CAR-TR-917 IRI-97-12715
CS-TR-4033 DEFG0295ER25237
July 1999

Speeding Up Construction of Quadtrees for Spatial Indexing
Gidli R. Hjaltason and Hanan Samet

Computer Science Department
Center for Automation Research
Institutefor Advanced Computer Studies
University of Maryland
College Park, MD 20742-3275

grh@cs.umd.edu and hjs@cs.umd.edu

Abstract

Spatial indexes, such as those based on the quadtree, are important in spatial databases for efficient
execution of queriesinvolving spatial constraints, especially when the queriesinvolve spatial joins. In
this paper we present a number of techniques for speeding up the construction of two quadtree-based
gpatial indexes, the PMR quadtree and the PR quadtree. The PMR quadtree can index arbitrary spatia
data, whereas the PR quadtree is specialized for multidimensional point data. The quadtrees are imple-
mented using a linear quadtree, a disk-resident representation that stores objects contained in the leaf
nodes of the quadtree in alinear index (e.g., a B-tree) ordered based on a space-filling curve. For the
PMR quadtree, we present two complementary techniques: an improved insertion algorithm and a bulk-
loading method. The bulk-loading method can be extended to handle bulk-insertionsinto an existing
PMR quadtree. For the PR quadtree, we present a bulk-loading method, which a so can be extended to
handle bulk-insertions. We make some analytical observations about the 1/O cost and CPU cost of our
PMR quadtree bulk-loading algorithm, and conduct an extensive empirical study of al the techniques
presented in the paper. Our techniques are found to yield significant speedup compared to traditional
quadtree building methods, even when the size of the main memory buffer isvery small compared to the
size of the resulting quadtrees. The usefulness of speeding up quadtree construction is demonstrated by
studying a spatia join operation that requires the construction of a spatia index for its operands as well
asits spatial output. In this case, the performance of the spatial join was significantly improved by the
presence of the spatial indexes.

To appear inthe VLDB Journal.

Keywords: spatial indexing, buffering, 1/0, spatial join, query processing

Thiswork was supported in part by the National Science Foundation under Grant IRI-97-12715, the Department of Energy
under Contract DEFG2095ER25237, and the Italian National Group for Mathematical Computer Science (GNIM).

1 Introduction

Traditional database systemsempl oy indexeson al phanumeric data, usually based onthe B-tree, to facili-
tate efficient query handling. Typically, thedatabase system all owstheusersto designatewhichattributes
(data fields) need to be indexed. However, advanced query optimizers aso have the ability to create in-
dexes on un-indexed rel ations or intermediate query resultsas needed. In order for thisto beworthwhile,
theindex creation process must not be too time-consuming, as otherwisethe operation could be executed
more efficiently without an index. In other words, the index may not be particularly useful if the exe-
cution time of the operation without an index is faster than the total time to execute it when the time to
build theindex isincluded. Of coursg, if the databaseis static, then we can afford to spend moretime on
building the index as the index creation time can be amortized over the number of queries made on the
indexed data. The sameissuesarisein spatial databases, where attribute values may be of a spatial type,
in which casetheindex isa spatia index (e.g., aquadtree).

In the research reported here, we address the problem of constructing and updating spatial indexes
in situations where the database is dynamic. In this case, the time to construct or update an index is
critical, since database updates and queries are interleaved. Furthermore, slow updates of indexes can
seriously degrade query response, which is especially detrimental in modern interactive database appli-
cations. Therearethreewaysin whichindexes can be constructed or updated for an attributeof arelation
(i.e., aset of objects). First, if the attribute has not been indexed yet (e.g., it represents an intermediate
query result), an index must be built from scratch on the attribute for the entire relation (known as bulk-
loading). Second, if the attribute already has an index, and a large batch of data is to be added to the
relation, the index can be updated with all the new datavalues at once (known as bulk-insertion). Third,
if the attribute already has an index, and a small amount of dataisto be added (e.g., just one object), it
may be most efficient to simply insert the new objects, one by one, into the existing index. In our work,
we present methods for speeding up construction and updating of quadtree-based spatial indexesfor al
three situations. In particular, we focus on the PMR guadtree spatial index [39], and to alesser degree
on the PR quadtree multidimensional point index.

The issuesthat arise when the database is dynamic have often been neglected in the design of spatia
databases. The problem isthat often the index is chosen on the basis of the speed with which queries
can be performed and on the amount of storage that is required. The queries usudly involveretrieva
rather than the creation of new data. Thisemphasison retrieva efficiency may lead to awrong choice of
an index when the operations are not limited to retrieval. Thisis especialy evident for complex query
operations such as the spatial join. As an example of a spatia join, suppose that given a road relation
and ariver relation, we want to find al locations where aroad and river meet (i.e., locations of bridges
and tunnels). This can be achieved by computing a join of the two relations, where the join predicate
istrue for road and river pairs that have at least one point in common. Since computing the spatial join
operation is expensive without spatial indexes, it may be worthwhile to build a spatial index if oneis
not present for one of the relations. Furthermore, the output of the join may serve asinput to subsequent
spatial operations (i.e., a cascaded spatial join as would be common in a spatial spreadsheet [29]), so
it may aso be advantageous to build an index on the join result. In thisway, the time to build spatial
indexes can play an important role in the overall query response time.

ThePMR quadtreeisof particular interest because an earlier study [27] showedthat the PMR quadtree
performs quite well for spatial joinsin contrast to other spatial data structures such as the R-tree [25]
(including variants such as the R*-tree [10]) and the R™ -tree [50]. Thiswas especially true when the ex-
ecution time of the spatial join included the time needed to build spatial indexest. Improving the perfor-

INote that fast construction techniquesfor the R-tree, such as the packed R-tree [46] and Hilbert-packed R-tree [30], were
not taken into account in this study asthey tend to result in aworse space decomposition from the point of view of overlap than
the standard R-tree construction algorithms.

mance of building a quadtree spatial index is of interest to usfor anumber of additional reasons. First of
al, thePMR quadtreeisused asthe spatial index for the spatial attributesin aprototype spatia database
system built by us called SAND (Spatial and Non-Spatial Datd) [5, 6, 20], which employs a data model
inspired by therelational algebra. SAND usesindexingto facilitate speedy accessto tuplesbased on both
gpatial and non-spatial attribute values. Second, quadtree indexes have started to appear in commercial
database systems such as the Spatial Data Option (SDO) from the Oracle Corporation [40]. Therefore
speeding their construction has an appeal beyond our SAND prototype.

Inthispaper, weintroduceanumber of techniquesfor speeding up the construction of quadtree-based
spatial indexes. Many of these techniques can be readily adapted to other spatial indexesthat are based
on regular partitioning, such as the buddy-tree [49] and the BANG file [22]. We present two comple-
mentary techniquesfor the PMR quadtree, an improved insertion algorithm and a bulk-loading method
for a disk-based PMR quadtree index. The improved PMR quadtree insertion a gorithm can be applied
to any quadtree representation, and exploits the structure of the quadtree to quickly locate the smallest
quadtree node containing the inserted object, thereby greatly reducing the number of intersection tests.
The approach that we take in the PMR quadtree bulk-loading algorithm is based on theidea of trying to
fill up memory with as much of the quadtree as possible before writing some of its nodes on disk (termed
“flushing”). A key techniquefor making effective use of the internal memory quadtree buffer isto sort
the objects by their spatial occupancy prior to inserting them into the quadtree. This allowsthe flushing
agorithmto flush only nodesthat will never beinserted into again. Our treatment of PMR quadtree bulk-
loading has several other elements, including alternative strategies for freeing memory in the quadtree
buffer and atechniquefor achieving high storage utilization. In addition, we show how our bulk-loading
method can be extended to handl e bulk-insertionsinto an existing quadtree index.

In our bulk-loadingagorithmfor the PR quadtree, thefact that point data has no spatial extent enables
us to build the leaf nodes of the quadtree in a bottom-up manner (loosely speaking). Thisisin contrast
to the PMR quadtree bulk-loading a gorithm, which must proceed in atop-down manner. Nevertheless,
the two a gorithms share the requirement that the input data be sorted in a particular way. Note also that
the PR quadtree bulk-loading algorithm can be extended to handle bulk-insertions.

Therest of thispaper isorganized asfollows. Section 2 reviewsrelated work. Section 3 describesthe
PR and PMR quadtrees, and the disk-based quadtree representation used in SAND. Section 4 introduces
an improved PMR quadtreeinsertion algorithm. Section 5 presents our PMR quadtree bulk-loading ap-
proach. Section 6 discusses how the PMR quadtree bulk-loading algorithm can be extended to handle
bulk-insertions. Section 7 describes our PR quadtree bulk-loading method (for point data). Section 8
presents some ana ytical observations, mainly regarding the PMR quadtree bulk-loading approach. Sec-
tion 9 discussesthe results of our experiments, while concluding remarks are made in Section 10.

2 Reéated Work

Methods for bulk-loading dynamic access structures have long been sought. Thegoal of such methodsis
to reduce the loading time, the query cost of the resulting structure, or both. The B-tree, together with its
variants, isthe most commonly used dynamic indexing structure for one-dimensional data. Rosenberg
and Snyder [44], and Klein, Parzygnat, and Tharp [33] introduced methods for building space-optimal
B-trees, i.e., ones having the smallest number of nodes, or equivaently, the highest possible average
storage utilization. Their methods yield both a lower load time, and lower average query cost due to
the improved storage utilization. Both methods rely on pre-sorting the data prior to building the tree;
a similar approach can be used to bulk-load B*-trees. Huang and Viswanathan [28] took a more direct
approach to reducing query cost, while possibly increasing loading time. However, no experimentswere
reported. They introduce a dynamic programming agorithm, inspired by existing agorithmsfor binary

search trees, that buildsatree that yiel dsthe lowest expected query cost, given the access frequencies of
key values. Another example of bulk-loading algorithmsfor non-spatial structuresistheone by Ciaccia
and Patella[17] for the M-tree, a dynamic distance-based indexing structure.

In recent years, numerous bulk-loading algorithms for spatial indexing structures have been intro-
duced. Most of the attention has been focused onthe R-tree and rel ated structures. Among the exceptions
are two algorithmsfor the grid file. Li, Rotem and Srivastava [36] introduced a dynamic programming
algorithm that operates in a parallel domain, and primarily aims at obtaining a good grid partitioning.
Leutenegger and Nicol [35] introduced a much faster solution, which resultsin grid file partitions that
arein some ways better.

Most bulk-loading strategiesthat have been devel oped for the R-tree have the property that they result
in treesthat may be dramatically different from R-trees built with dynamicinsertionrules[10, 25]. Some
of these methods use a heuristic for aggregating objectsinto theleaf nodes[30, 34, 46], while others ex-
plicitly aim at producing good partitioning of the objectsand thusasmall level of overlap[3, 12, 42, 52].
Roussopoulosand L eifker [46] introduced a method (termed the packed R-tree) that uses aheuristic for
aggregating rectanglesintonodes. First, theleaf nodesinthe R-tree are built by inserting the objectsinto
theminaparticular order. Thenonleaf nodesare built recursively inthe same manner, level by level. The
order used in the packed R-tree method [46] is such that thefirst object to beinserted into each leaf node
isthe remaining object whaose centroid has the lowest x-coordinate val ue, whereas the rest of the objects
inthe node are its B — 1 nearest neighbors, where B is the node capacity?. Kamel and Faloutsos[30] de-
vised avariant of the packed R-tree, termed aHilbert-packed R-tree, wherein the order isbased purely on
the Hilbert code of the objects’ centroids. L eutenegger, L 6pez, and Edgington[34] proposed asomewhat
related technique, which uses an ordering based on a rectilinear tiling of the data space. The advantage
of packing methods s that they result in adramatically shorter build time than when using dynamic in-
sertion methods. Unfortunately, the heuristicsthey useto obtain their space partitioning usually produce
worse results (i.e., in terms of the amount of overlap) than the dynamic ones. This drawback is often
aleviated by the fact that they result in nearly 100% storage utilization (i.e., most R-tree nodes arefilled
to capacity). DeWitt et a. [19] suggest that a better space partitioning can be obtained with the Hilbert-
packed R-tree by sacrificing 100% storage utilization. In particular, they propose that nodes beinitially
filled to 75% in the usua way. If any of the items subsequently scheduled to be inserted into a node
cause the node region to be enlarged by too much (e.g., by more than 20%), then no more items are in-
serted into the node. In addition, a fixed number of recently packed leaf nodes are combined and resplit
using the R*-tree splitting a gorithmto further improve the space partitioning. Gavrila[24] proposed an-
other method for improving the space partitioning of R-tree packing, through the use of an optimization
technique. Initially, an arbitrary packing of theleaf nodesis performed, e.g., based on one of the packing
algorithmsabove. Next, the a gorithm attempts to minimize acost function over the packing, by moving
items from one leaf nodeto a nearby one.

The bulk-loading strategies for the R-tree that aim at improved space partitioning have in common
that they operate on the whole data set in a top-down fashion, recursively subdividing the set in some
manner at each step. They differ in the particular subdivision technique that is employed, aswell asin
other technical details, but most are specifically intended for high-dimensiona point data. Since building
R-trees with good dynamic insertion methods (e.g., [10]) is expensive, these methods generally achieve
ashorter buildtime (but typically much longer than the packing methods discussed above), aswell asim-
proved space partitioning. One example of such methodsisthe VAM Split R-tree of Whiteand Jain[52],
which uses avariant of ak-d tree splitting strategy to obtain the space partitioning. Garcia, L6pez, and

2The exact order proposed by Roussopoulos and Leifker [46] for the packed R-tree appears to be subject to a number of
interpretations. Most authors citing the packed R-tree describe it as using an order based solely on the x-coordinate values of
the objects’ centroids which produces node regions that are highly elongated in the direction of the y-axis, whereasthisis not
exactly what was originally proposed.

Leutenegger [42] present a similar technique, but they introduce the notion of using a user-defined cost
function to select split positions. The S-tree of Aggarwal et a. [3] isactualy avariant of R-treesthat is
not strictly balanced; the amount of imbal ance is bounded, however. Thetechnigue presented by Berch-
told, Bohm, and Kriegel [12] aso has some commonality with the VAMSplit R-tree. However, their
splitting method benefits from insightsinto effects that occur in high-dimensional spaces, and isable to
exploit flexibility in storage utilizationto achieveimproved space partitioning. A further benefit of their
technique isthat it can get by with only a modest amount of main memory, while being able to handle
large datafiles.

Two methods have been proposed for bulk-loading R-trees that actually make use of dynamic inser-
tion rules [8, 13]. These methods are in general applicable to balanced tree structures which resemble
B-trees, including a large class of multidimensional index structures. Both techniques are based on the
notion of the buffer-tree [7], wherein each internal node of thetree structure containsa buffer of records.
The buffers enabl e effective use of available main memory, and result in large savingsin 1/0O cost over
the regular dynamic insertion method (but generally in at least as much CPU cost). In the method pro-
posed by van den Bercken, Seeger, and Widmayer [13], the R-tree isbuilt recursively bottom-up. Ineach
stage, an intermediate tree structure is built where the lowest level correspondsto the next level of the
final R-tree. The nonleaf nodes in the intermediate tree structures have a high fan-out (determined by
available internal memory) as well as a buffer that receives insertions. Arge et a. [8] achieve asimilar
effect by using aregular R-tree structure (i.e., where the nonleaf hodes have the same fan-out as the leaf
nodes) and attaching buffers to nodes only at certain levels of the tree. The advantages of their method
over the method in [13] are that it is more efficient as it does not build intermediate structures, and it
resultsin a better space partition. Note that the agorithm in [13] does not result in an R-tree structure
identical to that resulting from the corresponding dynamic insertion method, whereasthe algorithmin[§]
does (assuming reinsertions [10] are not used). In addition, the method of [8] supports bulk-insertions
(as opposed to just initial bulk-loading as in [13]) and bulk-queries, and in fact, intermixed insertions
and queries.

Withthe exception of [8], al the methods we have mentioned for bulk-loading R-trees are static, and
do not alow bulk-insertionsinto an existing R-tree structure. A few other methods for bulk-insertion
into existing R-trees have been proposed [16, 32, 45]. The cubetree [45] is an R-tree-like structure for
on-line analytical processing (OLAP) applications that employs a speciaized packing algorithm. The
bulk-insertion a gorithm proposed by Roussopolous, Katidis, and Roussopol ous[45] works roughly as
follows. First, the data set to be inserted is sorted in the packing order. The sorted list is merged with
the sorted list of objects in the existing data set, which is obtained directly from the leaf nodes of the
existing cubetree. A new cubetreeis then packed using the sorted list resulting from the merging. This
approach is aso applicable to the Hilbert-packed R-tree [30] and possibly other R-tree packing algo-
rithms. Kamel, Khalil, and Kouramajian [32] propose a bulk-insertion method in which new leaf nodes
are first built following the Hilbert-packed R-tree [30] technique. The new leaf nodes are then inserted
one by oneinto the existing R-tree using adynamic R-tree insertion algorithm. In the method presented
by Chen, Choubey, and Rundensteiner [16], a hew R-tree is built from scratch for the new data (using
any construction algorithm). The root node of the new tree isthen inserted into the appropriate placein
the existing R-tree using a specialized al gorithm that performs some local reorgani zation of the existing
tree based on a set of proposed heuristics. Unfortunately, the algorithmsof [16, 32] arelikely toresultin
increased node overlap, at least if the area occupied by the new data already containsdatain the existing
tree. Thus, theresulting R-treeindexes are likely to have aworse query performance than an index built
from scratch from the combined data set.

None of the bulk-loading techniques discussed above are applicable to quadtrees. Thisis primarily
because quadtreesuse avery different space partitioning method from grid filesand R-trees, and because
they are unbalanced and their fan-out is fixed. Additional complicationsarise from the use of most disk-

4

resident representationsof quadtrees(e.g., thelinear quadtree), aswell asfromthe property that each non-
point object may be represented in more than oneleaf node (sometimestermed “ clipping”; see Section 3).
Nevertheless, some analogies can be drawn between our bulk-loading methods and some of the above
methods. For example, likemany of the abovealgorithms, werely on sorting the objectsin our a gorithm
and we use merging to implement bulk-insertions as done in the cubetree [45] (although our merging
processis very different).

In addition to the numerous bulk-1oading and bulk-insertion algorithms proposed for the R-tree, there
havebeen severa different proposal sfor improving dynamicinsertions[4, 9, 10, 43, 31]. Most have been
concerned with improving the quality of the resulting partitioning, at the cost of increased construction
time, includingthe well known R*-tree method of Beckmann et a. [10], and the polynomial time optimal
node splitting methods of Becker et al. [9] and Garcia, Lopez, and L eutenegger [43]. Inaddition, [10] and
[43] dsointroduced heuristicsfor improving storage utilization. Ang and Tan [4] developed alinear time
node splitting algorithmthat they claim producesnodesplitsthat are better than the original node splitting
algorithms[25] and competitivewith that of the R*-tree. The Hilbert R-tree of Kamel and Faloutsos[31]
employs the same heuristic as the Hilbert-packed R-tree [30], maintaining the data rectangles in strict
linear order based on the Hilbert codes of their centroids. Thisis done by organizing them with aB*-
tree on the Hilbert codes, augmented with the minimum bounding rectangle of the entriesin each node.
Thus, updates in the Hilbert R-tree are inexpensive, while it often yields query performance similar to
that of the R*-tree (at least in low dimensions).

Recently, Wang, Yang, and Muntz [51] introduced the PK-tree, a multidimensional indexing struc-
turebased onregular partitioning. In[53], they proposed a bulk-loadingtechniquefor the PK -tree, which
is based on sorting the dataiin a specific order, determined by the partitioning method. Their method re-
sembles our bulk-loading techniquesin that a space-filling curveisused to order thedataprior to building
the tree. In fact, our PR quadtree bulk-loading algorithm (Section 7) can be viewed as an adaptation of
their method. However, itisnot applicablefor buildinga PMR quadtreefor non-point objects, sinceeach
object may be represented in more than one leaf node.

One of the topicsof thispaper isa bulk-loading techniquefor PMR quadtrees. This subject has been
previously addressed by Hjaltason, Samet, and Sussman [26]. The bulk-loading technique presented in
this paper isan improvement on the algorithmin [26]. In particular, our flushing algorithm (which writes
to disk some of the quadtree nodes from abuffer) isguided by the most recently inserted object, whereas
the onein [26] relied on a user-defined parameter. Unfortunately, it was unclear how to choosethe opti-
mal parameter value or how robust the algorithm was for any given value. Moreover, the heuristic em-
ployed by theflushing algorithmin [26] did not always succeed in itsgoal, and sometimes flushed nodes
that intersected objects that had yet to be inserted into the quadtree. A further benefit of our improved
approach isthat it permits a much higher storage utilization in the disk-based quadtree, which reduces
the 1/O cost for constructing the quadtree as well as for performing queries.

3 Quadtrees and their Implementation

Inthissection, wefirst briefly discussthegeneral concept of quadtrees. Next we definethe PMR quadtree,
followed by a description of the implementation of quadtreesin SAND.

