
František Brabec
and Hanan Samet
University of Maryland

Client-Based Spatial Browsing
on the World Wide Web

Being able to visualize both spatial and nonspatial data is becoming increasingly

important to today’s Internet users. Spatial data viewers and query tools can aid

in visualization, but they should also let users access data instantly and with minimal

effort. The authors explore new ways to allow visualization of data stored in a

central server database on a simple client. They also consider usage scenarios in

which transferring the whole database to the client for processing isn’t feasible

due to the amount of data on the server, insufficient computing power on the

client, and a slow link between the two.

S cientists and researchers collect vast
amounts of spatial data daily. Many
collection methods, such as via satel-

lite systems, produce data in raster for-
mat. Researchers can often analyze such
data directly, whereas at other times, they
use it to produce the final data set in vec-
tor format. Spatial data viewers and query
tools are increasingly popular with end
users, which necessitates methods that let
these users access data for viewing and
querying instantly and with minimal
effort. At the University of Maryland,
we’ve focused on providing remote access
to vector-based spatial data, rather than
raster-based spatial data.

Traditionally, common spatial data-
bases and Geographic Information Sys-
tems (GISs), such as ESRI’s ArcInfo (www.
esri.com/software/arcgis/arcinfo/index.
html), have been designed as stand-alone
products — the spatial database resides on
the same computer or LAN from which

users visualize and query it. This hard-
ware setup lets users instantaneously
transfer large amounts of data between
the spatial database and the visualization
module. It’s perfectly feasible, therefore,
for these two components to communi-
cate via large-bandwidth protocols. Many
applications exist, however, for which
more distributed approaches are desirable.
In these cases, the database is maintained
in one location; users must work with it
from possibly distant locations over a
network (such as the Internet). These con-
nections can be far slower and less reli-
able than LANs. Thus, we must limit the
data flow between the database (server)
and the visualization unit (client) to get
timely responses from the system. The
challenge in running a GIS over the Inter-
net comes from limited network band-
width and higher delay. In some
scenarios, the client component is fairly
thin (run on a handheld platform, for

52 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

Sp
at

ia
l

V
is

ua
li

za
ti

on

example) or runs in an environment with other-
wise limited resources (such as a Java applet).

Numerous Web-based mapping service ven-
dors, such as MapQuest (www.mapquest.com) and
MapsOnUs (www.mapsonus.com), enable remote
users, typically equipped with only standard Web
browsers, to access their spatial database servers
and retrieve information (in the form of maps).
These services perform all calculations on the serv-
er side and then transfer the bitmaps that represent
users’ query and command results. This solution
requires minimal hardware and software resources
from the client, but the resulting product has
severe limitations in terms of available function-
ality and response time (each user action results in
the client receiving a new bitmap).

Our research explores new ways of allowing
both spatial and nonspatial data visualization on a
simple client when the data resides in a central serv-
er database linked to the client by a possibly slow
or unreliable connection. Our solution partitions the
workload between the client and server in a way
that creates an interactive experience for users, with
minimal delay between their actions and the appro-
priate responses. The design of our client, the SAND
Internet Browser, works around potential bottle-
necks to the information transfer such as limited
network bandwidth or resources available on the
client computer. To support multiple concurrent
clients, we also consider servers’ resource limita-
tions. Our solution is especially appropriate for
usage scenarios in which transferring the whole
database for processing on the client isn’t feasible.

Spatial Server Access
Some spatial database solutions, especially those
intended for browsing and querying relatively
small data sets, exist as stand-alone products with
the database engine and the visualization unit
bundled together. This allows users and their com-
puters to be completely independent when running
the application. The obvious drawbacks include
limitations on the volume of data that can be pre-
sented this way as well as complications resulting
from having to update the locally stored data set.

