conflict by perturbing at least one of the 4D trajectories
involved in the conflict.
• We conduct extensive experiments based on real trajectory
and weather data from two continents and demonstrate that
our CDR System can detect and resolve conflicts with lateral
and vertical accuracies that are within the boundaries of
conventionally accepted minimum separation values, set
by the ANSPs. This translates to the fact that, ANSPs can
now detect and resolve potential conflicts before the aircraft
depart, resulting in safer and greener airspace with more
efficiency and capacity, and thereby reducing the air traffic
controller workload.

Our Prescriptive Analytics System can be used as a ground-based
strategic CDR system by air traffic flow managers to resolve poten-
tial interference among large volume of aircraft and identify high
density and complex sector traffic before the aircraft depart. The
set of optimized resolutions should improve ATM automation and
reduce the workload of air traffic controllers. The rest of the paper
is organized as follows. Section 2 reviews related work. Section 3
introduces preliminary concepts followed by Section 4 where our
Prescriptive Analytics System is described. Section 5 presents the
results of our experiments, while Section 6 discusses the results.
Concluding remarks are drawn in Section 7.

2 RELATEDWORK
Trajectory data plays a large role in the problem of aircraft CDR.
Trajectories have been the subject of much work in the spatial
domain with a focus on cars along roads [30]. The focus has been
on their generation (e.g., [31]), queries (e.g., [18, 20, 26, 28, 29]),
and matching (e.g., [12, 17, 27]). This data is collected continuously
and is quite voluminous. Instead, we address the aircraft flight

domain and on conflict (i.e., collision) detection and resolution. An
excellent survey of various CDR methods is presented in [13]. In
this survey, Kuchar et al. propose a taxonomy to categorize the
basic functions of CDR modeling methods. The proposed taxonomy
includes: dimensions of state information (lateral, vertical, or three-
dimensional); method of state propagation (nominal, worst-case,
or probabilistic); conflict detection threshold; conflict resolution
method (prescribed, optimized, force field, or manual); maneuvering
options (speed change, lateral, vertical, or combined maneuvers);
and management of multiple aircraft conflicts (pairwise or global).

Conflict detection methods can be classified as nominal, worst-
case, and probabilistic techniques. The nominal technique projects
the current states into the future along a single trajectory without
taking uncertainties into account [9, 37]. The worst-case technique
assumes that an aircraft will perform any of a set of maneuvers
and a conflict is predicted if any of the maneuvers could cause a
conflict [34, 38]. The disadvantage of the worst-case technique is
that it can declare a conflict as soon as there is aminimum likelihood
of a conflict within the definition of the worst-case trajectory model
thereby leading to false positives. The probabilistic approach offers
a balance between relying on either a single trajectory model as in
the nominal technique or a set of worst-case maneuvers. Instead
it models uncertainties to describe potential changes in the future
trajectory [14, 21, 40].

Once a conflict has been detected, the next step in the CDR pro-
cess is to initiate the conflict resolution phase by determining the
course of action. The conflict resolution method and the maneuver-
ing options are two major factors in defining the course of action.
Conflict resolution methods can be categorized as a) prescribed, b)
optimized, c) force-field, and d) manual. The prescribed resolution
method provides a fixed maneuver based on a set of predefined
procedures [5]. Hence, depending on the nature of the conflict, the
predefined resolution maneuver is automatically performed, mini-
mizing the response time. However, it does not compute the optimal
resolution path for the aircraft, resulting in a less efficient trajectory.
The optimized method provides a conflict resolution strategy with
the lowest cost based on a certain cost function (separation, fuel,
time, workload, etc.) [9]. In the force-field resolution method, each
aircraft is treated as a charged particle and the resolution maneu-
vers are defined using repulsive forces between the aircraft [41].
Although it is practical when properly applied, it may require a high
level of guidance on the flight deck especially when the aircraft
vary their speed over a wide range. The manual resolution method
allows users to generate potential resolution options and provide
feedback if the option is viable [40]. During the resolution phase,
some CDR approaches only offer a single maneuver [9], while oth-
ers offer a combination of maneuvers [15]. Obviously, the more
maneuvering options the CDR approach offers, the more likely an
efficient solution can be provided to a conflict. Our CDR approach
has some similarities with [6] due to fact that both approaches
consider the airspace as a set of cubic cells, called the grid model,
declare a conflict if one of the aircraft’s predicted trajectory seg-
ments overlaps with the other’s protected zone, and propose an
optimized 4D trajectory for the conflict resolution. However, unlike
our study, they attempt to address tactical CDR (short-term and
medium-term) by using Particle Swarm Optimization [6].
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Figure 1: A sample crossing conflict and a PZ . (left) regular
representation, (right) our unique representation.

