In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

Data Management and Analytics System for Online
Flight Conformance Monitoring and Anomaly Detection

Samet Ayhan®
University of Maryland
College Park, Maryland

sayhan@cs.umd.edu

ABSTRACT

Air Navigation Service Providers (ANSP) worldwide have been mak-
ing a considerable effort for the development of a better method to
monitor conformance to the planned routes and detect anomalies
within a particular airspace. Conformance monitoring and anomaly
detection are crucial for a better managed airspace, both strate-
gically and tactically, yielding a higher level of automation and
thereby reducing the air traffic controller’s workload. Although the
prior approaches with limited amount of static air traffic data have
been able to address the problem to some extent, data management
and query processing of ever-increasing vast volume of streaming
air traffic data at high rates for online conformance monitoring and
anomaly detection still remain a challenge. In this paper, we present
anovel data management and analytics system to continuously con-
formance monitor flights and accurately detect anomalies within
the National Airspace System (NAS). The incoming Traffic Flow
Management (TFM) data is streaming, big, uncorrelated and noisy.
In the overall data pipeline, the system monitors flights and detects
anomalies in 3 steps: In the preprocessing step, the system continu-
ously processes the incoming raw flight data and makes it available
for the next step where an interim Key-Value data store is created
and maintained for efficient query processing. In the final step, the
system learns from historical trajectories and pertinent weather
parameters and builds a Long Short-Term Memory (LSTM) model.
As the flights progress, the non-conforming trajectory segments as
part of the live data stream are raised as anomalies. Evaluations on
real air traffic and weather data in the U.S. verify that our system
efficiently and accurately detects anomalies.

CCS CONCEPTS

« Information systems — Stream management; - Computing
methodologies — Neural networks; « Applied computing —
Aerospace;

KEYWORDS
Big Data Analytics; Anomaly Detection; Air Traffic Management

“Senior Engineer at Boeing Research & Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL 19, November 5-8, 2019, Chicago, IL, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6909-1/19/11...$15.00
https://doi.org/10.1145/3347146.3359378

Hanan Samet
University of Maryland
College Park, Maryland

hjs@cs.umd.edu

1 INTRODUCTION

It is estimated that by 2040 the U.S. alone can expect an increase
of more than 68% in commercial air traffic [3]. The FAA’s Office
of Performance Analysis estimates show in 2017, the cost of de-
layed flights increased by 11.3%, from $23.9 to $26.6 billion. Most
of this increase was due to inefficiency in the National Airspace
System (NAS), resulting in the sum of costs to airlines, passengers,
lost demand, and direct costs [11]. The increasing inefficiency in
the NAS along with the expected growth in commercial air traffic
will require the expansion of Air Traffic Control (ATC) services
together with the implementation of advanced Air Traffic Man-
agement (ATM) concepts such as dynamic resectorization, free
flight, enhanced ground delay program, and airspace redesign, all
with the goal of improving the efficiency of the National Airspace
System (NAS) [2]. The expansion and deployment of these new
concepts and services are expected to enable higher degrees of
automation and predictability yielding a reduction in the air traffic
controllers workload. Changing airspace configurations and air
traffic patterns quantifies the controller’s workload and is highly
impacted by anomalies, non-conformance to established patterns or
dissimilarities between the generated model’s prediction and data
observation. Despite the fact that previous research offered various
solutions to the problem, i) they were limited with a particular
dataset i.e. Flight Operations Quality Assurance (FOQA) data [1]
that is exclusively available to the operating airline [25] or ii) they
were designed to run offline on static data [30], or iii) they lacked
scalability, i.e., they supported tracking a certain number of aircraft
at a time [10], or iv) they enabled monitoring conformance only at
a particular phase of a flight, i.e. enroute phase [10]. Overall, the
previous efforts didn’t offer a scalable solution, addressing online
conformance monitoring and anomaly detection during the entire
flight using streaming flight big data.

The FAA’s TFM Data Service is a pure Java Message Service
(JMS) and it provides near real-time streaming flight and flow data
to users via System Wide Information Management(SWIM). The
flight data includes flight plan, departure, arrival, track position,
boundary crossing and flight management related messages in
Flight Information Exchange (FIXM) format from each of the 20
Air Route Traffic Control Centers (ARTCC) systems. Although
each message is assigned a unique flight identifier, they are un-
correlated, noisy, streaming at higher rates, and large in volume.
Figure 1 shows the number of flight data messages based on their
types processed throughout May, 2018. An average of 6 million
flight messages is processed daily, where each flight plan and flight
management (trajectory) related messages is formed by tens of
position records, reaching up to over 20 million of processed points

https://doi.org/10.1145/3347146.3359378

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

ge Count

ess:

m m =
5M
am
2 3M
2
22Mm
1M
0
W P P

==
G N
X4 N
Q! N O
U Ui U v
c}\\\ (7\’\/\ & ,;L\

& e

||

| -

g N

£ 2
o N \’LQ

GGG
9\0’\ %\\y\ 9\"’\ o°

-
G
Y
P o

\¢
A P

O,

> I

% I
Q,

% I

% I

=
%
P

Q
AU
«7\0 43\«’&

A

Q Q
Y
&

§2)
%,

o\ O\

M Trackinformation B FlightSectors

M Departureinformation B Arrivalinformation M FlightScheduleActivate

= .
G2 D
N

\’\«

B OceanicReport

]
= ==

- -
S S S

Q Q Q' Q Q QO
AU G P I U LN
MU A AP GNP A

A
CR

Date
FlightPlanAmendmentinfo ® FlightModify

M BoundaryCrossingUpdate M FlightTimes M FlightPlaninformation

B FlightCreate M FlightPlanCancellation FlightRoute

Figure 1: Counts of daily processed flight messages broken down by the message type over May 2018.

from over 100,000 unique flights per day. Clearly, for any analyt-
ics to be useful over this dataset a data management solution is
required. Hence, in response to the online conformance monitor-
ing and anomaly detection problem, we have implemented a novel
data management and analytics system using the FAA’s TFM big
data. The system continuously processes streaming flight data by
cleansing and correlating it. The processed data is maintained in a
Key-Value data store for efficient query processing, where unique
patterns are discovered during the descriptive analytics stage in the
pipeline. Using historical trajectories, salient features are collected
and fed into various LSTM models. The best performing model is
adaptively selected and used for predictive analytics. The resulting
anomalies in the NAS are presented to the user.