3.1 Quadtrees

By the term quadtree [47, 48] we mean a spatial data structure based on a disjoint regular partitioning
of space. Each quadtree block (also referred to as a cdll) covers a portion of space that forms a hyper-
cube in d-dimensions, usually with a side length that is a power of 2. Quadtree blocks may be further
divided into 29 sub-blocksof equal size; i.e., the sub-blocks of a block are obtained by halving the block

5

along each coordinate axis. Figure 1 shows asimple quadtree decomposition of space. One way of con-
ceptualizing a quadtree is to think of it as an extended 29-ary tree, i.e., atree in which every nonleaf
node has 29 children (e.g., Figure 1b). Thus, below we use the terms quadtree node and quadtree block
interchangeably. In this view, the quadtree is essentially atrie, where the branch structure is based on
space coverage. Another way to view the quadtreeisto focus on the space decomposition, in which case
the quadtree can be thought of as being an adaptive grid (e.g., Figure 1a). Usually, there is a prescribed
maximum height of the tree, or equivalently, aminimum size for each quadtree block.

5| 6

3456
(@) (b)

Figure 1: (a) The block decomposition and (b) tree structure of a simple
quadtree, where leaf blocks are labeled with numbers and nonleaf blocks with
letters.

Many different varieties of quadtrees have been defined, differing in the rules governing node split-
ting, thetype of databeingindexed, and other details. Anexampleisthe PR quadtree[47], whichindexes
point data. Points are stored in the leaf blocks, and the splitting rule specifies that aleaf block must be
splitif it contains more than one point. In other words, each leaf block contains either one point or none.
Alternatively, we can set afixed bucket capacity ¢, and split aleaf block if it contains more than ¢ points
(thisistermed abucket PR quadtreein [47]).

Quadtrees can be implemented in many different ways. One method, inspired by viewing them as
trees, istoimplement each block asarecord, where nonl eaf blocksstore29 pointersto child block records,
and leaf blocksstore alist of objects. However, this pointer-based approach isill-suited for implement-
ing disk-based structures. A general methodology for solving this problem is to represent only the leaf
blocksin the quadtree. Thelocation and size of each |eaf block are encoded in some manner, and the re-
sultisused as akey into an auxiliary disk-based data structure, such asaB-tree. Thisapproachistermed
alinear quadtree [23].

Quadtrees were originally designed for the purpose of indexing two- and three-dimensional space.
Although the definition of a quadtree is valid for a space of arbitrary dimension d, quadtrees are only
practical for arelatively low number of dimensions. Thisis due to the fact that the fan-out of interna
nodes is exponentia in d, and thus becomes unwieldy for d larger than 5 or 6. Another factor is that
the number of cellstendsto grow sharply with the dimension even when data size is kept constant®, and
typically isexcessive for more than 4 to 8 dimensions, depending on the leaf node capacity (or splitting
threshold) and data distribution. For a higher number of dimensions, we can apply thek-d tree [11] strat-
egy of splitting the dimensionscyclicaly (i.e., a each internal node, the spaceissplit into two equal-size
halves), for a constant fan-out and improved average leaf node occupancy. Theresulting space partition-
ing can be effectively structured using the PK -tree technique [51], for example. In the remainder of this
paper, we will usually assume a two-dimensional quadtree to simplify the discussion. Our methods are
general, however, and work for arbitrary dimensions.

3Thisis dueto the fact that average leaf node occupancy tendsto fall asthe number of dimensionsincreases.

3.2 PMR Quadtrees

The PMR quadtree[39] isa quadtree-based dynamic spatia datastructurefor storing objectsof arbitrary
spatial type (e.g., see Figure 2 which showsaPMR quadtree for a collection of line segments). Sincethe
PMR quadtree givesrise to adisjoint decomposition of space, and objectsare stored only in leaf blocks,
this implies that non-point objects may be stored in more than one leaf block. Thus, the PMR quadtree
would be classified as applying clipping, as we can view an object as being clipped to the region of each
intersecting leaf block. The part of an object that intersects aleaf block that containsit is often referred
to as a g-object; for line segments, we usually talk of g-edges. For example, segment a in Figure 2 is
split into three g-edges as it intersects three leaf nodes.

o TN

i
]

Figure 2: A PMR quadtree for line segments with a splitting threshold of 2,

where the line segments have been inserted in alphabetical order.

A key aspect of the PMR quadtree is its splitting rule, i.e., the condition under which a quadtree
block is split. The PMR quadtree employs a user-determined splitting threshold t for this purpose. If
the insertion of an object o causes the number of objectsin aleaf block b to exceed t and b isnot at the
maximum decompositionlevel, thenbissplit and theobjectsin b (including o) areinsertedinto thenewly
created sub-blocks that they intersect. These sub-blocks are not split further at thistime, even if they
contain more thant objects. Thus, aleaf block at depth D can contain uptot 4 D abjects, where the root
isat depth O (thereisnolimit on thenumber of objectsinleaf nodesat the maximum depth). Therationale
for not immediately splitting newly formed leaf blocksisthat thisavoids excessive splitting. Thisaspect
of the PMR quadtree givesrise to a probabilistic behavior in the sense that the order in which the objects
are inserted affects the shape of the resulting tree. As an example, in Figure 2, if line segment g were
inserted after line segment i instead of after line segment f, then the decomposition of the SE quadrant
of the SW quadrant of the root, where ¢, d, and i meet, would not have taken place. Nevertheless, it is
rarely of importance which of the possible quadtree shapes arise from inserting a given set of objects.
We will exploit this later on, by re-ordering the objects to allow a more efficient quadtree construction
process.

3.3 Quadtree Implementation in SAND

Theimplementation of quadtreesused inthe SAND spatia databaseisbased onageneral linear quadtree
implementation called the Morton Block Index (abbreviated MBI). Our bulk-loading methods are appli-
cableto any linear quadtree implementation, and should be easily adapted to any other disk-based repre-

7

sentation of quadtrees. Nevertheless, for concreteness, it is helpful to review some of the details of our
system.

3.3.1 Morton Codesand Morton Block Values

The MBI encodes quadtree blocksusing apair of numbers, termed aMorton block value. Thefirst num-
ber isthe Morton code of the corner of the quadtree block closest to the origin (i.e., the lower-left corner
in two dimensions), while the second number is the side length of the block (stored in log, form). The
Morton code of a point is constructed by bit-interleaving its coordinate values. Coordinate values are
constrained to be w-bit integers, where w is a user-determined value between 0 and 32. Thus, aMorton
code for d-dimensional space occupiesd - w bits. Furthermore, the side length of the space covered by
the MBI is2%, and coordinate valuesrangefrom 0to 2% — 1 in each dimension®. Sincethe minimumside
length of a quadtree block that can be represented is 1, the maximum height of the quadtreeisw. Not all
possible Morton block va ues correspond to legal quadtree blocks. For example, for a two-dimensiona
quadtree, the only quadtree block that can have a lower-left corner of (1,1) has aside length of 1. On
the other hand, a Morton code can correspond to many quadtree blocks, e.g., the point with coordinate
vaues (0,0) can bethelower-left corner of ablock of any size. Observethat the number of dimensions,
d, isnot limited by the MBI, athough very high values are not practical.

Morton codes provide a mapping from d-dimensiona pointsto one-dimensional scalars, the result
of which is known as a space-filling curve. When the d-dimensiona points are ordered on the basis
of their corresponding Morton codes, the order is called a Morton order [38]. It isaso known asa Z-
order [41] sinceittracesa‘Z’ patternin two dimensions. Many other space-ordering methods exist, such
asthe Peano-Hilbert, Cantor-diagonal, and spira orders. However, of these, only the Morton and Peano-
Hilbert orders are practical for ordering quadtree blocks. The codes derived from the Peano-Hilbert or-
der are usually called Hilbert codes. Morton codes can also be transformed into so-called Gray codes,
in which two successive code values differ only in one bit [21]. Figure 3 presents an example of the or-
dering resulting from these three encoding methods. The advantage of Morton codes over Hilbert codes
and Gray codes is that it is computationally less expensive to convert between a Morton code and its
corresponding coordinate values (and vice versa) than for the other two encoding schemes, especialy
compared to the Hilbert code. In addition, various operations on Morton block values can be imple-
mented through simpl e bit-mani pul ation operations on Morton codes; e.g., computing the Morton block
valuesfor sub-blocks. Nevertheless, Hilbert and Gray codes have the advantagethat they better preserve
locality (e.g., the Euclidean distance between the locations of two pointswith successive code valuesis
lower on average than for Morton codes), which may reduce query cost [1]. However, for the most part,
operations on the quadtree are independent of the actual encoding scheme being used, and in particular,
thisis true of our bulk-loading method. Thus, in most of this paper, any mention of Morton codes (or
Z-order) can be replaced by Hilbert or Gray codes (or the ordering induced by them). When warranted,
we mention issues arising from the use of Hilbert or Gray codes.

Figure 4aillustrates the Morton code order imposed on the quadtree blocks for the quadtree in Fig-
ure 2. The contents of the MBI for this PMR quadtree are partially shown in Figure 4b, where the order
in the list corresponds to Morton code order. To illustrate actual Morton block values, assume that the
side length of the data spaceis 2* = 16. The coordinate values of the lower-left corner of the block la-
beled 15 are (2,12), or (0010b, 1010b) (“b” indicates binary). Thus, the Morton code value of this block
is 10001100b (i.e., the bit order for the coordinate values is yxyxyxyx), which equals 140. The size of
thisblock is 2 = 2%, so the Morton block value is [140, 1]. Observe that the two |east significant bits of
the Morton code are 0, which is the case for all blocks of size 2 = 2. In general, for ablock of size 25,

4This limited range of coordinate valuesis not areal drawback, asit is a simple matter to transform coordinate valuesin
any other range into the range of a Morton code, and vice versa.

8

11 11
10 10
01 01
|
> 00 > - >
0000 01 10 11 X 00 01 10 11 X 0000 01 10 11 X
(a) (b) (€)

Figure 3: Ordering imposed by code values in a 4 by 4 grid when using (a)
Morton code, (b) Gray code, and (c) Hilbert code.

the s- d least significant bits are 0, where d isthe dimensionality. If block 15 had to be split, the Morton
code values of the child blocks would be 10001100b, 10001101b, 10001110b, and 10001111b. In other
words, only d bits of the original Morton code are modified. Similarly, the Morton code of the parent
block of block 15 is 170000000b.

14 15 21 22 b'OC'Af gb‘eCt
4| d
b 4|
5/ ¢
12 13 #1819 | 20 ol
H 6| d
g /\ 16 1& € ? 3
E— 70
7 11 8| c
d 9|c
i f 10| i
6 10 1l
12| g
s c 12| h
i 13| a
1 2 3|8 9 13| h

(@) (b)

Figure 4: (a) The PMR quadtree for the line segments in Figure 2, with the
quadtree blocks numbered in Morton code order. (b) Some of the corresponding
items stored in the linear quadtree.

332 B-tree

The MBI uses a B-tree to organize the quadtree contents®, with Morton block values serving as keys.
When comparing two Morton block values, we employ lexicographic ordering on the Morton code and
the side length. When only representing quadtree leaf nodes in the MBI, which is the case for most
quadtreevariants, only comparing the Morton codeva ueissufficient, asthe MBI will containat most one
block size for any given Morton code value. For aquadtree leaf node with k objects, the corresponding

5The MBI can also be based on a B -tree. This has some advantages, notably when scanning in key order. However, the
difference is not very significant, and is offset by a slightly greater storage requirement for the Bt -tree.

9

Morton block valueis represented k timesin the B-tree, once for each object. In the B-tree, we maintain
a buffer of recently used B-tree nodes, and employ an LRU (least recently used) replacement policy to
make room for a new B-tree node. In addition, we employ anode locking mechanism in order to ensure
that the nodes on the path from the root to the current node are not replaced; thisisuseful in queriesthat
scan through successiveitemsin the B-tree, since the nodes on the path may be needed later in the scan.

3.3.3 Object Representation

The amount of data associated with each object in the MBI islimited only by the B-tree node size. This
flexibility permits different schemes for storing spatial objects in quadtree indexes implemented with
the MBI. One scheme isto store the entire spatial description of the object, while another schemeisto
store areference ID for the object, which isactually stored in an auxiliary object table. A hybrid scheme
can aso be employed, wherein we store both the spatia description of the object and an object ID. The
disadvantage of thefirst schemeisthat it potentially leadsto much wasted storage for non-point objects,
as they may be represented more than once in the PMR quadtree. The drawback of the second scheme
is that a table lookup is necessary to determine the geometry of an object once it is encountered in a
quadtree block. Nevertheless, we must use that scheme (or the hybrid one) if we wish to associate some
non-spatial data with each object (e.g., for objects representing cities, we may want to store their names
and populations).

As previously mentioned, SAND employs a data model inspired by the relational algebra. The ba-
sic storage unit is an attribute, which may be non-spatial (e.g., integers or character strings) or spatial
(e.g., points, line segments, polygons, etc.). Attributes are collected into relations, and relationa data
is stored as tuplesin tables, each of which isidentified by atuple ID. In SAND reations, the values of
spatia attributes (i.e., their geometry) are stored directly in the tuples belonging to the relation. When
the PMR quadtree is used to index a spatia attribute in SAND, the tuple ID of the tuple storing each
spatia object must be stored in the quadtree (i.e., we use the second scheme described above). For sim-
ple fixed-size spatial objects (such as points, line segments, rectangles, etc.), SAND also permits storing
the geometric representation in the index (i.e., resulting in a hybrid scheme). This alows performing
geometric computations during query eval uation without accessing the tuples. Alternatively, a separate
object table associated with the index can be built for only the values of the spatia attribute. Object IDs
in that table are then represented in the index, while the tuple ID is stored in the object table. Thisis
advantageous when the size of the spatia attribute values (in bytes) is small compared to the size of a
whole tuple. A further benefit is that this object table can be clustered by spatia proximity, such that
nearby objects are likely to be located on the same disk page. Spatial clustering isimportant to reduce
the number of I/O operations performed for queries, as stressed by Brinkhoff and Kriegel [14].

3.34 Empty Leaf Nodes

Another design choice iswhether or not to represent empty quadtree leaf blocksin the MBI. Our imple-
mentation supports both of these choices. Representing empty quadtree leaf blocks simplifiesinsertion
procedures as well as some other operations on the quadtree and makes it possibleto check the MBI for
consistency, sincethe entire dataspace must be represented intheindex. However, for large dimensions,
this can be very wasteful, since alarge number of leaf blockswill tend to be empty.

4 Improved PMR Quadtree Insertion Algorithm

Likeinsertion a gorithms for most hierarchical data structures, the PMR quadtreeinsertion algorithmis
defined with atop-down traversal of the quadtree. Thus, the CPU cost for inserting an object isroughly

10

proportional to the depth of theleaf nodesintersecting it. Below, weintroduce a techniquethat dramati-
cally reducesthe CPU cost of insertions. However, before we get into our improved insertion algorithm,
we present the traditional PMR quadtree insertion algorithm in Figure 5. This agorithm can be used
for either a pointer-based implementation or alinear quadtree implementation of a PMR quadtree (e.g.,
the Morton Block Index). Of course, the definitions of the various utility routines (i.e.,, ADDTOLEAF,
ISLEAF, MAKENONLEAF, OBJECTCOUNT, and OBJECTLIST) would be different, as would the rep-
resentation of node. In the MBI implementation, node is represented with a Morton block value, and
these routines obtain their results by accessing the B-tree. In particular, ADDTOL EAF insertsinto the B-
tree, MAKENONL EAF deletes from the B-tree, ISLEAF performs a lookup, while OBJECTCOUNT and
OBJECTLIST perform alookup followed by alinear scan. Observe that in the case of a linear quadtree
implementation, the nonleaf nodes are not physically present in the MBI. However, the insertion algo-
rithmisbased on atop-downtraversal of thetree and thussimulatestheir existence by constructingtheir
corresponding Morton block values.

procedure INSERTOBJECT(0bject) —
INSERT(root, abject)

procedure INSERT(node, object) —
if (INTERSECTS(Object, node)) then
if (IsSLeAaF(node)) then
ADDTOLEAF(node, object)
if (OBJECTCOUNT(node) > threshold) then
SPLIT(node)
endif
else
foreach (childNode of node) do
INSERT(childNode, object)
endfor
endif
endif

procedure SpLIT(node) —
objList — OBJECTLIST(node)
MAKENONL EAF(node)
foreach (childNode of node) do
foreach (object in objList) do
if (INTERSECTS(0bject, childNode)) then
ADDTOLEAF(childNode, object)
endif
endfor
endfor

Figure 5: Pseudo-code for PMR quadtree insertion.

The singlelargest contributor to the CPU cost of the algorithm (besides the cost of updating the B-
tree in the MBI implementation) is the intersection test performed by the INTERSECTS function. It is
implemented by first converting the Morton block value for node into object space coordinates. The
number of intersection testswhen inserting an object is bounded from above by 29 - Dyay - G, Where Dipax

11

is the maximum depth of aleaf node and q is the number of leaf nodes intersected by the object (recall
that each nonleaf node has 29 children). However, the average is typically more like 29 - D e, Where
Dave is the average leaf node depth, which is on the order of log,s N if the data distribution is not too
skewed. Another significant contributor to CPU cost in the MBI implementation is the computation of
child blocks, i.e., the determination of childNode from the Morton block value node (in a pointer-based
quadtree, this cost can be avoided since the Morton block values or some other representation for the
guadtree regions can be stored in the nodes). The number of these computationsis similar to the number
of intersection tests. Thus, they contribute considerably to the CPU cost, especidlly if this computation
is not highly optimized.

The number of intersection tests, as well as the number of Morton code computations, can be dra-
matically reduced by exploiting the structure of the quadtree. The key insight is that based only on the
geometry of an object, we can compute the quadtree block that minimally bounds the object. Thisisil-
lustrated in Figure 6a, where we indicate potentia quadtree partition boundaries with broken lines. We
can look up the Morton block value of thisblock in the B-tree of the MBI, which will locate a quadtree
leaf block containing the object, if any exists. Two cases can arise: the minimally enclosing quadtree
block can beinside (or coincide with) an existing leaf node (e.g., Figure 6b), or there may be more than
one leaf node contained in the minimal enclosing quadtree block (e.g., Figure 6c¢).

.....

(@) (b) (c)

Figure 6: (a) Computation of the minimum bounding block for an object, de-
noted by heavy lines. Broken lines indicate potential quadtree block boundaries.
The minimum bounding block can (b) be enclosed by a leaf node or (c) coincide
with a nonleaf node.

4.1 Algorithm

An agorithm based on the idea of minimum enclosing quadtree block is shown in Figure 7. In partic-
ular, procedures INSERTOBJECT and SPLIT in Figure 7 replace the procedures with the same namein
Figure 5. Again, the same agorithm can be applied to any representation of the PMR quadtree. Proce-
dure INSERTOBJECT usesthefunctions CoMPUTEENCLOSINGBLOCK and FINDENCLOSINGNODE to
locate the smallest node in the quadtree index that contains object. If thisnodeis aleaf node, object is
directly added to it (subject to asplitif the node contains more objectsthan the splitting threshold). Oth-
erwise, INSERT (from Figure 5) isinvoked on the child nodes of node. Thetask of locating the smallest
node contai ning the object is divided into two functionssinceit naturally decomposes into two subtasks.
Thefirst, COMPUTEENCLOSINGBLOCK, is based only on the geometry of the object and computesiits
minimum enclosing quadtree block, while the second, FINDENCLOSINGNODE, accesses the quadtree
index to locate an actua quadtree node.

12

The number of intersection testsis aso reduced in procedure SpLIT in Figure 7 through the use of
ComMPUTEENCLOSINGBLOCK. If enclosingBlock, returned by COMPUTEENCLOSINGBLOCK for an
object, issmaller than the leaf node, then we know that enclosingBlockis properly contained in node and
only intersectsone of itschild nodes. Thischild nodeisdetermined by thefunction CHILDCONTAINING.
When the nodes are encoded with Morton block values, CHILDCONTAINING can be computed using
simple bit manipulations. Once childNode has been determined, object is added to it and deleted from
thelist of objects®. After thefirst foreach loopin procedure SPLIT is completed, the objectsthat remain
on objList have enclosing blocksthat are equal to or larger than node. Since these objects can intersect
more than one child node of node, we apply the regular split method to them (i.e., SPLIT in Figure 5).

procedure INSERTOBJECT(0bject) —

enclosingBlock < CoMPUTEENCLOSINGBLOCK (abject)
node <+ FINDENCLOSINGNODE(enclosingBlock)
if (IsSLeAaF(node)) then

ADDTOLEAF(node, abject)

if (OBJECTCOUNT(node) > threshold) then
SPLIT(node)

endif
else

foreach (childNode of node) do

INSERT(childNode, object) /* see Figure 5 */

endfor

endif

procedure SpLIT(node) —
objList — OBJECTLIST(node)
MAKENONL EAF(node)
foreach (abject in objList) do
enclosingBlock < CoMPUTEENCL OSINGBLOCK (object)
if (Size(enclosingBlock) < Size(node)) then
childNode — CHILDCONTAINING(node, enclosingBlock)
ADDTOL EAF(childNode, object)
DELETE(objList, object)
endif
endfor
* apply regular split method to objectsremaining in objList */
foreach (childNode of node) do
foreach (object in objList) do
if (INTERSECTS(0bject, childNode)) then
ADDTOLEAF(childNode, object)
endif
endfor
endfor

Figure 7: PMR quadtree insertion with dramatically lower CPU cost.