Summarizing the above literature and comparing to the proposed
prescriptive analytics approach, we make the following remarks.
First, our method considers dimensions of state information as 4D.
Second, our system is scalable, i.e. it can address CDR problem
among multiple aircraft. Given a set of aircraft trajectories in 4D,
our CDR System declares a conflict if any of the aircraft’s predicted
trajectory segment overlaps with the other’s protected zone at the
same time interval in the future. In our approach, one or more cubic
cells forming the airspace is considered to be a conflict detection
threshold. Next, we compute and prescribe an optimized solution
which is a conflict-free 4D trajectory. Our approach addresses the
CDR problem strategically over a time horizon of several hours to
compute conflict-free 4D trajectories for optimal flight plans and
less complex sector traffic densities.

3 PRELIMINARIES
The primary concern of the ANSPs, for example; the FAA in the
USA and EUROCONTROL in Europe is to assure safety, which is
quantified by the number of resolved conflicts.

Definition 3.1. A conflict is an event in which two or more
aircraft come closer than a certain distance to one another.

Definition 3.2. Separation minima are encoded by lateral and
vertical separation, forming a bounding volume around each air-
craft, a protected zone(PZ). Currently, the minimum lateral separa-
tion for en-route airspace is 5nmi. It is 3nmi inside the terminal
radar approach control (TRACON) area. The minimum vertical
separation is 2000 ft above the altitude of 29000 ft (FL290) and 1000
ft below FL290. Due to fact that lateral and vertical separation are
specified by single distance values, the resulting PZ becomes a
cylinder. Each aircraft is assumed to be surrounded by a PZ that
moves along the aircraft.

Definition 3.3. Conflict detection is a process that evaluates
the separation between any pair of aircraft, by comparing the dis-
tance between them with the separation minima. Formally, given
a pair of predicted aircraft trajectories formed by a set of aircraft
positions Ti = [pi1,pi2, ...,pim ], Tj = [pj1,pj2, ...,pjn ] where each
point p is defined by its 4D spatio-temporal parameters (latitude,
longitude, altitude, and timestamp), distance values between them
di, j are computed and compared with the separation minima ds
and a conflict is declared if any of distance values is less than the
separation minima di, j < ds .

Definition 3.4. Conflict resolution is a process that generates
a feasible safe alternative trajectory by fulfilling the separation

Figure 2: Simplified depiction of a pairwise CDR.

minima criteria. Formally, given a pair of predicted aircraft trajec-
tories formed by a set of aircraft positions Ti = [pi1,pi2, ...,pim ],
Tj = [pj1,pj2, ...,pjn ], upon conflict resolution, all the distance val-
ues di, j between the pairs of aircraft positions are greater than the
separation minima di, j > ds .

Definition 3.5. Long-range CDR is a process in which conflict
detection and resolution is carried out several hours before the
potential conflict occurs. Hence, long-range CDR is strategically
performed before the departure for better planning, whereas mid-
range and short-range CDR are tactically performed while the
aircraft is airborne.

Unlike online CDR approaches in which distance between pre-
dicted future aircraft positions are constantly computed and com-
pared with separation minima upon receipt of each new aircraft
position, our approach is offline and uses a 3D grid network as a
reference system. In our approach, raw trajectories are transformed
into aligned trajectories causing aircraft to move along grid points.
This results in conflict queries being computed at grid points only.
In addition, unlike most other CDR approaches, our system consid-
ers a cube shaped PZ surrounding each aircraft. This idea resonates
with the fact that our approach creates virtual data cubes around
grid points, forming an overall airspace. Each cube is defined by its
centroid, the original grid point, and associated weather parameters
that remain homogeneous within the cube during a period of time.
With this vision, we define trajectories as a set of 4D joint cubes.

