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At the present time, there is no mechanism for Air Navigation Service Providers (ANSPs) to probe new flight plans filed by the
Airlines Operation Centers (AOCs) against the existing approved flight plans to see if they are likely to cause conflicts or bring
sector traffic densities beyond control. In the current Air Traffic Control (ATC) operations, aircraft conflicts and sector traffic
densities are resolved tactically, increasing workload and leading to potential safety risks and loss of capacity and efficiency.

We propose a novel Data-Driven Framework to address a long-range aircraft conflict detection and resolution (CDR)
problem. Given a set of predicted trajectories, the framework declares a conflict when a protected zone of an aircraft on its
trajectory is infringed upon by another aircraft. The framework resolves the conflict by prescribing an alternative solution that
is optimized by perturbing at least one of the trajectories involved in the conflict. To achieve this, the framework learns from
descriptive patterns of historical trajectories and pertinent weather observations and builds a Hidden Markov Model (HMM).
Using a variant of the Viterbi algorithm, the framework avoids the airspace volume in which the conflict is detected and
generates a new optimal trajectory that is conflict-free. The key concept upon which the framework is built is the assumption
that the airspace is nothing more than a horizontally and vertically concatenated set of spatio-temporal data cubes where
each cube is considered as an atomic unit. We evaluate our framework using real trajectory datasets with pertinent weather
observations from two continents and demonstrate its effectiveness for strategic CDR.

CCS Concepts: • Information systems → Data analytics; • Computing methodologies → Dynamic programming
for Markov decision processes; • Applied computing→ Aerospace;
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1 INTRODUCTION
In the present Air Traffic Management (ATM) system, Airline Operations Center (AOC) personnel file a flight
plan for a particular flight. The filed flight plan usually contains 2D coordinates of the fixed way points and the
planned initial cruise speed and cruise altitude in addition to their speed and level changes along the route. It
does not include the time information for the way points and the existing information is not routinely updated
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by the ATM systems. Moreover, the filed flight plan is not checked against other flight plans to probe potential
interference with other aircraft or identify sector traffic complexity before the aircraft departs. Airspace sector
complexity and aircraft separation assurance are dealt with tactically, usually just a few minutes before the
aircraft enters the sector or is likely to have a conflict with other aircraft.
It is estimated that by 2040 the USA alone can expect an increase of more than 68% in the commercial air

traffic [22]. Hence, a new concept of operations is needed to accommodate this increase in volume. To meet this
challenge ahead of us, new technologies and procedures for next generation ATM are being developed in the
context of the Next Generation Air Transportation System (NextGen) [20] in the USA and the Single European
Sky ATM Research (SESAR) [55] in Europe. The SESAR and NextGen concept of operations requires a paradigm
shift from a highly structured and fragmented system that is heavily reliant on tactical decision making and with
few strategic planning functions based on uncertain information, to an integrated one based on collaborative
strategic management of trajectories and information sharing [59]. In the future ATM systems to be built under
NextGen and SESAR, the trajectory becomes the fundamental element of new sets of operating procedures
collectively referred to as Trajectory-Based Operations (TBO). The underlying idea behind TBO is the concept
of a business trajectory that the airline agrees to fly and the ANSP and airports agree to facilitate, given the
safe separation provision. A business trajectory is the representation of an airline’s intention with respect to a
given flight that will best meet the airline’s business interests. The TBO concept of operations and the notion
of a business trajectory will result in increased overall predictability of air traffic, reduced costs and emissions
due to lowered fuel consumption and/or time, and increased capacities. Thus, the future ATM system should
offer flexibility to accommodate business trajectories, while bearing the primary goal of safety in mind. Overall,
the next generation ATM paradigm shift requires more safe and efficient CDR due to fact that maintaining
the separation minima among the vast volume of aircraft that fly their versions of most optimal business 4D
trajectories becomes more challenging.

Hence, we introduce a Data-Driven Framework to address the long-range aircraft CDR problem. The framework
performs CDR in two steps: In the first step, given a set of predicted trajectories in the form of a 4D joint spatio-
temporal data cubes on a 3D grid network, the framework declares a conflict if one of the aircraft’s predicted
trajectory segment overlaps with the other’s protected zone at the same time interval in the future. Obviously,
the more accurate the predicted trajectories, the more accurate the detection of the conflict as the separation
minima will be on the containment volume of each predicted trajectory. In the second step, the framework builds
a stochastic model, HMM that learns from the historical trajectories and their correlation with the pertinent
weather parameters. Using a variant of the Viterbi algorithm, the framework prescribes an optimal solution by
perturbing at least one of the 4D trajectories involved in the conflict.
In summary, the contributions of this paper are as follows:
• We propose a cube-shaped protected zone surrounding each aircraft that can be expanded by joining the
neighboring cubes horizontally and vertically, yielding a protected zone with a desired size. This idea
resonates with the assumption that an airspace is nothing more than a set of concatenated spatio-temporal
data cubes around a 3D grid network, where each cube is considered as an atomic unit.
• We propose a scalable Data-Driven Framework to strategically address the aircraft CDR problem. Given a
set of predicted trajectories, the framework declares a conflict when a protected zone of an aircraft on its
trajectory is infringed upon by another aircraft at the same time interval in the future. Upon a conflict, the
framework executes our conflict resolution algorithm and prescribes a solution that resolves the conflict by
perturbing at least one of the 4D trajectories involved in the conflict.
• We conduct extensive experiments based on real trajectory and weather data from two continents and
demonstrate that our framework can detect and resolve conflicts with lateral and vertical accuracies that
are within the boundaries of conventionally accepted minimum separation values, set by the ANSPs. This
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translates to the fact that, ANSPs can now detect and resolve potential conflicts before the aircraft depart,
resulting in safer and greener airspace with more efficiency and capacity, and thereby reducing the air
traffic controller workload.