Although this paper presents a custom pipeline to address on-
line conformance monitoring and anomaly detection problem, the
proposed system is flexible to accommodate other pipelines in sup-
port of various use-cases in the aviation domain. With its unified
storage and computing engine, the system offers an enhanced dis-
tributed computing paradigm based on MapReduce. As the main
building block, the system utilizes Apache Spark [12], an open-
source distributed computing framework. Although Spark achieves
high-performance distributed computing, it poses limitations with
its imperfect indexing mechanisms and inefficient runtime data
persistence. Hence, the system complements Apache Spark with
Apache Ignite [9], an in-memory distributed Key-Value store for ef-
ficient query processing and robust data management. In summary,
the contributions of this paper are as follows:

e We propose an end-to-end flight big data management and
analytics system that is flexible to accommodate custom
pipelines for various aviation specific use cases.

o Our scalable system leverages the MapReduce paradigm com-
plemented by distributed in-memory data store in support
of efficient analytics query processing using TFM big data.

e Extensive experiments on massive real flight and weather
data demonstrate that our system efficiently monitors con-
formance and detects anomalies in the NAS.

Our data management and analytics system can be used as a
ground-based decision support tool by airlines and ANSPs. Accurate
anomaly detection translates to an improved efficiency of the NAS,
resulting in higher degrees of automation and thereby reduced

amount of air traffic controller’s workload. The rest of the paper
is organized as follows: Section 2 reviews related work. Section 3
introduces preliminary concepts followed by Section 4 where our
data management and analytics system is elaborated. Section 5
presents the results of our experiments while concluding remarks
are drawn in Section 6.

2 RELATED WORK

Trajectories are usually discussed for cars along roads [42] with an
emphasis on queries (e.g., [35, 36, 39-41]). Here we are interested in
aircraft trajectories. Big trajectory data management and analytics
remains an active area of research both in the data management
and data mining domains as well as in the transportation domain.
Several systems have been proposed in the data management and
data mining domains thus far. BerlinMOD [27], PIST [21], and Tra-
jStore [24] offer a similar storage and indexing technique using
traditional database engines. Simba [46] and SpatialHadoop [28]
enable distributed spatial analytics based on the MapReduce pro-
gramming model. Although they are capable of processing big
trajectory data, they suffer from inefficiency due to high overhead
rates of the underlying programming model. A column-oriented
storage system SharkDB [48] offers efficient query processing and
analytics capabilities. However, due to being a complete in-memory
approach, it falls short when handling massive volumes of trajectory
data. Unlike other systems, CloST [44], Elite [47], PARADASE [33],
and a cloud based system [20] offer a specific partitioning tech-
nique in distributed environments for a potential of higher query
processing efficiency. UlTraMan [26] is another system aiming to
deliver efficient query processing in a distributed environment,
with a more flexible partitioning approach. Nonetheless, it doesn’t
integrate the meta table construction into global indexes. There are
a few other systems that support distributed storage and computing
by integrating Apache Spark [12]. These systems include Apache
GemFire [5], IndexRDD [13], and SnappyData [37]. Although these
systems leverage Apache Spark in support of efficient streaming,
transactions, and interactive analytics, they do not provide flexible
operations and optimizations for trajectory data analytics.

In fact none of the above systems is specifically developed for
management and analytics of flight big data. They are all generic
purpose data management and analytics systems with no specific
domain knowledge included in their design and implementation.

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

Hence, adapting these systems to our specific use case in the avia-
tion domain requires considerable amount of extra effort. In con-
trast, our system has been specifically designed and optimized for
efficient management and analytics of flight big data to address the
online conformance monitoring and anomaly detection problem.
In their survey, Gupta et al. [31] present an organized overview
of the various techniques proposed for outlier detection on tempo-
ral data. Chandola et al. [23] present an excellent survey to provide
a broad overview of extensive research on anomaly detection tech-
niques. They formulate the anomaly detection problem on the basis
of several different factors. One way to categorize them is based on
the nature of the input data. Input data can be discrete, categorical,
or continuous. The attributes of input data can be univariate or
multivariate. The input data can also be classified based on the
relationship present among data instances, such as sequence data,
spatial data, graph data, and profile data. Prior research [25, 30, 34]
has extensively used FOQA data, which is a multivariate dataset
formed by discrete and categorical input. Though, the data is col-
lected by the operating airline and made proprietary. An important
aspect of an anomaly detection technique is the nature of the de-
sired anomaly. Anomalies can be classified into point, contextual,
and collective anomalies. The labels associated with a data instance
denote whether that instance is normal or anomalous. Based on
the extent to which the labels are available, anomaly detection
techniques can operate in supervised, semisupervised and unsuper-
vised mode. Anomalies can also be detected based on classification
techniques such as neural network-based, bayesian-network based,
support vector machines-based, and rule-based. The rule-based
approach is such that given the input and the predefined ranges, if
the exceedance is observed an anomaly is reported [4]. Although
simple and fast, this approach is limited since it examines each
feature independently, omitting potential correlations among them.
The concept of nearest neighbor analysis has been used in several
anomaly detection techniques. Such techniques are based on the as-
sumption that normal data instances occur in dense neighborhoods,
while anomalies occur far from their closest neighbors. Li et al used
a similar approach called ClusterAD [32]. Gorinevsky et al. [30]
propose a method based on a custom linear regression model to
describe the aerodynamic forces acting on an aircraft. However, the
proposed model requires significant domain knowledge, thereby
limiting its design. Das et al. [25] introduce the MKAD multiple
kernel learning approach to detect potential safety anomalies in
FOQA data. They pose a general anomaly detection problem which
includes both discrete and continuous data streams, where they
assume that the discrete streams have a causal influence on the con-
tinuous streams. They also assume that atypical sequences of events
in the discrete streams can lead to off-nominal system performance.
Although the results are promising, the algorithm lacks scalability
since the kernel matrix needs to be updated for each test flight.
Melnyk et al. [34] also focus on the aviation safety domain, where
data objects are flights and time series are sensor readings and
pilot switches. In this context the goal is to detect anomalous flight
segments, due to mechanical, environmental, or human factors
in order to identify operationally significant events and highlight
potential safety risks. For this purpose, they propose a framework
which represents each flight using a semi-Markov switching vector
autoregressive (SMS-VAR) model. Detection of anomalies is then

based on measuring dissimilarities between the model’s prediction
and data observation. They position SMS-VAR as a short-memory
model and propose an anomaly detector that specifically targets
short-term anomaly events. However, their analysis only focuses
on a limited portion of the flight below 10000 ft until touchdown.

Although these efforts with a focus on aviation safety case
yielded valuable research, a complete data management and an-
alytics system for online conformance monitoring and anomaly
detection has not yet been proposed. In fact, except for En Route
Automation Modernization (ERAM) [10], none of the prior research
in anomaly detection has ever used flight big data provided by the
FAA’s SWIM TFM Data Service, which is a non proprietary flight
data source and is available to its subscribers. In 2015, the FAA has
deployed ERAM at 20 FAA ARTCCs nationwide to monitor confor-
mance of enroute flights. However, due to the estimated growth
of commercial air traffic along with expected inclusion of massive
number of unmanned aircraft in the NAS within the next decade,
ERAM'’s limited support of conformance monitoring for only 1,900
flights for each control center is concerning. Our previous work [16]
has aimed at addressing flight big data management and analytics.
However, it used an obsolete data model, Aircraft Situation Display
to Industry (ASDI) [6], which the FAA has stopped supporting. It
also used RDBMS with a traditional database engine that suffered
from inefficiency. Unlike the previous systems, our current pro-
posed system uses the latest TFM data, provided by the FAA and
is optimized for efficient storage and query processing of flight
big data. With its unified platform based on Apache Spark, which
is seamlessly integrated with a distributed, in-memory Key-Value
store, the system achieves scalability, efficiency, persistence, and
flexibility. The system continuously monitors conformance and
accurately detects anomalies in the NAS.