ArcView (www.esri.com/software/arcgis/arc
view) — now part of the ArcGIS desktop suite —
was one of the first, and remains the most popu-
lar, representatives of the integrated solutions cat-
egory. It provides extensive mapping, data use, and
analysis along with simple editing and geoprocess-
ing capabilities. Its design allows extensions,

implemented by both ESRI and third-party devel-
opers. MapInfo Professional (www.cmcus.com/
Products/Vendors/MapInfo/mapinfopro.asp) is a
business-mapping solution similar to ArcView that
lets users perform data analysis and visualization.
It supports extensive data import and export and
lets users develop their own custom extensions.

The SAND Browser1 provides a GUI to the Spa-
tial and Nonspatial Database facilities developed
at the University of Maryland.2–4 It facilitates data
visualization by letting users specify several
search criteria:

• the scan order in which tuples are incremental-
ly retrieved from SAND,

• a spatial selection (overlap and within con-
straints), and

• an arbitrary selection predicate.

The browser supports selection and spatial join and
semijoin queries whose results are returned incre-

mentally. This lets users get visual feedback quick-
ly. Additionally, users often wish to receive results
in some specific order — returning objects ordered
by distance from another object or a set of objects
is a typical query.

As described previously, many vendors employ
a traditional approach to Web-based mapping
based on sending a sequence of bitmaps to the
client for viewing. Typical examples of such
service providers include MapQuest and Switch-
board/MapsOnUs, for street maps based on
addresses, or TopoZone (www.topozone.com) for
topographical maps. Their approach is simple: the
server receives a location description (a street
address, place name, and so on), queries its spatial
database, retrieves a map, converts it into a bitmap
image, and sends it back to the user (via his or her
browser). The map retrieved from the spatial data-
base might be in vector (MapQuest or MapsOnUs)
or raster (TopoZone) format. In either case, it gets

JANUARY • FEBRUARY 2007 53

Client-Based Spatial Browsing

The browser supports selection
and spatial join and semijoin
queries whose results are
returned incrementally.

rasterized or subsampled, respectively, before the
server sends the data over the network to the user’s
browser. Other raster-based mapping systems
include TerraServer5 and NASA’s World Wind
(http://worldwind.arc.nasa.gov), which, besides
working with NASA’s own data, also uses data
from TerraServer.

The Web-based mapping approach requires
very little support from the client side — typically,
just a Web-browser-equipped computer or network
appliance. This solution’s drawback, however, is
that it quickly reaches its usability limitations
when users attempt more serious work. Such poor-
ly supported operations include basic zooming in
or out or panning, not to mention running queries.
In particular, zooming or panning actions are very
cumbersome, with performance bordering on
unacceptable for many users because the response
time depends on how much data the server must
transfer every time the user requests a new view.
Other operations, such as querying the database
beyond displaying all objects within a certain rec-
tangle, aren’t supported at all.

Google and Microsoft both recently presented
enhanced raster-based designs (see http://maps.
google.com and http://virtualearth.msn.com). Sim-
ilar to MapQuest, Google’s map service is raster-
based, but it doesn’t send a single image covering
the whole viewable area every time an update is
needed. Instead, it divides the viewable map into
a grid of 128 � 128 small-image cells. When the
user executes a panning operation, the service
doesn’t need to download a new image represent-
ing the whole viewable area — instead, it needs to
download only those cells covering the area that
just became visible; it reuses the rest by simply
moving them on the screen. Oracle provides a sim-
ilar rendering service called MapViewer (www.
oracle.com/technology/products/mapviewer/index.
html) for its Oracle Spatial product. MapViewer is
a Java component that accepts spatial queries and
generates resulting bitmaps that the client platform
can view. Thus, from a user perspective, this
approach resembles that of MapQuest and similar
Web-based services.

Other systems rely on a custom client module
that communicates with the spatial server via a
proprietary protocol. Few such systems exist, how-
ever, and most that do are in the research project
stage rather than being proven commercial prod-
ucts. Chee Yap, Kenneth Been, and Zilin Du,6 for
example, propose a responsive visualization sys-

tem that links a central database containing TIGER
data from the US Census Bureau with a Java-based
client (over a Java Database Connectivity [JDBC]
interface). Their research focuses on fast viewing
of static data (that is, window queries) rather than a
more powerful tool supporting a larger class of spa-
tial queries and operations. In other research,
Michela Bertolotto and Max Egenhofer use similar
techniques by employing geographic data general-
ization to generate simplified representations of the
vector data in order to facilitate fast viewing.