In our previous work [9], we presented our Aircraft Trajectory Prediction System that shares a common ground
with the current framework in a way that both the previous system and the current framework attempt to find
the most likely sequence of aircraft positions given a set of weather observations. However, they differ in the
following respects: i) The previous system [9] aimed at predicting aircraft trajectories without considering any
potential obstacles along the route. The proposed framework detects and resolves conflicts among the aircraft. In
fact, the framework we propose in this work uses predicted trajectories generated by the previous system [9]
as input. ii) The previous system [9] utilized historical trajectories and pertinent weather observations to build
an HMM which was fed into the Viterbi algorithm. Although our current framework uses the same input for
an HMM during the conflict resolution phase, it employs a variant of the Viterbi algorithm. Unlike the regular
Viterbi algorithm, the variant generates optimal trajectories bypassing the spatio-temporal data cubes in which
the conflict is detected. iii) Unlike the previous system [9], the current framework is scalable. It can detect and
resolve conflicts among multiple aircraft. Moreover, this paper is an extended version of work published in [6].
We extend our previous work [6] by providing the following additional content:
• We elaborate more on the ideas of TBO and business trajectory in Section 1.
• We provide a more detailed explanation as to where our framework falls in comparison to the other systems
in Section 2.
• We expand Section 4.3 with an Octree data structure figure and we provide the pertinent explanation.
• We provide time complexities for Algorithm 2 and Algorithm 3, where we present CDR for multiple aircraft
in Section 4.3.
• We provide 8 additional test cases in Section 5, where we evaluate CDR for multiple aircraft.
• We provide Table 3 for the additional test cases in Section 5.1.
• We provide Figure 6 with a set of boxplots showing trajectory prediction errors that can be attributed for
the CDR accuracy in Section 5.2.
• We update Figure 5 and Figure 7 based on additional test cases in Section 5.2.

Our Data-Driven Framework can be used as a ground-based strategic CDR system by air traffic flow managers
to resolve potential interference among large volume of aircraft and identify high density and complex sector
traffic before the aircraft depart. The set of optimized resolutions should improve ATM automation and reduce
the workload of air traffic controllers. The rest of the paper is organized as follows. Section 2 reviews related
work. Section 3 introduces preliminary concepts followed by Section 4 where our Data-Driven Framework is
described. Section 5 presents the results of our experiments, while Section 6 discusses the results. Concluding
remarks are drawn in Section 7.

2 RELATED WORK
Our study involves trajectory data which have been the subject of much work in the spatial domain with an
emphasis on cars along roads [53]. The focus has been on their generation (e.g., [54]), queries (e.g., [36, 38–
40, 49, 51, 52]), and matching (e.g., [26, 35, 50]). This data is collected continuously and is quite voluminous.
Instead, our focus here is on the flight domain. The problem of aircraft CDR remains an active area of research
in the spatial domain and in the aviation community and has attracted the attention of many researchers. An
excellent survey of various CDR methods is presented in [27]. In this survey, Kuchar et al. propose a taxonomy
to categorize the basic functions of CDR modeling methods. The proposed taxonomy includes: dimensions of
state information (lateral, vertical, or three-dimensional); method of state propagation (nominal, worst-case,
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or probabilistic); conflict detection threshold; conflict resolution method (prescribed, optimized, force field, or
manual); maneuvering options (speed change, lateral, vertical, or combined maneuvers); and management of
multiple aircraft conflicts (pairwise or global).

Conflict detection methods can be classified as nominal, worst-case, and probabilistic techniques. The nominal
technique projects the current states into the future along a single trajectory without taking uncertainties into
account [18, 21, 61]. The worst-case technique assumes that an aircraft will perform any of a set of maneuvers
and a conflict is predicted if any of the maneuvers could cause a conflict [11, 58, 62]. The disadvantage of the
worst-case technique is that it can declare a conflict as soon as there is a minimum likelihood of a conflict
within the definition of the worst-case trajectory model thereby leading to false positives. The probabilistic
approach offers a balance between relying on either a single trajectory model as in the nominal technique
or a set of worst-case maneuvers. Instead it models uncertainties to describe potential changes in the future
trajectory [13, 29–32, 41, 64, 65].

Once a conflict has been detected, the next step in the CDR process is to initiate the conflict resolution phase
by determining the course of action. The conflict resolution method and the maneuvering options are two major
factors in defining the course of action. Conflict resolution methods can be categorized as a) prescribed, b)
optimized, c) force-field, and d) manual. The prescribed resolution method provides a fixed maneuver based on
a set of predefined procedures [14]. Hence, depending on the nature of the conflict, the predefined resolution
maneuver is automatically performed, minimizing the response time. However, it does not compute the optimal
resolution path for the aircraft, thereby resulting in a less efficient trajectory. The optimized method provides a
conflict resolution strategy with the lowest cost based on a certain cost function (separation, fuel, time, workload,
etc.) [21]. In the force-field resolution method, each aircraft is treated as a charged particle and the resolution
maneuvers are defined using repulsive forces between the aircraft [66]. Although it is practical when properly
applied, it may require a high level of guidance on the flight deck especially when the aircraft vary their speed
over a wide range. The manual resolution method allows users to generate potential resolution options and
provide feedback if the option is viable [32, 64].

During the resolution phase, some CDR approaches only offer a single maneuver such as speed change [16, 24]
or lateral maneuver [42] or vertical maneuver [17, 21], while others offer a combination of these maneuvers [13, 25,
33]. Obviously, the more maneuvering options the CDR approach offers, the more likely an efficient solution can
be provided to a conflict. Our CDR approach has some similarities with [15, 16] due to fact that both approaches
consider the airspace as a set of cubic cells, called the grid model, declare a conflict if one of the aircraft’s
predicted trajectory segments overlap with the other’s protected zone, and propose an optimized 4D trajectory
for the conflict resolution. However, unlike our study, they attempt to address tactical CDR (short-term and
medium-term) by changing speed profiles [16] or using Particle Swarm Optimization [15].
Summarizing the above literature and comparing to the proposed prescriptive analytics approach, we make

the following remarks: i) Our CDR modeling method considers dimensions of state information as 4D (latitude,
longitude, altitude, and timestamp), ii) Due to input trajectories being probabilistically computed, our conflict
detection method is also considered probabilistic, iii) Our conflict resolution method is optimized, and it offers a
combination of lateral and vertical maneuvers. iv) Our framework is scalable, i.e., it can address the CDR problem
among multiple aircraft. Given a set of aircraft trajectories in 4D, our framework declares a conflict if any of the
aircraft’s predicted trajectory segments overlaps with the other’s protected zone at the same time interval in
the future. In our approach, one or more cubic cells forming the airspace is considered to be a conflict detection
threshold. Next, we compute and prescribe an optimized solution which is a conflict-free 4D trajectory. Our
approach addresses the CDR problem strategically over a time horizon of several hours to compute conflict-free
4D trajectories for optimal flight plans and less complex sector traffic densities. In particular, the proposed data-
driven approach exploits machine learning techniques to predict conflicts and prescribe an optimized solution
based on constraints introduced to the framework.
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Fig. 1. A sample crossing conflict and a PZ . (left) regular representation, (right) our unique representation.

