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ABSTRACT
An iconic image database is a collection of symbolic images
where each image is a collection of labeled point features
called icons. A method is presented to support fast position-
independent similarity search in an iconic database for sym-
bolic images where the similarity condition involves finding
icon pairs that satisfy a specific spatial relationship. This is
achieved by introducing an index data structure based on r-θ
space, which corresponds to the Cartesian product of sep-
aration (i.e., inter-icon distance) and (some representation
of) relative spatial orientation. In this space, each pairing
of two icons is represented by a single point, and all pairs
with the same separation and relative orientation (regard-
less of absolute position) map to the same point. Similarly,
all icon pairs with the same separation but different relative
orientations map to points on a line parallel to the θ axis,
while all pairs with different separations but the same rel-
ative orientation map to points on a line parallel to the r
axis. Using such an index, database search for icon pairs
with a given spatial relationship or range is accomplished
by examining the subarea of the index space into which de-
sired pairs would map. This r-θ index space can be orga-
nized using well-known spatial database techniques, such as
quadtrees or R-trees. Although the size of such an index
grows only linearly with respect to the number of images in
the collection, it grows quadratically with the average num-
ber of icons in an image. A scheme is described to reduce
the size of the index by pruning away a subset of the pairs,
at the cost of incurring additional work when searching the
database. This pruning is governed by a parameter φ, whose
variation provides a continuous range of trade-offs between
index size and search time.
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1. INTRODUCTION
Maps provide a means of maintaining a database of car-

tographic information. Although maps are usually thought
of as capturing positional information, they are also used to
capture spatial relation information. In particular, relevant
objects or features are represented by symbols, and both
the topological layout of these objects and their inter-object
distances are significant. Examples of such maps include
floor plans, blueprints, and satellite images. Examples of
features include doorways and windows, component parts
of an assemblage, and rivers, roads, and buildings.

A collection of digitized map images is an example of an
image database. Searching such a database includes the de-
termination of which images within the database contain
a desired arrangement of symbols, such as a beach north
of a city or a youth hostel near a train station. For such
a search, the absolute position of the symbols within the
database image is unimportant, only the relative spatial
relationship of the symbols is significant. This is called
a position-independent search. Search for symbols with a
particular spatial relationship has applications in mobile
computing, mobile data management, moving-object and
moving-framework databases, and location-based services.

One method of specifying such a search is by construct-
ing a query image containing the desired topological ar-
rangement of symbols (icons). If database images can con-
tain multiple instances of a particular kind of icon (such
as multiple hotels in the same geographic area), an icon in
a query image actually designates (a member of) an icon
class, to be satisfied by a corresponding specific icon in-
stance in database images matched. In addition to a topo-
logical arrangement of icon class designators, a query must
also specify which spatial relationships between the classes of
the query image are to be considered relevant in the search.
This describes a spatial version of retrieval by content, which
has been investigated in both the spatial and non-spatial do-
mains. The MARCO (MAp Retrieval by Content) system
of Samet and Soffer [21, 25] is an example of this search
method.
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While a minimal database search capability can be con-
structed using little more than a basic similarity measure (as
a brute-force search would simply compare the query image
against each database image in turn), efficient database ac-
cess usually depends upon an index, an auxiliary data struc-
ture that is maintained by the database system to allow the
efficient determination of (and thus access to) only the por-
tion of the database relevant to the current task. Indexes
often embody abstraction (with only a subset of the data
being replicated into the index), and structure (supporting
access to the index entries in more sophisticated ways than
simply in sequential order of the database proper). The sim-
plest form of such structure is an ordering. For example, in
a book index, only certain key words are abstracted into the
index, which is then alphabetically ordered. However, more
complicated structuring methods are also possible.