3 BACKGROUND AND OVERVIEW

Our system spans across multiple domains including data man-
agement using high-performance distributed computing and data
mining using neural networks, both towards addressing the con-
formance monitoring and anomaly detection in the aviation do-
main. Consequently, we introduce the underlying concepts, build-
ing blocks, and overview of our system, followed by the specifics
of TFM and weather data.

3.1 Concepts

DEFINITION 1. Air traffic clearance means an authorization by
ATC for an aircraft to proceed under specified traffic conditions within
a controlled airspace for the purpose of preventing collision between
known aircraft.

DEFINITION 2. Anomalies are patterns in data that do not con-
form to a well defined notion of normal behavior.

DEFINITION 3. Anomaly detection defines a region representing
normal behavior, and declares an anomaly when observing a behavior
in the data that does not belong to this normal behavior.

DEFINITION 4. Conformance monitoring is an essential func-
tion in ATC to determine if aircraft are adhering to their assigned
clearances so that safety, security, and efficiency can be maintained.

In the context of ATM, assigned clearances are the regions repre-
senting normal behavior in the air traffic domain. However, the nor-
mal behavior, i.e. assigned clearances keep evolving based on ever

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

Application [Spark Shell (CLI)] [Domain Specific] []

Operation [Load] [Preprocess] [Extract] [Data Mine]

! Global Index 1 i Metadata]
I
E E { |:B+ Tree E
I
Computation E E | LFree List E
’ I‘ J
(T igniteRoD T p
:\[Partition D] [Partition l] [Partition 2] [Partition 3] []E
e e ¥ - .

i Ke
! yValue
:tOn HeapJ[—]

<

Storage

Figure 2: The high level system architecture.

changing factors such as air traffic and weather parameters. More-
over, it is unfeasible to communicate and compare each assigned
clearance with the current position of each aircraft along their flight
routes throughout the entire flight when massive amounts of flight
data are considered. The current system used by the FAA, ERAM,
monitors conformance of aircraft only during the enroute phase
of a flight. Other flight phases such as climb and descent are mon-
itored for conformance by towers and Terminal Radar Approach
Controls (TRACON) and the pertinent data are stored in insulated
silos. In contrast, our system continuously queries flight big data
throughout the entire flight and discovers the normal behavior by
performing descriptive analytics in aggregation. Next, the system
adaptively builds various LSTM models based on evolving normal
behavior and detect anomalies. To achieve these goals, the system
utilizes a unified platform, made up of a number of building blocks
that deliver scalability, efficiency, persistence, and flexibility.

3.2 Building Blocks

Apache Spark [12] is a distributed computing framework to ad-
dress big data problems. In Spark, distributed computing tasks
are submitted through an abstraction called Resilient Distributed
Datasets (RDD), which is a read-only collection of objects parti-
tioned across a set of machines that can be rebuilt if a partition is
lost. The tasks are physically conducted by executors, which are
Java Virtual Machine (JVM) processes running on a worker node,
that internally uses a block manager to manage its cached data par-
titions. Spark utilizes in-memory caching and recomputation-based
fault tolerance to enable high-performance distributed computing.
However, Spark’s design trade-offs also introduce shortcomings
such as an unexpected overhead due to massive on-heap caching,
and high cost of recomputation. Hence, due to these limitations,
we complement Spark with Apache Ignite.

Apache Ignite [9] is a memory-centric distributed database,
caching, and processing platform, which is designed for transac-
tional, analytical, and streaming workloads, delivering in-memory
performance at scale. Combining Apache Spark with Ignite provides
a number of significant benefits: i) true in-memory performance
at scale can be achieved by avoiding data movement from a data
source to Spark workers and applications, ii) RDD, DataFrame and

SQL performance can be boosted, and iii) State and data can be
more easily shared among Spark jobs. Ignite offers an implementa-
tion of the SparkRDD. This implementation allows any data and
state to be shared in memory as RDDs across Spark jobs. This RDD
is called IgniteRDD and it provides a shared, mutable view of the
same data in-memory in Ignite across different Spark jobs, workers,
or applications.

3.3 Overview

Our system is designed to have a master/slave architecture, formed
by a driver node and multiple worker nodes. The driver node is
responsible for orchestrating the tasks by assigning and scheduling
them across the worker nodes. Hence, data storage and computation
are distributed among the worker nodes. Figure 2 illustrates the
high level system architecture. The system is comprised of four
layers: i) Storage layer is the bottom layer that rests on HDFS,
where all data and indexes are managed. When an RDD is cached,
all data partitions in on-heap and off-heap Ignite instances are
stored. Hence, both on-heap and off-heap instances can be randomly
accessed, providing optimization for the layers that reside over this
layer. ii) Computation layer is on top of Storage layer and is designed
to support distributed computing. By utilizing IgniteRDD along
with index and partition schema, distributed tasks can be scheduled
at particular partitions. iii) Operation layer is located above the
Computation layer and used for preprocessing operations such as
Extract Load Transform (ETL) and postprocessing operations such
as aggregation and mining. iv) Application layer is the top layer
above the Operation layer and exposes a number of interfaces to
interact with the system.

Figure 3 captures the data flow and processing steps within the
overall system pipeline. The FAA’s SWIM TFM data is provided
through a set of Java Message Service (JMS) topics. Ignite JMS Data
Streamer consumes from the pertaining topic, and streams the data
into Ignite caches. The data is automatically partitioned between
Ignite nodes and made available for preprocessing steps including
transformation, cleaning, and correlation. Each preprocessing step
is elaborated in Section 4. The preprocessed data in the form of a
Key-Value documents is stored in HDFS, as cold flight data. The
system extracts and collects the salient features, and periodically
builds a new LSTM model using the stored data. As the new position
records for each flight keep coming in, the system stores them in
the Ignite cache and compares with the predicted values to detect
anomalies, if any. Hence, the higher volume and the more recent
the data, the more accurate the anomaly detection becomes.