3 PRELIMINARIES
The primary concern of the ANSPs, for example; the FAA in the USA and EUROCONTROL in Europe is to assure
safety, which is quantified by the number of resolved conflicts.

Definition 3.1. A conflict is an event in which two or more aircraft come closer than a certain distance to one
another.

Definition 3.2. Separationminima are encoded by lateral and vertical separation, forming a bounding volume
around each aircraft, a protected zone(PZ) also known as a buffer zone or corridor in Geographic Information
Systems (GIS) applications (e.g., [1–3, 57]) and can be represented using quadtree medial axis transforms [44, 45].
Currently, the minimum lateral separation for en-route airspace is 5nmi. It is 3nmi inside the terminal radar
approach control (TRACON) area. The minimum vertical separation is 2000 ft above the altitude of 29000 ft
(FL290) and 1000 ft below FL290. Due to fact that lateral and vertical separation are specified by single distance
values, the resulting PZ becomes a cylinder. Each aircraft is assumed to be surrounded by a PZ that moves along
the aircraft. An interesting idea is to use the Hausdorff distance [35] to define the cubes.

Definition 3.3. Conflict detection is a process that evaluates the separation between any pair of aircraft, by
comparing the distance between them with the separation minima. Formally, given a pair of predicted aircraft
trajectories formed by a set of aircraft positions Ti = [pi1,pi2, ...,pim], Tj = [pj1,pj2, ...,pjn] where each point p
is defined by its 4D spatio-temporal parameters (latitude, longitude, altitude, and timestamp), distance values
between them di, j are computed and compared with the separation minima ds and a conflict is declared if any of
distance values is less than the separation minima di, j < ds .

Definition 3.4. Conflict resolution is a process that generates a feasible safe alternative trajectory by fulfilling
the separation minima criteria. Formally, given a pair of predicted aircraft trajectories formed by a set of aircraft
positionsTi = [pi1,pi2, ...,pim],Tj = [pj1,pj2, ...,pjn], upon conflict resolution, all the distance values di, j between
the pairs of aircraft positions are greater than the separation minima di, j > ds .

Definition 3.5. Long-range CDR is a process in which conflict detection and resolution are carried out several
hours before the potential conflict occurs. Hence, long-range CDR is strategically performed before the departure
for better planning, whereas mid-range and short-range CDR are tactically performed while the aircraft is
airborne.

Unlike online CDR approaches in which distance between predicted future aircraft positions are constantly
computed and compared with separation minima upon receipt of each new aircraft position, our approach is
offline and uses a 3D grid network as a reference system. In our approach, raw trajectories are transformed into
aligned trajectories causing aircraft to move along grid points. This results in conflict queries being computed
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Fig. 2. Simplified depiction of a pairwise CDR.

at grid points only. In addition, unlike most other CDR approaches, our framework considers a cube shaped
PZ surrounding each aircraft. This idea resonates with the fact that our approach creates virtual data cubes
around grid points, forming an overall airspace. Each cube is defined by its centroid, the original grid point, and
associated weather parameters that remain homogeneous within the cube during a period of time. With this
vision, we define trajectories as a set of 4D joint cubes.

This uncommon representation of 4D trajectories enables us to view conflicts and PZ from a unique perspective.
Hence, in our view, PZ is a cube that can be expanded by joining the neighboring cubes horizontally and vertically.
The process yields a PZ with a desired size. In our study, we use a PZ of variable size. It can be made up of a
single cube or expanded by a number of cubes in each direction on each axis reaching a larger volume. Figure 1
illustrates a PZ in two different forms. The PZ on the left is formed by a cylinder. The PZ on the right is formed by
27 cubes. Figure 2 illustrates a sample pairwise CDR. Aircraft #1 departs before aircraft #2. Both aircraft move one
cube at a time. In Figure 2a. aircraft #1 and #2 are located at cube J7 and K6, respectively. This causes a conflict as
aircraft #2 intrudes aircraft #1’s PZ outlined in red. In Figure 2b. the conflict is resolved by a lateral shift to cube L6
by aircraft #2. No conflict occurs from here on as aircraft #1 follows cubes in gray (K7,L7,M7,N 7,O7, P7,R7, S7)
and aircraft #2 follows cubes in blue (M7,N 8,N 9,N 10,O11, P11,R11, S11,T 11) until they land at their pertinent
airports.

Fig. 3. Overview of our Data-Driven Framework.

4 DATA-DRIVEN FRAMEWORK FOR CDR
Figure 3 shows an overview of the proposed Data-Driven Framework for a simplified pairwise CDR. Predicted
trajectory #1 and #2 are generated by our previous Aircraft Trajectory Prediction System [9]. Our conflict detection
algorithm takes predicted trajectories along with separation minima as input. The output of the process is a data
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cube defined by its 4D position, where conflict, if any, occurs. The next process in the pipeline is the conflict
resolution, where a variant of the Viterbi algorithm is performed to avoid the conflicting trajectory segment. The
process perturbs at least one of the trajectories involved in the conflict, generating a new optimized path and
thereby resulting in conflict-free trajectories. Separation minima may be expanded to probe what-if scenarios if
the conflict detection algorithm doesn’t generate a conflict.

4.1 Pairwise Conflict Detection
The predicted trajectories along with the size of the PZ are fed into our pairwise conflict detection algorithm,
presented in Algorithm 1. The algorithm declares a conflict if a PZ of an aircraft is infringed upon by another
aircraft at the same time interval in the future.
Formally, given a pair of predicted trajectories Ti = [pi1,pi2, ...,pim] and Tj = [pj1,pj2, ...,pjn] where each

trajectory is formed by a set of segments defined by their 4D spatio-temporal centroid parameters latitude,
longitude, altitude, and timestamp, along with PZ for trajectory Ti in data cubes, we want to return the very
first trajectory segment pjs , if a conflict occurs, null otherwise. Note that each aircraft position along predicted
trajectories are recorded once every minute. To compute this, we start with the departure point of the aircraft
that departs beforehand, and keep moving forward, one grid point at a time. With the departure of the second
aircraft, we compare the trajectory segment pjs with PZis at each time instance ts to see if pjs overlaps with PZis .