The Open Geospatial Consortium (OGC; www.
opengeospatial.org) has been instrumental in
developing and standardizing protocols for trans-
porting and storing spatial data,8 limiting the need
for the proprietary protocols we just discussed.
Although our application currently uses a propri-
etary protocol for communication between the
client and the server, our research hasn’t focused
on the protocol itself, and we could easily replace
it with another, including the OGC standard.

Client-Server Paradigm
The client-server computer network application par-
adigm is one in which the client typically manages
the user interface and connects to an application or
database server to submit requests and receive
responses. The type of application determines the
nature of such responses. Servers are powerful com-
puters or processes dedicated to managing resources
or performing tasks. Clients are usually lower-end
computers, workstations, or handheld devices. The
amount of business logic handled on the client side
can differ from design to design. In one approach,
the client can communicate directly with the server
application (a database, for example) and then
process and visualize results on its own. A more
common method introduces a middleman applica-
tion on the server side that connects to the database
and implements any necessary business logic. The
client then simply visualizes already prepared text,
images, or other output. We can generalize this
approach to the application server by connecting an
arbitrary number of databases and other applica-
tions and then aggregating the results and preparing
them for the client to visualize. We cooperated9 with
the OpenMap project (www.openmap.bbn.com) to
developing this type of system.

The SAND Internet Browser:
User Experience
The SAND Internet Browser is a Java applet or

54 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spatial Visualization

application that represents the client component of
our client-server solution for facilitating remote
access to spatial databases. Figure 1 shows the Inter-
net Browser’s user interface, which is rooted in
experiences gathered from using the original Tcl/Tk-
based SAND Browser that we described in the previ-
ous section. Although years of usage validated
many concepts proposed in the traditional SAND
Browser, some drawbacks emerged as well, such as
limited support operations on multilayered maps.

We’ve investigated the SAND Browser’s prop-
erties, and, using this experience, we designed a
new user interface for it. We focused on creating
a new interface for the SAND Internet Browser
that provides visualization and query access to
an arbitrarily large data set in typical deploy-

ment scenarios. Like the original, the SAND
Internet Browser lets users visualize data con-
tained in a SAND relation by specifying two
types of controls: the scan order in which tuples
are retrieved from SAND and an arbitrary selec-
tion predicate.

A SAND Internet Browser window is divided
into several panels stacked vertically:

• The command area contains menus and buttons
for several actions. “First” and “Next” retrieve
the first/next tuple, satisfying the currently set
scan order and predicate. “File” provides vari-
ous basic operations, such as “Open” or “Close”
(the current relation) or “Quit” (the browser).
“Display” presents a menu of several activities

JANUARY • FEBRUARY 2007 55

Client-Based Spatial Browsing

Figure 1.The SAND Internet Browser’s user interface. In this sample user interaction, the current tuple’s
contents are shown on the bottom. A dialog box popup window shows the spatial query specification for
finding the neighbors of a given polygon q in increasing order of their distance from q with an upper limit
on that distance.

connected to the graphical display, such as
clearing it or drawing spatial features. “Style”
allows users to change the drawing attributes,
such as the line or fill colors.

• The scan order panel has a button that triggers
several popup dialog boxes and a message area
that displays the currently selected scan order
parameters. Each dialog box corresponds to the
parameters that the Browser will use when
scanning the relation with help from the cor-
responding attribute’s index.

• The conditions panel allows the user to specify
a predicate that the Browser will use to evalu-
ate the query. Unlike the original SAND Brows-
er, the SAND Internet Browser uses an intuitive
interface for building arbitrary conditions
based on the current relation’s fields. In this
way, the user is unaware of having to follow
any specific syntax.