As it is inefficient to regenerate the index for each new
task, the information in the index must be in some sense in-
variant, that is, useful (perhaps to a greater or lesser extent)
for all supported tasks. While many methods of generating
an invariant may be possible, it is also necessary that the
method chosen be a useful one. For example, in a database
of two-dimensional line segments, one choice for an invariant
would be a single point in four-dimensional space, with the
two-dimensional coordinates of both end points supplying
the four required coordinates. This is known as the corner
transformation [22], which is a two-dimensional variant of
an interval representation (e.g., [5]) and used by a number
of researchers (e.g., [6, 11, 12, 15, 19, 26]). However, this
invariant is not always useful in satisfying important queries
about line segment intersections or proximity. In this par-
ticular case, an invariant involving partitioning underlying
two-dimensional space and then indexing the partitions in-
tersected by each line segment is preferable for answering
such queries.

Although much of the image database research has ex-
amined matching a single query icon to a database icon,
some prior work [1, 2, 3, 4, 7, 8, 9, 13, 14, 16, 17, 18, 23,
24] does address queries containing several icons. One ap-
proach [3, 14, 16] involves determining the projections of
image objects onto the coordinate axes and then encoding
these projections as strings. The resulting encoded strings
serve in turn as invariants for the index.

Another approach involves modeling the arrangement of
image objects as an Attributed Relational Graph (ARG).
In [2] a metric-space index is described, using a distance met-
ric function based on the optimal error-correcting (sub)graph
isomorphism problem. While this is an example of an index
structure that is more complex than simple ordering, the
algorithm given for computation of the exact distance be-
tween two ARGs requires “polynomial time of the fifth or-
der”. Furthermore, as the ARG used to place each database
image into the index is evaluated using all objects present in
that image, the efficiency of the method given degrades when
the query ARG represents fewer objects than are present
in database images. However, their approach does support
fuzzy identification of database objects.

Gudivada and Raghavan [8, 9] have investigated search
based on the relative spatial relationships of icon pairs. The
algorithm first determines the n icons common to the query
and database images, and then compares the slopes of the
n(n − 1)/2 lines between icon pairs in each database image
to the slopes of the lines between corresponding icon pairs

in the query image, thus abstracting away the absolute po-
sitions of the icons and considering only the relative spatial
relationships, as captured by these line slopes. Furthermore,
by clustering the set of line slopes, their algorithm can per-
form a rotation-independent search. Their approach does
generate a measure of the similarity between a particular
query image and a particular database image. However, be-
cause the common icon set depends on the particular query
image, their algorithm does not generate an invariant that
could be used as the basis of a database index.

In contrast, the search algorithms to be described here use
an index created by examining every image in the database,
and mapping each pairing of icons into a single point in an
abstract space consisting of the Cartesian product of sepa-
ration (inter-icon distance) and relative orientation. We call
this an r-θ space. The absolute positions of the icons are ab-
stracted away, the icon separation of the pair determines the
r coordinate, and the relative orientation determines the θ
coordinate. All pairs with the same separation and relative
orientation (regardless of absolute position) map to the same
point in this space. All pairs with the same separation but
different relative orientations map to points on a line parallel
to the θ axis, while all pairs with different separations but
the same relative orientation map to points on a line parallel
to the r axis. This r-θ index can be organized using well-
known spatial database techniques, such as quadtrees [20] or
R-trees [10]. This approach provides a position-independent
search, but does not provide a rotation-independent search,

Because an image of n icons contains n(n−1)/2 pairs, the
size of such an index grows quadratically with the number of
icons in an image (although only linearly with the number
of images in the database). For databases with only a sparse
population of icons this may not be a severe problem. An-
other approach is to prune some of the pairs from the index,
at the cost of requiring some additional work while searching
the index.