This uncommon representation of 4D trajectories enables us to
view conflicts and PZ from a unique perspective. Hence, in our view,
PZ is a cube that can be expanded by joining the neighboring cubes
horizontally and vertically. The process yields a PZ with a desired
size. In our study, we use a PZ of variable size. It can be made up of
a single cube or expanded by a number of cubes in each direction
on each axis reaching a larger volume. Figure 1 illustrates a PZ
in two different forms. The PZ on the left is formed by a cylinder.
The PZ on the right is formed by 27 cubes. Figure 2 illustrates a
sample pairwise CDR. Aircraft #1 departs before aircraft #2. Both
aircraft move one cube at a time. In Figure 2a. aircraft #1 and #2
are located at cube J7 and K6, respectively. This causes a conflict
as aircraft #2 intrudes aircraft #1’s PZ outlined in red. In Figure 2b.
the conflict is resolved by a lateral shift to cube L6 by aircraft #2.
No conflict occurs from here on as aircraft #1 follows cubes in gray
(K7,L7,M7,N 7,O7, P7,R7, S7) and aircraft #2 follows cubes in blue
(M7,N8,N9,N10,O11, P11,R11, S11,T11) until they land at their
pertinent airports.
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Figure 3: Overview of the CDR System.

4 PRESCRIPTIVE ANALYTICS SYSTEM FOR
CDR

Figure 3 shows overview of the proposed Prescriptive Analytics
System for a simplified pairwise CDR. Predicted trajectory #1 and
#2 are generated by our Aircraft Trajectory Prediction System [2].
Our conflict detection algorithm takes predicted trajectories along
with separation minima as input. The output of the process is a
data cube defined by its 4D position, where conflict, if any, occurs.
The next process in the pipeline is the conflict resolution, where
a variant of the Viterbi algorithm is performed to avoid the con-
flicting trajectory segment. The process perturbs at least one of the
trajectories involved in the conflict, generating a new optimized
path and thereby resulting in conflict-free trajectories.

4.1 Pairwise Conflict Detection
The predicted trajectories along with the size of the PZ are fed into
our pairwise conflict detection algorithm, presented in Algorithm 1.
The algorithm declares a conflict if a PZ of an aircraft is infringed
upon by another aircraft at the same time interval in the future.

Formally, given a pair of predicted trajectoriesTi = [pi1,pi2, ...,pim ]
and Tj = [pj1,pj2, ...,pjn ] where each trajectory is formed by a set
of segments defined by their 4D spatio-temporal centroid parame-
ters latitude, longitude, altitude, and timestamp, along with PZ for
trajectory Ti in data cubes, we want to return the very first tra-
jectory segment pjs , if a conflict occurs, null otherwise. Note that
each aircraft position along predicted trajectories are recorded once
every minute. To compute this, we start with the departure point of
the aircraft that departs beforehand, and keep moving forward, one
grid point at a time. With the departure of the second aircraft, we
compare the trajectory segment pjs with PZis at each time instance
ts to see if pjs overlaps with PZis . Note that Algorithm 1 assumes
that all the PZs have the same definition.

4.2 Pairwise Conflict Resolution
Our conflict resolution approach shares a common ground with our
previous Trajectory Prediction System [2] as they both attempt to
address an optimization problem; given a set of weather observations,
what is the most likely sequence of aircraft positions? However, unlike
the previous system [2], the current conflict resolution algorithm
avoids the spatio-temporal data cubes where the conflict is detected.
To recapitulate our approach to the optimization problem, we briefly
review our previous Trajectory Prediction System [2] here.

Given a set of historical trajectories along with pertinent weather
observations, the system works based upon an assumption that the

Algorithm 1: Pairwise Conflict Detection
Result: Detected conflict or no conflict
Input :Trajectory pairs Ti , Tj , Protected Zone PZi
Output :Conflicting trajectory segment pjs or null

1 Ti ← [pi1,pi2, ...,pim ]

2 Tj ← [pj1,pj2, ...,pjn ]

3 foreach ts ∈ (pis ∩ pjs ) do
4 if pjs ⊂ PZis then
5 return pjs
6 end
7 end
8 return null

weather observations are realizations of hidden aircraft positions
i.e. trajectory segments and the transitions between the underlying
hidden segments following a Hidden Markov model [22]. This as-
sumption considers a finite set of states, each of which is associated
with a probability distribution over all possible trajectory segments.
Transitions among the states are managed by a set of probabilities.
The states are not visible, but the pertinent observations are. Given
a sequence of observations, the system trains an HMM, and derives
hidden states, aircraft positions that correspond to the weather
observations. The system computes the most likely sequence of
aircraft positions in three steps:

• In the training data processing step, the system transforms
raw trajectories into aligned trajectories and fuses weather
parameters for each grid point along aligned trajectories.
To achieve this, the system uses a 3D grid network with a
spatial resolution of 6km x 6km as a reference system.
• In the test data processing step, the system resamples the
weather parameters to generate buckets with distinct ranges
and feeds them into the time series clustering algorithm [3]
to produce input observations.
• In the final step, the HMM parameters generated in the first
two steps and the flight time computed by our Estimated
Time of Arrival (ETA) Prediction System [1] are used as
input to the Viterbi algorithm. The output is the optimal
state sequence, joint 4D cubes defining aircraft trajectories.