• The info panel indicates the current line and fill
colors that will be used the next time a user
chooses any displaying operation from the “Dis-
play” menu. It also contains an active layer selec-
tor where all queries are executed with respect to
elements in the active layer. For instance, if the
active layer is “rivers," any query such as “find
all elements within a specified distance from a
point" will return all matching rivers.

• The graphical display panel is the drawing area
where spatial features are drawn (on inputs and
outputs). At any given moment during the
interaction, the current value of the relation’s
spatial attribute is displayed in this area and
highlighted with an orange rectangle. Most of
the other user-interface components that hold a
spatial-feature value draw on the graphical dis-
play to support input. Users can also pan across
and zoom in and out of the display. The zoom
operations are available through a left and
middle mouse click, respectively, whereas the
right click finds the nearest object to the click’s
location from the current relation and makes it
the current tuple (that is, a “pick” operation in
computer graphics parlance).

• The info line shows various messages during
the browser’s execution.

• The tuple display panel contains a series of
labeled entry boxes, one for each attribute in
the relation’s schema. The browser updates
these to reflect the current tuple’s value.

• The layer display lists all the layers corre-
sponding to relations available for this

browser session. Clicking on the individual
entries in this list toggles a display of the
respective layers in the graphical display area
on and off.

• The query history lists all queries the user has
performed so far and their results. Users can
assign them names and easily flip through
them to visually compare multiple query
results. Users can also utilize the history to
return to an older query or prepopulate it in the
query dialog box and then initiate a new one.
Thus, it’s easy to form new queries that share
some parameters with previous ones.

The following example demonstrates how to
utilize the user interface to obtain a response to a
specific query. Given a road map of Silver Spring,
Maryland (single-layer data set), we want to find
all the roads within distance d from polygon p
(hand-drawn to represent an area of interest, such
as a flooded area and its immediate proximity) and
return them in the order of distance from line l
(hand-drawn to represent, for instance, an emer-
gency vehicle route):

1. Go to File menu and Open Relation Silver
Spring.

2. Press Scan order, choose line to open a dia-
log box.

3. Enable Ranking by distance from, choose
line, and select the line l by drawing on the
canvas.

4. Enable Restrict search to lines within,
choose distance, and specify a line by draw-
ing on the screen. The line’s length will define
the distance used in this condition. Choose
polygon from the object list next to it and
define polygon p by drawing it on the canvas.

5. Click OK to submit the query.
6. Click First and Next to retrieve the first and

all the other lines within distance d from p
ordered by the distance from l.

7. Alternatively, display the entire group at once
by selecting Display group (uses the current
line color) or Display blended group
(changes the color for each returned line to
indicate the order in which the Browser
retrieved the lines).

The result will indicate the streets affected by the
flood that are closest to areas the emergency vehi-
cles can access.

56 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spatial Visualization

Distributing Data and Processing
between Client and Server
The most common design for the client-server
architecture makes individual tasks such as data
management, image rendering, or query evalua-
tion either the client or server’s responsibility. In
the context of Web-based mapping, the server
handles all the data management and query eval-
uation, and the client only facilitates data visual-
ization while maintaining connectivity. In this
case, the client simply translates user input into
queries and transmits them to the server. It can
also receive data the server sends and visualize
them. The client doesn’t have data storage or pro-
cessing capabilities beyond these basic functions.
This is how many of the popular Web-based map-
ping services such as MapQuest or Switchboard’s
MapsOnUs operate.

The advantage of this server-oriented approach
is that most users can utilize it with the resources
they already have — a networked machine with a
Web browser (they don’t need to install or set up
any additional hardware or software). However,
this approach’s main disadvantage is that the client
must communicate with the server every time the
user requests even the simplest operation. This can
slow down the user experience significantly if net-
work throughput and latency are limiting factors
or if the server is heavily loaded.