The remainder of this paper is organized as follows: Sec-
tion 2 shows the structure and construction of an unpruned
version of an index. Section 3 discusses various kinds of
queries and the spatial constraints they imply, and how these
constraints determine the part of the area spanned by the
index to access. Section 4 provides a method of pruning
the index to reduce its size. Section 5 outlines modifications
to the search algorithm required to support such pruning.
Section 6 gives the results of Monte-Carlo simulation exper-
iments designed to determine the efficacy of index pruning.
Section 7 describes a variant where separate indexes are kept
for each pair of icon types. Section 8 discusses considera-
tions for updating an index when the database is changed.
Section 9 discusses how such an index can be used for non-
position-independent search. Section 10 briefly shows how
such an index can be used for purely existential searches,
which do not invoke any spatial constraints. Section 11 con-
tains concluding remarks.

2. NON-PRUNED INDEX CONSTRUCTION
The relative spatial orientation of two icons can be charac-

terized by the slope of the line connecting them, or alterna-
tively can be characterized as an angle. Because the slope of
a vertical line is mathematically infinite, it is more tractable
to characterize this orientation as an angle. Therefore, the θ
axis of the r-θ space is most conveniently calibrated in some
angular measure.
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Figure 1: Mapping of icon pairs into r-θ space

Pairs of icons possess a reflection symmetry: if, with re-
spect to icon A, there exists an icon B at a particular dis-
tance and relative orientation, there also exists, with respect
to icon B, an icon A at the same distance and the “oppo-
site” orientation. This symmetry can be used to halve the
number of entries in the index, if it is possible to determine,
when searching for an icon pair of classes A and B, whether
to search for an A with a particular orientation towards a B
or instead for a B with the “opposite” orientation towards
an A. One way to address this (except for the special case
of searching for an A with respect to another A) would be
to impose a total order on the icon classes. However, in the
work described here the spatial orientation of two icons is
limited to the range 0◦ to 180◦ by exchanging the icons if
their orientation lies outside this range.

The choice between these two methods of halving the size
of the index is another trade-off between index size and
search time. Roughly speaking, throwing the same num-
ber of points into a smaller space results in an increased
density of points, so in the pruning algorithm of Section 4
this higher density increases the probability that evidence
to enable pruning will be found, thereby decreasing the size
of the resulting index. However, when searching with such
an index, twice the number of entries must be examined.

The r-θ space that we use is not a traditional Euclidean
space because it is a two-dimensional space that is half-open
in one dimension (r) but circularly closed in the other (θ)
dimension. More precisely, the r dimension starts at zero
and theoretically runs to infinity, although in any particu-
lar database there will be a maximally separated icon pair,
which will then determine the maximum r coordinate value
for that database. The θ dimension is topologically closed,
that is, 0◦ and 180◦ are logically identical. Thus the space
is a half-cylinder running from zero to infinity.

Figure 1 illustrates the mapping of two icon pairs from
database images 123 and 456 into r-θ space. The relative
orientation of icons A to B from database image 123 is 20◦,
which is less than 180◦. Since icons A and B are 15 units
apart, the pair maps into the point r = 15, θ = 20. In
database image 456, icons C and D are 20 units apart, but
because the relative orientation of C toward D of 350◦ is
greater than 180◦ the two icons are exchanged and the pair
maps into the point r = 20, θ = 170.
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Figure 2: Areas of r-θ index space to be searched

Construction of the non-pruned index is not complicated.
For each symbolic image in turn, each pairing of icons is con-
sidered, and an index entry for that pairing is added. This
entry must explicitly contain identifiers for the two icons
(perhaps including icon class), and an identifier for the par-
ticular symbolic image, which is used to indicate the images
found by a successful query. In addition, given the index
entry, it must be possible to recover both the separation
and relative orientation of the pair, although this data may
be implicit in the spatial data structure that is used. One
possibility is to explicitly keep separate Δx and Δy (relative
distance in x and y) for the pair, as computation and com-
parison of separation can be done in the r2 domain and rel-
ative orientation can be recovered by using a four-quadrant
arctangent function such as Fortran’s ATAN2.