During the conflict resolution stage, our current CDR System
makes use of the first two steps, outlined above. However, unlike the
3rd step of the process, our current CDR System avoids the cubes
where the conflict is detected. Hence, the CDR System prescribes an
optimized solution by perturbing at least one of the 4D trajectories,
involved in the conflict. The process executes as follows: In addition
to the regular HMM parameters of transition, emission, and initial
probabilities, the system uses conflict-free probabilities where each
state is assigned a probability value indicating how conflict-free it
is. The parameters are fed into a variant of the Viterbi Algorithm,
in which the system computes the optimal state sequence by con-
sidering the maximum HMM probabilities. Due to fact that the
trajectory segments that are part of the first aircraft’s trajectory are
assigned low conflict-free probabilities, the system avoids selecting
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them during the Viterbi process, yielding a conflict-free trajectory
for the second aircraft.

Now, we present a variant of the Viterbi algorithm. Note that our
previous Trajectory Prediction System [2] characterized an HMM
by the following elements:

• N , the number of states in themodel. States S = {S1, S2, ..., SN }
are represented by reference points’ coordinates (latitude,
longitude, altitude) that form aligned trajectories. We denote
state at time t as qt .
• M , the number of distinct observation symbols per state. Ob-
servations V = {v1,v2, ...,vM } are represented by weather
parameters (temperature, wind speed, wind direction, humid-
ity) recorded at grid points.
• The state transition probability distribution A = {ai j } is the
probability of an aircraft discretely transitioning from one
state i to another j along its aligned trajectory, where

ai j = P[qt+1 = Sj |qt = Si ], 1 ≤ i, j ≤ N

• The observation symbol probability distribution in state j,
B = bj (k) is the probability of discrete weather parameters
having been observed at that specific state, where

bj (k) = P[vk at t |qt = Sj ],
1 ≤ j ≤ N

1 ≤ k ≤ M

• The initial state distribution π = {πi } is the probability of
an aligned trajectory beginning at a state i , where

πi = P[q1 = Si ], 1 ≤ i ≤ N

These parameters form an HMM, compactly denoted by λ =
{A,B, and π }. Now, we propose an additional parameter;

• The conflict-free probability distribution in state j ,C = c j (k)
is the probability of a conflict not occurring at that specific
state, where

c j (k) = P[vk at t |qt = Sj ],
1 ≤ j ≤ N

1 ≤ k ≤ M

Hence, the lower the conflict-free probability for a particular state,
the lower likelihood of that state to be included in the most probable
path. With this new parameter, an HMM can be expanded and
denoted by λ = {A,B,π and C}

The next step in the process is to choose a corresponding state
sequence Q = q1,q2, ...,qT that best explains the observation se-
quence O = O1,O2, ...,OT given the model λ. A variant of the
Viterbi algorithm [39] that is based on dynamic programming ad-
dresses this problem. The key component in the algorithm is the
optimal probability, δt (j) is computed as follows:

δt (j) = max
q1, ...,qt−1

πq1bq1 (o1)cq1 (o1)
t∏
j=2
(aqj−1,qjbqj (oj )cqj (oj ))

Due to their low conflict-free probabilities, a variant of the Viterbi
algorithm avoids trajectory segments where the conflict is detected,
and generates a new optimized path.

Algorithm 2: Conflict Detection for Multiple Aircraft
Result: Detected conflict or approved optimal trajectory
Input :A new predicted trajectory Ti , constraints list

CLPZ
Output :Conflicting trajectory segment pi or updated

constraints list CLPZ
1 Ti ← [pi1,pi2, ...,pin ]

2 CLPZ ← [PZ1, PZ2, ..., PZm ]

3 foreach ts ∈ (pi&CLPZ ) do
4 PruneAndSearch
5 if pi ⊂ CLPZ then
6 return pi
7 end
8 else
9 Insert pi into CLPZ