6Recall that in the PMR quaditree, the child nodesresulting from asplit are not split again as aresult of reinserting the objects
in the split node, even if the threshold is exceeded.

13

Of the procedures and functionsfirst used in INSERTOBJECT and SPLIT in Figure 7, only procedure
FINDENCLOSINGNODE dependson theactual quadtree representation. Recall that FINDENCL OSINGN-
ODE looks for anode in the quadtree index that spatially encloses enclosingBlock (or isequd toit). In
the case of the MBI, thisis accomplished by a single access to the B-tree. In particular, we search for
the leaf block having the largest Morton block value smaller than or equa to that of enclosingBlock. If
oneisfound (e.g., Figure 6b), FINDENCLOSINGNODE returnsits Morton block value; otherwise, en-
closingBlock correspondsto anonleaf nodein the quadtree soitsvaueisreturned (e.g., Figure 6¢). The
ISLEAF test in procedure INSERTOBJECT can be executed by making use of information returned by
FINDENCLOSINGNODE, so that no additional B-tree accesses are needed. Observe that if empty |eaf
nodes are not represented in the MBI, the definition of FINDENCLOSINGNODE is slightly more com-
plicated, since enclosingBlock may fall into an empty leaf block. In addition to reducing the number
of intersection tests, the improved insertion algorithm also results in fewer invocations of ISLEAF (in
procedure INSERT in Figure 5), and thus fewer B-tree lookups. However, the saving that thisresultsin
ismostly in CPU cost, since the B-tree nodes that get accessed will frequently aready be in the B-tree
buffer.

When applied to pointer-based quadtrees, procedure FINDENCLOSINGNODE must descend the pointer-
based quadtree from the root until it encounters a node whose region encloses the region computed by
ComMPUTEENCLOSINGBLOCK. If Morton block values are used to represent the node regions (either
stored within the tree or computed on the fly), the descent can be guided by the Morton block value re-
turned by COMPUTEENCLOSINGBLOCK. In particular, at a nonleaf node, the next child to visit can be
determined from bits in the Morton code of the minimum enclosing Morton block vaue. Thus, the de-
scent isrelatively inexpensive.

4.2 Discussion

The reduction in the number of intersection tests performed by the INSERT and SPLIT proceduresin the
improved insertion algorithm depends on D, the average depth of the quadtree nodes (leaf or nonleaf)
in the final quadtree that minimally enclose each object. For example, in Figure 6b, the object is mini-
mally enclosed by aleaf node at depth 1 (i.e., the leaf nodeis achild of the root), whereas in Figure 6c,
the object is minimally enclosed by a nonleaf node at depth 2. For an object o minimally enclosed by a
node ' at depth D', the original PMR quadiree insertion algorithm must perform 29D’ intersection tests
to determinethat o iscontained inn'. In contrast, our improved algorithmavoidsall of theseintersection
tests, and thus achieves an average reduction of 29DY, , per object in the number of intersection tests. If o
iscontained in aleaf node n at depth D, the number of intersection tests performed is at least 2¢(D — D'),
since al child nodes of the nonleaf nodes on the path from n’ to n must be tested for intersection with o
(e.g., in Figure 6c¢, the leaf nodes containing o are one level down from ', so only 22 = 4 intersection
tests are needed). Hence, the number of intersection tests performed by the improved algorithm on the
average per object can be expected to be approximately p(Dave — Dye), Where Daye isthe average depth
of leaf nodes, 24 < p < 29q, and q is the average number of g-objects per object. If the objects are very
small compared to the size of the data space, D}, Will be nearly as high as Daye, SO the number of in-
tersection testswill be small. In the extreme case of point objects, no intersection tests are needed and
Dave ~ Do’

Figure 8 shows values of Daye and D, for six line segment data sets used in our experiments (for
more details, see Section 9). For these data sets, we found that p ranged from 6 to 6.5, but in genera

"Dave and D/ye aretypically not exactly equal for points, since Daye is an average over leaf nodeswhile D}, is an average

over objects. Alternative, and perhaps more accurate, definitions of Daye that makeit equal to Df, for points areasfollows: 1)
over al g-objects, the average depth of the leaf node containing them, or 2) over all objects, the average depth of the smallest
leaf nodeintersecting them.

14

its value probably depends on the data distribution. As an example of the reduction in intersection tests,
the average depth of minimally enclosing nodes for the “PG” data set is more than 7, so the number
of intersection tests for each object is reduced by 4-7 = 28. The value of Daye — Dfe IS @out 1.4 for
“PG”, and the number of intersection testsactually performed for each objectisabout 6- 1.4~ 8.5 onthe
average. On the other hand, the original insertion a gorithm performs about 28 4 8.5 = 36.5 intersection
tests per object. Thus, the improved agorithm reduces the number of intersection tests by a factor of
more than 4. For the other data sets, the reduction factor ranged from 3to 5.

=
o

M Dave
B D ave

o B N W b~ OO0 O N 00 ©

DC PG Roads R64K R128K R260K

Figure 8: Average depth of leaf nodes (Dae) and minimally enclosing nodes

(Déve)-

The CPU cost saving due to the reduction in number of intersection testsis tempered by the cost of
invoking COMPUTEENCLOSINGBLOCK (whose CPU cost is similar to that of INTERSECTS). Thisis
especially true for procedure SPLIT, since COMPUTEENCLOSINGBLOCK must be recomputed for each
object, and the intersection tests must be invoked anyway if the enclosing block is larger than or equal
to the leaf node being split. To reduce unnecessary invocations of COMPUTEENCLOSINGBLOCK we
can retain the value computed by the COMPUTEENCLOSINGBLOCK invocation in INSERTOBJECT, SO
it need not be computed againin SpLIT. Of course, thisisusually not practical asit increasesthe storage
requirement for the objects. Nevertheless, thistechniqueis useful in our bulk-loading algorithm, since
only a limited number of nodes is kept in memory, while the nodes that have been written to disk are
never split again.

5 Bulk-Loading PMR Quadtrees

Our implementation of the PMR quadtree as described in Section 3.3 isvery flexiblein severa respects,
and wefound its performanceto berespectablefor dynamicinsertionsand awiderange of queries. How-
ever, for loading alarge number of objects at once (i.e., bulk-loading), its performance was somewhat
lacking. Aswe looked for reasons for the poor performance, we identified severa sources of inefficien-
cies, both in terms of CPU cost and /O cost. The main reason for excessive CPU cost is the high cost
of quadtree node splitting. When a quadtree node is split, references to objects must be deleted from
the B-tree, and then reinserted with Morton block value identifiers of the newly created quadtree nodes.
The deletions from the B-tree can cause merging of B-tree nodes, and the subsequent reinsertions of the
objects with their new Morton block values will then cause splitting of these same nodes. Such B-tree

15

reorganizations are expensiveinterms of CPU timeif frequent enough, and add a considerable overhead
asweshall seein Section 9.

Thebasicideaof our bulk-loading approachisto reduce the number of accessestothe B-treeas much
as possible by storing parts of the PMR quadtreein main memory. Our approach can be characterized as
buffering quadtree nodes, which contraststo the normal buffering of B-tree nodes. Thus, we sometimes
refer to our approach as quadtree buffering.

The remainder of this section is organized as follows: In Section 5.1 we present an overview of our
quadtreebuffering approach. Next, in Section 5.2, we present thedetail s of our flushing algorithm, which
frees up spaceif noneisleftin themain memory buffer. In Section 5.3 we describe an alternative method
for freeing memory which is used if the flushing algorithm fails to do so. Our bulk-loading approach
requires sorted input, so we discusstwo efficient external sort algorithmsin Section 5.4. Finally, in Sec-
tion 5.5 we show how the MBI B-tree can be built efficiently and with a high storage utilization.

5.1 Quadtree Buffering

In the quadtree buffering approach, we build a pointer-based quadtree in main memory, thereby bypass-
ing the MBI B-tree. Of course, this can only be done as long as the entire quadtree fitsin main memory.
Once available memory isused up, parts of the pointer-based quadtree are flushed onto disk (i.e., inserted
into the MBI). When all the objects have been inserted into the pointer-based quadtree, the entiretreeis
inserted into the MBI and the quadtree building processis complete. In order to maintain compatibility
with the MBI -based PMR structure, we use Morton block val ues to determine the space coverage of the
memory-resident quadtree blocks. Note that it is not necessary to store the Morton block valuesin the
nodes of the pointer-based structure, as they can be computed during traversals of the tree. However, a
careful analysisof execution profilesrevealed that a substantial percentage of the CPU time was spent on
bit-manipul ation operations on Morton block values. Thus, we chose to store the Morton block values
in the nodes, even though thisincreased their storage requirements.

How do we choose which quadtree blocks to flush when available memory has been exhausted?
Without some knowledge of the objects that are yet to be inserted into the quadtree, it isimpossibleto
determine which quadtree blocks will be needed later on, i.e., which quadtree blocks are not intersected
by any subsequently inserted object. However, carefully choosing the order in which the objects are
inserted into the tree provides exactly such knowledge. Thisisillustratedin Figure 9, which depictsa
guadtree being built. In the figure, the shaded rectangle represents the bounding rectangle of the next
object to insert. If the objects are ordered in Z-order based on the lower-left corner of their minimum
bounding rectangle (i.e., the corner closest to the origin), we are assured that none of the quadtree blocks
in the striped region will ever be inserted into again, so they can be flushed to disk. The reason why this
works is that the lower-left corner of a rectangle has the lowest Morton code value of all pointsin the
rectangle. Thus, using thisorder, we know that al pointscontained in the current object, aswell asin all
subsequently inserted objects, have a higher Morton code value, and we can flush quadtree blocks that
cover pointswith lower Morton code values.

When using Hilbert or Gray codes, we aso would use the lowest code value for pointsin the mini-
mum bounding rectangle of an object as a sort code. However, in this case the lowest code val ue occur-
ring inarectangleistypically not in thelower-left corner, but can occur anywhere onitsboundary. Thus,
the lowest code value is somewhat more expensive to compute when using Hilbert or Gray codes than
when using Morton codes. One way to do so is to recursively partition the space, at each step picking
the partition having the lowest code value that intersects the rectangle.

Theflushing processisdescribed in greater detail in Section 5.2. Under certain conditions, thisflush-
ing method fails to free any memory, although this situation should rarely occur. In Section 5.3 we ex-
plain why, and present two alternative strategies that can be applied in such cases.

16

yA
23 | 24
25

21[d2

18
19 ?Jlep
9110

6 16-V717
748

3k 1415
511

142 12113

0.0) o>

Figure 9: A portion of a hypothetical quadtree, where the leaf nodes are labeled
in Z-order. The shaded rectangle is the bounding rectangle of the next object
to insert.

5.2 Flushing Algorithm
Informally, the flushing a gorithm can be stated as follows:

1. Let p bethelower-l€eft corner of the bounding rectangle of the object to insert next (see Figure 9).

2. Visittheunflushed leaf blocksin the pointer-based quadtreeinincreasing order of the Morton code
of their lower-l€eft corner (e.g., for Figure 9, in increasing order of the labels).

(@ if the quadtree block intersects p (e.g., theleaf block labeled 20 in Figure 9), then terminate
the process;

(b) otherwise, insert the leaf block into the MBI.

Figure 10 presents a more precise portraya of the algorithmin terms of atop-down traversa of the
pointer-based quadtree. The flushing algorithm is embodied in the function FLUSHNODES in Figure 10
and isinvoked by INSERTOBJECT when the pointer-based quadtree istaking too much spacein memory.
For each nonleaf node, FLUSHNODES recursively invokesitself exactly once, for the child node whose
regionintersects p, whileitinvokesFLUSHSUBTREETOM Bl to flush the subtreesrooted at all unflushed
child nodes that occur earlier in Morton code order. Thus, FLUSHNODES traverses the pointer-based
tree down to the leaf node whose region intersects p. For example, in Figure 9, the function traverses
the tree down to the node labeled 20, while it flushes the entire subtrees containing nodes 1 through 10
and nodes 11 through 17, as well as the leaf nodes labeled 18 and 19. The FLUSHSUBTREETOMBI
function removes the given subtree from the buffer memory, and marks it flushed. That way, we will
know in subsequent invocations whether a given quadtree node is merely empty, or has already been
flushed. When all objects have been inserted into the quadtree, FLUSHSUBTREETOMBI isinvoked on
the root node, resulting in the final tree on disk.

Thefunction CONTAINS used in procedure FLUSHNODES can be efficiently implemented using the
Morton code of p, which can be computed before flushing is initiated (i.e., in procedure | NSERT). In

17

procedure INSERTOBJECT(0bject) —
if (memory islow) then
p < lower left corner of the bounding rectangle of object
FLUSHNODES(root, p)
endif
/* remainder of procedure same asin Figure 5 or Figure 7 */

procedure FLUSHNODES(hode, p) —
if (not IsLEAF(node)) then
foreach (unflushed childNode of node) do
/* child nodes are visited in Morton code order */
if (CoNTAINS(childNode, p)) then
/* childNodeis on the path from root to leaf containing p */
FLusHNoDES(childNode, p)
return /* exit function */
else
/* childNode has a smaller Morton code than p */
FLUsSHSUBTREETOMBI (childNode, false)
endif
endfor
endif

procedure FLUSHSUBTREETOM BI(node, freeNode) —
if (node has already been flushed) then
return
endif
if (ISLeAaF(node)) then
foreach (object in node) do
MBIINSERT(node, object)
endif
else
foreach (childNode of node) do
FLUSHSUBTREETOMBI (childNode, true)
endfor
endif
if (freeNode) then
FREENODE(hode)
ese
mark node as having been flushed and turn into empty leaf node
endif

Figure 10: Pseudo-code for flushing process.

particular, let m, be the Morton code of p, and let m, and my,; be the smallest and largest Morton codes,
respectively, for aquadtree block b (my, isthe Morton code of itslower-left corner, whilemy,; istheMor-
ton code of the* pixel” inthe upper-right corner). For example, for theblock of size4 by 4 with lower-|eft
corner (0,0), my; isthe Morton code for the point (3, 3). Testing for intersection of band p isequivalent

18

to checking the condition my < my < my;. Thistest can be efficiently implemented with bit-wise oper-
ations. Specificaly, if thesize of b is 2" x 2™, then all but the low-order 2w, bits of m, and m, must
match (the 2wy, low-order bits of mg are al 0 and those of my,; are dl 1).

53 Reinsert Freeing

The problem with theflushing al gorithm presented in Section 5.2 isthat it may fail to flush any leaf nodes,
and thus not free up any memory space. In the example in Figure 9 thiswould occur if al the nodesin
the striped region have already been flushed. In this case, the objects that remain in the pointer-based
quadtreeintersect leaf nodes|abeled 20 or higher, but the lower-1eft corners of their minimum bounding
rectangles fall into leaf nodes labeled 20 or lower (due to theinsertion order). Thus, if r is abounding
rectangle of one of these abjects, then either r intersectsthe boundary of the striped region or the lower-
left corner of r fallsinto the leaf node labeled 20 (i.e., the unflushed leaf node with the lowest Morton
code vaue). Thisconditionrarely appliesto alarge number of objects, at least not for low-dimensional
data and reasonable buffer sizes as discussed in Section 8. Nevertheless, we must be prepared for this
possibility.

If the flushing algorithm is unable to free any memory, then we cannot flush any leaf nodes without
potentially choosing nodes that will be inserted into later. One possibility in this event is to flush some
of these |leaf nodes anyway, chosen using some heuristic, and invoke the dynamic insertion procedure
on any subsequently inserted objects that happen to intersect the flushed nodes. The drawback of such
an approach is that we may choose to flush nodes that will receive many insertions later on. Also, this
means that we |ose the guarantee that B-tree insertions are performed in strict key order, thereby reduc-
ing the effectiveness of the B-tree packing technique introduced in Section 5.5 (i.e., adapted to tolerate
dlightly out-of-order insertions). Furthermore, our PMR quadtree bulk-insertion algorithm would not be
applicable (although a usually more expensive variant could be used; see Section 6.3). The strategy we
propose instead, termed reinsert freeing, isto free memory by removing objects from the quadtree (al-
lowing empty leaf nodes to be merged) and scheduling them for reinsertion into the quadtree at a later
time. This strategy avoids the drawbacks mentioned above, but increases somewhat the cost of some
other aspects of the bulk-loading process as described below.

In reinsert freeing, we must make sure that objectsto bereinserted get inserted back into the quadtree
at appropriatetimes. We do thisby sending the objects back to the sorting phase, withanew sort key (in
Section 5.4 we discuss how to extend a sorting algorithm to handle reinsertions). Thisisillustrated in
Figure 11 wherethe shaded rectangleisthebounding rectangl e of an object that isto bereinserted (broken
lines indicate the bounding rectangle of the last inserted object). The object intersects nodes |abeled 18
and 21 through 24. Since node 21 is the existing node with the lowest Morton code that intersects the
object, the appropriate timefor inserting the object back into the quadtree iswhen al nodes earlier than
node 21 in Morton order have aready been inserted into. Thus the location used to form the new sort
key of the object should intersect node 21. One choice is to compute the lower-l€eft intersection point
of the bounding rectangle and the region for node 21, shown with a dot and pointed at by the arrow.
Alternatively, to avoid this computation, we could simply use the lower-left corner of node 21 as the
new sort key. Observe that in either case, the new sort key is larger than the origina sort key for the
object. Asthe exampleillustrates, we must make sure to reinsert each object only once, even though it
may occur in severa leaf nodes, and the sort key is determined from the leaf node intersecting the object
having the smallest Morton block value. Notice that when the object in the figure is eventually inserted
again into the quadtree, it is not inserted into node 18, since that node has aready been flushed.

A second issueconcerningreinsert freeing ishow to choosewhich obj ectsto remove from the quadtree.
Whatever strategy is used, it isimportant that we not reinsert the objects occurring in the leaf node b
intersecting the lower-left corner of the most recently inserted object; e.g., the leaf node labeled 20 in

19

yA
23 | 24 |....

: .25
alz)
~A19]20].

9}10
6 167417
718
34 14]15
511
142 12]13
0,0 >

Figure 11: An example of an object that is to be reinserted (shaded rectangle).
The striped region represents quadtree nodes that have been flushed, while the
broken lines indicate the bounding rectangle of the object that was inserted last.

Figure 11. A simple, but effective, strategy isto remove all objects except those occurring in leaf node
b, and merge al child nodes of non-leaf nodes not on the path from the root to b. Thus, the only nodes
retained in the pointer-based quadtree are the nodes on the path from the root to b, and their children.
Thisis the strategy that we use in our experiments (see Section 9.2.6). Another possible strategy isto
visit the leaf nodes in decreasing Morton order (i.e., the ones with the highest Morton code valuesfirst),
and remove the objects encountered until some fraction (say, 50%) of the quadtree buffer has been freed.
One complicationinthisstrategy isthat once we have made enough buffer space available, we must then
remove the objectschosen for reinsertion from theleaf nodesthat remain in the buffer. Although perhaps
somewhat counter-intuitive, we found that the second strategy (which frees only a portion of the buffer)
usually led to a higher number of reinsertionsthan the first (which frees nearly the entire buffer), unless
alargefraction of the buffer was freed. At best, the reductionin the number of reinsertions of the second
strategy was only marginal, and even in those cases, the first strategy was usually slightly faster since
reinsertion freeing was invoked less often.

Animportant pointisthat an object can only bereinserted alimited number of times, thus guarantee-
ing that we do not reinsert thesame objectsindefinitely. To seethis, observethat theleaf nodeintersecting
the sort key used last for an object to be reinserted will always have been flushed (e.g., leaf node 18 in
Figure 11). Thisis guaranteed by the fact we do not remove objects occurring in the leaf node intersect-
ing the search key of the object inserted last (e.g., objects occurring in leaf node 20 in Figure 11 are not
reinserted). Thus, some progress always occurs between two successive reinsertionsfor the same object
(i.e., someleaf nodeswill have been flushed). Thetotal number of insertions (original and reinsertions)
for an object is never more than than g + &, where q is the number of corresponding g-objects and &
is the number of ancestors of the leaf nodes containing the g-objects, not including the ancestors that
completely enclose the object.

20

5.4 Sorting the Input

Our bulk-loading approach requirestheinput to bein aspecific order for it to be effectivewhen theentire
quadtree cannot fit in the amount of memory allotted to the bulk-loading process. The input data will
usually not be in the desired order, so it must be sorted prior to bulk-loading. Since we cannot assume
that thedatafitsin memory, we must make use of an external memory sorting method. Whatever method
isused, instead of writingthefinal sorted resultto disk, it ispreferable that the sorting phase and quadtree
building phase operate in tandem, with the result of theformer pipelined tothelatter. Thisavoidsthel/O
cost of writing the final sorted result, and permits dealing with reinsertions (see Section 5.3).