3. NONPRUNED INDEX SEARCH
When searching the index, the set of applicable spatial

constraints determines an area of the r-θ index that must
be examined. The 9 nontrivial boxes in Figure 2 represent
different combinations of separational and orientational con-
straints. The boxes labeled A represent distance constraint,
while the boxes labeled B represent a combination of both
distance and orientational constraints. For the orientational
constraints described in this figure, ω represents the range
of orientations desired, that is, icon pairs with orientations
between θ − ω and θ + ω are sought. In each box, the left
image shows a representation in normal 2-D space of the
target of such a query, and the middle image shows the area
of r-θ space examined. (The right image shows the search
area for a pruned index, described below). For example, in
case 5A, the search is for icon pairs either closer together
than rl or farther apart than rh. In this case the area of r-θ
space examined is the band below rl and the band above rh.
In case 4B, where separation and orientation are both con-
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C (600,200)

A (100,100)

B (380,420)

E (900,900)

D (960,350)

Pair r Raw θ Effective θ
AB 425 48.8◦

AC 509 11.3◦

AD 895 16.2◦

AE 1131 45.0◦

BC 311 315.0◦ 135.0◦

BD 584 353.1◦ 173.1◦

BE 707 42.7◦

CD 390 22.6◦

CE 761 66.8◦

DE 553 96.2◦

Figure 3: AB and BE constitute evidence for AB

strained, the examined area is a rectangle (or window), and
various well-known methods can be used for such a window
query.

4. PRUNED INDEX CONSTRUCTION
The intuition for index pruning is the observation that

some entries, if included in the index, can act as proxies or
evidence for others, allowing the latter to be omitted from
the index. However, upon search within such a pruned in-
dex, the area of r-θ space that must be examined is generally
larger than the area required for an unpruned index. Post-
processing of the retrieved index data is also required.

Figure 3 shows an example database image containing five
icons, and the ten corresponding icon pairs along with their
r and θ values. The θ values of pairs BC and BD are above
180◦, so both pairs will be reversed, yielding effective θ val-
ues of 135.0◦ and 173.1◦.

The two gray cones at points A and E are both 8◦ wide,
corresponding to a φ value of 4◦. In an index pruned to this
φ value, pairs AB and BE constitute evidence for pair AE,
because their orientations (θ values) of 48.8◦ and 42.7◦ differ
from the 45◦ orientation of pair AE by less than the pruning
parameter 4◦. Neither pairs AD and DE nor pairs AC and
CE constitute evidence for AE. Pairs AC and CD do not
constitute evidence for AD. However, for an index pruned
to a φ value of 10◦ (open cone), AC and CD do constitute
evidence for AD.

In the general case, determining the minimal subset of
pairs providing complete evidence for all pairs (and thus
comprising the smallest possible index for that φ value) may
be of high-order time and space complexity, and therefore
best addressed by the techniques of dynamic programming.

Alternatively, there are a wide range of heuristic evidence

A

B

φ

φ

φ

θφ

2P
P1

Pk

Figure 4: Evidence for pair AB. Note all slopes lie
between θ − φ and θ + φ.

strategies that could be employed. Because the search algo-
rithm itself is used during index pruning, soundness of this
class of indexing schemes is guaranteed if the evidence exam-
ined at search time is a superset of the evidence considered
at the time the index is pruned.

The strategy used to build and search the indexes de-
scribed in this paper is based on two design choices. First,
evidence for an entry with a larger r value (representing an
icon pair that is farther apart) will be sought only among
entries with smaller r values (pairs that are closer together).
Second, evidence for an entry with a given θ value will be
sought only among entries whose θ values (relative orienta-
tion) differ from it by at most a search width parameter φ.
For an index pruned to larger values of φ, evidence is sought
among a larger number of entries, (in general) more entries
can be pruned, and eventually a smaller index is generated.