Algorithm 1: Pairwise Conflict Detection
Result: Detected conflict or no conflict
Input :Trajectory pairs Ti , Tj , Protected Zone PZi
Output :Conflicting trajectory segment pjs or null

1 Ti ← [pi1,pi2, ...,pim ]

2 Tj ← [pj1,pj2, ...,pjn ]

3 foreach ts ∈ (pis ∩ pjs ) do
4 if pjs ⊂ PZis then
5 return pjs
6 end
7 end
8 return null

Note that Algorithm 1 assumes that all the PZs have the same definition.

4.2 Pairwise Conflict Resolution
Our conflict resolution approach shares a common ground with our previous Trajectory Prediction System [9]
as they both attempt to address an optimization problem; given a set of weather observations, what is the most
likely sequence of aircraft positions? However, unlike the previous system [9], the current conflict resolution
algorithm avoids the spatio-temporal data cubes where the conflict is detected. To recapitulate our approach to
the optimization problem, we briefly review our previous Trajectory Prediction System [9] here.
Given a set of historical trajectories along with pertinent weather observations, the system works based

upon an assumption that the weather observations are realizations of hidden aircraft positions i.e. trajectory
segments and the transitions between the underlying hidden segments following a Hidden Markov model [43].
This assumption considers a finite set of states, each of which is associated with a probability distribution over
all possible trajectory segments. Transitions among the states are managed by a set of probabilities. The states
are not visible, but the pertinent observations are. Given a sequence of observations, the system trains an HMM,
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a statistical Markov model, and derives a sequence of hidden states, aircraft positions that correspond to the
sequence of weather observations. The system computes the most likely sequence of aircraft positions in three
steps:
• In the training data processing step, the system transforms raw trajectories into aligned trajectories and
combines weather parameters for each grid point along aligned trajectories. To achieve this, the system
uses a 3D grid network with a spatial resolution of 6km x 6km as a reference system.
• In the test data processing step, the system resamples the weather parameters to generate buckets with
distinct ranges and feeds them into the time series clustering algorithm [10] to produce input observations.
• In the final step, the HMM parameters generated in the first two steps and the flight time computed by
our Estimated Time of Arrival (ETA) Prediction System [5] are used as input to the Viterbi algorithm. The
output is the optimal state sequence, joint 4D cubes defining aircraft trajectories.

During the conflict resolution stage, our current framework makes use of the first two steps, outlined above.
However, unlike the 3rd step of the process, our current framework avoids the cubes where the conflict is detected.
This translates to a perturbation of at least one of the trajectories. Hence, the framework prescribes an optimized
solution by perturbing at least one of the 4D trajectories, involved in the conflict. The process executes as follows:
In addition to the regular HMM parameters of transition, emission, and initial probabilities, the framework uses
conflict-free probabilities where each state is assigned a probability value indicating how conflict-free it is. The
parameters are fed into a variant of the Viterbi Algorithm, in which the framework computes the optimal state
sequence by considering the maximum HMM probabilities. Due to fact that the trajectory segments that are part
of the first aircraft’s trajectory are assigned low conflict-free probabilities, the framework avoids selecting them
during the Viterbi process, yielding a conflict-free trajectory for the second aircraft.
Now, we present a variant of the Viterbi algorithm. Note that our previous Trajectory Prediction System [9]

characterized an HMM by the following elements:
• N , the number of states in the model. States S = {S1, S2, ..., SN } are represented by reference points’
coordinates (latitude, longitude, altitude) that form aligned trajectories. We denote state at time t as qt .
• M , the number of distinct observation symbols per state. Observations V = {v1,v2, ...,vM } are represented
by weather parameters (temperature, wind speed, wind direction, humidity) recorded at grid points.
• The state transition probability distributionA = {ai j } is the probability of an aircraft discretely transitioning
from one state i to another j along its aligned trajectory, where

ai j = P[qt+1 = S j |qt = Si ], 1 ≤ i, j ≤ N

• The observation symbol probability distribution in state j, B = bj (k) is the probability of discrete weather
parameters having been observed at that specific state, where

bj (k) = P[vk at t |qt = S j ],
1 ≤ j ≤ N

1 ≤ k ≤ M

• The initial state distribution π = {πi } is the probability of an aligned trajectory beginning at a state i ,
where

πi = P[q1 = Si ], 1 ≤ i ≤ N

These parameters form an HMM, compactly denoted by λ = {A,B, and π }. Now, we propose an additional
parameter;
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• The conflict-free probability distribution in state j ,C = c j (k) is the probability of a conflict not occurring at
that specific state, where

c j (k) = P[vk at t |qt = S j ],
1 ≤ j ≤ N

1 ≤ k ≤ M

Hence, the lower the conflict-free probability for a particular state, the lower likelihood of that state to be included
in the most probable path. With this new parameter, C an HMM can be expanded and denoted by λ = {A,B,π
and C}
The next step in the process is to choose a corresponding state sequence Q = q1,q2, ...,qT that best explains

the observation sequence O = O1,O2, ...,OT given the model λ. A variant of the Viterbi algorithm [63] that is
based on dynamic programming addresses this problem. The key component in the algorithm is the optimal
probability, δt (j), and is computed as follows:

δt (j) = max
q1, ...,qt−1

πq1bq1 (o1)cq1 (o1)
t∏
j=2
(aqj−1,qjbqj (oj )cqj (oj ))

Due to their low conflict-free probabilities, a variant of the Viterbi algorithm avoids trajectory segments where
the conflict is detected, and generates a new optimized path.

4.3 CDR for Multiple Aircraft
Our pairwise CDR solution can be scaled to address CDR for multiple aircraft which can be used towards better
planning of airspace sector densities. Similar to the current flight planning procedures, we propose predicted
trajectories to be processed on a first come first served basis. For the sake of simplicity, consider an empty airspace.
The airspace will be fully available to the first predicted trajectory. Hence, the first trajectory’s optimal set of
data cubes will be reserved in the airspace. This process will introduce a set of constraints in the form of PZs by
the first trajectory to the second and following trajectories during its flight time. Any conflict between the first
and second trajectory will be detected and resolved. Once resolved, a new set of constraints will be introduced
by the second trajectory. The next trajectory will need to satisfy the constraints introduced by the previous
trajectories and so on. This also means that the next trajectory will need to avoid the PZs in the constraints list
while generating its optimal set of data cubes during the conflict resolution phase. This process is repeated until
one or more flights land, which will result in the removal of all pertinent constraints from the list which will free
up the particular sections of airspace.
Formally, given a new predicted trajectory Tj = [pj1,pj2, ...,pjl ] and a time series of existing constraints

list CLPZ = [PZ1, PZ2, ..., PZi , ..., PZm], where PZi = [pzi1,pzi2, ...,pzik ] along their existing trajectories T =
[T1,T2, ...,Ti , ...,Tn], whereTi = [pi1,pi2, ...,pik ], we want to detect and resolve conflicts among these trajectories
Tj and T (i.e. one vs. all). Note that PZi is formed by a set of data cubes, each defined by 4D spatio-temporal
parameters around its centroid pi j . With this approach, the implementation and management of the constraints
list is of central importance. In our implementation, we map time instances to data cubes forming PZs , which
are stored in an Octree data structure, where there is one Octree for each time instance. Hence, when a new
trajectory comes in, the pertinent Octree is located based on the trajectory’s time instance. We declare a conflict
if the trajectory segment is found in the Octree. We process all pairs of possibly conflicting data cubes using
spatial indexing techniques to prune the search (e.g., [46, 48]).