To improve on the server-oriented approach, the
client can utilize some of its own main memory to
store (cache) some data in the central database (see
Figure 2). In some cases, this lets the client rely on
its own data repository to handle some of the user’s
requests, thereby cutting back on the network uti-
lization and improving the system’s responsiveness.
Which requests can be handled locally depends on
the specific client implementation. A lightweight
client such as the SAND Internet Browser will rely
on the server for query processing more and imple-
ment only operations such as “window query” local-
ly. A heavier client might support local processing
of more types of queries. In such cases, it would
download data to be processed locally rather than
upload queries and only download their results.

Naturally, the data stored on the client must be
spatially indexed for fast processing. With this
approach, users can no longer use the standard
Web browser as a mere image viewer; they must
load a custom code onto the client to facilitate the
operations that the client will perform. The Java
environment has emerged in past years as the plat-

form of choice for most types of lightweight, cross-
platform applications.

This client-oriented approach’s basic concept
calls for the client to fetch the requested data via
fast memory-only operations whenever possible.
This is usually more efficient than retrieving the
same data over the network from a central server,
but we must give special consideration to cases in
which the environment is unusual in some way.
For instance, small devices with low processing
power might still be providing a more efficient
service by acting as terminals and without
attempting to perform any data-management
operations themselves.

The SAND Internet Browser implements this
approach. The SAND system performs operations
that are primarily client-driven — that is, any oper-
ation performed on either the client or the server
is in response to user-generated input. To minimize
the amount of data that the server must transfer to
the client in response to each operation on the
client side, we cache some data on the client in
case the user requests another operation on data
in the same area. We store the data in their original
vector format rather than the resulting bitmaps so
that the client can generate new views and process
some types of queries locally without having to
request additional data from the server.

SAND Internet Browser Design
The SAND Internet Browser stores the spatial data
on the client using a PMR quadtree10 spatial data
structure. One PMR quadtree exists for each map
layer. Given a particular data layer (such as a road

JANUARY • FEBRUARY 2007 57

Client-Based Spatial Browsing

Figure 2. Thin-client scenario. The thin client communicates directly
with the main spatial server and utilizes its (limited) memory
capacity to cache some spatial data locally. This saves many data
transfers because the client doesn’t need to ask the server for data
after each screen update.

Data
management

Memory

Visualization
mode

Client API

Data
I/O

Data
visualization

Data
caching

Internet

Display

Servlet
API

Server engine

Spatial
database

ClientServer
Network

traffic

network), this structure divides the plane into quad-
rants so that when an object is inserted into a cer-
tain quadrant, if the quadrant already contains
more than a predefined threshold of other objects,
then the quadrant is split into its four children once
and only once, and the objects in the quadrant are
reinserted into the children. Thus, objects are
always stored in the PMR quadtree’s leaf nodes. To
avoid overwhelming or crashing the client plat-
form, we establish and maintain the maximum
amount of data the client can cache. Given that the
objects are specified as vectors, this bound is the
number of vertices that make up the objects.

Besides recording the actual spatial objects,
each PMR quadtree leaf node also contains a time
stamp indicating when it was last accessed (dis-
played). Together with the PMR quadtree contain-
ing the spatial data, we also maintain pointers to
all the PMR quadtree leaf nodes in a variant of a
balanced binary search tree. The key for this tree
is the time stamp stored in the PMR quadtree leaf
nodes. This structure facilitates quick insertions
and deletions and lets users locate the pointer rep-
resenting the PMR quadtree node with the oldest
time stamp. Thus, whenever we need to make more
memory available for additional data, we use a
least-recently-used caching policy to delete as
many PMR quadtree leaf nodes linked from the top
of the balanced binary search tree as necessary.
The advantage of placing the PMR quadtree nodes
in one balanced binary search tree is that we can
delete nodes from different layers as needed rather
than having to decide on a particular layer which
nodes are to be replaced.