The intuition for these design choices is as follows. For any
given icon pair that a particular query might accept, that
pair may or may not have been pruned from the index. The
area of the index space where it would (if not pruned) be
present comprises the minimal area that must be accessed.
One way to reduce the total area of the index space accessed
is to limit the area examined for evidence to as small an
extension of this minimal space as possible. Under these
design choices, the area accessed is extended down to the
r = 0 axis and (as we shall see) widened by the pruning
parameter φ. Other choices are possible. For example, if
evidence for pairs with a separation of r is sought only within
pairs with separations from r to r/3 then the search area
need only be extended down to r/3. However, in this case
less pruning may be possible.

An index entry for a particular icon pair may be pruned
if and only if implicit evidence for that pair can be found
by the search algorithm. In Figure 4 the evidence for an
icon pair AB is shown. This evidence consists of a set of
explicit pairs in the index comprising a sequence A−P1, P1−
P2, . . . , Pk −B that connects A and B; and that the relative
orientation (angle) of each of these pairs is within φ of that
of the original pair AB (this relative orientation constraint
limits the extent in the θ dimension of index space that must
be accessed). The Union-Find algorithm, operating on the
pairs found in the index, is used to make the association
between A and B in slightly more than linear time.

The pruned index is constructed by the following greedy
algorithm. Independently for each image in the database,
all icon pairings are generated and sorted on ascending r
(closer to farther). For each pairing AB considered in this
order, the entries already included in the index are filtered
according to the φ constraint and the Union-Find algorithm
is run on the result. If evidence for AB is not found, an

30



Unpruned Pruned Pruned
r θ Index φ = 4◦ φ = 10◦

311 135.0◦ CB CB CB
390 22.6◦ CD CD CD
425 48.8◦ AB AB AB
509 11.3◦ AC AC AC
553 96.2◦ DE DE DE
584 173.1◦ DB DB DB
707 42.7◦ BE BE BE
761 66.8◦ CE CE CE
895 16.2◦ AD AD

1131 45.0◦ AE

Figure 5: Unpruned and Pruned Indexes

r θ Indexed Selected
311 135.0◦ CB
390 22.6◦ CD CD
425 48.8◦ AB AB
509 11.3◦ AC
553 96.2◦ DE
584 173.1◦ DB
707 42.7◦ BE BE
761 66.8◦ CE
895 16.2◦ AD

Figure 6: Search of a 4◦ index for pairs at 34◦ ± 12◦

entry for AB is added to the growing index. In Figure 5, the
entries of pruned indices for the icons of Figure 3 are shown
for pruning factors of φ = 4◦ and φ = 10◦. In either case,
when pair AE is considered by the algorithm, evidence for
AE (consisting of pairs AB and BE) is found, consequently
AE is not added to the index. Similarly, when the φ = 10◦

index is built, AD is not added to the index, as AC and CD
serve as evidence.

Generating the full set of pairings and sorting them in
ascending order of separation requires O(n2) storage space
and O(n2 log n) execution time. As each of the O(n2) pairs
is considered, the subset of pairs already in the index and
within the orientational constraint must be examined. As
there will be between O(n) and O(n2) of them, construction
of the index requires between O(n3) and O(n4) time,

5. PRUNED INDEX SEARCH
When searching the index, all pairs in an appropriately

expanded area of the index are retrieved. In order to en-
sure that a pruned pairing can always be found, the pairs
retrieved by the search algorithm must include all evidence
that might have been considered by the original pruning de-
cision. This requires accessing a somewhat larger area of r-θ
space, relative to that examined by the same search on an
unpruned index.

In the index of Figure 6 a search for pairs with orientations
between 22◦ and 46◦ (θ = 34◦ ω = 12◦) should find pair AE.
Because the evidence for AE includes AB at 48.8◦, the area
of the index retrieved must be expanded in the θ dimension
to the range 18◦ (θ − ω − φ) to 50◦ (θ + ω + φ). (Note that
CB is not selected. Although its 135.0◦ orientation appears
to be a variant of 45.0◦, it is in reality directly opposite.)