10 end
11 end

4.3 CDR for Multiple Aircraft
Our pairwise CDR solution can be scaled to address CDR for multi-
ple aircraft which can be used towards better planning of airspace
sector densities. Similar to the current flight planning procedures,
we propose predicted trajectories to be processed on a first come
first served basis. For the sake of simplicity, consider an empty
airspace. The airspace will be fully available to the first predicted
trajectory. Hence, the first trajectory’s optimal set of data cubes will
be reserved in the airspace. This process will introduce a set of con-
straints in the form of PZs by the first trajectory to the second and
following trajectories during its flight time. Any conflict between
the first and second trajectory will be detected and resolved using
our pairwise CDR solution. Once resolved, a new set of constraints
will be introduced by the second trajectory. The next trajectory in
the queue will need to satisfy the constraints introduced by the pre-
vious trajectories and so on. This also means that the next trajectory
will need to avoid the PZs in the constraints list while generating
its optimal set of data cubes during the conflict resolution phase.
This process will be repeated until one or more flights land, which
will result in the removal of all pertinent constraints from the list
which will free up the particular sections of airspace.

Formally, given a new predicted trajectory Tj = [pj1,pj2, ...,pjl ]
and a time series of existing constraints listCLPZ = [PZ1, PZ2, ..., PZi ,
..., PZm ], where PZi = [pzi1,pzi2, ...,pzik ] along their existing tra-
jectoriesT = [T1,T2, ...,Ti , ...,Tn ], whereTi = [pi1,pi2, ...,pik ], we
want to detect and resolve conflicts among these trajectoriesTj and
T (i.e. one vs. all). Note that PZi is formed by a set of data cubes,
each defined by 4D spatio-temporal parameters around its centroid
pi j . With this approach, the implementation and management of
constraints list is of central importance. In our implementation, we
map time instances to data cubes forming PZs , which are stored in
an Octree data structure, where there is one Octree for each time
instance. Hence, when a new trajectory comes in, the pertinent Oc-
tree is located based on the trajectory’s time instance. We declare a
conflict if the trajectory segment is found in the Octree. We process
all pairs of possibly conflicting data cubes using spatial indexing
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techniques to prune the search (e.g., [23, 25]). Our scalable conflict
detection algorithm for multiple aircraft is presented in Algorithm
2. To keep the constraints list up-to-date, we periodically check
and delete the pertinent Octree if any of the time instances has
expired. Once a conflict has been detected, a variant of the Viterbi
algorithm is performed where all the data cubes included in the
constraints list for the pertinent time instance are avoided to find a
conflict-free, optimized path for the new trajectory. To achieve this,
we assign a minimum number to the conflict-free probabilities of
those data cubes included in the constraints list.

Algorithm 3: Conflict Resolution for Multiple Aircraft
Result: A conflict-free optimized trajectory
Input :# of states N , # of distinct observationsM ,

transition probabilities A, emission probabilities B,
initial probabilities π , constraints list CLPZ

Output :A conflict-free optimized trajectory To and
updated constraints list CLPZ

1 S ← [p1,p2, ...,pi , ...,pn ]

2 CLPZ ← [PZ1, PZ2, ..., PZm ]

3 foreach ts ∈ ((pi ∈ S) & CLPZ ) do
4 PruneAndSearch
5 if pi ⊂ CLPZ then
6 cp i ← 1 × 10−100

7 end
8 else
9 cp i ← 1

10 end
11 end

12 VariantOfViterbi
13 To ← max

s1, ...,st−1
πs1bs1 (o1)cs1 (o1)

∏t
j=2(asj−1,sjbsj (oj )csj (oj ))

14 foreach ts ∈ ((po ∈ To ) & CLPZ ) do
15 Insert po into CLPZ
16 end

Formally, given the number of states N , number of distinct ob-
servations per stateM , state transition probability distribution A,
observation probability distribution B, and initial state probability
distribution π , along with a conflict-free probability distribution
for all data cubes included in the constraints list at time instances
t = [t1, t2, ..., tn ], we want to form an HMM λ, and train it to find
the optimized path that is conflict-free. Our conflict resolution al-
gorithm for multiple aircraft is presented in Algorithm 3.

5 EVALUATION
To evaluate our system, we generated a number of test cases using
real trajectory and weather data from Europe and USA. Table 1
shows the European and USA airports forming the routes we used
in our evaluation. Although the ideal evaluation would use real
trajectories in actual conflicts, this is infeasible due to the nature of
ATC operations, where the controller would interfere and separate
the aircraft as soon as they are likely to infringe upon one another,

Table 1: A set of European and U.S.A. airports.