As users explore the database’s contents using
a graphical viewer, they’re basically retrieving all
the objects stored in the database that overlap the
current viewing windows. Some data might already
be available within the client, whereas other data-
base contents have either not been retrieved yet or
were retrieved earlier but dropped again. Instead of
maintaining the available area’s exact definition,
we store the information about availability within
our spatial data structure’s individual nodes. Each
node can be either white (no data is available for
the area this node represents, and such a node is a
leaf), gray (some data is available for the area this
node represents, and further recursion is needed to
get the exact answer), or black (the whole area
under this node is available in the local cache). If a
gray node is a leaf, then some data is stored, but
not enough to cause another split. In such cases,

the node has a rectangle associated with it that
specifies which part of the node is valid.

Retrieving the data in response to a query
involves traversing an appropriate PMR quadtree.
The system does this in two steps. First, it finds out
what areas need to be loaded from the server and
builds a collection of rectangles that represent these
areas. Then, the system uses this collection to load
all the data from the server that lies within the rec-
tangles. Finally, for each rectangle loaded, it adjusts
the corresponding PMR quadtree node’s status.

Our system relies on the client to keep track of
what data it has available and to request only miss-
ing data to draw the user-requested area. In this way,
the server can be stateless — it doesn’t need to keep
track of what data was sent to which client in order
to send only the data the client hasn’t received. The
client can perform its own memory management
internally, drop data it no longer needs, and down-
load targeted data from the server. Essentially, the
client treats leaf blocks of its PMR quadtree as
“pages” of memory for caching purposes.

Comparison with
Raster-Based Visualization
We conducted a detailed comparison11 between the
SAND Internet Browser’s performance, that of a
traditional bitmap approach (such as MapQuest),
and that of the latest generation of tile-based map-
ping services, such as Google Maps and Microsoft
Virtual Earth. Our evaluation used TIGER data sets
from the US Census Bureau corresponding to street
maps for states in the mid-Atlantic region. This
includes all the roads and streets in Virginia, Mary-
land, the District of Columbia, New Jersey, and
Pennsylvania. The data set contains more than
7,500,000 entries, each of which corresponds to a
single line segment, with one or more line segments
representing each actual street in the map. The total
size of the data stored in the format distributed by
the US Census Bureau is more than 700 Mbytes.

For the traditional bitmap approach, in most
deployment scenarios, network environments, and
usage patterns, we found that users can expect to
have a substantially better experience using the
SAND Internet Browser.11 For the tile-based servic-
es, our browser’s performance and that of the tiled
method were mostly comparable across different
deployment types, network speeds, and usage sce-
narios. The SAND Internet Browser’s advantage is
that it caches data in vector format on the client,
which allows for development of more sophisticat-

58 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spatial Visualization

ed clients that can execute some operations locally.
With the tile method, the client can access only
those bitmap tiles that don’t provide data for such
localized calculations. Thus we see that even though
SAND might be slower in some scenarios, it often
provides a preferable platform for developing
smarter, more independent client applications.

O ur work focused mainly on investigating and
optimizing remote access to spatial databases.

The results of our experiments let us suggest the
best type of remote spatial data visualization tool
for a given deployment scenario.11 Although the
SAND Internet Browser in its current implementa-
tion works only with the SAND database manage-
ment system, it could be expanded to interface
with other DBMSs that support spatial data, such
as Oracle or PostgreSQL.

We can take future research in many directions.
One interesting topic involves investigating meth-
ods for caching frequently used data in the form
of bitmap tiles instead of vectors. Although these
tiles would be usable only in given views (in terms
of zoom factor and layers displayed), they would
also let users skip repeated rasterization steps. Such
a system would, in effect, be a hybrid between the
SAND Internet Browser as it is today and the tile
approach Google Maps introduced.

Acknowledgments
The SAND Internet Browser is based on the SAND system and

its predecessor, the QUILT system, developed over an extended

time period with contributions from Houman Alborzi, Chuan-

Heng Ang, Walid G. Aref, Thor Bestul, Pedja Bogdanovich,

František Brabec, C. Ben Cranston, Claudio Esperança, Kikuo

Fujimura, Gísli R. Hjaltason, Eric G. Hoel, Glenn Iwerks, Edwin

Jacox, David Kuijt, Michael Lee, Frank L. Morgan, Randal C.