Sorting alarge set of objects can be expensive. However, aswe will seein our experiments, sorting
a set of abjects prior to insertion is often a much less expensive process than the cost of building the
spatial index. More importantly, the savingsin execution time brought about by sorting far outweigh its
cost. Note that some form of sorting iscommonly employed when bulk-loading spatial access structures
(eg., [3, 30, 33, 34, 46, 52, 53]). Aggarwal and Vitter [2] established a lower bound on the 1/0O cost of
external sorting, O(§ logy, g §), Where

¢ N isthe number of data objects;
¢ M isthe number of objectsthat fit into an internal memory buffer used for sorting;
¢ Bisthe number of objectsthat fit into a disk page (or some other unit of block transfers).

We implemented two external sorting algorithms suitable for our application. The first agorithm
isavariation of the standard distribution sort [2], where we employ an application-specific partitioning
scheme. Thisisthe algorithm that we used in most of our experiments, where we found it to have very
good performance. Unfortunately, our partitioning scheme is not always guaranteed to distribute suffi-
ciently evenly to yield optimal cost (although it workswell for typical data sets). Also, the algorithmis
difficult to adapt to support reinsertions (Section 5.3) in an efficient manner. The second algorithm that
we implemented is external merge sort [2]. Thisalgorithm hasthe advantage of being provably optimal.
Furthermore, in the presence of reinsertions, it is at worst only slightly suboptimal. Below, we briefly
describe the external merge sort agorithm and how it can be modified to handle reinsertions.

54.1 MergeSort

Theexternal merge sort agorithm[2] first sortsthe datain memory, generating short sorted runs on disk.
These are then merged to generate longer runs, until we have a single sorted run. More precisely, the
initial runsare of length M, and there are approximately N/M of them. In each merge pass, groups of R
runs are merged together, reducing the number of runs by afactor of R. During amerge, B objectsfrom
each run must be kept in memory®, so R= M/B. A depiction of the processis shown in Figure 12a.
Aswementioned above, thisalgorithmis|/O optimal. Each iteration decreasesthenumber of runshy
afactor of M /B, sowe need about logy, ,5(N/M) iterationsuntil we have asinglerun. Theinitial forma-

tion of runsaswell aseach iteration requireabout N/B1/0s, sowehaveatotal of O(§(1+ logy/5(N/M)) =
O(§1ogy/s(N/B)) I/0s.

5.4.2 Handling Reinsertions

The merge sort algorithm can be modified to handle reinsertions so that the result is only slightly sub-
optimd. In particular, if N* is the number of objects plus the number of reinsertions, the modified al-
gorithm achieves comparable 1/0 performance to sorting N* objects from scratch. Observe that while

8Buffer spacefor 2B objectsis needed for each run when using asynchronous!/O and double buffering.

21

."M/B’
iterations

<—N/M initial runs—>

(a) (b)

Figure 12: Depiction of external merge sorting: (a) regular, and (b) with rein-
sertions. In (a), squares represent runs created from the input while circles
represent merged runs. In (b), the white squares represent active runs, the
white circles represent future merged runs, and the shaded square represents a
partial run being created in memory.

N* islarger than N in the presence of reinsertions, the number of “pending” objects (i.e., onesthat have
not yet been delivered in their proper order) is never larger than N. Figure 12b illustrates our modified
merge sort algorithm. The sort proceeds as before until reaching thefina iteration, where we deliver the
result of merging up to M /B runsto the bulk-load process. From thispoint on, we maintain ahierarchy of
runs, asdepicted in thefigure. Therunsat level 1 — the children of theroot in Figure 12b— initialy are
the sort runs resulting from thefinal iteration, the runsat the bottom are created from reinserted objects,
while the runs at intermediate levels are created by merging all existing runs at the level below. Notice
that the active runs are continuously being read from to produce the input to the bulk-load process. This
means that reinserted objects do not necessarily travel up the entire hierarchy, and runs at lower levels
may become depl eted and thereby removed from the hierarchy. A space of B objectsfrom the sort buffer
is allotted to each active run, so there can be atotal of at most M /B activeruns at al levels. We impose
alower limit of M/2 on the size of the runs being created at the bottom level, so we require up to half
of the sort buffer to be available for that purpose. When no buffer space is available when an object is
reinserted, the action depends on the total number of activeruns: 1) if active runs total %M /B or more,
merge the runs at the level containing the largest number of runs, creating one run at the next highest
level; 2) otherwise, create a new run at the lowest level from the reinserted objects in the buffer, which
will number at least M /2.

A benefit of our method isthat the allocation of the sort buffer is dynamically adapted to the number
of reinsertions and the number of active runs at each level. When merging, the number of runs being
merged may be ashigh as M /B, but never fewer than %, where histhe height of the hierarchy, initially
about logy, ,5(N/M). In order for our method to be optimal, the number of runs being merged each time
must be sufficiently high. In particular, log(5%) = log(M/B) — log(2h) must be O(log(M/B)), or in
other words, logh = loglogy ,g(N/M) must be a constant. Unfortunately, thisis not quite the case, but
for all practical purposesit is. For example, even if M isonly 10 timeslarger than B, h islessthan 16 as
long as N islessthan 10 times|arger than M (for comparison, notethat aterabyteisaround 1012 bytes),
so log, hislessthan 4. Thus, log% < 5, and log . & < 2logy,g - In other words, the number of
I/Osisat most doubled given the assumptions, which are virtually guaranteed to hold.

22

55 B-tree Packing

As a byproduct of sorting the input and using the flushing algorithm described in Section 5.2, the |eaf
blocks will be inserted into the MBI, and thus the B-tree, in strict Morton code order. Since Morton
codes are the sort key of the B-tree, this has the unfortunate effect that most of the nodes in the B-tree
become only about half full. The reason for thisisthat the conventional B-tree node splitting a gorithm
splitsanode so that the two resulting nodes are about half full. However, sinceinsertions occur in strict
key order, the node receiving entries with smaller key values will never be inserted into again, and thus
will remain only half full. Therefore, in general all nodes will be half full, except possibly the right-
most hodes on each level (assuming increasing keys in left-to-right order). Thislow storage utilization
increases build time, since more nodes must be written to disk, and decreases query efficiency, as more
nodes must be accessed on average for each query.

The seemingly negative behavior of inserting in strict key order can easily be turned into an advan-
tage, by splitting nodes unevenly. In other words, instead of splitting an overflowing node so that each
resulting nodeis about half full, we split the node so that the node storing entries with lower key values
receives more entriesthan the other. In thisway, we can precisely determine the storage utilization of all
but the right-most nodes on each level, setting it to be anywhere between 50% to 100% (but see below).
Thus, we can achieve substantially better storage utilization than that typically resulting from building
B-trees, which is about 69% for random insertions[54].

Thealgorithmfor packing the B-tree as sketched aboveisshownin Figure 13. The procedure PACK -
INSERT isinvoked to insert items. Aslong astheitems arrive approximately in key order, PACKINSERT
always inserts them into the rightmost leaf node in the B-tree. A pointer to the rightmost |eaf node can
be maintained by the a gorithm, thereby making it immediately accessible. Procedure PACKSPLIT per-
forms the uneven splitting of nodes, with the global variable splitFraction controlling the distribution
of entries among the two result nodes. In the agorithm, we assume that an overflowing node contains
one more record than the capacity of the disk pages. Thus, if splitFractionis 100%, we split a node into
one full node and one empty node, with the record with the largest key being inserted into the parent as
adiscriminator. The drawback here is that we can end up with a B-tree in which the right-most nodes
at some of the levels are empty, containing nothing but a pointer to a child node (if a nonleaf node). To
aleviate this, we can either aways split in such away that thereis at least one record in the right node
(and thus oneless than the maximum in the left node), or we can move entriesto empty nodes from their
siblings (viarotation) once al records have been inserted into the tree.

procedure PACKINSERT(item) —
node < rightmost leaf nodein B-tree
INSERTINTONODE(NOde, item)
if (OvERFLOW(NodE)) then
PACK SPLIT(node)
endif

procedure PACKSPLIT(node) —
splitindex — splitFraction- maxEntries
parent — SPLITNODE(node, splitindex)
if (OVERFLOW(parent)) then
PACK SPLIT(parent)
endif

Figure 13: Pseudo-code for B-tree packing.

23

The only actions performed on the B-tree by the algorithm are to insert into the rightmost leaf node
and to split therightmost node at alevel inthetree. In other words, any node other than arightmost node
a alevel isnever changed by the a gorithm. Thus, by merely buffering one B-tree node at each level, we
can ensure that each nodein the B-treeiswritten only onceto disk. Another benefit of inserting in sorted
order isthat weavoid repeated traversal sof the B-tree, thereby reducing CPU timeasno key comparisons
are needed.

Asmentioned above, our flushing algorithmis guaranteed to |ead to B-tree insertionsthat are strictly
in key order. In other circumstances, insertionsinto the B-tree are mostly in key order but sometimes
slightly out of order. For example, the alternativeto reinsert freeing mentioned in Section 5.3 (i.e., flush-
ing nodesthat may be needed later using aheuristic) can cause out of order insertions. Asanother exam-
ple, in Section 6.3, we discussa variant of our bulk-insertion approach that invol vesupdating an existing
B-tree. There, the insertions are strictly in key order, but usually do not get inserted into the rightmost
B-tree leaf node. The packing algorithm can be adapted to handlethese situations, by |ocating the B-tree
node that should receive the item being inserted, instead of always assuming that it should be inserted
into the rightmost B-tree leaf node. In order to avoid unnecessary B-tree traversals, the algorithm can
keep track of the B-tree leaf node into which the last insertion was made, and check if the item being
inserted falls into the range of items stored in that leaf node. The drawback to this modification of the
algorithmisthat the B-tree node receiving fewer items as aresult of splitsmay remain underfull, which
may be undesirable. Neverthel ess, the average storage utilization is often improved by the uneven node
splits, at least if splitFractionis not too high (e.g., we have found that 85% often works well).

Although there are differences in some details, the algorithm in Figure 13 is similar to that of [44].
Their algorithm was presented in terms of compacting a 2-3 tree, a precursor of B-trees, but it can easily
be adapted to building aB-tree from sorted data. The main difference between our algorithmand theirsis
that they maintain an array of nodesthat have not yet been fully constructed (at most one for each level),
and these nodesare not yet connected to themain tree. In contrast, our algorithmawaysmaintainsafully
connected tree structure, which is an advantage if B-tree insertions potentially occur out of order. The
B-tree packing algorithm of [33] is not applicablein our scenario, since it requires knowing in advance
the number of records to insert. In addition, it is more complicated to implement than ours.

6 Bulk-Insertionsfor PMR Quadtrees

Our PMR guadtree bulk-loading algorithm can be adapted to the problem of bulk-insertinginto an exist-
ing quadtreeindex. In other words, thegoal isto buildaPMR quadtreefor adataset that isacombination
of datathat is aready indexed by adisk-resident PMR quadtree (termed existing data) and data that has
not yet been indexed (termed new data). This may be useful, for example, if we are indexing data re-
ceived from an earth-sensing satellite, and datafor anew region hasarrived. Frequently, the new datais
for aregion of space that isunoccupied by theexisting data, asin thisexample, but thisisnot necessarily
the case. The method we describe below is equally well suited to the case of inserting into previously
unoccupied regions and to the case of new datathat is spatialy interleaved with the existing data.

6.1 Overview

Recall that our flushing algorithmwritesout the quadtreeleaf nodesin Morton codeorder. Thisisasothe
order inwhich leaf nodes are stored in the B-tree of the MBI. Theideaof our bulk-insertionalgorithmis
to buildaquadtreein memory for thenew datawith our PMR quadtree bulk-loading a gorithm. However,
the flushing processis modified in suchaway that it essentially merges the stream of quadtreeleaf nodes
for the new datawiththe ordered stream of quadtreeleaf nodesinthe PMR quadtree for the existing data.
The merging processis somewhat more complicated than this brief description may imply. In particular,

24

in order to merge two leaf nodesthey must be of the same size, and the content of theresulting merged | eaf
node must obey the splitting threshold. Below, we use the terms old quadtree when referring to the disk-
resident PMR quadtree for the existing data, new quadtree when referring to the memory-resident PMR
quadtree for the new data, and combined quadtree when referring to the disk-resident PMR quadtree
resulting from the merge process (which indexes both the existing data and the new data). Similarly, we
use old leaf node and new leaf node for leaf nodesin the old and new quadtrees, respectively.

Figure 14 illustratesthe three cases that arise in the merging process, where the new datais denoted
by dots (the old datais not shown). The sgquare with heavy borders denotes a leaf block from the old
quadtree, whilethe squareswith thin bordersdenote leaf blocksinthe new quadtree. Thefirst casearises
when an old leaf hode b, coincides with a node b, in the new quadtree, where by, is either a nonempty
leaf nodeor anonleaf node, implying that b, intersects new data (see Figure 14a, where b, isanonempty
leaf node). Thus, the objects containedin b, must be inserted into the subtreerooted at by, subject to the
splitting threshold. The second case arises when an old leaf node b, is contained in (or coincides with)
an empty leaf node b, in the new quadtree (see Figure 14b). When this occurs, the contents of b, can be
written directly into the combined quadtree, without the intermediate step of being inserted into the new
guadtree. Thethird case arises when an old leaf node b, is contained in alarger nonempty leaf node by,
in the new quadtree (see Figure 14c). In thiscase, by, is split, and b, isrecursively checked against the
new child nodes of by, (in Figure 14c, case 1 would apply to the new SW child of by).

(@) (b) (€)

Figure 14: A simple PMR quadtree T, consisting of points and the three cases
that arise when merging with an existing quadtree Ty with our bulk-insertion
algorithm: (a) A leaf node in Ty coincides with a nonleaf node or a nonempty
leaf node in Ty, (b) a leaf node in Ty is contained in an empty leaf node in Ty,
and (c) a leaf node in Ty is contained in a larger non-leaf node in T,. Squares
with a heavy border correspond to leaf nodes in Ty, but the objects in Ty are not
shown.

6.2 Algorithm

Our merge agorithm is shown in Figure 15. The algorithm modifies procedures FLUSHNODES and
FLUSHSUBTREETOMBI from Figure 10, whiletheactual mergingiscoordinated by procedure M ERGE-
SUBTREES. Theparameter oldTreein the proceduresisareferenceto theold quadtree. The old quadtree
is accessed in MERGESUBTREES by the functions CURLEAFNODE and CURLEAFOBJECT, which re-
turn the current node region and object, respectively, for the current leaf nodeitem, and by the procedure
NEXTLEAFNODE, which advances the current leaf node item to the next one in the order of Morton
block values. Observethat two successive leaf nodeitems can be two objects belonging to the same | eaf

25

node. For simplicity of the presentation, we assume in Figure 15 that empty leaf nodes are not repre-
sented in the disk-based quadtree. Also, we do not explicitly test for the condition that the entire content
of the existing quadtree has already been read, assuming instead that the current leaf noderegionisset to
some specia vaue when that happens so that it does not intersect any of the leaf nodes in the memory-
resident quadtree. Thethree casesarisingin merging enumerated above are represented in MERGESUB-
TREES. Thefirst casetriggersthefirst doloop, where objectsin the old quadtree areinsertedinto the new
memory-resident quadtree (which may cause node splits). The second case triggers the second do loop,
where leaf node items are copied directly from the old quadtree and into the combined quadtree. The
third case triggers an invocation of SpLIT, which splits the new leaf and distributesits content among
the child nodes as appropriate. Procedure MERGESUBTREES will be invoked later on the child nodes.
Since MERGESUBTREES is invoked on nodes in the new quadtree in top-down fashion, CURLEAFN-
oDE(oldTree) is never larger than node, and the leaf node splitting (for case 3) ensures that, eventualy,
either case 1 or case 2 will apply to every leaf node in the old quadtree.

6.3 Discussion

Oneway of eva uatingtheefficiency of our bulk-insertionalgorithmisto compare bulk-loadingaquadtree
from scratch on the combined data set to first bulk-loading the old data and then bulk-inserting the new
data. From the standpoint of CPU cost, we believe that our agorithm is very efficient in this regard.
Nevertheless, thereis some overhead, mainly rel ated to B-tree operationson theintermediate B-tree(i.e.,
writing it during bulk-loading and reading during bulk-insertion), aswell as memory allocation and han-
dling of nodesin the new quadtreethat are also present in the old tree. However, the number of intersec-
tion tests, which are amajor component of the CPU cost, would not beincreased much over bulk-loading
the combined data set. Furthermore, the bulk of the CPU cost of M ERGESUBTREES isinvolved in up-
dating the disk-resident combined quadtree and the memory-resident new quadtree, and accessing the
disk-resident old quadtree, while other operations performed by it take little time if implemented effi-
ciently (typically lessthan 5% of thetota CPU cost of MERGESUBTREES in our tests). From the stand-
point of 1/0 cost, performing both bulk-load and bulk-insert operations carries the overhead of writing
out the intermedi ate quadtree (during bulk-loading) and reading it back in (during bulk-insertion), when
compared to bulk-loading the combined data set. This can be expected to be partially offset by slightly
lower 1/0 cost of sorting the two smaller data sets as opposed to the combined set.

In our quadtree merging algorithm, we chose to write out a new combined disk-resident quadtree. It
would be easy to modify our algorithmto instead update the old disk-resident quadtree: 1) after inserting
objects from the old quadtree into the new memory-resident quadtree, the corresponding B-tree entries
would be deleted, 2) instead of the second do loop (where entriesin the old quadtree are copied into the
combined quadtree), we would look up the next B-tree entry that does not intersect node. Unfortunately,
in the worst case, we would still need to read and modify every B-tree node. Furthermore, the B-tree
packing technique discussed in Section 5.5 isless effective when adapted to handle updates of an exist-
ing B-tree. Thus, the overal 1/0 cost overhead is often higher than with our method due to worse storage
utilization, in addition to the CPU cost incurred for updating the existing B-tree nodes. A further advan-
tage of our approach over updating the old quadtree isthat the old quadtree index can be used to answer
incoming querieswhilethe bulk-insertionisin progress, without the need for complex concurrency con-
trol mechanisms. Nevertheless, as we shall seein Section 9.2.7, this update-based variant is sometimes
more efficient than our merge approach when the new data covers previously unoccupied regionsin the
existing quadtree.

A drawback of our quadtree merging approach is that it results in a quadtree structure that corre-
sponds to first inserting al the new data and then the existing data (due to the INSERT invocationsin
the first do loop). Since the structure of a PMR quadtree depends on the insertion order, the resulting

26

procedure FLUSHNODES(node, p, oldTree) —
if (not IsLEAF(node)) then
MERGESUBTREES(node, oldTree)
/* remainder of procedureissame asin Figure 10 */
endif

procedure FLUSHSUBTREETOM BI(node, freeNode, oldTree) —
MERGESUBTREES(node, oldTree)
/* remainder of procedureissame asin Figure 10 */

procedure MERGESUBTREES(hode, oldTree) —
if (ConTAINS(NOde, CURLEAFNODE(0IdTreg))) then
if (S1ze(node) = SiIze(CURLEAFNODE(0ldTree)) and
not (IsLEAF(node) and ISEMPTY (node))) then
/* node regions are equa (see Figure 14a) */
do
INSERT(node, CURLEAFOBJECT(0ldTree))
NEXTLEAFNODE(oldTree)
while (EQUALCovERAGE(node, CURL EAFNODE(0ldTree)))
elseif (IsLEAF(node)) then
if (ISEMPTY(node) then
/* CURLEAFNODE(0ldTree) is same size or smaller (see Figure 14b) */
do
MBIINSERT(CURLEAFNODE(0ldTree))
NEXTLEAFNODE(0ldTree)
while (ConTAINS(node, CURL EAFNODE(0ldTree)))
ese
/* CURLEAFNODE(0ldTree) is smaller (see Figure 14c) */
SPLIT(node)
endif
endif
endif

Figure 15: Pseudo-code for quadtree merging.

structure may be different than when first inserting the existing data and then the new data. However,
this should not be much of a concern, as the difference is usually slight: only a small percentage of the
quadtree blockswill be split more in one tree than in the other. Another potential problemisthat thesize
of thememory-resident quadtree (interms of occupi ed memory) may increase during the merging, before
any parts of it can be freed. To see this, let b, be the non-empty |eaf node in the new memory-resident
guadtree with the smallest Morton code (among unflushed leaf nodes). Without merging, b, would be
the first leaf node to be flushed. Also, let by be the next leaf node in the old quadtree, and assume that
the region of by intersectsthat of b,. Before b, can be flushed and its content freed from memory, the
memory-resident quadtree can grow in two ways: 1) if theregion of by, islarger than that of by, then by,
issplit, and 2) if by isnon-empty, then its contents are inserted into the memory-resident quadtree. Since
the numbers of objectsin b, and b, are limited, the amount of memory consumed by these actionsshould
not be very large. Furthermore, most or all the extra memory consumed is freed soon afterwards. Thus,

27

it should be sufficient to allow for only a small amount of extra memory to handle such cases and thus
prevent a memory overflow situation.