3.4 TFM Data

The FAA’s TFM Data Service is a pure JMS and it provides near
real-time streaming flight and flow data to users via SWIM. The
flow data includes reroutes, ground stops, ground delay programs,
airspace flow programs, collaborative trajectory options program,
etc. Although our system consumes and stores flow data type [8],
our focus in this research is the flight data as in [17]. Figure 4 shows
the high level TFM flight data schema as part of the TFM Data Ser-
vice. The flight data includes track information, flight plans, flight
plan amendments, flight plan cancellations, departure and arrival
time notifications, oceanic information, boundary crossings, and flight

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

|
)/,S | E [Spark Application (Anomaly detection w/LSTM)] :
e : |
! I
! I
! I
: clean salient adaptively |
SWIM | correlate features build LSTM !
TEM data || JIMS Data |
Topic : Streamer |
| In-Memory Shared RDD (Mutable hot flight data) :
|
| Ignite Node Ignite Node :
|
|
: t persist & load t persist & load :
|
| | [HDFS (Cold flight data)] !
I S A\ I ____ L _______]

Step 1: Loading

Step 2: Preprocessing

Step 3: Extraction Step 4: Analytics

Figure 3: The overall system pipeline.

management information. Among these message types track infor-
mation, flight plan, and flight management information are more
critical for development of conformance monitoring and anomaly
detection use case. The track information messages are used to
provide a position record with a 1 minute update rate.

3.5 Weather Data

The source of the weather data is NOAA National Centers for
Environmental Prediction (NCEP) Rapid Refresh (RAP) [7] which is
the continental-scale NOAA hourly-updated assimilation/modeling
system. RAP covers North America and is comprised primarily of
a numerical forecast model and an analysis/assimilation system
to initialize that model. It has 13 km horizontal resolution with 50
vertical levels. The RAP weather data is stored as a set of grib2 7]
files each hour and made available for use by our system.

[tfmDataService fltdOutput fltdMessage

—[flightPlanAmendmentinformation —[ncsmFlightControl

ncsmFlightCreate
—[beaconCodelnformation ncsmFlightModify

—[ncsmFlightScheduleActivate
—[flightPlanCancellation ncsmFlightRoute

ncsmFlightSectors
~[boundaryCrossingUpdate ncsmFlightTimes

Figure 4: The high level TFM flight data schema.

—[flightPlanInformation

—[departurelnformation

4 DATA MANAGEMENT AND ANALYTICS
SYSTEM

The system performs data management, where the streaming flight
big data is ingested, processed and and stored, and ii) analytics,
where the LSTM models are adaptively built and anomalous trajec-
tory segments across the NAS are detected using neural networks.

4.1 Data Management

Data management tasks are performed across all steps in the system
pipeline as illustrated in Figure 3. These steps include i) loading, ii)
preprocessing, iii) extraction, and iv) analytics.

In the loading step, the streaming TFM flight big data provided
by the FAA’s SWIM Program is consumed of JMS topics by Ignite
JMS Data Consumers. With the support of threading, consumers
listen to a wide range of topics providing flight messages in different
patterns, i.e., time-based or event based and concurrently consume
them. The data is automatically partitioned in the cache across
Ignite nodes and made available for preprocessing steps.

In the preprocessing step, the partitioned data across the Ignite
nodes are made available for correlation. The purpose of the correla-
tion process is to tag flight plans and track messages from multiple
ATC centers relating to the same flight with a unique identifier. The
Ignite JMS Data Streamer keeps consuming the TFM flight data
without the knowledge of which messages are associated with each
flight. This is partly due to lack of a global unique identifier used
by ATC centers. To correlate position related messages with flight
plans, the system builds a list of all active flights with a matching
aircraft identifier, as well as departure and arrival airport. If there
is only a single matching flight, the message is correlated with
that flight. If there are multiple matching active aircraft identifiers,
the flight plan with the closest matching last known position is
correlated. Hence, index construction is included in this step.

As part of the cleaning process, string data type used for date
and time objects are corrected by transforming them into DateTime
data type. In addition, as diverse set of units and definitions are
available for various flight data elements such as speed (indicated
air speed, true air speed, calibrated air speed, ground speed, etc.)
and altitude (flight level, pressure altitude, absolute altitude, etc.) in
various units (feet, miles, nautical miles, etc.), they are transformed
to a single definition and measuring unit based on the element to
ensure unity across the entire flight dataset. Next, the raw TFM
flight data in mutable RDD is converted from XML to a Key-Value
pair. The Key-Value pairs for track information type flight messages
are transferred to HDFS as soon as a new position record is received
for the same flight at the end of a 1 minute time interval. The same
logic applies to other message types. Hence, historical cold flight
data is persisted in HDFS.

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

date time speed altitude latitude longitude aircraftType temperature windSpeed windDirection humidity pressure
20140811 17.58.37 213 42,4959 33.610203 -B4.347098 B7532 18.76200104 2.021774292 230.2754669 87.8347702 86902.66406
20140811 17.59.37 369 67.0758 33.597624 -B84.610052 B752 14.55711842 3984108448 281.4566345 79.17433167 79238.73438

20140811 18.00.37 248 103.2677 33.505093 -84.356068 B752

9.169438362 2.798942327 317.9927368 62.9315567 68961.70313

Figure 5: A sample feature set for a flight between Atlanta and NewYork City.

In the extraction step, the current unique airborne flights are
identified based upon the streaming position reports received in
IgniteRDD. Using these unique flights, two processes are performed
in parallel: 1) for each unique airborne flight, the pertinent histori-
cal trajectories are found in the cold flight data in HDFS. For each
trajectory segment, salient features such as spatio-temporal data
(latitude, longitude, altitude, and timestamp) and aircraft type are
extracted. Using timestamps in the historical trajectory data, per-
tinent weather parameters such as temperature, wind speed, wind
direction, humidity, and pressure are collected. This data extraction
and collection is periodically performed as a Spark batch job on
HDFS. 2) For each new position report received for the current
unique airborne flight, pertinent weather parameters are collected
in IgniteRDD. Hence, at the end of the extraction step, a feature
set is created for the current position report in the IgniteRDD, as
well as for the historical trajectory segments in HDFS for the same
unique airborne flight across the NAS. A sample feature set for
flight between Atlanta and NewYork City is shown in Figure 5

pt—l
2
BN
<N\
LSTM
model ;
LSTM
model
LSTM
model t-1

Figure 6: Illustration of anomaly detection.

4.2 Analytics

Upon collection of a salient feature set in the form of a time series,
a predictive model is created for each unique airborne flight across
the NAS. Our system uses LSTM model to predict the time series
of aircraft positions. Now, we briefly review the LSTM.

Given a time series data x1, x2, ..., x¢, the Recurrent Neural Net-
work (RNN) is defined by the following recurrent relation:

ht = O'(Wxt + Uhtfl + b)
where, x; € RY is the input at time t, W € R4 [€ R™™ p ¢ RD
are the hidden state parameters, h; and h;—; € R™ are the hidden
state vectors at times t and t — 1, respectively, and o is the logistic
sigmoid function. The main issue with the RNN model is that it can

suffer from vanishing and exploding gradients. To address the van-
ishing/exploding gradient problem by backpropagating a constant
error gradient, LSTM has been introduced. The LSTM defines a
new hidden state, a cell. Each cell has its own state, cell state, which
acts like a memory, and various control mechanisms, gates, enable
modification of the cell memory. With these components, the LSTM
can learn when to forget the old memories, forget gate, when to
add new memories from the current input, input gate, and what
memories to present as output from the current cell, output gate.