In Figure 7 (I) the evidence considered by the original
pruning decision for pair Ak − Bk includes pairs whose rel-
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Figure 7: Search in θ dimension broadened by φ

ative orientations lie between θk − φ and θk + φ. This is
shown in the θ dimension of r-θ space (II). When searching
for a pair with relative orientation within ω of θ (III) the ev-
idence for pairs close to the edge of the search criterion may
protrude as far as φ beyond that space, so the area accessed
in r-θ space must be widened by the index pruning factor φ
in order to include this evidence. This is shown in r-θ space
in (IV). The additional area that must be accessed is shown
in dark gray.

In each of the five boxes 1B through 5B on the right half
of Figure 2, the rightmost illustration shows widening of the
accessed space in the θ dimension by φ, the pruning factor
of the index being searched.

In addition, because closer pairs act as evidence for farther
pairs, the area of r-θ space accessed must be extended down
to the r = 0 axis. In cases 1B, 2A, 2B, 5A, and 5B in
Figure 2 this area down to the r = 0 axis is already accessed,
so the extension of search in the r dimension imposes no
additional cost, while in cases 3A, 3B, 4A, and 4B some
additional cost is incurred. In all boxes of this figure the
additional area that must be accessed due to considerations
of index pruning are shown in dark gray.

The evidence retrieved from the implicated area of r-θ
space is processed by the Union-Find algorithm. Each icon
pair retrieved is interpreted as signifying an equivalence re-
lation between its two constituent icons, thus a set of equiv-
alence classes of icons (or clusters) is the final result.

If, at index creation time, an icon pair A-B was pruned
from the index, the evidence examined at that time must
have contained the chain of pairs A−P1, P1−P2, . . . , Pk−B,
all within the constraints on relative orientation. Because
of the extension of the accessed space in both the r and
θ axes, the retrieved entries are guaranteed to contain all
this evidence, and the chain of pairs will cause the Union-
Find algorithm to place icons A and B together in the same
output cluster.

Each cluster generated by the Union-Find algorithm is ex-
amined separately for pairs satisfying the search constraints.
After filtering the icons in a particular cluster by icon class,
each pairing of the remaining icons is examined. In the ex-
ample of Figure 6 clusters (ABE) and (CD) are generated,
and the final results AE, BE, and CD are found.

The time complexity for this phase rises quadratically
with cluster size, but is somewhat mitigated by two factors.
First, the algorithm is actually quadratic on the cluster size;
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Pruning Parameter φ

n n(n−1)
2

2 4 6 8
10 45 40 38 35 35
20 190 160 142 126 105
30 435 328 277 234 194
40 780 552 428 347 286
50 1225 776 588 464 385
60 1770 1036 749 573 477
70 2415 1299 907 688 578
80 3160 1567 1068 809 666
90 4005 1844 1244 937 758

Figure 8: Sizes of Unpruned and Pruned Indexes

thus processing of a large number of small clusters will re-
quire less time than processing a small number of large clus-
ters. Second, each cluster is filtered based on icon class, so
the size of the data is greatly reduced before the quadratic
phase of the algorithm.

Note that if a distance constraint r < 400 had been spec-
ified, pairs AB and BE would not have been retrieved, and
only pair CD would be present in the result. If a distance
constraint r < 1000 had been specified, pairs AB and BE
would still have been retrieved, but AE would have been
filtered out by the final pass, and again, only pair CD would
be present in the result.

6. SIMULATION RESULTS
Monte Carlo simulation is a methodology that uses a ran-

dom number generator to construct a set of test cases, along
with a statistical analysis of the results of those tests. A
Monte Carlo simulation was undertaken to investigate the
effectiveness of pruning in reducing index size, and the de-
gree to which clustering reduces the execution time of the
search algorithm.

If the full circle is divided into n units (such as 360 de-
grees), then modulo-n arithmetic can be used for computa-
tion on this axis. Furthermore, if n is chosen to be a power
of two, a bitwise AND can be used to implement the modulo
division operation. In the simulations that we ran, the circle
was divided into 256 (28) units.