Our scalable conflict detection algorithm for multiple aircraft is presented in Algorithm 2. To detect a conflict,
Algorithm 2 performs time instance lookup in constant time O(1) for each trajectory segment. Next, Algorithm 2
performs a lookup operation for each trajectory segment in each Octree that has been created for each time
instance, which have a running time of O(loдn), where n is the number of trajectory segments in the pertinent
Octree. Given a new trajectory with k segments, the worst-case running time of Algorithm 2 is O(k ∗ loдn), as
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Algorithm 2: Conflict Detection for Multiple Aircraft
Result: Detected conflict or approved optimal trajectory
Input :A new predicted trajectory Ti , constraints list CLPZ
Output :Conflicting trajectory segment pi or updated constraints list CLPZ

1 Ti ← [pi1,pi2, ...,pin ]

2 CLPZ ← [PZ1, PZ2, ..., PZm ]

3 foreach ts ∈ (pi&CLPZ ) do
4 PruneAndSearch
5 if pi ⊂ CLPZ then
6 return pi
7 end
8 else
9 Insert pi into CLPZ

10 end
11 end

the conflict is declared as soon as a new trajectory segment is found in any Octree for k time instances. Here and
in the rest of this work, we assume that the Octree is balanced.

To keep the constraints list up-to-date, we periodically check and delete the pertinent Octree if any of the time
instances has expired. Once a conflict has been detected, a variant of the Viterbi algorithm is performed where all
the data cubes included in the constraints list for the pertinent time instance are avoided to find a conflict-free,
optimized path for the new trajectory. To achieve this, we assign a minimum conflict-free probability value, such
as 1 × 10−100 to those data cubes included in the constraints list.

Figure 4 is an illustration of a simplified case where two consecutive trajectory segments of aircraft #1 and #2
are inserted into two separate Octree data structures at time instances t and t+1. For the sake of simplicity, the
size of aircraft #1’s PZ is considered as a single data cube. Assuming an empty airspace, the very first PZ set for
aircraft #1 is allocated in the airspace without being considered for a potential conflict. This translates to the fact
that an Octree for time instance t and another Octree for time instance t+1 are created as they don’t exist yet.
Next, given the predicted trajectory for aircraft #1, each consecutive PZ in solid red is inserted into each Octree
at time instance t and t+1 as shown in Figures 4a and 4b, respectively. When the predicted trajectory segments of
aircraft #2 in solid blue in Figures 4c, and 4d are received, the Octree data structure at each time instance t and t+1
are searched to see if the pertinent Octree node is empty. To achieve this, each Octree is looked up based on its
index. Next, the pertinent Octree is searched as each time instance is mapped to an Octree. If found empty, each
consecutive trajectory segment is inserted into each Octree at time instance t and t+1, as shown in Figures 4c
and 4d, respectively. The insert operation for the first trajectory segment of aircraft #2 in solid blue is performed
by traversing the node k at depth n illustrated as white cube mesh, followed by the node 0 at depth n+1 illustrated
as yellow cube mesh, followed by the node 7 at depth n+2 illustrated as green cube mesh, and finally reaching to
the leaf node 7 at depth n+3 and populating it with solid blue as shown in Figure 4c. Upon search, if the leaf node
is not found empty, which translates to a conflict, our conflict resolution Algorithm 3 is executed to perturb the
predicted trajectory for aircraft #2 to find an alternative optimal solution that results in conflict-free trajectories.

Formally, given the number of states N , number of distinct observations per stateM , state transition probability
distribution A, observation probability distribution B, and initial state probability distribution π , along with
a conflict-free probability distribution for all data cubes included in the constraints list at time instances t =
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Fig. 4. Octree data structure for efficient aircraft conflict detection and resolution.

[t1, t2, ..., tn], we want to form an HMM λ, and train it to find the optimized path that is conflict-free. Our conflict
resolution algorithm for multiple aircraft is presented in Algorithm 3.
To resolve a conflict, Algorithm 3 assigns a conflict-free probability of 1 × 10−100 to each state in the state

space when a trajectory segment in the new trajectory is found in any Octree that exists for k time instances (i.e.,
the number of segments in the new trajectory), which has a running time of O(k ∗ loдn). Algorithm 3 assigns a
conflict-free probability of 1 to the remaining states in the state space, which has a running time of O(N − k),
where N is the number of states in the state space. Hence, the running time of Algorithm 3 between line 3 and
line 11 is O(k ∗ loдn + N − k). Algorithm 3 performs a variant of the Viterbi algorithm between line 12 and line
13, which has a running time of O(k ∗ |N 2 |). Lastly, Algorithm 3 inserts conflict-free trajectory segments into the
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Algorithm 3: Conflict Resolution for Multiple Aircraft
Result: A conflict-free optimized trajectory
Input :# of states N , # of distinct observationsM , transition probabilities A, emission probabilities B, initial

probabilities π , constraints list CLPZ
Output :A conflict-free optimized trajectory To and updated constraints list CLPZ

1 S ← [p1,p2, ...,pi , ...,pn ]

2 CLPZ ← [PZ1, PZ2, ..., PZm ]

3 foreach ts ∈ ((pi ∈ S) & CLPZ ) do
4 PruneAndSearch
5 if pi ⊂ CLPZ then
6 cp i ← 1 × 10−100

7 end
8 else
9 cp i ← 1

10 end
11 end

12 VariantOfViterbi
13 To ← max

s1, ...,st−1
πs1bs1 (o1)cs1 (o1)

∏t
j=2(asj−1,sjbsj (oj )csj (oj ))

14 foreach ts ∈ ((po ∈ To ) & CLPZ ) do
15 Insert po into CLPZ
16 end

constraints list between line 14 and line 16, which has a running time of O(k ∗ loдn). Hence, the total running
time of Algorithm 3 is O(k(2loдn + |N | − 1) + N ).