An aircraft trajectory is nothing more than a set of 3D positions
in the form of a timeseries [15, 18, 19]. Hence, LSTM is well-suited
for predicting the next position(s) of an aircraft, given the features
for the current position and the features for the historically tra-
versed positions. We use both Standard LSTM (LSTM-STD) and
Sequential Encoder-Decoder LSTM (LSTM-SED) [43] in this work.
To address the prediction problem, our system builds an LSTM
model for each unique airborne flight based on multivariate and
variable length historical trajectory data along with other salient
features. As illustrated in Figure 6, the last position of the aircraft
at time instance t — 1 is p;_1, the current position of the aircraft at
time instance ¢ is p;, and the next position of the aircraft at time
instance t + 1 is ps4+1. As the flight progresses, a new LSTM model
(LSTM-STD) is adaptively created at each time instance. Using the
current LSTM model (LSTM-STD), LSTMmodel;, the next position
of the aircraft at time instance ¢ + 1 is predicted, which is p; ;. In
the case of LSTM-SED, a new LSTM model is created at each k time
instance and the next k positions of the aircraft are predicted as
a batch process. Due to the fact that the distance value on x axis,
dy is greater than the configurable threshold value r,ie.,dx > 1,
the system declares an anomaly. Note that our system assumes a
virtual cylinder surrounding each aircraft, where the radius of the
virtual cylinder is determined based on the norms computed at that
time instance. Hence, upon receipt of a new position report for each
unique airborne flight, the system computes the distance between
the current aircraft position and the predicted aircraft position and
declares an anomaly when any of the distance values (dx, dy, d;)
is greater than the norm (), which is similar to computing a point
in polygon algorithm [14] and declaring an anomaly when point
doesn’t reside in the surrounding virtual cylinder. This approach
also relies on the assumption that the mean error of our prediction
method is less than or equal to the norm (u < r).

5 EVALUATION

In this section, we evaluate the performance, scalability, and accu-
racy of our system using real flight and weather data. We conduct
experiments on data processing, extraction, and anomaly detection.

5.1 Setup

All experiments were conducted on a cluster of 12 nodes. Each
node is equipped with two 12-core processors, 128GB RAM, and

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

Table 1: Statistics of the dataset.

Attribute ‘ FlightData ‘ WeatherData
Raw size 1.2TB 73.4GB
Trajectories 26,624,018 -
Points 4,216,048,661 | 4,216,048,661
Processed size 130,2GB 50.4GB
LSTM size 45.6GB 37.7GB

a Gigabit Ethernet. Each cluster node is equipped with a Ubuntu
14.03.3 LTS Operation System with Hadoop 2.7.1, Spark 2.3.0, and
Ignite 2.6. In the cluster, one node is chosen as the master node and
driver node, and the remaining nodes are slaves nodes. In each slave
node, 64GB main memory is allocated for Ignite, of which 32GB
is allocated for data storage and the remaining 32GB is allocated
for temporary objects. We use the TFM Flight data provided by the
FAA along with pertinent weather data provided by the NOAA [7]
for the time period of 6 months (180 days, between 1 February
and 31 July) in 2018 to test the performance of our system. Table 1
lists the statistics of the dataset for the duration of 6 months. The
processed historical cold flight and weather data reside in HDFS.
The online data including streaming new flight messages and LSTM
model reside in the memory. The LSTM size refers to cumulative
size. To evaluate the analytics capability of our system, we use the
top 9 busiest routes in the U.S. and compute the mean error as
the Root Mean Square Error (RMSE) for each route. Table 2 shows
the airports with their International Civil Aviation Organization
(ICAO) codes, that form these routes.

Table 2: A set of airports with their ICAO codes.

AirportCode ‘ AirportName

KATL Hartsfield-Jackson Atlanta Int’l Airport
KDCA Reagan National Airport

KJFK John F. Kennedy Int’l Airport

KLAX Los Angeles Int’l Airport

KLGA LaGuardia Airport

KMCO Orlando Int’l Airport

KMIA Miami International Airport

KMSP Minneapolis Saint Paul Int’] Airport
KORD Chicago O’Hare International Airport
KSFO San Francisco Int’l Airport

5.2 Results

We first evaluate the running times of various preprocessing tasks
in our system. To show the performance of our system on different
data sizes, we split the same dataset into 2 equal parts and present
the results for i) the dataset of 3-months (between 1 February 2018
and 30 April 2018) and ii) the dataset of 6-months (the entire dataset).
Table 3 shows the results as an average of 100 random queries for
these techniques on TFM flight and weather dataset of 3 months
and 6 months in 2018.

Note that Partitioned mode in Ignite is the most scalable dis-
tributed cache mode and data is split equally into partitions, cre-
ating a massive distributed store. With this approach, our system

Table 3: Preprocessing times.

Preprocessing Time(sec) Time(sec)
Task ((1/2)Dataset) | (FullDataset)
Partitioning 34.546 50.721
Indexing 0.197 0.318
Key-Value Persistence 5.651 14.543
Data Extraction 3.026 6.523

is able to store all flight and weather data in the total memory
(RAM and disk). Unlike Replicated mode, updates are relatively less
expensive due to fact only one primary node needs to be updated
for every key. However, reads are relatively more expensive due
to the fact that only certain nodes have the data cached. To avoid
extra data movement, it is critical to access the data exactly on the
node that has the particular data cached. Although persistence is
optional in Ignite, we persist the cold flight and weather data in
HDFS. When turned off, Ignite becomes a pure in-memory store.
Our system uses a multi-field index that allows accelerating queries
with complex conditions.

We can make a few remarks based on the preprocessing times
of various tasks on various data sizes. i) The largest figures in the
table are for partitioning. Although it is an automated process in
Ignite, it still is a major time consuming task. ii) The running time
for partition for different dataset sizes shows that it is proportional
to the dataset size. iii) The Key-Value Persistence is relatively slow
when the dataset size is doubled, and this is because additional
time is needed to serialize the data to be stored in off-heap memory
when the entire data doesn’t fit in memory. iv) The indexing time
is the smallest figure among all preprocessing times.

Next, we evaluate the running times of ID queries on the same
dataset, measuring the query throughput based on a number of
operations per second and the query latency in milliseconds. As
previously employed, we range-partition the dataset based on two
date ranges of the first 3 months and the entire dataset, and present
the results for the query performance as an average of 100 random
queries. Table 4 shows the ID query performance on TFM flight
and weather dataset of 3 months and 6 months in 2018.

Table 4: ID query performance.