AirportCode AirportName

LEAL Alicante–Elche Airport
LEBL Barcelona–El Prat Airport
LECO A Coruña Airport
LEIB Ibiza Airport
LEMD Adolfo Suárez Madrid-Barajas Airport
LEMG Málaga Airport
LEMH Menorca Airport
LEPA Palma de Mallorca Airport
LEVC Valencia Airport
LEVX Vigo–Peinador Airport
LEZL Seville Airport
KATL Hartsfield-Jackson Atlanta International Airport
KBOS Boston Logan International Airport
KDFW Dallas/Fort Worth International Airport
KJAX Jacksonville International Airport
KLGA NewYork LaGuardia Airport
KMIA Miami International Airport
KORD Chicago O’Hare International Airport
KPIT Pittsburgh International Airport

so there would be no conflicts to find. Hence, we used a total of 16
European and USA pairs of flights that were in close proximity to
cause potential conflicts when a minimal perturbation was applied.

5.1 Setup
The raw trajectory data from Europe was provided by Spanish
ANSP, ENAIRE using a radar surveillance feed with a 5 seconds
update rate. The raw data was wrangled as part of the Data-driven
AiRcraft Trajectory prediction research (DART) project under the
SESAR Joint Undertaking Work Programme [33]. The European
trajectory data contains all commercial domestic flights for Spain,
a total of 119,563 raw trajectories and 80,784,192 raw trajectory
points for the period of January through November 2016. The fields
of the raw trajectory data are as follows: flight no, departure airport,
arrival airport, date, time, aircraft speed in X, Y, Z directions, and
position information (latitude, longitude, altitude). Note that, as a
preprocessing step, we downsampled raw trajectory data from the
original resolution of 5 seconds to 60 seconds and aligned them to
our 3D reference grid [2]. The raw trajectory data from the USAwas
extracted from an Aircraft Situation Display to Industry (ASDI) data
feed [11] which is recorded once in every 60 seconds and provided
in near real-time by the FAA. The USA trajectory data contains
flights between 8 major airports, a total of 4,628 raw trajectories and
450,919 raw trajectory points for the period of May 2010 through
December 2015. The fields of the raw trajectory data are as follows:
source center, date, time, aircraft Id, speed, latitude, longitude and
altitude. Both European and USA weather data were extracted from
the Global Forecast System (GFS), provided by the NOAA [16]. The
original data has 28-km spatial and 6-hour temporal resolution and
it contains over 40 weather parameters including atmospheric, cloud
and ground attributes for each grid point as part of its 3D weather
model. Hence, for this study’s geographic volume and time period
of interest, over 160TB of weather data was collected.



In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 239–248,
Seattle, WA, November 2018.

Table 2: Sizes of training and test datasets.

TestCase# Route#1 TraininдSetSize TestSetSize
Route#2 TraininдSetSize TestSetSize

#tr js #pts #tr js #pts #tr js #pts #tr js #pts
1 LEAL-LEBL 1118 55116 200 9860 LEMD-LEIB 2572 125623 200 9769
2 LEAL-LEBL 1118 55116 19 937 LEMD-LEMH 1056 68141 19 1226
3 LEAL-LEBL 1118 55116 152 7493 LEPA-LEMD 5116 306128 152 9095
4 LEBL-LEMG 1704 127451 43 3216 LEMD-LEMH 1056 68141 43 2775
5 LEBL-LEMG 1704 127451 180 13463 LEPA-LEMD 5116 306128 180 10771
6 LEBL-LEZL 2404 183343 41 3127 LEMD-LEAM 1434 70128 41 2005
7 LEBL-LEZL 2404 183343 46 3508 LEMD-LEMH 1056 68141 46 2968
8 LEBL-LEZL 2404 183343 164 12508 LEMG-LEMD 1403 75408 164 8815
9 LEBL-LEZL 2404 183343 210 16016 LEPA-LEMD 5116 306128 210 12566
10 LEIB-LEBL 1360 53443 259 10178 LEPA-LEMD 5116 306128 259 15498
11 LEIB-LEBL 1360 53443 158 6209 LEPA-LEVC 1426 50467 158 5592
12 LEMG-LEBL 1563 114767 38 2790 LEMD-LEAM 1434 70128 38 1858
13 LEMG-LEBL 1563 114767 46 3378 LEMD-LEIB 2572 125623 46 2247
14 LEZL-LEBL 2380 186299 40 3131 LEMD-LEIB 2572 125623 40 1954
15 KDFW-KJAX 1355 153970 19 2159 KATL-KMIA 1296 108005 19 1583
16 KLGA-KORD 1155 131454 62 7056 KPIT-KBOS 822 57490 62 4339