7 Bulk-Loading PR Quadtrees

The bulk-loading method for quadtrees described in Section 5 can be used to bulk-load a PMR quadtree
for any typeof spatial objects. However, itispossibleto do better for point dataif we usethe PR quadtree[48]
(or, more accurately, the bucket PR quadtree) instead of the PMR quadtree. In the PR quadtree (see Sec-
tion 3.1), afixed bucket capacity is established for the leaf nodes instead of a splitting threshold. The
method we describe is related to the bulk-loading method for PK-trees described in [53]. Our descrip-
tion isin terms of a PR quadtree stored in an MBI (see Section 3.3), but can easily be adapted to any
other representation. Thus, the quadtree blocks are represented with Morton block values.

7.1 Oveview

When bulk-loading the PR quadtree, we assumethat the datai ssorted in Morton code order prior to being
inserted, just as we do in our PMR quadtree bulk-loading method. However, rather than first building a
pointer-based quadtreein main memory, we can directly construct theleaf blocksof the quadtree. Briefly,
the algorithm works by adding points, one by one, to alist of candidates for the current leaf node, ex-
panding the node's region as needed. If adding a new point causes overflow (i.e., more than ¢ points,
where c is the bucket capacity) or causes the node’s region to intersect a previously created node, then
we construct anew leaf node in the MBI with the largest possible subset of the candidates.

Figure 16 illustrates the insertion of a sequence of points 14 into the candidate list (in increasing
order), and how the current leaf node region is expanded to encompass new points. In the figure, the
square with a heavy border denotes the current leaf node (being built in memory), whilethe square with
abroken border denotesthe previousleaf node, i.e., the current leaf node prior toitslast expansion. The
most recently inserted point is denoted with an x symbol, whilethe other candidate points are shown as
dots. Figure 16a showswhat happens when a point is inserted into an empty candidate list: the current
leaf node region is set to the smallest possible quadtree region around the point, i.e., of size 1 by 1. In
Figures 16b and 16d, theinserted point is not contained in the current leaf node region. Thus, the current
leaf noderegion isexpanded so that it containsthe new point. Aswe shall see bel ow, the previousregion
may be needed later, so it must be remembered. In Figure 16c, the new point is contained in the current
leaf node region, so no expansion takes place. Observe that the current leaf node region is aways the
smallest enclosing quadtree block containing the pointsin the candidate list.

@) (b) (©) (d)

Figure 16: Example of insertions into candidate list, of points 1-4 (in order),
demonstrating expansion of the current leaf node region (shown with heavy
lines). The square with broken lines denotes the current leaf node region prior
to its last expansion.

Figure 17 illustratesthe conditionsthat lead to the construction of anew leaf node in the MBI. The
shaded squarein thefigure denotesthe last |eaf node that wasbuilt. In thisexample, we assume a bucket

28

capacity of 8. Thus, in Figures 17aand 17b we have exceeded the bucket capacity, asthe new point leads
to the candidate list containing nine points. In Figure 17a, the new point is contained in the current leaf
noderegion. Sincewe havean overflow inthat region, we must usethe previousleaf noderegion (shown
with broken lines) to construct a new leaf node, containing the three pointsinsideit. In Figure 17b, on
the other hand, the new point is outside the current leaf node region, so we can build a new leaf node
containing the eight pointsin the current leaf noderegion. In Figure 17c, we do not have an overflow, so
the current leaf node region gets expanded to contain the new point. However, thisresultsin the current
leaf node region overlapping the previously constructed |eaf node. Thisisnot permitted, so we construct
anew leaf node for the six points inside the current leaf node region as it was prior to the expansion.
For all three cases, the pointsin the candidate list that are outside the newly constructed leaf node are
reinserted into the candidate list (which is first emptied), in the same manner as described above (i.e.,
recall Figure 16). However, for the caseillustrated in Figure 17a, we could optimize the process slightly
by immediately constructingleaf nodesfor thetwo pointsaboveand the two pointsto theright of thenew
leaf node (i.e., the NW and SE quadrants of the current leaf node region, which is denoted by a heavy
boundary).

new leaf new leaf new leaf
\ x \ x N
L] X [) [)
lastleaf | Yo ° lastleaf | o ° last leaf | o
built |, : ° built |, : o built °
° . ° ° N ° ° °
L] o' o

(@) (b) (©

Figure 17: Conditions for constructing a new leaf node where the most recently
inserted point is denoted by x: (a) candidate list overflows and the new point is
in the current leaf node region, (b) candidate list overflows and the new point is
not in the current leaf node region, and (c) expansion of the current leaf node
region causes overlap of the leaf node that was last built.

When a new leaf node is constructed for a set of points A, the leaf node region is the smallest one
covering the points. However, the PR quadtreeis defined so that the leaf node regions are maximal, i.e.,
as large as possible without intersecting other leaf nodes. Figure 18 illustrates the case where the leaf
node region for aset of pointsisnot maximal. Thus, theleaf node region must be expanded until itisthe
largest possibleregion that does not overlap any pointsnot in A. Asshown in Figure 18, we use the last
leaf node to be constructed and the most recently inserted point in the candidate list to guide how far to
expand theleaf noderegion. Inthefigure, we expand theleaf node region once, to the square drawn with
heavy lines. If we expanded it once more, it would overlap both the last leaf node and the most recently
inserted point. However, overlap with either one suffices to halt the expansion.

7.2 Algorithm

Thealgorithmisshownin detail in Figure 19. For simplicity, we assumein the figurethat there are never
more than ¢ pointsin quadtree blocks of the minimum size (which haveasidelength of 1). Theagorithm
can easily be extended to handle the extreme case when this assumption does not hold. The algorithm
employs the following global variablesto maintain its state:

29

last leaf \ _____

built . .

Figure 18: Expansion of the current leaf node region to cover maximal area.
The most recently inserted point is denoted by x.

¢ candidateList: an array of up to c+ 1 candidate pointsfor the current block (always occurring in
Morton order),

o listLen: the number of pointsin candidateList,

¢ currentLeafBlock: the smallest quadtree block enclosing points on candidatelist (i.e., the square
with heavy border in Figures 16 and 17),

o smallerLeafBlock: asmaller block than currentLeafBlock containing a subset of the pointsin can-
didateL.ist (i.e., the broken square in Figures 16 and 17),

¢ smallerCount: the number of pointsin smallerLeafBlock,

o lastLeafBlock: thelast quadtree leaf block inserted into the MBI (i.e., the shaded square in Fig-
ures 17 and 18),

¢ leafCount: the number of quadtreeleaves that have been constructed (i.e., inserted into the MBI).

Thebuild processisinitialized by setting bothlistLen and leafCount to 0. Once procedure INSERTPOINT
has been invoked for al pointsin the data set, the candidate list will contain up to ¢ points. To build
the final leaf with those points, we invoke “BulLDLEAF(listLen, currentLeafBlock, NIL)”, where NIL
indicates a null point value.

The agorithm uses severa functions for manipulating and testing Morton block vaues: MINIMU-
MENCLOSING, EXPANDTOCONTAIN, and CONTAINS. These are most efficiently implemented if the
Morton codes of the inserted points are computed in advance (this need only be done once for each in-
serted point). In this case, they merely involve simple bit manipulations and comparisons. The proce-
dure MBIINSERT inserts an item into the Morton Block Index. Procedure INSERTPOINT implements
the control structure of the algorithm. An inserted point is added to the candidateList array. If it isthe
sole element, currentLeafBlock is initialized to only contain the point. If the number of pointsin can-
didateList exceeds c, we build a new leaf by invoking BUILDLEAF. The number of pointsin the new
leaf depends on whether or not the inserted point is contained in the current leaf block (e.g., Figures 17a
and 17b, respectively). If the number of pointsin the candidate list is between 2 and c, we test whether
theinserted point iscontained inthe current leaf block. If not, weremember the current leaf block (which
may be needed later), and extend the region of the current leaf block to include the inserted point (e.g.,
Figure 16d). If extending the current leaf block makes it overlap the previously created leaf block (e.g.,
Figure 17c), weinvoke BUILDL EAF using the previous value of currentLeafBlock. BUILDLEAF must
start with enlarging the leaf block region as much as possible, in order to adhere to the definition of the

30

procedure INSERTPOINT(point) —
listLen — listLen+1
candidateList[listLen] < point
if (listLen= 1) then
currentLeafBlock < MINIMUMENCL OSING(point)
elseif (listLen > c) then
if (ConTAINS(currentLeafBlock, point)) then
BuiLDLEAF(smaller Count, smaller LeafBlock, point) /* see Figure 17a*/
else
BUILDLEAF(c, currentLeafBlock, point) /* see Figure 17b */
endif
elsalf (not CoNTAINS(currentLeafBlock, point)) then
smallerLeafBlock < currentLeafBlock
smallerCount «+ listLen-1
currentLeafBlock — EXPANDTOCONTAIN(currentLeafBlock, point)
if (leafCount > 0 and CONTAINS(currentLeafBlock, lastLeafBlock)) then
BuiLDLEAF(smallerCount, smaller LeafBlock, point) /* see Figure 17¢ */
endif
endif

procedure BulLDLEAF(pointCount, |eafBlock, point) —
/* make leafBlock as large as possible (see Figure 18) */
parentBlock < PARENT (leafBlock)
while (not CoNnTAINS(parentBlock, point) and
not (leafCount > 0 and CoNTAINS(parentBlock, lastLeafBlock))) do
leafBlock < parentBlock
parentBlock < PARENT (parentBlock)
endwhile
/* insert first pointCount candidatesinto MBI */
for (i = 1..pointCount) do
MBIINSERT(leafBlock, candidatelist[i])
endfor
lastLeafBlock < leafBlock
leafCount — leafCount+1
[* recursively reinsert remaining points*/
oldListLen < listLen
listLen — O
for (i = pointCount+1..oldListLen) do
INSERTPOINT(candidatelList[i])
endfor

Figure 19: Pseudo-code for the PR quadtree bulk-loading algorithm.

PR quadtree (e.g., Figure 18). Next, it insertsthe requested pointsinto the MBI, whilerecursively invok-
ing INSERTPOINT on the remaining points in the candidate list. Thisis necessary in order to construct
the proper value for currentLeafBlock.

31

The above agorithm can be extended to handle bulk-insertionsinto an existing PR quadtree, by us-
ing amerge process anal ogousto that for the PMR quadtree bulk-insertion algorithm (see Section 6). As
INSERTPOINT generates new leaf nodes, the contents of some nodes in the existing PR quadtree have
to be inserted into the candidate list, while existing |eaf hodes not containing any of the new points can
be copied directly into the new PR quadtree (asin MERGESUBTREES in Figure 15). In addition, IN-
SERTPOINT and BuiLDLEAF must make sure that currentLeafBlock and |eafBlock, respectively, are not
extended so much as to contain the next leaf node in the existing PR quadtree (in the same way as they
prevent the leaf blocks from containing lastLeafBlock).

8 Analytic Observations

In this section we make some observations about the execution cost of our PMR quadtree bulk-loading
algorithm. Many of the considerations apply to the PR quadtree bulk-loading agorithm as well. The
discussionisfor themost part informal, and ismeant to giveinsight into general trends, rather than being
arigoroustreatment. Our experiments suggest that 1/O cost and CPU cost both contribute significantly
to the total execution cost (although the I/O cost contribution is usually higher). Therefore, we discuss
each separately below.

8.1 1/O Cost

The performance of bulk-loading algorithmsis frequently characterized by their 1/0O cost [8, 13]. Such
an analysisseeksto evaluate the number of 1/0O operations (reads and writes) performed by the algorithm,
each affecting a disk block that containsamaximum of B records. Thealgorithmisassumedto usean in-
ternal memory buffer accommodating M records, and the number of datarecordstoloadisN. Below, we
make some observationson the1/O cost of our bulk-loading algorithm when used with alinear quadtree
such as the Morton Block Index (MBI).

Besidesthe cost of reading the actual datafile, thel/O cost of our bulk-loading method has two com-
ponents: sorting I/O cost and quadtree I/O cost. In the case of the MBI, the quadtree /O isreally B-tree
I/0O, so thisis the designation we use below. Before we proceed, we must point out that the values of
B, M, and N for each of these componentsis different. First, the values of B for the B-tree are slightly
lower than for sorting (assuming a constant disk page size in bytes), since each entry in the B-tree occu-
pies somewhat more space. They differ by a constant factor, however, so thisdoes not affect asymptotic
results. Second, if the sorting phase and the tree building phase are executed simultaneously, with the
result of the first pipelined to the second, both will require their own internal memory buffer. Thus, each
component really has a buffer of M/2 records, assuming we allocate the same amount to each compo-
nent. Also, aswith B, the values of M for the two components are different due to different record sizes
(assuming the same buffer sizein bytes). For both of these issues, the difference in M is constant, and
thus can be ignored. Third, the value of N is generdly higher for the B-tree than for sorting, since the
former represents the number of g-objects rather than objects. In addition, empty quadtree leaf blocks
may be represented in the B-tree (recall from Section 3.3 that thisis optional). Neither of these factors
can beignored. For the present, we will use N’ to denote the number of entriesin the B-tree. Later, we
attempt to relate N’ to N, the number of data objects.

Sorting N itemsin external memory can be donein O(% 100\ /8 %) I/O operations (see Section 5.4).
Reinsertions may add to this cost. Recall from Section 5.3 that the total number of insertionsinto the
quadtree (original and reinsertions) for object o is no more than q+ &, where q is the number of cor-
responding g-objects and & is the number of ancestors of the leaf nodes containing the g-objects, not
counting those ancestors that completely enclose the object. Since &' is no higher than wg, where wiis
the maximum height of the quadtree, the total number of insertionsis at most wiNy, where N, denotesthe

32

number of g-objects. However, since the g-objects for an object typically share most of their ancestors,
we can expect the total number of reinsertionsto be O(Ny). Aswe outlinedin Section 5.4.2, the |/O cost
of sorting N objects and reinserting O(Ng) objectsis O(sNg/Blogy /g %), where sislessthan 2 for all
practical values of N, M, and B.

In our PMR quadtree bulk-loading approach, each B-tree node in the MBI is written only once and
never read, due to the use of B-tree packing (see Section 5.5). This means that the B-tree 1/0 cost is
between N'/B and 2N’ /B, depending on the split fraction, and thus O(N'/B).

The overal 1/0 cost of our bulk-loading algorithm is therefore O(%Y + SN€ 100\ /8 %q). Below, we
argue that reinsertions are unlikely to occur, so the presence of s and Nq (instead of N) in the formula
generally greatly overestimates the sorting cost. Furthermore, the values of N’ and N, are often on the
same order asN. Therefore, in many cases, the actual 1/0 cost of the bulk-loading a gorithmis about the
same as that of external sorting, i.e., O(§ logy g §)-

8.1.1 When are Reinsertions Needed?

As we saw above, the sorting cost can increase substantially in the presence of reinsertions. However,
reinsertions only occur if the flushing algorithm fails to free any memory. Theinformal analysis below,
although simplistic, suggests that thiswill rarely happen.

Recall that theflushing algorithmisunableto free any memory if all the objects stored in the pointer-
based quadtree intersect the boundary (referred to as flushing boundary bel ow) between flushed and un-
flushed nodes; e.g., the boundary of the striped regionin Figure 9. Thiscondition never arisesif the data
objectsare pointsand isunlikely to occur if the* space” between adjacent data objectsisgeneraly larger
than their size. In general, however, we must make some assumptions about the distribution of theloca-
tionsand sizes of non-point objectsto be able to estimate the number of abjectsthat intersect the flushing
boundary. We will make the simplifying assumption that the dataobjectsare all of the same size, and are
equally spaced in anon-overlapping manner so that they cover the entire data space. In other words, for
atwo-dimensiona object, the bounding rectangle is approximately a square with area LWZ and thus side
lengths ﬁ where L isthe sidelength of the square-shaped data space. The length of the flushing bound-
ary isat most 2L, since starting from its top-left corner, the boundary is monotonically non-decreasing
in the x axis and non-increasing in the'y axis (refer to Figure 9 for an example)®. Given the assumptions

above, the number of objects intersected by the flushing boundary is at most L/Z—bﬁ = 2V/N, since the

boundary is piecewise linear. For that many objects, the quadtree buffer would befull if M < 2y/N. Put
another way, given abuffer size of M, the buffer can be expected to never fill if N < M?/4. For example,
with a buffer capacity of 10,000 objects, we can expect the buffer never to fill for a datafile of up to
50 million objects. If each object occupies 50 bytes, these numbers correspond to a buffer size of about
500K and adatafile size of about 2.3GB.

In genera, for d dimensions, the object’s bounding hyper-rectangles (which are nearly hyper-cubes
in shape) have a volume of about L9 /N, so each of their d — 1 dimensional faces has ad — 1 dimen-
sional volume of approximately (L9/N)“@ = L9-1/NG*. The flushing boundary has ad — 1 dimen-
sional volume of a most dL%~1, so the number of objects intersected by it can be expected to be less
than LdiL/:z% = dNT. Unfortunately, if N issmaller than d¥, thisvaueislarger than N. However, for
the relatively low-dimensional spaces for which quadtrees are practical, N istypicaly much larger than
d? so dN“a* issmaller than N. Furthermore, it is not common to be working with non-point objectsin
spaces of higher dimensionality than 3. For three-dimensional space, we can expect a buffer of sizeM

91t is possible to show that the maximum length is even less than this (3L/2) and the average length is still less (L), but the
bound 2L sufficesfor our purposes.

33

to never fill if N < (M/3)%/2. For example, a buffer capacity of 10,000 objects can be expected to be
enough to handle data files of up to approximately 190,000 objects (about 9MB for objects of 50 bytes
each). Although this may not seem as dramatic as in the two-dimensional case, the difference between
N and M isstill more than an order of magnitude.

8.1.2 Relationship between N, Ng, and N’

The 1/0O cost of the bulk-loading algorithm given above was in terms of Ny and N’, the number of g-
objects and the number of B-tree items, respectively. In order to get a better picture of the 1/O cogt, itis
useful to establish the relationship between the three quantitiesN, Ng, and N'. In this section we explore
thisissue.

First, consider N, the number of objects, and Ny, the number of g-objects. Note that for points,
Ny = N. For non-point objects, the value of Nq depends on many factors, including 1) the splitting
threshold, 2) the relative sizes of objects, 3) how closdly clustered the objects are, 4) the complexity
of the boundaries of objects, and 5) the degree of overlap. Asan extreme example, if al the objectswere
squares (hypercubes for d > 2) that covered the entire data space, then the space would be maximally
partitioned into the smallest allowablecells. In other words, we would get 2" |eaf nodes, wherew isthe
maximum height of the quadtree, assuming N is a least w+ t, wheret is the splitting threshold value.
Thus, each object is broken up into 2" g-objects, and Ny = 2"dN. As another example, if the data ob-
jects are square-shaped (cube- or hypercube-shaped for d > 2), al of the same size, the largest number
of g-objects for a squareis 6, or 2- 39-1 in general (assumingt > 2%); the average number will depend
ont. Inthisexample, the ratio between N and Ny is still exponential in d. However, non-point datais
rarely used in spaces with dimensionality above 3.

As to the relationship between Nq and N', the difference between the two is the number of empty
quadtree leaf nodes, if we choose to represent them in the B-tree. Unfortunately, there can be a large
number of empty leaf nodesin the tree. As an extreme example, suppose that all the abjectsliein a
singlecell of theminimum size. Thiswould cause node splitsat al levelsof thetree until we haveall the
objectsinasingleleaf nodeat thelowest level. Thus, given atwo-dimensional quadtreewith amaximum
depth of w, wewould have 3w empty leaf nodes for the single non-empty leaf node. We can extend this
exampleto atree of k non-empty leaf nodes having as many as 3(w— |log, k|)k empty |eaf nodes'®, or in
general for ad-dimensional quadtree, (29 — 1)(w— |log,a k|)k empty leaf nodes. In quadtrees that give
rise to such a high number of empty |eaf nodes, most internal nodeshave 2¢ — 1 empty leaf nodesas child
nodes while only one child is either anon-empty leaf node or an internal node. Thus, such quadtreesare
rather contrived and unlikely to actually occur. A more reasonable assumptionisthat for the maority of
quadtree nonleaf nodes, at least two child nodes are non-empty. Given thisassumption, an upper bound
of about 29+1 empty leaf nodes for each non-empty leaf node can be established. Since the number of
empty leaves tendsto grow sharply with d, it isinadvisableto store empty quadtree nodesin the B-tree
for quadtrees of dimension more than 3 or 4.

It isinteresting to consider the values of Nq and N’ relative to N for actual data sets. In Section 9
we use six data sets consisting of non-overlapping two-dimensional line segment data, three of which
are real-world data and three of which are synthetic. With a splitting threshold of 8, the value of Ng was
at most about 2N for the real-world data sets, while it was about 2.63N for the synthetic data sets. The
number of empty leaf nodes was rather small, ranging from 2.2% to 4.7% of N for the real-world data
setsand 3.2%to 3.8% for the syntheticones. With asplitting threshold of 32, thevalueof Ny ranged from
1.3N to 1.6N, while the number of empty leaf hodes was negligible. In the experiments, we also used
a real-world data set comprising two-dimensional polygons representing census tracts in the US. The

10This is realized by having k trees with one non-empty leaf node, all of height w— |log, k|, and a complete quadiree of
height |log, k| down to the roots of these k trees.