5 EVALUATION
To evaluate our framework, we generated a number of test cases using real trajectory and weather data from
Europe and USA. Table 1 shows the European and USA airports forming the routes we used in our evaluation.
Although the ideal evaluation would use real trajectories in actual conflicts, this is infeasible due to the nature
of ATC operations, where the controller would interfere and separate the aircraft as soon as they are likely to
infringe upon one another, so there would be no conflicts to find. Hence, we used a total of 24 test cases formed by
European and USA flights that were in close proximity to cause potential conflicts when a minimal perturbation
was applied. 16 out of these 24 cases were used to test pairwise CDR, while 8 cases were used to test CDR for
multiple aircraft.

5.1 Setup
Due to the fact that there exists no system that continuously records and stores exact positions of an aircraft’s
original trajectory [8], only a discrete set of sample data are recorded and stored which presumably represent a
close approximation of the original trajectory. We call this a raw trajectory. The raw trajectory data from Europe
was provided by Spanish ANSP, ENAIRE using a radar surveillance feed with a 5 seconds update rate. The raw
data was wrangled as part of the Data-driven AiRcraft Trajectory prediction research (DART) project under the
SESAR Joint Undertaking Work Programme [56]. The European trajectory data contains all commercial domestic
flights for Spain, a total of 119,563 raw trajectories and 80,784,192 raw trajectory points for the period of January
through November 2016. The fields of the raw trajectory data are as follows: flight no, departure airport, arrival
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Table 1. A set of European and U.S.A. airports.

AirportCode AirportName
LEAL Alicante–Elche Airport
LEBL Barcelona–El Prat Airport
LECO A Coruña Airport
LEIB Ibiza Airport
LEMD Adolfo Suárez Madrid-Barajas Airport
LEMG Málaga Airport
LEMH Menorca Airport
LEPA Palma de Mallorca Airport
LEVC Valencia Airport
LEVX Vigo–Peinador Airport
LEZL Seville Airport
KATL Hartsfield-Jackson Atlanta International Airport
KBOS Boston Logan International Airport
KDFW Dallas/Fort Worth International Airport
KJAX Jacksonville International Airport
KLGA NewYork LaGuardia Airport
KMIA Miami International Airport
KORD Chicago O’Hare International Airport
KPIT Pittsburgh International Airport

airport, date, time, aircraft speed in X, Y, Z directions, and position information (latitude, longitude, altitude). Note
that, as a preprocessing step, we downsampled raw trajectory data from the original resolution of 5 seconds to 60
seconds and aligned them to our 3D reference grid [9]. The raw trajectory data from the USA was extracted from
an Aircraft Situation Display to Industry (ASDI) data feed which is recorded once every 60 seconds, provided in
near real-time by the FAA [23], and stored in an aviation data warehouse [4, 7]. The USA trajectory data contains
flights between 8 major airports, a total of 4,628 raw trajectories and 450,919 raw trajectory points for the period
of May 2010 through December 2015. The fields of the raw trajectory data are as follows: source center, date, time,
aircraft Id, speed, latitude, longitude and altitude. Both European and USA weather data were extracted from the
Global Forecast System (GFS), provided by NOAA [34]. The original data has 28-km spatial and 6-hour temporal
resolution and it contains over 40 weather parameters including atmospheric, cloud and ground attributes for
each grid point as part of its 3D weather model. Hence, for this study’s geographic volume and time period of
interest, over 160TB of weather data was collected.
Due to fact that our current framework aims at addressing the CDR problem before departure, at least a pair

of predicted trajectories are needed as input. Hence, we used our previous system [9] to generate a pair set
of predicted trajectories. Next, we searched and found a number of trajectory points between the two flights’
trajectories in the first and second pair, where the date, latitude, longitude, and altitude values matched, and time
mismatched. By perturbing one of the flights’ departure time we virtually created conflicts, where both aircraft
traversed the same trajectory point at the same time. Table 2 shows the final size of training and test data in
number of trajectories (#tr js) and points (#pts).

To evaluate our framework on multiple CDR test cases, we generated a set of three flights that is a combination
of the existing routes listed in Table 2. The additional test cases for multiple CDR with their final size of test data
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Table 2. Sizes of training and test datasets for pairwise CDR.

TestCase# Route#1 TraininдSetSize TestSetSize
Route#2 TraininдSetSize TestSetSize

#tr js #pts #tr js #pts #tr js #pts #tr js #pts
1 LEAL-LEBL 1118 55116 200 9860 LEMD-LEIB 2572 125623 200 9769
2 LEAL-LEBL 1118 55116 19 937 LEMD-LEMH 1056 68141 19 1226
3 LEAL-LEBL 1118 55116 152 7493 LEPA-LEMD 5116 306128 152 9095
4 LEBL-LEMG 1704 127451 43 3216 LEMD-LEMH 1056 68141 43 2775
5 LEBL-LEMG 1704 127451 180 13463 LEPA-LEMD 5116 306128 180 10771
6 LEBL-LEZL 2404 183343 41 3127 LEMD-LEAM 1434 70128 41 2005
7 LEBL-LEZL 2404 183343 46 3508 LEMD-LEMH 1056 68141 46 2968
8 LEBL-LEZL 2404 183343 164 12508 LEMG-LEMD 1403 75408 164 8815
9 LEBL-LEZL 2404 183343 210 16016 LEPA-LEMD 5116 306128 210 12566
10 LEIB-LEBL 1360 53443 259 10178 LEPA-LEMD 5116 306128 259 15498
11 LEIB-LEBL 1360 53443 158 6209 LEPA-LEVC 1426 50467 158 5592
12 LEMG-LEBL 1563 114767 38 2790 LEMD-LEAM 1434 70128 38 1858
13 LEMG-LEBL 1563 114767 46 3378 LEMD-LEIB 2572 125623 46 2247
14 LEZL-LEBL 2380 186299 40 3131 LEMD-LEIB 2572 125623 40 1954
15 KDFW-KJAX 1355 153970 19 2159 KATL-KMIA 1296 108005 19 1583
16 KLGA-KORD 1155 131454 62 7056 KPIT-KBOS 822 57490 62 4339

Table 3. Sizes of training and test datasets for multiple aircraft CDR.