Nelson, Hanan Samet, Jagan Sankaranarayanan, Clifford A.

Shaffer, Ron Sivan, Aya Soffer, Egemen Tanin, and Robert E.

Webber. We gratefully acknowledge US National Science Foun-

dation support under grants EIA-00-91474 and CCF-0515241,

as well as support from Microsoft Research and the University

of Maryland General Research Board.

References

1. H. Samet et al., “Use of the SAND Spatial Browser for Dig-

ital Government Applications,” Comm. ACM, vol. 46, no.

1, 2003, pp. 63–66.

2. C. Esperanca and H. Samet, “Spatial Database Program-

ming using SAND,” Proc. 7th Int’l Symp. Spatial Data

Handling, Int’l Geographical Union Commission on Geo-

graphic Information Systems, Assoc. for Geographical

Information, 1996, pp. A29–A42

3. G.R. Hjaltason and H. Samet, “Distance Browsing in Spa-

tial Databases,” ACM Trans. Database Systems, vol. 24, no.

2, 1999, pp. 265–318.

4. G.R. Hjaltason and H. Samet, “Speeding up Construction

of PMR Quadtree-Based Spatial Indexes,” Very Large Data-

bases J., vol. 11, no. 2, 2002, pp. 109–137.

5. T. Barclay, J. Gray, and D. Slutz, “Microsoft TerraServer: A

Spatial Data Warehouse, Proc. ACM SIGMOD Conf., ACM

Press, 2000, pp. 307–318.

6. C. Yap, K. Been, and Z. Du, “Responsive Thinwire Visualiza-

tion: Application to Large Geographic Datasets,” Proc. 14th

Ann. Symp., Electronic Imaging 2002, IS&T/SPIE, 2002.

7. M. Bertolotto and M.J. Egenhofer, “Progressive Transmis-

sion of Vector Map Data over the World Wide Web,” Geo-

Informatica, vol. 5, no. 4, 2001, pp. 345–373.

8. Geography Markup Language (GML) 2.0, 2002; http://

portal.opengeospatial.org/files/index.php?artifact_id=4700.

9. C.B. Cranston et al., “Adding an Interoperable Server Inter-

face to a Spatial Database: Implementation Experiences

with OpenMap,” Proc. 2nd Int’l Conf. Interoperating Geo-

graphic Information Systems (INTEROP 99), LNCS 1580,

Springer-Verlag, 1999, pp. 115–128.

10. H. Samet, Foundations of Multidimensional and Metric

Data Structures, Morgan-Kaufmann, 2006.

11. F. Brabec, Optimizing Client-Server Communication for

Remote Spatial Database Access, PhD thesis, tech. report CS-

TR-4822, Computer Science Dept., Univ. of Maryland, 2005.

František Brabec is a chief scientist for Roam Secure, where he

is responsible for research and development of the compa-

ny’s emergency alerting and resource management prod-

uct lines. His research interests include visualization of

spatial data structures, spatial databases, and thin-client

oriented design for remote spatial database access. Brabec

has a PhD in computer science from the University of

Maryland. Contact him at brabec@cs.umd.edu

Hanan Samet is a professor of computer science at the Univer-

sity of Maryland. He’s also a member of the Computer

Vision Laboratory, where he leads several research projects

on image databases and the use of hierarchical data struc-

tures for geographic information systems (GISs), spatial

databases, computer graphics, and image processing. Samet

has a PhD in computer science from Stanford University.

He is the author of Foundations of Multidimensional and

Metric Data Structures (Morgan-Kaufmann, 2006), The

Design and Analysis of Spatial Data Structures, and Appli-

cations of Spatial Data Structures: Computer Graphics,

Image Processing and GIS (both Addison-Wesley, 1990).

Contact him at hjs@cs.umd.edu.

JANUARY • FEBRUARY 2007 59

Client-Based Spatial Browsing