Throughput | Latency

Dat tSi
atasetSize (Ops/sec) (ms)
(1/2) of Dataset 17,422 3.11
Full Dataset 9,128 4.47

The linearly decreasing pattern is obvious based on the through-
put figures for the first half of the dataset versus the entire dataset
in Table 4. This is because the query is executed over partitioned
data, i.e., the query is parsed and split into multiple map queries and
a single reduce query. All map queries are executed on all the nodes
where required data resides. All the nodes provide result sets to the
query initiator (reducer), where the reduce phase is performed by
merging provided result sets. Although we may not be able to make
the same comment for the latency, i.e., it doesn’t linearly scale with
respect to the data size, the latency of ID queries on the off-heap

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

VR 4

g) Train and test trajectory dataset for the KORD-KDCA route h) Train and test trajectory dataset for the KORD-KJFK route i) Train and test trajectory dataset for the KORD-KMSP

y dataset for the KATL-KORD

Figure 7: Illustration of the training and test trajectories for the top 9 busiest routes in the U.S.

persisted IgniteRDDs increases faster than those on the on-heap
IgniteRDDs. Moreover, data persisted on Key-Value store can be
queried faster than that persisted on off-heap.

Finally, we evaluate the analytics capability of our system by
following a two-step process: i) we randomly replace a set of origi-
nal trajectory points with anomalous trajectory points in the TFM
flight data for the top 9 busiest routes in the U.S., ii) we generate a
confusion matrix and compute the accuracy, precision, recall, and
F1 values for our system. However, in order for our system to de-
tect anomalous trajectory segments, i.e. declare anomaly, it should
accurately predict the next position of an aircraft based upon the
LSTM model built by historical data. Hence, first we present the
trajectory prediction accuracy of our system. To do that, we use
TFM flight data along with weather data for the top 9 busiest routes
in the U.S. and build an LSTM model for each route. Figure 7 shows
the training and test trajectories for the top 9 busiest routes in
the U.S. As the flight progresses, the system continuously receives
and processes streaming flight data including position information
for the top 9 busiest routes in the U.S. The system uses historical
flight and weather data to build an LSTM model for each route. As
elaborated in Section 4.2, our system uses both the Standard LSTM
(LSTM-STD) and Sequential Encoder-Decoder LSTM (LSTM-SED).
In the case of LSTM-STD, the system predicts the next 3D position
of each aircraft in the same route. In the case of LSTM-SED, the
system predicts k number of next 3D positions at each k number of
time steps. In either case, the system defines each LSTM model with

50 neurons in the first hidden layer and 3 neurons in the output
layer for predicting 3D position(s). The system uses the Mean Ab-
solute Error (MAE) loss function and the efficient Adam version of
stochastic gradient descent. The model is fit for 100 training epochs
with a batch size of 72. Although, our evaluation uses both LSTMs,
we present results for the LSTM-STD, as it reaches higher accuracy
with the cost of increased running times.

To assess the accuracy of each LSTM model, we analyze their
behavior over the epochs while they are built. The training history
for each LSTM model can be used to diagnose the behavior of the
model. In the case of an overfit model, the train loss slopes down and
the validation loss slopes down, hits an inflection point, and starts
to slope up again. In the case of an underfit model, the training loss
is lower than the validation loss, and the validation loss has a trend
that suggests further improvements are possible. As illustrated in
Figure 8, an overall good fit can be observed on all routes, where
the train and validation loss decrease and stabilize around the same
point. The only exception may be considered Figure 8d, where
test loss drops below train loss at particular positions on the x-
axis. Hence, the model may be slightly overfitting the training data
which may be due to a high variance. We can easily verify that
on Figure 7d, where wide range of lateral flight patterns between
KLAX and KJFK is observed.

Next, we compute the trajectory prediction mean error of our
system, by comparing the predicted next position of an aircraft
with the ground truth, i.e. the actual next position of an aircraft.

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

0.04 —— train 505 —— train 903 —— train
test test 0.04 test
0.03 0.04
2 g g 0.03
S = 0.03 = -
0.01 e e e e 002 \. R VR w08 0.01 7 COSEE D e
[20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch
a) Loss for the KATL-KLGA flights b) Loss for the KATL-KMCO flights c) Loss for the KATL-KORD flights
0.020 —— train —— train 0:08 —— train
test test
0.04 ol test
, 0015 " "
wn w wn
8 So.03 So04
0.010
e A v 0.02{ Y 0.02{ |\
0.005{ ! V{7 Sl A aacMan A a A, el e g R P < SR
0 20 40 60 80 160 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch
d) Loss for the KLAX-KJFK flights e) Loss for the KLAX-KSFO flights f) Loss for the KMIA-KLGA flights
0.10 —— train 0.08 —— train —— train
0.08 test test 0.08 test
- » 0.06 i
J w
£ 0.06 g el
= —0.04 3
0.04 0.04
0.02 i) » 0:02 N o] Nee oo oo o
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch

g) Loss for the KORD-KDCA flights

h) Loss for the KORD-KIFK flights

i) Loss for the KORD-KMSP flights

Figure 8: Illustration of LSTM loss on the training and test datasets for the top 9 busiest routes in the U.S.

Note that, lateral prediction error is formed by two components,
prediction error in latitude and prediction error in longitude. The
vertical prediction error is computed by comparing the predicted

next altitude of aircraft with the actual next altitude of aircraft.

Table 5 shows the top 9 busiest routes in the U.S. with their lateral
position prediction mean error in nautical miles (nmi) and vertical
position (altitude) prediction mean error in feet (ft) by LSTM. To
evaluate the anomaly detection capability of our system, we first
bootstrap by drawing 100,000 trajectories with replacement from a
total of 3,461,122 historical trajectories for the top 9 busiest routes in
the U.S. and replace an existing trajectory point with an anomalous
trajectory point. This is to generate a set of test cases with a virtual
ground truth to test our system. The process allows us to plot 95%

confidence interval for the mean error of our trajectory samples.

Next, we run our system to see how many of those anomalous
trajectory points are correctly and incorrectly found. We present the
results in a confusion matrix as shown in Table 6. Given the results
presented in Table 6, the first observation is that our system is able
to detect 97,892 anomalies and unable to detect 2,108 anomalies
out of 100,000 virtually created anomalies. The reason for the 2,108
cases where our system was unable to find anomaly is due to the
accuracy of LSTM model built at that particular time instance, as the
LSTM model is adaptively built at each time instance. The second
observation is that our system detects 37 anomalies when none of
them is one of the 100,000 virtually created anomalies. However, a
close analysis reveals that although these 37 anomalies don’t belong
to the virtually created anomaly set, they are indeed anomalies.
Though, in our confusion matrix, we still consider them as False

Positives. With these True Positive, True Negative, False Positive
and False Negative counts, our system reaches 99.9%, 100.0%, 97.9%,
and 98.9% accuracy, precision, recall, and F1 values, respectively.
In addition, we also build an LSTM-SED for each route once every
5 minutes and compare the outcome with the LSTM-STD’s. The
results verify a slightly degraded anomaly detection accuracy in
exchange of decreased cost of running times by the LSTM-SED.