TestCase# Route#1 TestSetSize
Route#2 TestSetSize

Route#3 TestSetSize
#tr js #pts #tr js #pts #tr js #pts

17 LEAL-LEBL 5 253 LEMD-LEMH 5 322 LEMD-LEPA 5 304
18 LEBL-LEMG 3 226 LEMD-LEMH 3 197 LEBL-LEZL 3 233
19 LEBL-LEMG 30 2244 LEMD-LEMH 30 1935 LEMD-LEPA 30 1795
20 LEBL-LEMG 22 1672 LEPA-LEMD 22 1321 LEBL-LEZL 22 1694
21 LEBL-LEZL 27 2059 LEMD-LEMH 27 1742 LEMD-LEPA 27 1616
22 LEBL-LEZL 164 12508 LEMG-LEMD 164 8815 LEPA-LEMD 210 12566
23 LEMG-LEBL 38 2790 LEMD-LEAM 38 1858 LEMD-LEIB 46 2247
24 LEMG-LEBL 6 441 LEMD-LEIB 6 384 LEMD-LEPA 6 363

in number of trajectories (#tr js) and points (#pts) are listed in Table 3. Table 3 does not include training data for
each test case as they are already included in Table 2. Note that test case #22 and #23 use two separate virtual
conflicts in each test case, where each conflict is addressed in sequence, i.e., first the virtual conflict between
route #1 and route #2 is detected and resolved, next the virtual conflict between route #1 and #3 is detected and
resolved. Unlike test cases #22 and #23, test cases #17 through #21 and #24 address multiple CDR all at once, i.e.,
all three routes share a common trajectory point. Hence, to form a set of three flights for test case #17 through
#21 and #24, we searched and found a number of trajectory points between these three flights’ trajectories, where
the date, latitude, longitude, and altitude values matched, and time mismatched. Assuming that the predicted
trajectories were received in the order of route #1, #2, and #3 respectively, first we perturbed the 2nd flights’
departure time to create a virtual conflict between the first and second flight, which is detected and resolved
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using our multiple CDR approach. As an outcome, route #2 was perturbed at the conflict location, yielding a
common trajectory point between route #1 and route #3. Next, we perturbed the 3rd flights’ departure time to
create a virtual conflict between the first and third flight, which is also detected and resolved using our multiple
CDR approach. In all multiple CDR test cases listed in Table 3, we used an Octree data structure and executed
Algorithm 2 and Algorithm 3 as highlighted in Section 4.3.

Note that overall, the trajectory data alone contains over 4 million trajectory points. In Tables 2 and 3, the
test data represents the conflicting trajectories. Aside from these 1,677 trajectory pairs, we also bootstrapped by
drawing 100 additional trajectory pairs with replacement from the trajectory set to test for the false positive
cases. Hence, we evaluated our framework’s effectiveness with a total of 3,554 (3,354 + 200) test trajectories on 16
test cases for pairwise CDR and an additional set of 1,234 test trajectories formed by three flights on 8 test cases
for multiple CDR.

Figures 5a through 5p illustrate the pairwise test cases with their cumulative training and test data in white and
yellow, respectively, whereas Figures 5r through 5y illustrate the test cases of three flights with their cumulative
training and test data in white, yellow, and blue, respectively.

5.2 Results
We evaluated our framework by comparing the output of each step through the framework’s pipeline with the
ground truth on all 24 test cases. These steps include conflict detection and conflict resolution. However, due
to fact that the accuracy of conflict detection and resolution significantly depend on the accuracy of predicted
trajectories, we also computed trajectory prediction errors. For that purpose, we used trajectory prediction
accuracy metrics as outlined in [37] and computed horizontal and vertical errors ehor iz , ever t based on predicted
trajectories generated by our previous system [9] versus raw trajectories of pertinent flights. The box plots in
Figure 6 capture the aggregated errors for horizontal, along-track, and cross-track errors for each flight in all 24
test cases. The horizontal error is unsigned whereas the along-track, cross-track, and vertical errors are signed
errors. Note that the mean value for the cross-track error and vertical error along the entire test trajectories are
7.693nmi and 1589.459ft respectively, when the sign is omitted.

To evaluate our conflict detection capability, we used the same accuracy metrics as in [37] and computed
horizontal and vertical errors by comparing the output of conflict detection and conflict resolution of our
framework with the ground truth on all 24 test cases. To compute the errors, we fed a pair set of predicted
trajectories for test case #1 through #16 and a set of three predicted trajectories for test case #17 through #24
into our conflict detection algorithm and compared the locations of virtual conflicts versus locations of conflicts
detected by our framework. Next, we created 4 bin sizes, where each bin size is an integer multiple of 5nmi
of lateral and 2000ft of vertical distances, conventionally accepted as minimum separation values for enroute
airspace by ANSPs.
Table 4 presents the pertinent condition for each bin. Using horizontal and vertical error values, we counted

the number of conflicts in each case and found the bin size to which they belong. The outcome is presented as a
set of histograms in Figure 7. Our algorithm detected 87.1% of the conflicts within the first bin size and 99% of the
conflicts within the first two bin sizes on all 24 test cases. Note that the conflict detection can only be as accurate
as the predicted trajectories. Hence, these errors are attributed to the accuracy of our previous system [9], defined
by the horizontal, and vertical error of 14.983nmi and 1589.459ft respectively along the entire test trajectories.

To resolve the conflicts, we ran our conflict resolution algorithm as highlighted in Section 4.2. Figure 8 provides
a closer look at one of the detected and resolved conflicts by our framework for a pairwise CDR test case. In
all figures, the yellow cubes and white cubes represent the first and second flight’s, respectively, predicted
trajectories. The red line parallel to the white cubes represents the first fight’s actual trajectory and the red line
parallel to the yellow cubes represents the second flight’s actual trajectory. As both aircraft move one cube at a
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Fig. 5. Visual representation of training and test data for conflicting flights.
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Fig. 6. Trajectory prediction errors in the form of box plots.
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Table 4. Horizontal and vertical error ranges for each bin size.