34

gpatial extent of these polygons had a wide range, the polygon objectstouched each other’s boundaries,
and their boundaries were often very complex (up to 3700 points per polygon, with an average of about
40). Thus, this data set represents an extreme in the complexity of non-overlapping two-dimensional
data. With a splitting threshold of 8, both Ny and N’ were about 4N, while with a splitting threshold of
32they werelessthan 2N (more precisely, about 1.9N). Thus, thevaluesobtained for Ny and N' werestill
relatively closetothevaueof N, at least for thelarger splittingthreshold. Finally, we experimented with
highly overlapping syntheticline segment data. Not surprisingly, thenumber of g-objectsfor each object
isvery highfor suchdata. Evenwitharelatively large splittingthreshold of 32, thevalueof N, was about
110N. Thisstrongly suggests that quadtrees are not very suitable for such data, but the performance of
other spatial index structureswill also degrade for such data.

8.2 CPU Cost

Three factors contributeto the CPU cost of the agorithm: 1) sorting the objects, 2) building the pointer-
based quadtree, and 3) building the B-tree of the MBI. For each of these factors, the techniquesthat we
outlined are very efficient.

The CPU cost of the external merge sorting algorithm given in Section 5.4.1 isroughly proportional
to the number of comparison operations. Using the symbols N, M, and B as described in Section 5.4,
the average number of comparison operations per object when constructing theinitial runsis O(logM).
In each merge step, we need O(log %) comparisons for each object on average since at most M /B runs

are merged each time. Thus, recalling that the number of merge stepsis O(logy g 1) = O lﬁgiwéi), the

overall number of comparisonsper object on averageis O(logM + 'Iggg';'//"é)) log %) = O(logM +1log %) =
O(logN), and the total cost is O(NIogN), which is optimal. Even in the presence of reinsertions (Sec-
tion 5.4.2), sorting remains nearly optimal.

Assuming for the moment that the original insertion algorithmis used instead of our improved one,
thetotal cost of building the pointer-based quadtreeis roughly proportional to the number of intersection
tests. Recall that theintersection tests are needed to determine whether an object should be inserted into
acertain node. If o4 isaqg-object of object o that intersectsaleaf node n, the number of intersection tests
onoisatleast 29-D,,, where D, isthe depthof n. Thus, intheworst case, thetotal number of intersection
tests needed on 0 is 29 - Dpyay times the number of g-objects for 0. To analyze this further, we resort to
a gross simplification: assume that the objects are non-overlapping equal-sized squares in two dimen-
sions, and that they are uniformly distributed over the data space. In thissimple scenario, the number of
g-objects for an object is O(1), while the number of empty leaf nodes tends to be very low. Thus, the
expected number of leaf nodes (and thus al nodes) is roughly proportional to N. Since the objects are
uniformly distributed, the leaf nodes will tend to be at a similar depth in the tree, so the average height
is approximately proportional to logN. Therefore, thetotal number of intersection testsis O(NlogN)*L.
Notethat in our improved PMR quadtreeinsertion a gorithm, the total number of intersectiontestsistyp-
ically much smaller, and can potentially be as small as O(N). Neverthel ess, somework is still expended
in traversing the pointer-based quadtree down to the leaf level for each object.

When traversing the pointer-based quadtree during flushing, most of the nodes visited are deleted
from the tree, and thus are never encountered during subsequent flushing operations. The visited nodes
that are retained (or at least a similar number of nodes) are also visited by the insertion operation that
initiated the flushing, so the cost of visiting them is accounted for in the cost of the insertion operation.
Thus, thetotal additional cost of tree traversal during flushing is proportional to the number of quadtree
nodes (O(N) in the simplified scenario above). During flushing, some work is also expended for every

Hof course, for arbitrary dimensions, a 24 factor would be involved. However, recall that the quaditree is only used for
relatively modest values of d.

35

g-object in the flushed nodes. However, thiswork is accounted for in the cost of building the B-tree.

In the B-tree packing algorithm introduced in Section 5.5, the CPU cost is proportional to the num-
ber of inserted items. To see this, observe that procedures PACKINSERT and PACKSPLIT in Figure 13
both expend a constant amount of work for each invocation (if the split fraction is not 100%, the cost
of PACKSPLIT isproportional to B, but the amortized cost per object in the split node is still constant).
PACKINSERT isonly invoked once per item, while PACKSPLIT isinvoked htimesfor an item that even-
tualy is stored in anode at height h. If the total number of B-tree itemsis N, then the number of items
at height h is about N/B", where B is the number of itemsin each B-tree node. Therefore, the number
of invocations for items at height h is approximately hN/B". Thus, the total number of invocations of
PACKSPLIT isroughly 3™ hN/B" < Nyf_, h/B"= N/(B— 2+ 1/B), whichisO(N) for B > 3. Hence,
the total CPU cost of B-tree packing is O(N).

To summarize, we saw that the asymptotic CPU cost was O(NIogN) for sortingthe objects, O(NlogN)
for constructing the quadtreein memory (given our simplifying assumptions), and O(N) for buildingthe
B-tree. Thus, we seethat in an idea situation (i.e, if the data distributionis not too skewed), we can
expect the total CPU cost of our bulk-loading algorithm to be approximately O(NIogN).

9 Empirical Results

9.1 Experimental Setup

We implemented the techniques that we presented in Sections 5 and 7 in C++ within an existing linear
quadtree testbed (described in Section 3.3). Our quadtree implementation has been highly tuned for ef-
ficiency, but this primarily benefits dynamic PMR quadtree insertions (i.e., when inserting directly into
the MBI). Thus, the speedup due to bulk-loading would be even greater than we show had we used aless
tuned implementation. Thisis partly the reason why we obtained lower speedup than reported in [26].
The source code was compiled with the GNU C++ compiler with full optimization (—O3) and the ex-
periments were conducted on a Sun Ultra 1 Model 170E machine, rated at 6.17 SPECint95 and 11.80
SPECfp95 with 64MB of memory. In order to better control the run-time parameters, we used a raw
disk partition. This ensures that execution times reflect the true cost of 1/0, which would otherwise be
partially obscured by the file caching mechanism of the operating system. The use of raw disk partitions
isanother reason we obtained lower speedup thanin[26], sincethereductionin CPU costismuch greater
than the reduction in I/O cost. The maximum depth of the quadtree was set to 16 in most of the experi-
ments, and the splitting threshold in the PMR quadtree (bucket capacity in the PR quadtree) to 8. Larger
splitting thresholds make our PMR quadtree bulk-loading approach even more attractive. However, as8
isacommonly used splitting threshold, thisisthe value we used. B-tree node sizewas set to 4K B, while
node capacity varied between 50 and 400 entries, depending on the experiment.

The sizes of the data sets we used were perhaps modest compared to some modern applications.
However, we compensated for this by using a modest amount of buffering. In our PMR quadtree bulk-
loading algorithm, we limited the space occupied by the pointer-based quadtree to 128K. The flushing
algorithm was always able to free substantial amounts of memory (typically over 90% but never less
than 55%), except in experiments explicitly designed to makeit fail. Inall other experiments, thislevel
of buffering proved more than adequate and alarger buffer did not improve performance. The sort buffer
waslimited to 512K. A sort buffer size of 256K increased running time only slightly (typicaly lessthan
3% of thetotal time). For the B-tree, we explored the effect of varying the buffer size, buffering from
256 B-tree nodes (occupying IMB) up to theentire B-tree. For the bulk-loading methods, however, only
one B-tree node at each level needed to be buffered, as described in Section 5.5.

In reporting the results of the experiments, we use executiontime. Thistakesinto account the cost of
reading the data, sorting it, establishing the quadtree structure, and writing out the resulting B-tree. The

36

reason for using executiontime, rather than such measures asnumber of comparisonsor 1/O operations, is
that no other measure adequately capturestheoverall cost of theloading operations. For each experiment,
we averaged theresults of anumber of runs (usually 10), repeating until achieving consistent results. As
aresult, the size of the 99% confidence interval for each experiment was usually less than 0.4% of the
average value, and never more than about 1%. In particular, the confidence intervalsare aways smaller
than the differences between any two loading methods being compared.

9.2 Findings

Below, we detail the results of a number of experiments which show the performance of the two bulk-
loading techniques presented in this paper, for PMR and PR quadtrees (Sections 5 and 7, respectively),
aswell asour techniquefor improving the performance of PMR quadtreeinsertions(Section 4). Withthe
exception of Section 9.2.5, theimproved insertion method is usedin all experimentsinvolving the PMR
quadtree, both in our bulk-loading algorithm and when performing dynamic insertions (i .e., updating the
MBI directly). Unless otherwise specified, the experimentsin this section use the PMR quadtree and the
bulk-loading algorithm presented in Section 5.

Theremainder of this sectionisorganized asfollows: In Section 9.2.1 we go into considerabl e detail
on bulk-loadingtwo-dimensional linesegment data, aswel| asdescribethe specificsof the PMR quadtree
loading methods used in these and subsequent experiments. In Section 9.2.2 we repeat the same experi-
mentsin SAND, our prototypespatial database system, in order to examine the effects of using the object
table approach. In Sections9.2.3 and 9.2.4 we show how well our method does with other types of data,
multidimensional pointsand two-dimensional polygons, again using SAND. The performance of the PR
guadtree bulk-loading algorithm (for multidimensional points) is also presented in Section 9.2.3, and
compared with using the PMR quadtree bulk-loading agorithm. In Section 9.2.5 we investigate how
much our improved PMR quadtree insertion algorithm improves the performance of the PMR quadtree
bulk-loading a gorithm and of dynamic insertions. In Section 9.2.6, we study the performance of the al-
gorithmwhen no node can be flushed and reinsert freeing must be used. In Section 9.2.7 we examine how
well our bulk-insertion algorithm for PMR quadtrees performs. In Section 9.2.8, we establish how our
bulk-loading algorithm compares to two bulk-loading techniques for R-trees. Finally, in Section 9.2.9
we summarize the conclusions drawn from our experiments.

9.2.1 2D Line Segment Data

Inthefirst set of experiments, we used two-dimensional line segment data, both real-world and synthetic.
In these experiments, we stored the actual coordinate values of the line segments in the quadtree. The
real-world data consists of three data sets from the TIGER/Line File [15]. Thefirst two contain adl line
segment data— roads, rail lines, rivers, etc. — for Washington, DC and Prince George's County, MD,
abbreviated below as“DC” and “PG”. Thethird containsroadsin the entire Washington, DC metro area,
abbreviated “Roads’. The synthetic data sets were constructed by generating random infinite linesin
a manner that is independent of translation and scaling of the coordinate system [37]. These lines are
clipped to the map area to obtain line segments, and then subdivided further at intersection points with
other line segments so that at the end, line segments meet only at endpoints. Using these data sets enables
usto get afed for how the quadtree loading methods scale up with map size on data sets with similar
characteristics.

Table 1 providesdetailson the six line segment maps. the number of line segments, the average num-
ber of g-edges per line segment, thefile size of theinput files (in KB), and the minimum and maximum
number of nodes in the MBI B-trees representing the resulting PMR quadtrees. Recall that a g-edgeis
apiece of aline segment that intersects a leaf block. The average number of g-edges per line segment

37

isin some sense a measure of the complexity of the data set, and a sparse data set will tend to have a
lower average. The number of itemsin the resulting B-tree is equal to the number of g-edges plus the
number of white nodes. Notice the large discrepancy in the B-tree sizes, reflecting the different storage
utilizationsachieved by the different treeloading methods. Inthe smallest trees, the storage utilizationis
nearly 100%. In thetrees built with the dynamic PMR quadtreeinsertion method, the storage utilization
ranged from 65% to 69%, and thus these trees were about 45% larger than the smallest trees.

Number of | Avg. g-edges MBI B-tree size (nodes)
Data set linesegments | per segment | File size (KB) Min Max
DC 19,185 2.08 384 301 532
PG 59,551 1.86 1176 843 1529
Roads 200,482 1.76 3928 2691 4859
Rand64K 64,000 2.61 1264 1259 2152
Rand128K 128,000 2.62 2512 2525 4322
Rand260K 260,000 2.63 5088 5146 8674

Table 1: Details on line segment maps.

Table 2 summarizes configurationsused for loading the PMR quadtree in the experiments. Three of
them use dynamic quadtree insertion (i.e., updating the MBI directly) with varying levels of buffering
in the MBI B-tree (denoted “BB-L", “BB-M", and “BB-S’), whiletwo use our quadtree buffering bulk-
loading method (denoted “QB-75" and “QB-100"). In one of the B-tree buffering configurations, “BB-
S’, we sorted the objects in Z-order based on their centroids prior to insertion into the quadtree. This
has the effect of localizing insertionsinto the B-tree within the B-tree nodes storing the largest existing
Morton code values, thus making it unlikely that a nodeis discarded from the buffer before it is needed
again for insertions. Thus, the sorting ensures that the best use is made of limited buffer space. The
drawback is that the storage utilization tends to be poor, typically about 20% worse than with unsorted
insertions. Sincedel etionsoccur inthe B-tree and insertionsdo not arrive strictly in key order, theregular
B-tree packing algorithm could not be used. When we adapted the B-tree packing approach to handle
slightly out-of-order insertions (see Section 5.5), and set it to yield storage utilization similar to that of
unsorted insertions, the speedup was at best only slight. Neverthel ess, we do not make use of thisin our
experiments, since it has the undesirabl e property of causing underfull nodes. For quadtree buffering,
the B-tree packing algorithm (see Section 5.5) was set to yield approximately 75% (“QB-75") and 100%
(“QB-100") storage utilization. In thisexperiment, aswell as most of the others, we used the distribution
sort algorithm mentioned in Section 5.4.

Method | B-tree buffering Quadtree buffering Sorting
BB-L yes (unlimited) no no
BB-M yes (1024 nodes) no no
BB-S yes (256 nodes) no yes
QB-75 limited yes (=~ 75% B-tree storage utilization) yes
QB-100 limited yes (=~ 100% B-tree storage utilization) | yes

Table 2: Summary of PMR quadtree loading methods used in experiments.

Table 3 showsthe execution time for loading PMR quadtreesfor the six datasets using thefive load-
ing methods. Figure 20 presentsthisdatain a bar chart, where the execution times are adjusted for map

38

size; i.e., they reflect the average cost per 10,000 inserted line segments. Two conclusions are imme-
diately obvious from this set of experiments. First, the large difference between “QB-75" and “BB-L",
which both write each B-tree block only once (“QB-75" due to B-tree packing and “BB-L" due to un-
limited B-tree node buffering) and have asimilar B-tree storage utilization, shows clearly that quadtree
buffering achieves large savingsin CPU cost. Second, the dramatic increase in execution time between
“BB-S’ and “BB-M", in spite of thelatter using four times as large a B-tree buffer, demonstrates plainly
that unsorted insertions render buffering ineffective, especially asthe size of the resulting B-tree grows
with respect to the buffer size. Thereason why the executiontime of “BB-M” islower for thereal-world
data sets than the synthetic ones is that the real-world data sets have some degree of spatia clustering,
whilethe syntheticdatasetsdo not. Thecost of sortingin*“BB-S’ isclearly more than offset by the saving
inB-treel/O, eventhoughthe storage utilizationin the B-tree becomes somewhat worse. Withinthesame
loading method, the average cost tendsto increase with increased map size. Thisismost likely caused by
increased average depth of quadtree leaf nodes, which leadsto a higher average quadtree traversal cost
and more intersection tests on the average for each object. The rate of increase is smaller for quadtree
buffering (“QB-75" and “ QB-100"), reflecting the fact that quadtreetraversals are more expensivein the
MBI than in the pointer-based quadtree used in quadtree buffering. Curiously, theaverage cost for Roads
issmaller for al five loading methods than that of R64K, even though the size of the R64K data set is
smaller, and so is the average depth of leaf nodes in the resulting quadtree (8.53 for R64K vs. 9.24 for
Roads). The reason for this appears to be primarily the larger average number of g-edges per inserted
line segment for the R64K data set (see Table 1).

Dataset | BB-L | BB-M | BB-S | QB-75 | QB-100
DC 1224 | 1462 | 11.87 4.47 3.68
PG 3562 | 7149 | 37.15| 13.80 11.53
Roads | 120.78 | 221.55 | 134.38 | 46.14 38.92
R64K 5249 | 136.18 | 56.07 | 19.37 16.04
R128K | 109.41 | 349.48 | 116.62 | 39.47 32.85
R260K | 229.31 | 853.34 | 254.58 | 82.31 68.81

Table 3: Execution times (in seconds) for building quadtrees for the six data
sets.

A better representation of the experiment resultsfor comparing the five different loading methodsis
shown in Figure 21. The figure shows the speedup of “QB-100", quadtree buffering with nearly 100%
B-tree storage utilization, compared to the other four methods. Compared to “BB-L” and “BB-S’, the
speedup of “QB-100" isby afactor of between three and four, and the speedup increases with the size
of the data set. Compared to “BB-M", the speedup is by afactor of at least four, and up to over 12 when
“BB-M" performsthe most B-tree 1/0. Overall, “QB-75" was about 20% slower than “QB-100", which
was to be expected since the MBI B-tree produced by “QB-75" is about 33% larger.

The proportion of the execution time spent on 1/O operations is shown in Figure 22. \We obtained
these numbersby recording thel/O operationsperformed whilebuildingaPM R quadtree, including read-
ing the data, and then measuring the execution time needed to perform the I/O operations themselves.
For theloading methodsthat use sorting, we includethe 1/0O operations executed by the sort process. For
B-tree buffering, except for “BB-M”, therelative 1/0 cost is small, or only about 20-30%, compared to
between 65% and 75% for quadtree buffering. Thisshowsthat the savingsin execution time yielded by
quadtree buffering are, for themost part, caused by reduced CPU cost (thetimefor performing l/Oisonly
1.3t0 2.9 seconds per 10,000 insertionsfor all but “BB-M"). For “BB-M", the proportion of time spent
on |/O gradually increases with larger data sizes as B-tree buffering becomes | ess effective on unsorted

39

35 HBB-L
E BB-M

30 CBB-s
[1QB-75

25 Il 0B-100

20

15

10

Execution time per 10,000 insertions (sec.)

DC PG Roads R64K R128K R260K

Figure 20: Execution time per 10,000 line segments for building quadtrees for
the six data sets.

12 H BB-L

11 B BB-M

10 0 BB-S
[1oB-75

Speedup of QB-100

9
8
7
6
5
4
3
2
Lo T pe S| '

Roads = R64K RI128K R260K

Figure 21: Speedup of “QB-100" compared to the other four loading methods
for line segment data.

data

9.2.2 LineSegment Datain SAND

Inthefirst set of experiments, we stored the actual geometry of the objectsinthe PMR quadtree. Asmen-
tioned in Section 3.3, our quadtreeimplementation al so allows storing the geometry outsidethe quadtree.
The second set of experiments was run within SAND, our spatial database prototype, using the same
data. Thistime, we stored only tuple IDs for the spatial objectsin the quadtree, rather than the geome-

40

80% Ml BB-L
EBB-M

0% O0BB-s
l 0B-100

50%

40%

30%

20%

I/O cost as a proportion of total cost

10%

0%
DC PG Roads R64K R128K R260K

Figure 22: Proportion of execution time spent on 1/O operations for the five
loading methods for line segment data.

try itself. Storing the geometry in the quadtree with SAND vyields results similar to that of our previous
experiments, the difference being that SAND also must store the tuple 1D, thereby making for slightly
larger B-tree entries and lower fan-out. An additional difference is that in the experiments above, we
used 4-byte integers for the coordinate values of the line segments, while SAND uses 8-byte floating
point numbers for coordinate values. For this set of experiments, we used the configurations “BB-L”",
“BB-S’, and “QB-100", described in Table 2. In keeping with the modest buffering in the latter two,
we only buffered 128 of the most recently used disk pages for the relation tuples, where each disk page
is4KB in size, while for “BB-L" we used a buffer size of 512 disk pages. The PMR quadtree indexes
were built on an existing relation, which consisted of only aline segment attribute, and where the tuples
in the relation were initially inserted in unsorted order. Since the objectswere not spatially clustered in
the relation tabl e, objectsthat are next to each other in the Morton order are typically not stored in close
proximity (i.e., on the same disk page) in the relation table. This had the potential to (and did) cause
excessive relation disk 1/0 during the quadtree construction process when we inserted in Morton order
(i.e,in“BB-S’ and “QB-100"). A similar effect arisesfor objectsin aleaf nodebeing split, regardl ess of
insertion order. Thus, in“BB-S’ and “QB-100" we built a new object table for theindex, into which the
objects were placed in the same order that they were inserted into the quadtree; this effectively clusters
together on disk pages objectsthat are spatially near each other. When measuring the execution timefor
the quadtree construction, we took into account the time to construct the new object table.

Figure 23 shows the speedup of “QB-100" compared to “BB-L" and “BB-S’ for building a PMR
guadtreeindex in SAND for theline segment data, using the object table approach described above. This
time, the speedup for “QB-100" compared to “BB-S’ is somewhat smaller than we saw earlier, being a
littleless than 3 instead of 3 to 4 before, but the same general trend is apparent. The smaller speedupis
dueto thefact that the execution cost of activitiescommon to the two ishigher now than before, sincethe
coordinate values in these experiments were larger (8 bytesvs. 4 bytes before), leading to a higher I/0
cost for reading and writing line segment data. On the other hand, “BB-L” is now considerably slower
in comparison to “QB-100" for the“R128K” and “R260K” data sets, which is caused by a much larger
amount of relation 1/0, in spite of “BB-L" having four times aslarge abuffer. This clearly demonstrates

41

thevalue of usingaspatially clustered object table, asisthe casein “QB-100" and “BB-S’. Interestingly,
the clustering was obtai ned as a by-product of sorting the objectsin Z-order, providing afurther example
of theimportance of this sorting order.