Due to fact that our current system aims at addressing the CDR
problem before departure, at least a pair of predicted trajectories are
needed as input. Hence, we used our previous system [2] to generate
a pair set of predicted trajectories. Next, we searched and found a
number of trajectory points between the two flights’ trajectories
in the first and second pair, where the date, latitude, longitude, and
altitude values matched, and time mismatched. By perturbing one
of the flights’ departure time we virtually created conflicts, where
both aircraft traversed the same trajectory point at the same time.
Table 2 shows the final size of training and test data in number
of trajectories (#tr j) and points (#pts). Note that trajectory data
alone contains over 4 million trajectory points. In Table 2, the test
data represents the conflicting trajectories. Aside from these 1,677
trajectory pairs, we also bootstrapped by drawing 100 additional
trajectory pairs with replacement from the trajectory set to test
for the false positive cases. Hence, we evaluated our CDR System’s
effectiveness with a total of 3,554 (3,354 + 200) test trajectories on
all 16 test cases.

5.2 Results
We evaluated our CDR System by comparing the output of conflict
detection and conflict resolution with the ground truth on 16 test
cases. Figure 4 illustrates the pairs with pertinent training and test
data in white and yellow lines for these test cases. To evaluate our
conflict detection capability we used trajectory prediction accuracy
metrics as outlined in [19] and computed horizontal and vertical
errors ehor iz , ever t . To compute the errors, we fed a pair set of
predicted trajectories generated by our previous system [2] into
our conflict detection algorithm and compared the locations of
virtual conflicts versus locations of conflicts detected by our CDR
system. Next, we created 4 bin sizes, where each bin size is an
integer multiple of 5nmi of lateral and 2000ft of vertical distances,
conventionally accepted as minimum separation values for enroute
airspace by ANSPs. Table 3 presents the pertinent condition for
each bin. Using horizontal and vertical error values, we counted the

number of conflicts in each case and found which bin they belong
to. The outcome is presented as a set of histograms in Figure 5. Our
algorithm detected 87.2% of the conflicts within the first bin size
and 99% of the conflicts within the first two bin sizes on all 16 test
cases. Note that the conflict detection can only be as accurate as
the predicted trajectories. Hence, these errors can be attributed to
the accuracy of our Trajectory Prediction System [2], defined by
the horizontal, and vertical error of 14.981nmi and 1589.452ft
respectively along the entire test trajectories.

To resolve the conflicts, we ran our conflict resolution algorithm
as highlighted in Section 4.2. Figure 6 is a closer look at one of
the detected and resolved conflicts by our system. In all figures,
the yellow cubes and white cubes represent the first and second
flight’s, respectively, predicted trajectories. The red line parallel to
the white cubes represents the first fight’s actual trajectory and the
red line parallel to the yellow cubes represents the second flight’s
actual trajectory. As both aircrafts move one cube at a time in the
flight direction, the PZ illustrated in the cyan cube around the
current position of the first flight also moves forward in the form
of a sliding window. The first figure on the far left shows where
each aircraft is at time ts−1, represented respectively by the solid
white cubes for the first and yellow cubes for the second flight.
The second figure from the left captures the conflict detected at
time interval ts by our system illustrated with a solid red cube.
The actual conflict occurs at where the red lines intersect. Note
that both the predicted conflict position and the actual conflict
position are within the first flight’s PZ . The third figure from the
left is the 3D view of the second figure from the left. The actual and
predicted conflict positions are only 2 cube sizes away from each
other, considering the center of the cube as the predicted position
of the aircraft. The figure in the far right illustrates the optimized
solution to the conflict by our system. The first flight’s trajectory
has been perturbed vertically and the conflict has been resolved
by our system. The altitude of the second flight has been elevated
resulting in conflict being resolved. Note that due to assignment
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Figure 4: Visual representation of training and test data for conflicting pairs of flights.

of low conflict-free probabilities to the 3D grid points inside of the
PZ , the system avoids selecting them during the conflict resolution
stage, generating conflict free trajectories.