Table 5: 3D position prediction mean errors by LSTM for the
top 9 busiest routes in the U.S.

Route Latitude Longitude Altitude

RMSE(nmi) | RMSE(nmi) | RMSE(ft)
KATL-KLGA 23.54 27.82 520.6
KATL-KMCO 27.88 19.03 769.3
KATL-KORD 26.58 11.43 758.3
KLAX-KJFK 9.46 33.22 925.8
KLAX-KSFO 19.51 17.34 499.5
KMIA-KLGA 31.38 19.86 612.8
KORD-KDCA 14.56 30.43 627.7
KORD-KJFK 7.62 27.83 695.6
KORD-KMSP 15.65 20.21 791.4

6 CONCLUSION

We have presented a novel data management and analytics system
that continuously conformance monitors flights and accurately
detects anomalies using streaming TFM flight big data. The system
achieves high-performance, low latency, and linear scalability while

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
F. Banaei-Kashani, G. Trajcevski, R. H. Giiting, L. Kulik, and S. Newsam, eds., pages 219-228, Chicago, IL, November 2019.

Table 6: Confusion matrix.

Predicted
Anomaly | No anomaly Total
Actual Anomaly 97,892 2,108 100, 000
No anomaly 37 3,361,085 3,361,122
Total 97,929 3,363,193 3,461,122

accurately detecting anomalies in the NAS. Our system can be used
as a ground-based decision support tool by airlines and ANSPs. An
accurate anomaly detection translates to an improved efficiency of
the NAS, resulting in higher degrees of automation and thereby
reduced amount of air traffic controller’s workload.

Some future work could involve adding a spatial browsing capa-
bility [22, 29, 38] for the trajectories as well as incorporating our
methods in a distributed spatial environment [45].

7

ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foun-
dation of the US under grant IIS-1816889.

REFERENCES

(1]

(2]

[15]

[16]

[17]

(18]

[19]

2004. Flight Operations Quality Assurance (FOQA). https://www.faa.gov/
documentLibrary/media/Advisory_Circular/AC_120-82.pdf. (2004). Accessed:
2019-01-19.

2009. FAA TFM. https://www.fly.faa.gov/Products/Training/Traffic_
Management_for_Pilots/TFM_in_the_NAS_Booklet_ca10.pdf. (2009). Accessed:
2019-01-19.

2015. FAA TAF. http://taf.faa.gov/Downloads/TAFSummaryFY2015-2040.pdf.
(2015). Accessed: 2019-01-19.

2015. Performance Data Analysis and Reporting System.
//www.faa.gov/about/office_org/headquarters_offices/ato/service_units/
systemops/perf_analysis/perf_tools/. (2015). Accessed: 2019-01-19.

2016. Apache Geode. https://geode.apache.org. (2016). Accessed: 2019-01-19.
2016. FAA ASDL http://www.fly.faa.gov/ASDI/. (2016). Accessed: 2019-01-19.
2016. NCEP WMO GRIB2 Documentation. http://www.nco.ncep.noaa.gov/pmb/
docs/grib2/grib2_doc.shtml. (2016). Accessed: 2019-01-19.

2017. Flow Information Data. https://cdm.fly.faa.gov/?page_id=2321. (2017).
Accessed: 2019-01-19.

2018. Apache Ignite. https://ignite.apache.org. (2018). Accessed: 2019-01-19.
2018. En Route Automation Modernization. https://www.faa.gov/air_traffic/
technology/eram/. (2018). Accessed: 2019-01-19.

2018. FAA ATO. https://www.faa.gov/air_traffic/by_the_numbers/media/Air_
Traffic_by_the Numbers_2018.pdf. (2018). Accessed: 2019-01-19.

2019. Apache Spark. https://spark.apache.org/. (2019). Accessed: 2019-01-19.

https:

] 2019. Indexrdd. https://github.com/amplab/spark-indexedrdd. (2019). Accessed:

2019-01-19.

S. Ayhan, P. Comitz, and R. LaMarche. 2008. Implementing Geospatially En-
abled Aviation Web Services. In 2008 Integrated Communications, Navigation and
Surveillance Conference (ICNS). Herndon, VA, 1-8.

S. Ayhan, P. Costas, and H. Samet. 2018. Prescriptive Analytics System for
Long-Range Aircraft Conflict Detection and Resolution. In Proc. of the 26th ACM
SIGSPATIAL Int’l Conference on Advances in GIS. Seattle, WA, 239-248.

S. Ayhan, J. Pesce, P. Comitz, G. Gerberick, and S. Bliesner. 2013. Predictive
Analytics with Aviation Big Data. In Proc. of the 2013 Integrated Communications
Navigation and Surveillance (ICNS). 1-13.

S. Ayhan and H. Samet. 2015. DICLERGE: Divide-Cluster-Merge Framework
for Clustering Aircraft Trajectories. In Proc. of the 8th ACM SIGSPATIAL IWCTS.
Seattle, WA, 7-14.

S. Ayhan and H. Samet. 2016. Aircraft Trajectory Prediction Made Easy with Pre-
dictive Analytics. In Proc. of the 22nd ACM SIGKDD Int’l Conference on Knowledge
Discovery and Data Mining. San Francisco, CA, 21-30.

S. Ayhan and H. Samet. 2016. Time Series Clustering of Weather Observations in
Predicting Climb Phase of Aircraft Trajectories. In Proc. of the 9th ACM SIGSPA-
TIAL IWCTS. San Francisco, CA, 25-30.

[20] J. Bao, R. Li, X. Yi, and Y. Zheng. 2016. Managing Massive Trajectories on the

[21]

Cloud. In Proc. of the 24th ACMGIS. Burlingame, CA, 41:1-41:10.
V. Botea, D. Mallett, M. A. Nascimento, and J. Sander. 2008. PIST: An Efficient
and Practical Indexing Technique for Historical Spatio-Temporal Point Data.

[31]

[32

™
)

[35

[36

(37]

@
&,

(39]
[40]

[41]

[42]

[43

[45

[46]

[47

(48

Geoinformatica 12, 2 (June 2008), 143-168.

F. Brabec and H. Samet. 2007. Client-based spatial browsing on the world wide
web. IEEE Internet Computing 11, 1 (January/February 2007), 52-59.

V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly Detection: A Survey.
ACM Computing Survey 41, 3 (July 2009), 15:1-15:58.

P. Cudre-Mauroux, E. Wu, and S. Madden. 2010. TrajStore: An Adaptive Storage
System for Very Large Trajectory Data Sets. In Proc. of the 26th ICDE. Long Beach,
CA, 109-120.

S. Das, B. L. Matthews, A. N. Srivastava, and N. Oza. 2010. Multiple Kernel
Learning for Heterogeneous Anomaly Detection: Algorithm and Aviation Safety
Case Study. In Proc. of the 16th ACM SIGKDD Int’l Conference on Knowledge
Discovery and Data Mining. Washington, DC, 47-56.

X. Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao. 2018. UlTraMan: A Unified
Platform for Big Trajectory Data Management and Analytics. Proc. of the VLDB
Endowment 11, 7 (March 2018), 787-799.

C. Diintgen, T. Behr, and R. Giiting. 2009. BerlinMOD: A Benchmark for Moving
Object Databases. The VLDB Journal 18, 6 (December 2009), 1335-1368.

A. Eldawy and M. F. Mokbel. 2015. SpatialHadoop: A MapReduce Framework for
Spatial Data. In Proc. of the 31st ICDE. Seoul, South Korea, 46-50.

C. Esperanca and H. Samet. 2002. Experience with SAND/Tcl: a scripting tool for
spatial databases. Journal of Visual Languages and Computing 13, 2 (April 2002),
229-255.

D. Gorinevsky, B. Matthews, and R. Martin. 2012. Aircraft anomaly detection
using performance models trained on fleet data. In Proc. of the 2012 Conference
on Intelligent Data Understanding. Boulder, CO, 17-23.

M. Gupta, J. Gao, C. Aggarwal, and J. Han. 2014. Outlier Detection for Tempo-
ral Data: A Survey. IEEE Transactions on Knowledge & Data Engineering 26, 1
(September 2014), 15:1-15:58.

Lishuai Li, Santanu Das, R. John Hansman, Rafael Palacios, and Ashok N. Srivas-
tava. 2015. Analysis of Flight Data Using Clustering Techniques for Detecting
Abnormal Operations. Journal of Aerospace Information Systems 12, 9 (March
2015), 587-598.

Q. Ma, B. Yang, W. Qian, and A. Zhou. 2009. Query Processing of Massive
Trajectory Data Based on Mapreduce. In Proc. of the First Int’l Workshop on Cloud
Data Management. Hong Kong, China, 9-16.

I. Melnyk, A. Banerjee, B. Matthews, and N. Oza. 2016. Semi-Markov Switching
Vector Autoregressive Model-Based Anomaly Detection in Aviation Systems. In
Proc. of the 22nd ACM SIGKDD Int’l Conference on Knowledge Discovery and Data
Mining. San Francisco, CA, 1065-1074.

S. Nutanong and H. Samet. 2013. Memory-efficient algorithms for spatial network
queries. In Proc. of the 29th ICDE. Brisbane, Australia, 649-660.

S. Peng, J. Sankaranarayanan, and H. Samet. 2016. SPDO: High-Throughput Road
Distance Computations on Spark Using Distance Oracles. In Proc. of the 32nd
ICDE. Helsinki, Finland, 1239-1250.

J. Ramnarayan, S. Menon, S. Wale, and H. Bhanawat. 2016. SnappyData: A
Hybrid System for Transactions, Analytics, and Streaming: Demo. In Proc. of the
10th ACM Int’l Conference on Distributed and Event-based Systems. Irvine, CA,
372-373.

H. Samet, H. Alborzi, F. Brabec, C. Esperanga, G. R. Hjaltason, F. Morgan, and E.
Tanin. 2003. Use of the SAND spatial browser for digital government applications.
Commun. ACM 46, 1 (January 2003), 63-66.

J. Sankaranarayanan, H. Alborzi, and H. Samet. 2006. Distance Join Queries on
Spatial Networks. In Proc. of the 14th ACMGIS. Arlington, VA, 211-218.

J. Sankaranarayanan and H. Samet. 2009. Distance oracles for spatial networks.
In Proc. of the 25th ICDE. Shanghai, China, 652-663.

J. Sankaranarayanan and H. Samet. 2010. Query processing using distance oracles
for spatial networks. IEEE Transactions on Knowledge and Data Engineering 22, 8
(August 2010), 1158-1175.

J. Sankaranarayanan and H. Samet. 2010. Roads belong in databases. IEEE Data
Engineering Bulletin 33, 2 (June 2010), 4-11.

N. Srivastava, E. Mansimov, and R. Salakhutdinov. 2015. Unsupervised Learning
of Video Representations Using LSTMs. In Proc. of the 32nd Int’l Conference on
Machine Learning. Lille, France, 843-852.

H. Tan, W. Luo, and L. M. Ni. 2012. CloST: A Hadoop-based Storage System for
Big Spatio-temporal Data Analytics. In Proc. of the 21st ACM CIKM. Maui, HI,
2139-2143.

E. Tanin, A. Harwood, and H. Samet. 2005. A distributed quadtree index for
peer-to-peer settings. In Proc. of the 21st ICDE. Tokyo, Japan, 254-255.

D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. 2016. Simba: Efficient In-Memory
Spatial Analytics. In Proc. of the 2016 Int’l Conference on Management of Data.
San Francisco, CA, 1071-1085.

X. Xie, B. Mei, J. Chen, X. Du, and C. S. Jensen. 2016. Elite: An Elastic Infrastructure
for Big Spatiotemporal Trajectories. The VLDB Journal 25, 4 (August 2016), 473—
493.

B. Zheng, H. Wang, K. Zheng, H. Su, K. Liu, and S. Shang. 2018. SharkDB: An
In-memory Column-oriented Storage for Trajectory Analysis. World Wide Web
21, 2 (March 2018), 455-485.

https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_120-82.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_120-82.pdf
https://www.fly.faa.gov/Products/Training/Traffic_Management_for_Pilots/TFM_in_the_NAS_Booklet_ca10.pdf
https://www.fly.faa.gov/Products/Training/Traffic_Management_for_Pilots/TFM_in_the_NAS_Booklet_ca10.pdf
http://taf.faa.gov/Downloads/TAFSummaryFY2015-2040.pdf
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/systemops/perf_analysis/perf_tools/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/systemops/perf_analysis/perf_tools/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/systemops/perf_analysis/perf_tools/
https://geode.apache.org
http://www.fly.faa.gov/ASDI/
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc.shtml
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc.shtml
 https://cdm.fly.faa.gov/?page_id=2321
https://ignite.apache.org
https://www.faa.gov/air_traffic/technology/eram/
https://www.faa.gov/air_traffic/technology/eram/
https://www.faa.gov/air_traffic/by_the_numbers/media/Air_Traffic_by_the_Numbers_2018.pdf
https://www.faa.gov/air_traffic/by_the_numbers/media/Air_Traffic_by_the_Numbers_2018.pdf
https://spark.apache.org/
https://github.com/amplab/spark-indexedrdd

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Overview
	3.1 Concepts
	3.2 Building Blocks
	3.3 Overview
	3.4 TFM Data
	3.5 Weather Data

	4 Data Management and Analytics System
	4.1 Data Management
	4.2 Analytics

	5 Evaluation
	5.1 Setup
	5.2 Results

	6 Conclusion
	7 Acknowledgements
	References