8 M BB-L
B BB-S

Speedup of QB-100

DC PG Roads R64K R128K R260K

Figure 23: Speedup of “QB-100" compared to the other methods for line seg-
ment data, using object table approach.

9.2.3 Multidimensional Point Data

Next, we examine the effect of the dimensionality of the space on the performance of our bulk-loading
methods (for both the PMR quadtree and the PR quadtree), using synthetic point data sets of 100,000
points each, in dimensions ranging from 2 to 8. The sets of pointsform 10 normally-distributed clus-
ters with the cluster centers uniformly distributed in the space [18]. We used SAND for these experi-
ments, storing the point geometry directly in theindex. We compare using the loading methods“BB-L",
“BB-S’, and “QB-100" in Table 2, in addition to the PR quadtree bulk-loading algorithm described in
Section 7 (denoted below by “PB-100"). Figure 24 shows the execution time of building the quadtree,
while Figure 25 showsthe speedup of “QB-100" compared to “BB-L" and “BB-S’. The speedup is con-
siderable for the lowest dimensions (factors of about 4 and 2.5 for “BB-L” and “BB-S’, respectively),
but becomes |ess as the number of dimensions grows. However, thisis not because quadtree buffering
isinherently worse for the larger dimensions. Rather, it is because the cost that is common to al 1oad-
ing methods (disk 1/0O, intersection computations, etc.) keeps growing with the number of dimensions.
Figure 26 shows the speedup of “PB-100" compared to “QB-100". The speedup isinitially about 17%
but gradually decreases as the number of dimensionsincreases.

9.2.4 Complex Spatial Types (Polygons)

In the next set of experimentswe built PMR quadtreesfor apolygon data set consisting of approximately
60,000 polygons. The polygons represent census tracts in the United States and contain an average of
about 40 boundary points each (which meant that each data page contained only about six polygonson
the average), but as much as 3700 for the most complex ones, occupying over 40MB of disk space. We
performed this experiment in SAND with the same loading methods as before. Thistime, we used a

42

60 X BB-L
¢ BB-S
50 + QB-100
O PB-100
S 40
K2
(]
e
= 30
[
©
5
o 20
x
N
10
0 Number of
2 3 4 5 6 7 = g dimensions

Figure 24: Execution time for building PMR quadtrees for point data sets of
varying dimensionality (using “BB-L”, “BB-S”, and “QB-100", described in
Table 2) and a PR quadtree with the bulk-loading algorithm from Section 7
(denoted “PB-100").

4.5 X BB-L
¢ BB-S

4.0

o 35

o

X

@

o 3.0

©

o

3 25

()

()

o

20 \\\
15 ©
1.0 Number of
" 2 ' 3 4 5 6 7 ' g dmensions

Figure 25: Speedup of “QB-100" compared to “BB-L” and “BB-S” for point
data sets of varying dimensionality.

splitting threshold of 32, leading to an average of about two g-objects for each object. In contrast, the
complex boundariesof the polygonsled to an excessively large number of g-objectsfor asplittingthresh-
old of 8, about four for each object on the average (however, the speedup achieved by our bulk-loading
algorithm over the dynamic insertion method was better with the lower threshold value). As polygons
have different numbers of edges, we had to use the object table approach, where we only store object

43

18%
16%
14%
12%
10%

8%

6%

4%

Speedup for PR quadtree algorithm

2%

0% Number of dimensions
0 2 T 3 T 4 T 5 T 6 T 7 T 8

Figure 26: Speedup of the PR quadtree bulk-loading algorithm compared to the
PMR quadtree bulk-loading algorithm for point data sets of varying dimension-
ality.

references in the quadtree.

In thefirst experiment with the polygon data, the polygon relation was not spatially clustered. In this
context, spatial clustering denotes the clustering obtained by sorting the objectsin Z-order, asis done by
“BB-S’ and “QB-100". For thisdata, more 1/Os were required for building a spatially clustered object
tablefor “BB-S’ and “ QB-100" than when accessing the unclustered rel ation table directly. To see why
thisis so, we observe that when building a new clustered object table for a large data set, the sorting
process involvesreading in the data, writing all the data to temporary files at least once, reading it back
in, and then finally writing out a new object table. Thus, at least four I/Os are performed for each data
page, half of which are write operations. In contrast, when the unclustered relation is accessed directly,
the data items being sorted are the tuple IDs, so the sorting cost is relatively small. Nevertheless, in
our experiment, this caused each data page to be read over three times on the average for “BB-S’ and
“QB-100"12. The difference between the polygon data and the line segment data, where building a new
clustered object table was advantageous, is that in the polygon relation there is alow average number
of objectsin each data page. Thus, the average 1/0 cost per object is high for the polygon data when
building anew object table, whereas the penalty for accessing the unclustered object table directly isnot
excessive as there are relatively few distinct objects stored in each page. As a comparison, when using
“BB-L” to build the PMR quadtree, which does not sort the data and for which we used a large relation
buffer of 2048 data pages (occupying 8MB), the overhead in data page accesses was only about 17%
(i.e., on the average, each page was accessed about 1.17 times).

Thefirst column (“Polys (unclust.)”) in Figure 27 shows the execution times for the experiment de-
scribed above. Thelarge amount of relation 1/O resultedin“QB-100" being nearly twiceas slow as“ BB-
L”. Nevertheless, “QB-100" was slightly faster than “BB-S’ (by 10%). In order to explore the additional
cost incurred by “QB-100" and “BB-S’ for repeatedly reading many of the data pages (due to the sorted

12Each data page is read once when preparing to sort the polygons, since their bounding rectangles must be obtained. The
remaining two 1/Os per page (out of the three we observed on the average for each data page) occur when each polygon is
initially inserted into the quadtree or when anodeis split.

insertions), we measured the cost of building a PMR quadtree when the polygon relation was aready
spatially clustered (“Polys (clust.)”) aswell as building it on the bounding rectangles of the polygons
(“Rectangles” in Figure 27). Intheformer case, we did not need to sort the data again for “QB-100" and
“BB-S’, thusonly incurring 29% overhead in data page accesses, whilein the latter case, each polygon
was accessed only once, i.e., to compute its bounding rectangle. The geometry of the bounding rect-
angles was stored directly in the quadtree. Of course, the PMR quadtrees for the bounding rectangles
are somewhat different from those for the polygons themselves, since some leaf nodes may intersect a
bounding rectangle but not the corresponding polygon. In both cases, “QB-100" and “BB-S’ take much
less time to build the PMR quadtree, and the speedup of “QB-100" compared to “BB-S’ is by afactor
of 2. However, the speedup of “QB-100" over “BB-L" is not quite as high when building the quadtree
on the clustered polygon relation (by afactor of 1.7) as when building it on the bounding rectangles (by
afactor of 2.5).

200 M sB-L
B BB-s
] QB-100

160

120

80

Execution time (sec.)

40

Polys (unclust.) Polys (clust.) Rectangles

Figure 27: Execution time for building PMR quadtrees for polygon data set (la-
bels of bars denote loading methods from Table 2). “Polys (unclust.)” denotes
building the quadtree on an unclustered polygon relation, “Polys (clust.)” de-
notes building it on an spatially clustered polygon relation, while “Rectangles”
denotes building it on the bounding rectangles of the polygons.

9.25 Improved PMR Quadtree Insertion Algorithm

In Section 4 we presented atechniquefor improving the performance of PMR quadtreeinsertions, which
significantly reducesthe number of intersectiontests. Figure 28 showsthe speedup in executiontimethat
results from using our technique with the line segment data sets when buildinga PMR quadtry with dy-
namic insertions (“BB-S’) aswell aswith our bulk-loading algorithm (* QB-100"). The speedup is con-
siderable, ranging from 30%to nearly 55%for “BB-S’ and dlightly lessfor “ QB-100". Observethat, due
to sorting, “BB-S’ performs fewer 1/0Os than the dynamic insertion algorithm typically performs (with-
out sorting) with asimilar B-tree buffer size, so the speedup for dynamic insertions without sorting can
be expected to be somewhat less in most cases. For “QB-100", the speedup in CPU time is about twice
that shown in the figure, since performing 1/0s takes about half the execution time when not using our
improved insertion agorithm (recall that our technique does not affect 1/O cost). Figure 29 shows the

45

speedup in execution timewhen buildingaPMR quadtree for the point data sets of varying dimensional -
ity (see Section 9.2.3). For thetwo-dimensional dataset the speedup isabout 50% when using“ QB-100".
More importantly, as the dimensionality increases, the speedup grows, reaching a factor of nearly 8 for
the eight-dimensional point data set. The speedup of dynamic insertions (“BB-S’) for the point datais
somewhat less than for the bulk-loading algorithm, but still substantial.

55% M BB-S
50% H gB-100
45%
40%
35%
30%
25%
20%
15%
10%
5%
0%

Speedup for new insertion algorithm

DC PG Roads R64K R128K R260K

Figure 28: Speedup in terms of execution time resulting from the reduction
in the number of intersection tests when using the improved PMR quadtree

insertion algorithm for building PMR quadtrees for line segment data using
dynamic insertions (“BB-S") and the bulk-loading algorithm (“QB-100").

8 X BB-S
£ <© QB-100
£ 7
IS
f=y
< 6
c
3=/

2 5
i=
8
Q4
S
g 3
=]
)
2
& 2
Number of
1 T T T T T T H H
2 3 4 5 6 7 8 dimensions

Figure 29: Speedup in terms of execution time resulting from the reduction in the
number of intersection tests when using the improved PMR quadtree insertion
algorithm for building PMR quadtrees for point data of varying dimensionality
using dynamic insertions (“BB-S") and the bulk-loading algorithm (“QB-100").

46

9.2.6 Reinsert Freeing

In Section 5.3 we described a strategy we termed reinsert freeing that is used if the flushing algorithm
failsto free any memory. The next set of experiments explores how well reinsert freeing performs. We
used two synthetic line segment data sets, and stored their geometry in the PMR quadtree. The first
data set, R260K, was described earlier. In order to cause the flushing algorithm to fail when building a
PMR quadtreefor R260K , we set the buffer size for quadtree buffering to only 8K. The second data set,
R10K, consists of 10,000 line segments whose centroids are uniformly distributed over the data space,
and whose length and orientation are also uniformly distributed. Thus, this data set exhibitsalarge de-
gree of overlap and thereforealarge number of g-edges, causingthe MBI B-treeto occupy alarge amount
of disk space. For instance, the B-tree resulting from building a quadtreefor R10K with*“QB-100" occu-
pied over 8000 nodes or about 32MB. For R10K, we used a splitting threshold of 32, as alower splitting
threshold led to an even higher number of g-edges (the speedup achieved by quadtree buffering was bet-
ter at lower splitting thresholds, however). For both data sets, we used the merge sort algorithm to sort
the objects, sinceit is better suited for handling reinsertions.

The number of reinsertions for R260K was about 21,000, while it was over 72,000 for R10K (i.e.,
each object was reinserted over seven times on the average). In spite of such alarge number of rein-
sertions, Figure 30 shows that quadtree buffering yields significant speedup over B-tree buffering. In
fact, B-tree buffering was so ineffective for R10K, that we increased the buffer size of “BB-S’ to about
3000 B-tree nodes, which is about 25% of the number of nodes in the resulting B-tree. For a data set
of 20,000 line segments constructed in the same way as R10K, the speedup for “QB-100" compared to
“BB-L" was by afactor of more than 8, soit is clear that quadtree buffering with reinsertions scales up
well with data size, even if the data has extreme amount of overlap. With “QB-100", it took about 4.5
times aslong to build the PMR quadtree for the 20,000 line segment data set as for R10K, but the larger
data set also occupied nearly four times as much disk space. For the more typical data set, R260K, the
speedup achieved by “QB-100" isonly slightly lower than what we saw in Figure 21, where reinsertions
were not needed.

6 M sB-L
B BB-s

Speedup of QB-100

r1oK rand260K

Figure 30: Speedup of “QB-100" compared to the other methods when re-
insertions are needed (labels of bars denote loading methods from Table 2).

47

9.2.7 Bulk-Insertions

The next set of experiments investigates the performance of PMR quadtree bulk-insertions (see Sec-
tion 6). We used two pairs of line segment data sets. In the first, comprising the “DC” and “PG” line
segment data sets, the new objects cover an unoccupied areain the existing quadtree. In the second, the
new objects are interleaved with the objects in the existing quadtree. In this pair, the line segments de-
note roads (“Roads’ with 200,482 line segments) and hydrography (“Water” with 37,495 line segments)
in the Washington, DC, metro area. For the bulk-insertions, we found that interleaved read and write
operations (to the existing quadtree and the combined quadtree, respectively) caused agreat deal of 1/0
overhead due to disk head seeks. To overcome this effect, we used a small B-tree buffer of 32 nodes
(occupying 128K B) for the combined quadtree, which allowed writing to disk multiple nodes at atime;
another solution would be to store the existing quadtree and the combined quadtree on different disks.

Figure 31 shows the execution time required to bulk-load and bulk-insert the pairs of data setsin
either order, aswell asto bulk-load the combined data set. In thefigure, the notation X, Y meansthat first
X is bulk-loaded, and then Y is bulk-inserted into the quadtree containing X, while the notation X +Y
means that the union of the two setsis bulk-loaded. The execution times of the bulk-load (“BL") and
bulk-insertion (“BI") operationsareindicated separately onthebarsinthefigure. 1n addition, thetopmost
portion of each bar, abovethe brokenline, indicatesthel/O overhead of the combined bulk-load and bulk-
insertion operations, i.e., thecost of writing (during the bulk-l1oad) and reading (during the bul k-insertion)
the intermediate PMR quadtree. Clearly, the I/O cost overhead represents nearly all the additional cost
of bulk-loading and bulk-inserting compared to bulk-loading the combined data set. Interestingly, the
remaining overhead was very similar in al cases, amounting to 7-11% of the execution time of bulk-
loading the combined data sets. Since the pairs of data sets had different relative space coverage and
size, this demonstrates that the performance of our bulk-insertion algorithm is largely independent of
the space coverage of the bulk-inserted data in relation to the existing data, aswell asthe relative sizes
of the existing and new data sets (with the exception that the 1/O overhead is proportional to size of the
existing data set in relation to the combined data set).

In Section 6.3 wediscussed avariant of our bulk-insertional gorithmthat updatesthe existing quadtree,
as opposed to the merge-based approach that buildsanew quadtree on disk. Figure 32 showsthe perfor-
mance of the update-based bulk-insertion variant relative to the merge-based bulk-insertion algorithm,
aswell asthat of using dynamicinsertionsinto the existing quadtreeusing“BB-S’. In an attempt to make
afair comparison we made the alternative methods as efficient as possible. In particular, for the update-
based bulk-insertion variant, we used the adapted B-tree packing approach (see Section 5.5), with asplit
fraction of 90%, and the existing quadtree had a storage utilization of 90%. For “BB-S’, the existing
guadtree had a storage utilization of 75% (higher values caused more B-tree node splits). Note that in
Figure 32, we only take into account the bulk-insertion of the new dataset and not the bulk-loading of the
existing one. Thetwo aternative approaches for bulk-insertion, that both update the existing quadtree,
are clearly much more sensitiveto there ative space coverage of the new data set with respect to the exist-
ing one than our merge-based a gorithm. In particul ar, when the new dataset occupies an areathat isnot
covered by theexisting dataset (asfor “PG,DC”), the update-based methodswork much better than when
the new dataset isinterleaved with theexisting data (asfor “R,W”). In thelatter case, ahigher fraction of
the nodesin the MBI B-tree are affected by the update operations, thus leading to more I/O. In addition,
the update-based methods are al so | ess effective when the new dataset islarger than the existing data set.
Nevertheless, if we know that bulk-insertionsinvolve data sets that are mostly into unoccupied regions
of arelatively large existing quadtree, then the update-based variant of our PMR guadtree bulk-insertion
agorithm may be preferable.

48

80 HsL
E i

Execution time (sec.)

PG,DC DC,PG DC+PG R, W W, R R+W

Figure 31: Execution time for bulk-loading (indicated by the bars labeled “BL")
and bulk-insertions (indicated by the bars labeled “Bl") for two pairs of data sets.
The portions of the bars above the broken lines indicate the 1/O overhead of
the combined bulk-loading/bulk-insertion operations compared to bulk-loading
the combined data set. “R” and “W"” denote the “Roads” and “Water” data
sets, respectively.

3.5 M update
EBs-s

3.0

2.5

2.0

15

Relative execution time

1.0

0.5

PG, DC DC, PG R, W W, R

Figure 32: Execution time of two alternative bulk-insertion methods relative to
the merge-based PMR quadtree bulk-insertion algorithm. “Update” denotes the
update-based variant of our algorithm, while “BB-S" denotes dynamic insertions

(see Table 2).

49

9.2.8 R-treeBulk-Loading

It isinterestingto comparethe performance of our bulk-loadingalgorithmto that of existing bulk-loading
algorithmsfor another commonly used spatial data structure, the R-tree. We chose two bulk-loading al-
gorithmsfor theR-tree: 1) Hilbert-packed R-tree [30] with the space partitioningimprovementsof [19]*3,
and 2) avery simplified version of the buffer-tree approach of [8, 13]. For ease of implementation we
used an unlimited buffer sizefor the buffer-tree approach, thusbuilding the entire R-treein memory. The
nodes were written to disk once the tree was fully constructed. The CPU time of our approach isat most
equivalent to that of [8, 13], whilethe /O cost is much less. Note that virtual memory page faultswere
not a mgjor issue, since the size of the R-trees (at most 27MB) was significantly less than the size of
physical memory (64MB). In order to obtain good space partitioning, we used the R*-tree [10] insertion
rules, except that no reinsertionswere performed asthey are not supported by the buffer-tree approaches.
Since 4K isthe physical disk page size in our system, we used R-tree nodes of that size, which alow a
fan-out of up to 200. However, a fan-out of 50 is recommended in [10], and thisis what we used in
the buffer-tree approach. A fan-out of 200 led to a much worse performance, by more than an order of
magnitude. For the Hilbert-packed R-tree, on the other hand, we use afan-out of 200, as |ower levels of
fan-out lead to ahigher 1/0 cost. Thetwo methodsare at two endsof a spectrum with respect to execution
time. For the Hilbert-packed R-tree, nearly all the time is spent doing /O, whereas for the buffer-tree
approach, nearly all the executiontimeis CPU time. It isimportant to note that the quality of the space
partitioning obtained by the Hilbert-packed R-tree approach is generally not as high as that obtained by
the R*-tree insertion method. Thisisin marked contrast to our quadtree PMR quadtree bulk-loading al-
gorithm, which produces roughly the same space partitioning as dynamic insertions (the variationis due
to different insertion order).

Figure 33 showsthe execution time performance of the two methodsfor bulk-loading R-treesfor the
data sets listed in Table 1 relative to the execution time of “QB-100". The buffer-tree technique with
R*-tree partitioning (“B50") took 10-14 as much time as building the PM R quadtree. However, building
the Hilbert-packed R-tree (“P200" in the figure) took less time, or about 50%-80% as much as building
a PMR quadtree. Thiswas partly due to the small CPU cost of the Hilbert-packed R-tree method, but
primarily due to the fact that in the PMR quadtree each object may be represented in more than one leaf
node and thus stored more than oncein the MBI’s B-tree. Thuswe see that the price of a disjoint space
decomposition, which isadistinguishing feature of the PMR quadtree, isrelatively low when using our
bulk-loading algorithm.

9.29 Summary

Our experiments have confirmed that our PMR quadtree bulk-loading algorithm achieves considerable
speedup compared to dynamic insertions(i.e., when updating the MBI directly). The speedup depended
on several factors. Oneisthe effectiveness of buffering the B-tree used in dynamic insertions. When the
nodesin the B-tree were effectively buffered, our bulk-loading a gorithm usually achieved a speedup of
afactor of 3to 4. Thisspeedup was achieved, for the most part, by adramatic reductionin CPU time. In
fact, in some experiments, only about 25-35% of the execution time of our bulk-loading algorithm was
attributed to CPU cost. However, when B-tree buffering isineffective so that B-tree nodes are frequently
brought into the buffer and written out more than once in dynamic insertions, our bulk-loading approach
can achieve substantially higher speedups(up to afactor of 12 in our experiments). In situationsrequiring
the use of reinsert freeing, our bulk-loading a gorithmwas at worst only slightly slower than in situations

BwWe only used thefirst of their improvements, wherein each nodeis not quite filled to capacity if the addition of an object
causes the bounding rectangle of the node to enlarge too much. The use of re-splitting would involve more CPU cost, while
the 1/O cost would stay the same or increase.