As the final evaluation step, we executed our conflict resolu-
tion algorithm on all conflicts formed by 1677 trajectory pairs and
computed accuracy values based on the number of successful resolu-
tions. Due to the fact that our conflict resolution algorithm resolved
the vast majority of conflicts on all test cases, we provide aggre-
gated results overall, rather than provide results for each test case.
Table 4 presents accuracy values for each bin. Note that, to resolve
the conflicts, we treated each bin differently based on their varying
sizes so that only relevant 3D grid points were avoided. The process
perturbed the trajectory for the second flight, generated an optimal
alternative and yielded conflict-free trajectories.

6 DISCUSSION
Our conflict detection algorithm reached 6.012nmi of mean hori-
zontal error. Note that this value is considerably less than 14.981nmi,
the mean horizontal error by our Trajectory Prediction System [2]
along the entire trajectory points including climb, cruise and de-
scent phases of a flight. This is due to two major facts: 1) Trajectory

Table 3: Horizontal and vertical error ranges for the bins.

Condition Bin

0nmi ≤ ehor iz ≤ 5nmi ∧ 0ft ≤ ever t ≤ 2000ft 5nmi,2000ft
5nmi < ehor iz ≤ 10nmi ∨ 2000ft < ever t ≤ 4000ft 10nmi,4000ft
10nmi < ehor iz ≤ 15nmi ∨ 4000ft < ever t ≤ 6000ft 15nmi,6000ft
15nmi < ehor iz ≤ 20nmi ∨ 6000ft < ever t ≤ 8000ft 20nmi,8000ft

prediction accuracy during the cruise phase is often considerably
higher than the climb and descent phases of the flight. 2) All con-
flicts we used in our experiments took place during the cruise
phase of the flights. With 6.012nmi of mean horizontal error on
the conflict positions, our conflict detection algorithm found 99%
of conflicts within the first two bins of separation minima (10nmi,
4000ft). We also verified that between none of the additional 100
trajectory pairs where the virtual conflict has never occurred was
falsely detected as a conflict by our system. Our conflict resolution
algorithm’s mean accuracy was over 97% on all test cases. Though,
it is interesting to see that it was unable to reach 100% accuracy,
given the fact that all it had to do was avoid the selected 3D grid
points when generating the new conflict-free optimal trajectory.
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Figure 5: Conflict detection histograms showing how many conflicts were captured by our CDR System in each bin.

The reason for that was the sparse distribution of data cubes, i.e.
lack of data over the 3D grid network. The algorithm was unable
to connect the new trajectory segments from start to end due to
disconnection. Hence, our CDR System craves for more data to
reach higher accuracy values.

These results validate the effectiveness of our system on the long-
range CDR problem. However, this is not to say that strategic CDR
will detect and resolve conflicts once for all and no more conflicts
will occur during the flight. There will likely be some convective
weather patterns shaping after departure. These sudden changes
causing potential conflicts should be addressed tactically by short
and or medium-range CDR systems while the aircraft is airborne.
Although we were not able to find, there may also likely be some
exceptional cases where false positive conflicts may be found. These
cases should also be addressed tactically by short and or medium-
range CDR systems. Note that the larger the selected PZ value, the
higher probability of finding and resolving the conflicts between
trajectories. However, that also means less denser sectors resulting
in inefficient use of airspace. Hence, the tradeoff should be handled
carefully by the ANSPs.

Overall, we propose our system to be used by AOCs to file more
realistic flight plans. Our system can also be used by ANSPs to vali-
date that the filed flight plans do not cause conflicts with previously
approved flight plans or increase any sector traffic complexities.

These goals can be achieved in the planning phase before aircraft
depart, improving ATM automation and reducing the air traffic
controller workload.

Table 4: Accuracy of our conflict resolution algorithm.

Accuracy
Bin1 (5nmi, 2000ft) 98.4%
Bin2 (10nmi, 4000ft) 97.4%
Bin3 (15nmi, 6000ft) 93.7%
Bin4 (20nmi, 8000ft) 100.0%

7 CONCLUSION
We have presented a novel Prescriptive Analytics System address-
ing a long-range CDR problem. Our experiments on real trajectory
and weather datasets from two continents verify that our system
achieves lateral and vertical accuracies that are within the bound-
aries of conventionally accepted minimum separation values, set
by the ANSPs. With our system, ANSPs can detect and resolve
potential conflicts long before the aircraft depart, resulting in safer
and greener skies with higher efficiency and capacity, and thereby
reducing the air traffic controller workload.

Some future work could involve adding a spatial browsing ca-
pability [4, 7, 24] for the trajectories as well as incorporating our
methods in a distributed spatial environment [36].
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Figure 6: Illustration of a detected and resolved pairwise conflict by our system.
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