BinSizeId Condition Size
1 0nmi ≤ ehor iz ≤ 5nmi ∧ 0ft ≤ ever t ≤ 2000ft 5nmi,2000ft
2 5nmi < ehor iz ≤ 10nmi ∨ 2000ft < ever t ≤ 4000ft 10nmi,4000ft
3 10nmi < ehor iz ≤ 15nmi ∨ 4000ft < ever t ≤ 6000ft 15nmi,6000ft
4 15nmi < ehor iz ≤ 20nmi ∨ 6000ft < ever t ≤ 8000ft 20nmi,8000ft

time in the flight direction, the PZ illustrated in the cyan cube around the current position of the first flight also
moves forward in the form of a sliding window. The first figure on the far left shows where each aircraft is at time
ts−1, represented respectively by the solid white cubes for the first and yellow cubes for the second flight. The
second figure from the left captures the conflict detected at time interval ts by our framework illustrated with
a solid red cube. The actual conflict occurs where the red lines intersect. Note that both the predicted conflict
position and the actual conflict position are within the first flight’s PZ . The third figure from the left is the 3D
view of the second figure from the left. The actual and predicted conflict positions are only 2 cube sizes away
from each other, considering the center of the cube as the predicted position of the aircraft. The figure in the far
right illustrates the optimized solution to the conflict by our framework. The first flight’s trajectory has been
perturbed vertically and the conflict has been resolved by our framework. The altitude of the second flight has
been elevated resulting in conflict being resolved. Note that due to assignment of low conflict-free probabilities
to the 3D grid points inside of the PZ , the framework avoids selecting them during the conflict resolution stage,
generating conflict free trajectories.

As the final evaluation step, we executed our conflict resolution algorithm on all conflicts formed by a total of
4,788 (3,554 + 1,234) trajectories and computed accuracy values based on the number of successful resolutions, i.e.
generating a feasible safe alternative trajectory by fulfilling the separation minima criteria. Due to the fact that
our conflict resolution algorithm resolved the vast majority of conflicts on all test cases, we provide aggregated
results overall, rather than provide results for each test case. Table 5 presents accuracy values for each bin size.
Note that, to resolve the conflicts, we treated each bin size differently based on their varying sizes so that only
relevant 3D grid points were avoided. The process perturbed the trajectory for the latter flight, generated an
optimal alternative and yielded conflict-free trajectories.

6 DISCUSSION
During the trajectory prediction step, errors were computed by comparing the locations of virtual conflicts
versus locations of conflicts detected by our framework. The trajectory prediction had mean horizontal and
vertical errors of 14.983nmi and 1589.459ft, respectively along the entire trajectory points over the full test
set from two continents. Using the predicted trajectories, our conflict detection algorithm had 6.013nmi of
mean horizontal error. Note that this value is considerably less than 14.983nmi, the mean horizontal error by our
previous Trajectory Prediction System [9] along the entire trajectory points including climb, cruise and descent
phases of a flight. This is due to two major facts: 1) Trajectory prediction accuracy during the cruise phase is often
considerably higher than the climb and descent phases of the flight. 2) All conflicts we used in our experiments
took place during the cruise phase of the flights. With 6.013nmi of mean horizontal error on the conflict positions,
our conflict detection algorithm found 99% of conflicts within the first two bin sizes of separation minima (10nmi,
4000ft). We also verified that between none of the additional 100 trajectory pairs where the virtual conflict never
occurred was falsely detected as a conflict by our framework. Our conflict resolution algorithm’s mean accuracy
was over 97% on all test cases. Though, it is interesting to see that it was unable to reach 100% accuracy, given
the fact that all it had to do was avoid the selected 3D grid points when generating the new conflict-free optimal
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Fig. 7. Conflict detection histograms showing how many conflicts were captured by our framework in each bin size.

trajectory. The reason for that was the sparse distribution of data cubes, i.e. lack of data over the 3D grid network.
The algorithm was unable to connect the new trajectory segments from start to end due to disconnection. Hence,
our framework craves for more data to reach higher accuracy values.
These results validate the effectiveness of our framework on the long-range CDR problem. However, this is

not to say that strategic CDR will detect and resolve conflicts once for all and no more conflicts will occur during

ACM Trans. Spatial Algorithms Syst., Vol. 5, No. 4, Article 24. Publication date: September 2019.



24:20 • Samet Ayhan, Pablo Costas, and Hanan Samet

Fig. 8. Illustration of a detected and resolved pairwise conflict by our framework.

the flight. There will likely be some convective weather patterns shaping after departure. These sudden changes
causing potential conflicts should be addressed tactically by short and or medium-range CDR systems while the
aircraft is airborne.
Although we were not able to find, there may also likely be some exceptional cases where false positive

conflicts may be found. These cases should also be addressed tactically by short and or medium-range CDR
systems. Note that the larger the selected PZ value, the higher probability of finding and resolving the conflicts
between trajectories. However, that also means less denser sectors resulting in inefficient use of airspace. Hence,
the tradeoff should be handled carefully by the ANSPs.

Overall, we propose our framework to be used by AOCs to file more realistic flight plans. Our framework can
also be used by ANSPs to validate that the filed flight plans do not cause conflicts with previously approved flight
plans or increase any sector traffic complexities. Air traffic density and complexity (a count of aircraft predicted
to be in conflict with another) are two major factors defining the metric of air traffic controller workload [28].
These goals can be achieved in the planning phase before the aircraft depart, resulting in improvement in the
four ATM key performance areas; safety, capacity, efficiency, and environmental impact, and thereby improving
ATM automation and reducing the air traffic controller workload.

Table 5. Accuracy of our conflict resolution algorithm based on each bin size.

BinSizeId Size Accuracy
1 5nmi,2000ft 98.3%
2 10nmi,4000ft 97.5%
3 15nmi,6000ft 93.7%
4 20nmi,8000ft 100.0%

7 CONCLUSION
We have presented a novel Data-Driven Framework addressing a long-range CDR problem. Using a set of predicted
trajectories, the framework delivers two major capabilities; i) conflict detection, and ii) conflict resolution before
the flight depart. In the conflict detection stage, the framework declares a conflict when a PZ of an aircraft on its
predicted trajectory is infringed upon by another aircraft at the same time interval in the future. In the conflict
resolution stage, upon a conflict, the framework executes our conflict resolution algorithm that is derived from
the Viterbi algorithm and prescribes a solution that resolves the conflict by perturbing at least one of the 4D
trajectories.
Our experiments on real trajectory and weather datasets from two continents verify that our framework

achieves lateral and vertical accuracies that are within the boundaries of conventionally accepted minimum
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separation values, set by the ANSPs. This translates to the fact that, ANSPs can now detect and resolve potential
conflicts long before the aircraft depart, resulting in safer and greener skies with higher efficiency and capacity,
and thereby reducing the air traffic controller workload. Some future work could involve adding a spatial
browsing capability [12, 19, 47] for the trajectories as well as incorporating our methods in a distributed spatial
environment [60].
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