50

'—\
a

M P200
B B50

=
w

e
o R, N

Relative execution time compared to QB-100

O R, N WMo N OO

DC PG Roads R64K R128K R260K

Figure 33: Relative performance of two R-tree bulk-loading algorithm compared
to “QB-100" (“P200" denotes the Hilbert-packed R-tree algorithm with a fan-
out of 200, while “B50” denotes the buffer-tree approach with a fan-out of
50).

where the flushing a gorithm was sufficient.

Another factor affecting the speedup of the bulk-loading algorithmis the rel ative importance of cost
factors common to any PMR quadtree construction method, such asthe cost of reading theinput dataand
of intersectiontests. Asthese common cost factors become alarger portion of thetotal cost, the potentia
for speedup diminishes. Indeed, we found that for point data, the speedup achieved by our PMR quadtree
bulk-loading approach diminishes as the number of dimensionsincreases.

Asweexpected, our PR quadtree bulk-loading algorithm outperformed the PM R quadtree bul k-loading
algorithm for point data. However, the speedup in execution time was less than 20% at best, and de-
creased with ahigher number of dimensions. Therelatively small speedup achieved by the PR quadtree
bulk-loading agorithm over the PMR quadtree bulk-loading a gorithm indicates that the overhead (in
terms of execution time) dueto the use of the pointer-based quadtree and the associated flushing process
in the PMR quadtree bulk-loading algorithmis minor.

Our experiments with complex polygon data showed that a lack of spatial clustering® in a spatial
relation has an especially detrimental effect on the amount of 1/0O when the spatia objectsoccupy alarge
amount of storage space (which meansthat few objectsfit on each data page). Without spatial clustering
on the polygon relation, the PMR quadtree bulk-loading algorithm took about twice as long to build the
guadtree as doing dynamicinsertions. Thedifferencein performancewas dueto thefact that weallotteda
much larger buffer spacetothelatter, besidesthefact that itislessaffected by thelack of spatial clustering
sincethe objectsare not sorted prior to inserting them into the quadtree. Nevertheless, when the polygon
relation was spatially clustered as well as when building the quadtree based on the bounding rectangles
of the polygons, the speedup of our bulk-loading algorithm was about a factor of 2 when a comparable
amount of buffer space was used. In situationswhere the relation to index is not spatially clustered (and
performing clustering is not desired), using bounding rectangles may yield overall savingsin execution
time (for building the quadtree and executing queries), even though it means that the quadtree provides

14Recall that in this context, spatial clustering denotesthe clustering obtained by sorting the objectsin Z-order.

51

somewhat worse spatial filtering and thus potentially higher query cost.

Theimproved PMR quadtree insertion algorithm (that reduces the number of intersection tests) was
shown to yield significant speedup, both for dynamic insertions as well as in our PMR quadtree bulk-
loading algorithm. For line segment data, the speedup when it was used in the PMR quadtree bulk-
loading algorithm ranged between 30-50%. For point data, the speedup was 50% for two-dimensional
data and grew with the number of dimensions up to nearly a factor of 8 for eight-dimensional data.

We verified that our PMR quadtree bulk-insertion algorithm is very efficient. Compared to bulk-
loading the combined data set, most of theextracost of first bulk-loading the existing dataand then bul k-
inserting the new dataliesin I/O operations, while the overhead dueto larger CPU cost was minor. Fur-
thermore, our bulk-insertion algorithm is more robust and generally more efficient than an update-based
variant of the algorithm that updates the existing quadtree instead of merging the existing quadtree with
the quadtreefor the new data. Neverthel ess, the update-based variant is more efficient in certain circum-
stances, namely when the amount of new dataisrelatively small and covers an unoccupied region in the
existing quadtree.

Our bulk-loading algorithm for PMR quadtrees compared favorably to bulk-loading algorithms for
R-trees. In particular, the price paid for the digjoint decomposition provided by the PMR quadtree is
relatively low. An R-tree algorithm having very low CPU cost (the Hilbert-packed R-tree) was at most
about twice asfast as our algorithm. Most of the difference can be explained by higher I/O cost for PMR
guadtree bulk-loading due to the presence of multiple g-objects per object. When we used the object
table approach in the PMR quadtree, in which the actual objects are stored outside the quadtree (i.e.,
each object is stored only once regardless of the number of g-objects), the fastest R-tree bulk-loading
agorithmwastypically only 5-30% faster than our PM R quadtree bulk-loading a gorithm. Moreover, R-
tree bulk-loading algorithmsthat expend more CPU timeto achieve better space partitioning (e.g., [8, 13]
with R*-tree insertion rules) can be much slower than our algorithm.

9.3 Performance of Spatial Join

In order to test the utility of our PMR quadtree bulk-1oading approach, we performed asmall experiment
with the spatial join example mentioned in Section 1: given acollection of line segments representing
roads and another representing rivers, find all locations where aroad and a river intersect. We used the
road dataset already mentioned (“ Roads” with 200,482 1ine segments), and adataset for the hydrography
of the same geographic area (“Water” with 37,495 line segments). Below, we give a description of the
experiments, and in Table4 wetabulatethetimeto execute each one. Inthetable, “BB-S’ and “ QB-100"
denote quadtree |oading methods as summarized in Table 2.

1. Build aspatial index on the Roads and Water data sets.

2. Perform the spatial join with a spatial index on both data sets. Thisis done by simultaneously
stepping through the MBI for each index.

3. Perform the spatial join with a spatial index on the Roads data set but not on the Water data set.
This method looks up intersecting line segments in the Roads index for each line segment in the
Water dataset. In order to reduce the number of 1/Osto the Roads index, the line segmentsin the
Water data set are sorted in Morton order of their centroids.

4. Experiment 3 with the roles of Roads and Water reversed. In other words, we have a spatial join
with a spatial index on the Water data set but not on the Roads data set.

52

5. Perform the spatial join with no index on either of the data sets. Thisis done with a nested loop
method. In the buffered variation, al line segmentsin the Water data sets were read into memory
at the start of the query to avoid re-reading them.

6. Build a spatial index on the output of the spatial join. Actually, in our experiment, we built the
index after thejoin had been computed, but building the index simultaneously with thejoin would
yield the same results.

Join method Time

Both indexed 8.92

Data set BB-S | OB-100 Only Roads indexed 25.9

Roads 134 38.9 Only Water indexed 75.8

Water 17.8 5.75 Neither indexed (buffered) 1420

Join output (points) | 2.55 0.89 Neither indexed (unbuffered) | 33900
@ (b)

Table 4: Execution time (given in seconds) for (a) building indexes and (b)
computing a spatial join for the Roads and Water data sets.

If either of the datasetsisnotindexed prior to executingthe query, thenwe havetwo dternatives. The
firstistobuild anindex (possibly on both datasets) and then execute the query withthetwo indexes. The
second aternativeisto run the query without building any new indexes. The cost of these alternatives
is shown in Table 4, where part (a) shows the cost of building indexes and part (b) shows the cost of
processing the join query, with or without indexes. Now, let us focus on the case of building indexes
using quadtree buffering prior to computing the spatial join. If an index existed for the Roads data set
but not for the Water data set, then the speedup achieved by building theindex prior to running the query
is about 76% (14.7 seconds as opposed to 25.9 seconds). For the converse case (i.e., no index on the
Roads data set), it is about 59% faster to build an index on Roads and run the query (47.8 seconds as
opposed to 75.8 seconds). If neither data set has an index, then it would take 53.6 seconds to build an
index on both and to perform the spatial join with the indexes, which is more than an order of magnitude
faster than computing thejoin without any indexes. As a comparison, using B-tree buffering (i.e., “BB-
S’), the performance is about the same if an index must be built on Water (26.7 vs. 25.9), but building
an index on Roads and computing the join takes nearly twice as long as computing the join with only
theindex in Water (143 vs. 75.8). However, a speedup of nearly 8 timesisachieved if an index must be
built on both (161 vs. 1420). Interestingly, even though building two indexes and performing the query
isfaster than performing a query without indexes, it takes much longer to build the two indexesthan to
perform the query with them.

10 Concluding Remarks

There are three typical situationsin which an index must be updated: 1) anew index must be built from
scratch on a set of objects (bulk-loading), 2) a batch of objects must be inserted into an existing index
(bulk-insertion), and 3) one object (or only afew) must be inserted into an existing index (dynamic in-
sertions). In this paper we have presented techniques for speeding up index construction for the PMR
gquadtree spatial index inall threesituations. Furthermore, weintroduced bulk-loadingand bulk-insertion
techniques for the PR quadtree multidimensional point index.

In an informal analysis of the PMR quadtree bulk-loading algorithm, we presented persuasive ev-
idence that both its I/O and CPU costs are asymptotically the same as that of external sorting for rea

53

sonably “well-behaved” data distributions. Indeed, our experiments verified that the execution time per
object grows very slowly with the size of the data sets. Moreover, the speedup of the bulk-loading algo-
rithm over the dynamic algorithm (which updates the disk-resident quadtree directly for each insertion)
issubstantial, up to afactor of 12 for the datasetswe used. When the dynamic a gorithmwas enhanced to
better take advantage of buffering, the speedup was still significant, typically afactor of 2 to 4, depending
on the data distribution and other factors (see Section 9.2.9).

Future work includes investigating whether our buffering strategies for bulk-loading may be used
to speed up dynamic insertions and queries. Also, the fact that our system can build PMR quadtrees
efficiently will enable usto build aquery enginefor SAND that exploitsthisto construct spatial indexes
for intermediate query results (possibly from non-spatial subqueries), or for un-indexed spatial relations,
prior to spatial operations onthem. Thisis particularly important for complex operations such as spatia
joins.

References

[1] D.J. Abel and D. M. Mark. A comparative analysis of some two-dimensional orderings. Interna-
tional Journal of Geographical Information Systems, 4(1):21-31, January 1990.

[2] A.Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related problems. Com-
munications of the ACM, 31(9):1116-1127, September 1988.

[3] C. Aggarwal, J. Wolf, P. Yu, and M. Epelman. The Stree: an efficient index for multidimensional
objects. In Advancesin Spatial Databases — Fifth International Symposium, SSD’97, M. Schall
and A. Voisard, eds., pages 350—373, Berlin, Germany, July 1997. (Also Springer-Verlag Lecture
Notesin Computer Science 1262).

[4] C.H.AngandT. C. Tan. New linear node splitting algorithm for R-trees. In Advancesin Spatial
Databases— Fifth International Symposium, SSD’97, M. Scholl and A. Voisard, eds., pages 339—
349, Berlin, Germany, July 1997. (Also Springer-Verlag Lecture Notesin Computer Science 1262).

[5] W. G. Aref and H. Samet. An approach to information management in geographical applications.
In Proceedings of the Fourth International Symposium on Spatial Data Handling, vol. 2, pages
589-598, Zurich, Switzerland, July 1990.

[6] W. G. Aref and H. Samet. Extending a DBMS with spatial operations. In Advances in Spa-
tial Databases — Second Symposium, SSD’ 91, O. Gunther and H. J. Schek, eds., pages 299-318,
Zurich, Switzerland, August 1991. (Also Springer-Verlag L ecture Notesin Computer Science 525).

[7] L. Arge. Efficient external-memory data structures and applications. BRICS dissertation series,
DS-96-3, University of Aarhus, 1996.

[8] L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations on dynamic
R-trees. In Proceedings of the 1st Workshop on Algorithm Engineering and Experimentation
(ALANEX'99), Baltimore, MD, January 1999.

[9] B. Becker, P. G. Franciosa, S. Gschwind, T. Ohler, G. Thiemt, and P. Widmayer. Enclosing many
boxesby an optimal pair of boxes. In Proceedings of the 9th Annual Symposiumon Theoretical As-
pects of Computer Science (STACS), A. Finkel and M. Jantzen, eds., pages 475486, ENS Cachan,
France, February 1992. (Also Springer-Verlag Lecture Notesin Computer Science 577).

54

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient and robust
access method for points and rectangles. In Proceedings of the ACM SSGMOD Conference, pages
322-331, Atlantic City, NJ, June 1990.

J. L. Bentley. Multidimensional binary search trees used for associ ati ve searching. Communications
of the ACM, 18(9):509-517, September 1975.

S. Berchtold, C. Bohm, and H.-P. Kriegel. Improving the query performance of high-dimensional
index structures by bulk-load operations. In Advances in Database Technology — EDBT’ 98, 6th
International Conference on Extending Database Technology, pages 216—230, Vaencia, Spain,
March 1998.

J. van den Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk loading multidimen-
siona index structures. In Proceedings of the 23rd International Conference on Very Large Data
Bases, M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld,
eds., pages 406415, Athens, Greece, August 1997.

T. Brinkhoff and H. P. Kriegel. The impact of global clustering on spatial database systems. In
Proceedings of the 20th International Conference on Very Large Data Bases, J. Bocca, M. Jarke,
and C. Zaniolo, eds., pages 168-179, Santiago, Chile, September 1994.

Bureau of the Census. Tiger/Line precensusfiles. Washington, DC, 1989.

L. Chen, R. Choubey, and E. A. Rundensteiner. Bulk-insertionsinto R-trees using the Small-Tree-
Large-Tree approach. 1n Proceedings of the 6th International Symposium on Advances in Geo-
graphic Information Systems, R. Laurini, K. Makki, and N. Pissinou, eds., pages 161-162, Wash-
ington, DC, November 1998.

P. Ciacciaand M. Patella. Bulk loadingthe M-tree. In Proceedings of the 9th AustralasianDatabase
Conference (ADC' 98), Perth, Australia, February 1998.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: an efficient access method for similarity search in
metric spaces. In Proceedings of the 23rd International Conference on Very Large Data Bases,
M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld, eds.,
pages 426435, Athens, Greece, August 1997. (Source code availableat http: //wwwu-db.deis.
unibo.it/"patella/MMindex.html).

D. J. DeWwitt, N. Kabra, J. Luo, J. M. Patel, and J. B. Yu. Client-server paradise. In Proceedings of
the 20th Inter national Conference on Very Large Data Bases, J. Bocca, M. Jarke, and C. Zaniolo,
eds., pages 558-569, Santiago, Chile, September 1994.

C. Esperangaand H. Samet. Orthogonal polygonsas bounding structuresin filter-refine query pro-
cessing strategies. In Advances in Spatial Databases — Fifth International Symposium, SSD’97,
M. Scholl and A. Voisard, eds., pages 197-220, Berlin, Germany, July 1997. (Also Springer-Verlag
Lecture Notes in Computer Science 1262).

C. Faloutsos. Multiattribute hashing using gray codes. In Proceedings of the ACM SIGMOD Con-
ference, pages 227-238, Washington, DC, May 1986.

M. Freeston. The BANG file: anew kind of grid file. In Proceedings of the ACM SGMOD Con-
ference, pages 260—269, San Francisco, CA, May 1987.

55

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

|. Gargantini. An effective way to represent quadtrees. Communicationsof the ACM, 25(12):905—
910, December 1982.

D. M. Gavrila. R-tree index optimization. In Proceedings of the Sixth I nter national Symposiumon
Spatial Data Handling, T. C. Waugh and R. G. Healey, eds., pages 771-791, Edinburgh, Scotland,
September 1994.

A. Guttman. R-trees; adynamic index structure for spatial searching. In Proceedings of the ACM
S GMOD Conference, pages 47-57, Boston, MA, June 1984.

G. Hjaltason, H. Samet, and Y. Sussmann. Speeding up bulk-loading of quadtrees. In Proceed-
ings of the 5th International ACM Workshop on Advances in GIS, pages 50-53, Las Vegas, NV,
November 1997.

E. G. Hoel and H. Samet. Benchmarking spatial join operations with spatial output. In Proceed-
ings of the 21st International Conference on Very Large Data Bases, U. Daya, P. M. D. Gray, and
S. Nishio, eds., pages 606—618, Zurich, Switzerland, September 1995.

S.-H. S. Huang and V. Viswanathan. On the construction of weighted time-optimal B-trees. BIT,
30(2):207-215, 1990.

G. Iwerksand H. Samet. Thespatia spreadsheet. In Proceedingsof the Third International Confer-
enceon Visual | nformation Systems (VISUAL99), A. Smuelders, ed., Amsterdam, The Netherlands,
June 1999.

I. Kamel and C. Faloutsos. On packing R-trees. In Proceedings of the Second International Con-
ference on Informationand Knowl edge Management, pages 490-499, Washington, DC, November
1993.

I. Kame and C. Faloutsos. Hilbert R-tree; Animproved R-tree using fractals. In Proceedings of
the 20th Inter national Conference on Very Large Data Bases, J. Bocca, M. Jarke, and C. Zaniolo,
eds., pages 500-509, Santiago, Chile, September 1994.

I. Kamel, M. Khalil, and V. Kouramgjian. Bulk insertion in dynamic R-trees. In Proceedings of the
Seventh International Symposium on Spatial Data Handling, M. J. Kraak and M. Molenaar, eds.,
pages 3B.31-3B.42, Delft, The Netherlands, August 1996.

T. M. Klein, K. J. Parzygnat, and A. L. Tharp. Optima B-tree packing. Information Systems,
16(2):239-243, 1991.

S. T. Leutenegger, M. A. Lopez, and J. Edgington. STR: A simple and efficient algorithmfor R-tree
packing. In Proceedings of the 13th |EEE International Conference on Data Engineering, pages
497-506, Birmingham, U.K., April 1997.

S. T. Leutenegger and D. M. Nicol. Efficient bulk-loading of gridfiles. 1EEE Transactions on
Knowledge and Data Engineering, 9(3):410-420, May/June 1997.

J.Li, D. Rotem, and J. Srivastava. Algorithmsfor loading parallel grid files. In Proceedings of the
ACM SIGMOD Conference, pages 347—356, Washington, DC, May 1993.

M. Lindenbaum and H. Samet. A probabilistic analysis of trie-based sorting of large collections
of line segments. Computer Science TR-3455, University of Maryland, College Park, MD, April
1995.

56

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

G. M. Morton. A computer oriented geodetic data base and a new technique in file sequencing.
IBM Ltd., Ottawa, Canada, 1966.

R. C. Nelson and H. Samet. A population analysisfor hierarchical data structures. In Proceedings
of the ACM SSGMOD Conference, pages 270-277, San Francisco, May 1987.

Oracle Corporation. Advancesin relational database technology for spatial data management. Or-
acle spatial data option technical white paper, September 1996.

J. A. Orensteinand T. H. Merrett. A class of data structuresfor associative searching. In Proceed-
ings of the Third ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages
181-190, Waterloo, Canada, April 1984.

Y.J. GarciaR., M. A. Lbpez, and S. T. Leutenegger. A greedy algorithmfor bulk loading R-trees. In
Proceedings of the 6th Inter national Symposiumon Advancesin Geographic Information Systems,
R. Laurini, K. Makki, and N. Pissinou, eds., pages 163-164, Washington, DC, November 1998.

Y. J. GarciaR., M. A. LOpez, and S. T. Leutenegger. On optimal node splitting for R-trees. In
Proceedingsof the 24th I nter national Conferenceon Very Large Data Bases, A. Gupta, O. Shmueli,
and J. Widom, eds., pages 334-344, New York, August 1998.

A. L. Rosenberg and L. Snyder. Time- and space-optimality in B-trees. ACM Transactions on
Database Systems, 6(1):174—193, March 1981.

N. Roussopolous, Y. Kotidis, and M. Roussopolous. Cubetree: Organization of and bulk incre-
mental updates on the data cube. In Proceedings of the ACM SSGMOD Conference, pages 89-111,
Tucson, AZ, May 1997.

N. Roussopoulosand D. Leifker. Direct spatial search on pictorial databases using packed R-trees.
In Proceedings of the ACM SSIGMOD Conference, pages 17-31, Austin, TX, May 1985.

H. Samet. Applications of Spatial Data Structures. Computer Graphics, Image Processing, and
GIS. Addison-Wesley, Reading, MA, 1990.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA,
1990.

B. Seeger and H. P. Kriegel. The buddy-tree: an efficient and robust access method for spatial
database systems. In Proceedings of the 16th International Conference on Very Large Databases
(VLDB), D. McLeod, R. Sacks-Davis, and H. Schek, eds., pages 590-601, Brisbane, Australia, Au-
gust 1990.

M. Stonebraker, T. Sellis, and E. Hanson. An anaysis of rule indexing implementations in data
base systems. In Proceedings of the First International Conference on Expert Database Systens,
pages 353—-364, Charleston, SC, April 1986.

W. Wang, J. Yang, and R. Muntz. PK-tree: aspatial index structurefor highdimensional point data.
In Proceedings of the 5th Inter national Conference of Foundationsof Data Organization (FODO),
pages 27-36, Kobe, Japan, November 1998.

D. A. Whiteand R. Jain. Algorithmsand strategiesfor similarity retrieval. Technical Report VCL-
96-101, Visual Computing Laboratory, University of California, San Diego, CA, 1996. (seehttp:

//vision.ucsd.edu/papers/simret).

57

[53] J. Yang, W. Wang, and R. Muntz. Yet another spatial indexing structure. Computer Science
Department Technical Report 970040, University of California, Los Angeles, CA, 1997. (see
http://dml.cs.ucla.edu/ "weiwang/paper/TR97040.ps).

[54] A.C. Yao. Onrandom 2-3 trees. Acta Informatica, 9(2):159-168, 1978.

58