The version of the Union Find algorithm implemented for
this simulation was extended to preserve the offsets Δx and
Δy between each icon and the representative chosen by the
algorithm for each equivalence class (cluster) it produces.
The offsets between two icons in the same equivalence class
can then be determined from their offsets with respect to
their shared cluster representative. The relative orientation
of the two icons can then be determined from these offsets
by table lookup, while separation comparisons can be done
in the r2 domain, by comparing Δ2

x + Δ2
y to the square of

the separation constraint.
Test images were generated, consisting of 10 to 90 icons

apiece, randomly located on a 1024 by 1024 grid. For each
test image, indexes were generated with values of the prun-
ing parameter φ of 2, 4, 6, and 8. (Angular unit values from
0 to 255 represent angles from 0◦ to 360◦. Thus, one angular
unit represents slightly more than 1.4 degrees. Values of the
pruning factor investigated correspond to beam half-widths
of approximately 2.8◦, 5.6◦, 8.5◦, and 11.2◦, respectively.)
Figure 8 shows the (computed) size of an unpruned index,
compared to the sizes of the resulting pruned indexes. The
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Figure 9: Pruning Efficiency

same information is shown graphically in Figure 9 using a
logarithmic scale.

As the pruning factor φ is increased, the size of the index
is reduced. The trade-off for this size reduction is that the
area of the index space that must be examined is broadened
in the θ dimension.

Simulations of search were done for each index produced.
A search was run for every icon pair in the image (no sim-
ulations of unsuccessful searches were conducted), and the
structure of the clusters produced by the Union-Find algo-
rithm was examined.

The simulation showed that for small values of r, small
values of φ, and sparse data loading, a larger number of
smaller clusters were formed. However, as the values of r
and φ increased, or as the data became more dense, the
Union-Find algorithm trended toward production of a sin-
gular large cluster.

In a real world implementation the index would be disk
resident, thus query costs would be dominated by disk ac-
cess. For this reason the size of the index and the size of the
r-θ space search area were used as a proxy for estimating
query costs.

7. SEPARATE CLASS PAIR INDICES AND
WILDCARD SEARCHING

While so far the discussion has been limited to the use of a
single, unified index, databases storing only a small and lim-
ited number k of icon classes might advantageously maintain
a separate r-θ index for each of the k(k +1)/2 combinations
of classes. (This number includes the k homogeneous class
pairs A-A, B-B, etc. To achieve the factor of two reduction
in the number of indexes, a total order would be induced
on the icon classes, as discussed in Section 2.) Either un-
pruned or pruned indexes might be used, depending on the
expected density of icons in that particular database. How-
ever, introduction of a single instance of a novel icon class
would require immediate instantiation of a relatively large
number of new indexes.

In such a multiple-index system, a wildcard query (search-
ing for icons belonging to any one of a specific set of icon
classes) will generally require more than one of the indexes
to be accessed.
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8. DATABASE UPDATE
Adding a completely new database image is straightfor-

ward. The pairs for the new image are generated, pruned
by the value of φ used by that database, and added to the
index. Similarly, deletion of an entire image consists simply
of removing all the pairs of that image from the index.

Adding an icon to an existing database image can easily
be done by generating all the pairs composed of the new icon
and the existing icons, then adding into the index only those
new pairs for which evidence does not already exist in the
index. This is somewhat suboptimal in that one or more of
these new pairs may constitute crucial evidence for some of
the other pre-existing pairs, allowing them to theoretically
be pruned from the index. However, these benefits can be
regained by periodically regenerating the index.

Removing an icon cannot be done by simply removing all
pairs containing it, as a removed pair may be a crucial part
of the evidence for other pairs. Instead, marking the pairs as
“logically deleted” without physically deleting them allows
their continued participation in the search algorithm but
also allows the final filtering pass to remove them from the
results. Again, periodically regenerating the index allows
the eventual physical deletion of such pairs.

9. NON-POSITION-INDEPENDENT
QUERIES

Although the algorithms described above were developed
to perform position-independent search, position-dependent
queries can be accommodated by adding to the index one
artificial icon for each database image, at a point determined
by a convention of that particular database (such as “the
center” or “the lower left corner”). Query for an icon A in a
given area of any image is then done by determining a set of
r-θ constraints, relative to the known conventional position
of the artificial icon X, that subsumes the given search area.
The search is done for an X-A pair with the determined
spatial relationship, and the result is filtered to satisfy the
original position-dependent query.

In Figure 10, a rectangular search window in normal space
can be subsumed into an r-θ query (of type 4B in Figure 2)
with respect to artificial icon X. Images found by the algo-
rithms described above can then be filtered to remove any
“false positives” generated by this subsumption.

10. NON-SPATIAL QUERIES
An existential query attempts to find database images

containing a particular icon A, with no constraint on that
icon’s position. Such a query could also be satisfied using
the artificial X point, by searching for an X-A pair with
an unconstrained spatial relationship, but doing so would
require that the entire index be retrieved. If a database

must frequently support such queries, a separate but paral-
lel inverted-file index might be added.

11. CONCLUDING REMARKS
We have shown how to use a spatially organized index

of icon pairs to accelerate search of an image database for
icon pairs possessing a desired spatial relationship. The
quadratic growth in the storage space required for such an
index can be controlled using an algorithm that prunes pairs
from the index when their existence can be inferred from re-
maining unpruned pairs. The trade-off for this pruning is
that search must access a larger fraction of the spatially
organized index, and may require execution time at worst
quadratic in the number of icons per image.

In the two dimensional work described above, the spatial
relationship between two icons is characterized as separation
(r) plus a single angle (θ). The straightforward extension
to three dimensions adds a second angle, characterizing the
spatial relationship as a separation plus two angles. The
closest familiar analogue might be the “Az-El” (azimuth-
elevation) measurement of surveying, in which a direction
is characterized as an azimuth (angular bearing in the hor-
izontal plane) and an angular elevation above the horizon,
with the range (e.g., distance or separation) supplying the
required third coordinate value.

In this case, the shape of the index space would be analo-
gous to a 2 1

2
D map of the earth’s surface, or the skin of an

orange, with two angular axes, both closed (i.e., a sphere),
and with the r dimension extending outward, along the or-
ange skin’s thickness. The general pattern for an n dimen-
sional database space would be an index space consisting of
a single linear r axis directed “outward” from the surface of
a n − 1 dimensional hypersphere, which would embody the
n − 1 remaining angular dimensions.

It is easier to envision the structure of such an index space
than to imagine any real-world application for this tech-
nology. Human beings are surprisingly adept at correlat-
ing two dimensional maps with physical terrain, given that
we did not evolve in an environment where looking down
on a terrain from above is an everyday experience. Sadly,
this ability does not extend to higher dimensionalities. The
only three dimensional analogy that comes to mind is using
a database of positions in the solar system (such as space
ships, space stations and planets) to find feasible links for
an interplanetary relay network, while avoiding radio noise
from the galactic core. Higher-order analogs would be even
more opaque.

Future research includes extending the analysis from syn-
thetic to real-world datasets, the investigation of algorithms
to construct optimal pruned indexes, and algorithms to con-
struct useful pruned indexes in less than O(n3) time. The
space-time tradeoff involved in the employment of a 180◦

space versus a 360◦ space is also worthy of investigation.
The existential part of an iconic image database query

(i.e., determining the images that contain particular icons,
regardless of their spatial arrangement) can be satisfied by a
traditional inverted-file index containing icon instances and
the images in which they are present. The degree of im-
provement in real-world iconic image database access effi-
ciency made possible by processing some of a query’s spatio-
orientational constraints directly in the index is an area open
for future quantitative study.
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